
Defn Let V be a vector space and v1, . . . , vn ∈
V . A linear combination of v1, ..., vn is any vec-

tor of the type r1v1 + r2v2 + · · ·+ rnvn, where

r1, ..., rn is are real nos.

Thm The set of all l.c. of v1, ..., vn is a sub-

space of V .

This subspace is denoted by < v1, ..., vn > and

is called the subspace or vector space spanned

by v1, ..., vn.



Ex 1 Let v1 = (1,2,0), v2 = (1,0,1), v3 =

(2,2,1) and v4 = (1,1,1).

Is v4 a linear combination of v1, v2, v3?

Is v3 a l.c. of v1, v2?

Ex 2 Consider the v.s. F (R).

Is sin(x) a l.c. of cos(x) and cos(2x)?



Ex 3 In Ex 1, show that the v.s. spanned by

< v1, v2, v4 > is R3.

Proof Let (a, b, c) ∈ V . Want to find r, s, t so

that

rv1 + sv2 + tv4 = (a, b, c)

i.e., want to find r, s, t so that

(r + s + t,2r + t, s + t) = (a, b, c)

Treating r, s, t as variables we get the following

equations:



Use gauss elimination to solve the equation

1 1 1 a
2 0 1 b
0 1 1 c



R2 replaced by R2 − 2R1

1 1 1 a
0 −2 −1 b− 2a
0 1 1 c



interchange R2, R3

1 1 1 a
0 1 1 c
0 −2 −1 b− 2a





1 1 1 a
0 1 1 c
0 0 1 b− 2a + 2c



t = b− 2a + 2c, s = c− t, r = a− s− t

t = b− 2a + 2c,

s = c− b + 2a− 2c,

r = a− c + b− 2a + 2c− b + 2a− 2c

[[End of proof]]

Is the v.s. spanned by < v1, v2, v3 > the whole

R3?



No.

What is the subspace < v1, v2, v3 > ?

Ex 4

Show that vector space P3 polynomials of de-

gree atmost three is spanned by 1, x, x2, x3.



Thm Let v, w span the vector space V . Let

x, y ∈ V be such that v and w are l.c. of x, y

then V ⊂< x, y >

proof

Note that since v and w are l.c. of x, y

v = ax + by

w = cx + dy

for some real numbers a, b, c, d.

Let u ∈ V . Since v, w span V .

u = rv + sw

for some real numbers r, s.



substituing for v, w we get

u = r(ax + by) + s(cx + dy)

u = (ra)x + (rb)y + (sc)x + (sd)y

u = (ra + sc)x + (rb + sd)y

So every vector of V is spanned by x, y



Linear Independence

Defn Let V be a vector space. v1, ..., vn ∈ V is

said to be linearly dependent if there exist real

numbers r1, ..., rn, not all zero, so that r1v1 +

... + rnvn = 0.

Otherwise v1, ..., vn are said to be linearly inde-

pendent.



Let v1 = (1,2,0), v2 = (1,0,1), v3 = (2,2,1)
and v4 = (1,1,1).

Ex 1 v1, v2, v3 are linearly dependent.

Ex 2 Let V be a v.s. and v ∈ V . v is dependent
if and only if v = 0.

Thm Let V be a v.s. and v, w ∈ V be nonzero
vectors. v, w are dependent if and only if v =
rw for real number r.

Ex 3 Is {v1, v2, v4} linearly dependent set?



Let r, s, t ∈ R be such that

rv1 + sv2 + tv3 = 0

then we get the following homogenous equa-
tion in r, s, t.

r + s + t = 0

2r + +t = 0

s + t = 0

The coeffcient matrix is the following:

1 1 1
2 0 1
0 1 1


R2 replaced by R2 − 2R1

1 1 1
0 −2 −1
0 1 1





interchange R2, R3

1 1 1
0 1 1
0 −2 −1



Replace R3 by R3 + 2R2.1 1 1
0 1 1
0 0 1



So t = 0, s + t = 0 and r + s + t = 0, i.e.

r = s = t = 0. So v1, v2, v4 are linearly inde-

pendent.

Ex 4 Does the following matrices form a lin-

early independent set?

[
1 1
0 1

] [
1 1
1 1

] [
0 1
0 1

] [
0 0
0 1

]



What if we add the matrix

[
1 0
0 1

]
to the set?



Thm Let V be a v.s. and v1, ..., vn ∈ V . The

set {v1, ..., vn} is lin. depend. if and only if one

of the vector in this set can be written as a

linear combination of the other vectors in the

set.

proof If {v1, ...vn} is linearly dependent set then

there exist r1, ..., rn ∈ R not all zero so that

r1v1 + ... + rnvn = 0. Let ri 6= 0.

