Defn Let V be a vector space and $v_1, \ldots, v_n \in V$. A linear combination of v_1, \ldots, v_n is any vector of the type $r_1v_1 + r_2v_2 + \cdots + r_nv_n$, where r_1, \ldots, r_n is are real nos.

Thm The set of all l.c. of $v_1, ..., v_n$ is a subspace of V.

This subspace is denoted by $\langle v_1,...,v_n \rangle$ and is called the subspace or vector space spanned by $v_1,...,v_n$.

Ex 1 Let $v_1 = (1,2,0), v_2 = (1,0,1), v_3 = (2,2,1)$ and $v_4 = (1,1,1)$.

Is v_4 a linear combination of v_1, v_2, v_3 ?

Is v_3 a l.c. of v_1, v_2 ?

Ex 2 Consider the v.s. $F(\mathbb{R})$. Is sin(x) a l.c. of cos(x) and cos(2x)? **Ex 3** In Ex 1, show that the v.s. spanned by $\langle v_1, v_2, v_4 \rangle$ is \mathbb{R}^3 .

Proof Let $(a,b,c) \in V$. Want to find r,s,t so that

$$rv_1 + sv_2 + tv_4 = (a, b, c)$$

i.e., want to find r, s, t so that

$$(r+s+t, 2r+t, s+t) = (a, b, c)$$

Treating r, s, t as variables we get the following equations:

Use gauss elimination to solve the equation

$$\begin{bmatrix} 1 & 1 & 1 & a \\ 2 & 0 & 1 & b \\ 0 & 1 & 1 & c \end{bmatrix}$$

 R_2