−rivi = r1v1+...+ri−1vi−1+ri+1vi+1+...+rnvn

Since ri 6= 0, we can multiply the above by −1
ri

to get

vi =
−r1
ri

v1+...+
−ri−1

ri
vi−1+

−ri+1

ri
vi+1+...+

−rn

ri
vn

So vi is a l.c. of the other vectors.



Conversely, suppose one of the vector is a l.c.

of other vectors. i.e.,

vi = s1v1 + ... + si−1vi−1 + si+1vi+1 + ... + snvn

for some real numbers s1, ..., sn.

Then we get,

s1v1+...+si−1vi−1+(−1)vi+si+1vi+1+...+snvn = 0

Since the coefficient of vi is nonzero, {v1, ..., vn}
is a lin. depend. set.



Defn Let V be a vector space. A subset {v1, v2, ..., vn}
is said to be a basis of V if {v1, ..., vn} is a l.i.

set and it spans V .

Ex 1 {(1,0), (0,1)} is a basis of R2. More

basis of R2?

Ex 2 {1, x, x2, x3, x4, ..., xn} is a basis on Pn,

polynomials of degree at most n.

Ex 3 Give a basis of M(2,2).



Shortly we will prove the following theorem:

Thm Let V be a v.s. If {v1, ..., vn} is a basis

of V and {w1, ..., wm} is also a basis of V then

n = m.

We will prove the following result first:

Thm Let V be a v.s. If {v1, ..., vn} is a l.i.

subset of V and {w1, ..., wm} spans V then m ≥
n.

proof

Since {w1, ...wm} spans V , every vi is a l.c. of

{w1, ..., wm}.

So there are real numbers cij such that



v1 = c11w1 + c12w2 + ... + c1mwm

v2 = c21w1 + c22w2 + ... + c2mwm

.....

vn = cn1w1 + cn2w2 + ... + cnmwm

Suppose m < n then the following system of
homogeous equations has a non trivial solu-
tion:

c11x1 + c21x2 + ... + cn1xn = 0

c12x1 + c22x2 + ... + cn2xn = 0

......

c1mx1 + c2mx2 + ... + cnmxn = 0

since there are more variables and less equa-
tions.



Let x1 = r1, ..., xn = rn be a nontrivial solution.

Then

r1v1 + ...rnvn =

r1c11w1 + r1c12w2 + ... + r1c1mwm+

r2c21w1 + r2c22w2 + ... + r2c2mwm+

.....

rncn1w1 + rncn2w2 + ... + rncnmwm =

(c11r1 + c21r2 + ... + cn1rn)w1+

(c12r1 + c22r2 + ... + cn2rn)w2+

......

(c1mr1 + c2mr2 + ... + cnmrn)wm

= 0



This contradicts the linear independence of the

set {v1, ..., vn}.

[[End of proof]]

Thm Let V be a v.s. If {v1, ..., vn} is a basis

of V and {w1, ..., wm} is also a basis of V then

n = m.

Proof

Since {v1, ..., vn} is a l.i. set and {w1, ..., wm}
generates V , by previous theorem m ≥ n.

Also Since {w1, ..., wm} is a l.i. set and {v1, ..., vn}
generates V , by previous theorem n ≥ m.

Hence n = m.

[[End of proof]]



Defn Let V be a v.s. the dimension of V is

the number of elements in a basis of V .

Remark By above theorem dimension of V is

well defined.

Ex What is the dimension of Rn?

Ex What is the dimension of Pn?

Ex What is the dimension of M(2,2)?

Defn A v.s. is said to be finite dimensional

if it has a basis consisting of finite number of

elements. Otherwise it is called infinite dimen-

sional v.s.

Ex P, the set of polynomials is an infinite di-

mensional v.s.



Thm Suppose {v1, ..., vn} spans a v.s. V . Then
some subset of {v1, ..., vn} is a basis of V .

proof If {v1, ..., vn} is a l.i. set then {v1, ..., vn}
is a basis and we are done.

Otherwise, {v1, ..., vn} is linearly dependent. So
by Thm 3.5, one of the vector is a l.c. of the
others. Let

vi = s1v1 + ... + si−1vi−1 + si+1vi+1 + ... + snvn

Let u ∈ V , then

u = r1v1 + ... + rivi + ... + rnvn

= r1v1 + ... + ri−1vi−1+

ri(s1v1 + ... + si−1vi−1 + si+1vi+1 + ... + snvn)

+ri+1vi+1 + ... + rnvn



So {v1, ..., vi−1, vi+1, ..., vn} spans V .

If {v1, ..., vi−1, vi+1, ..., vn} is l.i. then it is a basis

of V , it is a subset of {v1, ..., vn} and we are

done.

Otherwise keep continuing the above steps to

get smaller subsets which spans V .

Eventually we will stop with a l.i. set or an

empty set. If we get an empty set means V =

{0} and is spanned by the empty set. In this

case the basis of V is the empty set.

[[End of proof]]



Corollary If a v.s. V is spanned by finite num-

ber of vectors then V is finite dimensional.

Proof Let {v1, ..., vn} spans V .

By the above theorem, V has a basis consisting

of at most n elements.

So V is finite dimensional.

Ex {x2+x+2, x2+1, x+1, x2+2x,3x2+2x+1}
spans P2. Find a subset which is a basis.



Lemma Let {v1, ..., vn} be a l.i. subset of a
v.s. V . If v ∈ V is not a l.c. of {v1, ..., vn} then
{v1, ..., vn, v} is a l.i. set.

Proof

Let r1, ..., rn, r be real numbers such that

r1v1 + r2v2 + ... + rnvn + rv = 0

If r 6= 0 then

v =
−r1

r
v1 +

−r2
r

v2 + ... +
−rn

r
vn

which contradicts the hypothesis.

So r = 0 and

r1v1 + r2v2 + ... + rnvn = 0

But {v1, ..., vn} is a l.i. set.

So ri = 0 for all i. And we know that r = 0.

Hence {v1, ..., vn, v} is a l.i. set.

[[End of Proof]]



Thm Let {v1, ..., vn} be a l.i. subset of a finite

dimensional v.s. V . There exist vn+1, vn+2, ..., vm ∈
V , where m is the dimension of V such that

{v1, ..., vm} is a basis of V .

proof If {v1, ..., vn} spans V then {v1, ..., vn} is

a basis.

m = n and we are done.

Otherwise let vn+1 ∈ V but not in < v1, ..., vn >.

Then by the above theorem, {v1, ..., vn, vn+1}
is a l.i. set.

Continue the above process to obtain vn+1, ..., vm ∈
V so that

{v1, ..., vn, vn+1, ..., vm} is a l.i. set.



If {v1, ..., vn, vn+1, ..., vm} does not span V then

by previous theorem there exist v ∈ V so that

{v1, ..., vn, vn+1, ..., vm, v} is l.i. set.

But dimension V is m. So V can be spanned

by m elements.

So by thm 3.9, V cannot have a l.i. set contain

more than m elements.

A contradiction. So {v1, ..., vn, vn+1, ..., vm} spans

V and hence is a basis of V .

Ex Extend the following to a basis of M(2,2).[
1 1
1 1

] [
1 2
3 4

]



Cor Let S be a subspace of a v.s. V then

dim(S) ≤ dim(V ).

proof If {v1, ..., vn} is a basis of S then it is a

l.i. subset of V .

By above theorem, dim(V ) ≥ n = dim(S).

[[End of Proof]]

Cor If dim(V ) = n and {v1, ..., vn} is l.i. then

it is a basis of V . If {w1, ..., wn} spans V then

{w1, ..., wn} is a basis of W .



Consider the following vectors in R2,

(1,1), (1,2), (1,0)

They span R2 but they are not a basis.

A vector (5,21) can be expressed in many ways
using these vectors.

(5,21) = 5(1,1) + 8(1,2)− 8(1,0)

= 21(1,1)− 16(1,0)

= (1,1) + 10(1,2)− 6(1,0)

But (1,1), (1,2) is a basis.

(5,21) = −11(1,1) + 16(1,2)

there is no other l.c. of (1,1) and (1,2) which
will give (5,21).

Let B = {(1,1), (1,2)} be an ordered set. i.e.
we remember the order in which the elements
are listed. Then the co-ordinates of (5,21)
with respect to B is (−11,16)B.



We shall switch notation for Rn.

A n×1 coloumn matrix will denote an element

of Rn.

Defn Let V be a v.s. and B = {v1, ..., vn} be

an ordered basis of V . Let u ∈ V .


r1
r2
...

rn

 is the

coordinate of u with respect to B

if u = r1v1 + r2v2 + ... + rnvn.

We write u =


r1
r2
...

rn


B



Ex 1 Let B = {e1, ..., en} be the ordered stan-

dard basis of Rn.

Then


r1
r2
...

rn

 =


r1
r2
...

rn


B

Ex 2 Note B = {x+2, x−2, x(x−2), x2(x−2)}
is a basis of P3. Write the coordinates of x3−2

w.r.t. B.

Thm Let {v1, ..., vn} be a subset of a v.s. V .

{v1, v2, ..., vn} is a basis of V if and only if for

every u ∈ V , there exist unique r1, ..., rn ∈ R so

that u = r1v1 + r2v2 + ... + rnvn.



proof

(⇒)

Let u ∈ V . Since {v1, v2, ..., vn} is a basis there

exist r1, ..., rn ∈ R such that

u = r1v1 + r2v2 + ... + rnvn

We only have to show uniqueness. Suppose

there exist s1, ..., sn ∈ R so that

u = s1v1 + s2v2 + ... + snvn

substracting the two expression, we get

0 = (r1 − s1)v1 + (r2 − s2)v2 + ... + (rn − sn)vn

Since {v1, v2, ..., vn} is l.i., ri − si = 0 for all i.

So ri = si for all i proving uniqeness of r1, ..., rn.



(⇐)

By hypothesis, {v1, v2, ..., vn} spans V .

r1v1 + r2v2 + ... + rnvn = 0

and

0v1 + 0v2 + ... + 0vn = 0

So by uniqueness, ri = 0 for all i. Hence

{v1, v2, ..., vn} is l.i.

Hence {v1, v2, ..., vn} is a basis.



Chapter 4: Inner products

We shall define various operations on vector

spaces which is behaves like multiplication. These

operations are called inner products.

Inner product is a function from V × V to R,

where V is a vector space. So given a pair of

vectors, you can “multiply” them to get a real

number.



Defn Let V be a vector space. A function

which assigns a real number 〈v, w〉 to vectors

v, w ∈ V is said to be an inner product if the

function satisfies the following properties. Let

u, v, w be any vectors in V

1. 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 if and only if v = ~0.

2. 〈v, w〉 = 〈w, v〉.

3. 〈rv, w〉 = r〈v, w〉 = 〈v, rw〉 for any r ∈ R.

4. 〈u + v, w〉 = 〈u, w〉+ 〈v, w〉.

V together with an inner product is called an

inner product space.



Example Let V = R3, define 〈v, w〉 := v · w,

the dot product. i.e. 〈(a1, a2, a3), (b1, b2, b3)〉 =

a1b1 + a2b2 + a3b3.

This is an inner product on R3.

More generally, on Rn the following is an inner

product 〈(a1, a2, ..., an), (b1, b2, ..., bn)〉 = a1b1 +

a2b2 + ... + anbn.

Thm Let V be a vector space and 〈., .〉 be an

inner product on V . Then

〈v,0〉 = 〈0, v〉 = 0 and

〈u, v + w〉 = 〈u, v〉+ 〈u, w〉.



proof 〈v,0〉 = 〈0, v〉 by axiom 2 of inner prod-

uct.

Shall show 〈0, v〉 = 0.

〈0 + 0, v〉 = 〈0, v〉+ 〈0, v〉 by axiom 4

⇒ 〈0, v〉 = 〈0, v〉+ 〈0, v〉
⇒ 〈0, v〉 − 〈0, v〉 = 〈0, v〉+ 〈0, v〉 − 〈0, v〉
⇒ 〈0, v〉 = 0

〈u, v + w〉 = 〈v + w, u〉 (by axiom 2)

= 〈v, u〉+ 〈w, u〉 (by axiom 4)

= 〈u, v〉+ 〈u, w〉 (by axiom 2)

[[End of proof]]



Examples (1) For a < b real numbers, let

V = C([a, b]) be the vector space of contin-

uous real valued function on the interval [a, b].

The following is an inner product on V :

For f, g ∈ V let

〈f, g〉 =
∫ b

a
f(x)g(x)dx

(2) On Rn the following is an inner product

〈(a1, a2, , a3), (b1, b2, b3)〉 = 2a1b1+
√

3a2b2+πanbn

(3) On P3 there is an inner product given by

〈f, g〉1 =
∫ 1

0
f(x)g(x)dx

and

〈f, g〉2 = a0b0 + a1b1 + a2b2 + a3b3

where f(x) = a0+a1x+a2x2+a3x3 and g(x) =

b0 + b1x + b2x2 + b3x3



Defn A norm is a function from a an inner

product space (V, 〈., .〉) to R given by ||v|| =√
〈v, v〉

Thm Let V be an inner product space and

v ∈ V .

1. ||v|| ≥ 0 and ||v|| = 0 if and only if v = ~0.

2. ||rv|| = |r| ||v|| for any r ∈ R.



Rn will be viewed as an inner product space
where the inner product 〈v, w〉 is the dot prod-
uct v · w, unless otherwise mentioned.

Thm Let θ be the angle between two nonzero
vectors v, w in Rn, then

v · w = ||v|| ||w|| cos(θ)

Remarks

(1) So given two nonzero vectors v, w ∈ Rn,
the angle between v and w is given by

θ = arccos(
v · w

||v|| ||w||
); where θ ∈ [0, π]

(2) Note that θ = π/2 if and only if v · w = 0

Defn Two vectors v, w in Rn are said to be
orthogonal if v · w = 0.

Remark ~0 is orthogonal to very vector in Rn.



Example

Let V = {v ∈ R3|v is orthogonal to (1,2,3)}.
Show V is a subspace of R3. Find a basis of

V .

Orthogonal projection



Thm (Cauchy-Schwarz Inequality) Let V be

an inner product space and v, w ∈ V .

Then 〈v, w〉 ≤ ||v|| ||w||.

Proof If v = 0 or w = 0 then both sides are

zero and the inequality holds.

So assume v, w are nonzero vectors. So a =

1/||v|| and b = 1/||w|| are real numbers.

〈av − bw, av − bw〉 ≥ 0

⇒ 〈av, av − bw〉 − 〈bw, av − bw〉 ≥ 0

⇒ 〈av, av〉 − 〈av, bw〉 − 〈bw, av〉+ 〈bw, bw〉 ≥ 0

⇒ a2||v||2 − 2ab〈v, w〉+ b2||w||2 ≥ 0

⇒ 1− 2〈v,w〉
||v|| ||w|| + 1 ≥ 0



⇒ 2 ≥ 2 〈v,w〉
||v|| ||w||

⇒ ||v|| ||w|| ≥ 〈v, w〉

[[End of Proof]]

Thm (Triangle inequality) Let V be a inner

product space and u, v ∈ V then ||u + v|| ≤
||u||+ ||v||

Proof ||u + v||2 = ||u||2 + 2〈u, v〉+ ||v||2

≤ ||u||2 + 2||u|| ||v|| + ||v||2 by Cauchy’s

Schwarz inequality

= (||u||+ ||v||)2

⇒ ||u + v|| ≤ ||u||+ ||v||

[[End of proof]]



Defn Let V be an innerproduct space and u ∈
V be nonzero vector. For a vector v ∈ V the

orthogonal projection of v on u is denoted by

proju(v) and defined as

proju(v) =
〈u, v〉
〈u, u〉

u

Remark v−proju(v) is orthogonal to u. Hence

v = proju(v) + (v − proju(v)

is a decomposition of v into two orthogonal

components.

Defn Let V be an inner product space. A

vector u ∈ V is said to be a unit vector if

||u|| = 1.

Example Let (1,2,3) ∈ R3. Find a unit vector

which has the same direction as (1,2,3).



Defn Let V be an inner product space. A

subset S of V is said to be orthogonal set if

given any two distinct vectors u, v ∈ S u is

orthogonal to v. Moreover, if each vector in S

is a unit vector then S is called an orthonormal

set.

Example In R3, {(1,0,0), (0,2,0), (0,0,3)} is

an orthogonal set.

In general in Rn, {e1, ..., en} is an orthonormal

set.

Thm Let {v1, ...vn} be orthogonal set of nonzero

vectors in an inner product space V then {v1, ..., vn}
is a linearly independent set.



proof Suppose for some real number r1, r2, ..., rn,

r1v1 + r2v2 + ... + rnvn = 0

Then for each i,

⇒ 〈vi, r1v1 + r2v2 + ... + rnvn〉 = 〈vi,0〉

⇒ 〈vi, r1v1〉+ 〈vi, r2v2〉+ ... + 〈vi, rnvn〉 = 0

⇒ r1〈vi, v1〉+ r2〈vi, v2〉+ ... + rn〈vi, vn〉 = 0

Since {v1, ...vn} is an orthogonal set, 〈vi, vj〉 = 0

for j 6= i. So

ri〈vi, vi〉 = 0

⇒ ri = 0 (Since vi 6= 0.)

Hence {v1, ..., vn} are l.i.



Defn A subset {v1, ..., vn} of an inner product

space V is said to be an orthogonal basis if

{v1, ..., vn} is a basis and an orthogonal set.

{v1, ..., vn} is said to be an orthonormal basis if

{v1, ..., vn} is a basis and an orthonormal set.

Examples

Next we shall see that from any given basis of

an IP space V be can obtain an orthonormal

basis by an algorithm called Gram-Schmidt or-

thonormalization process.


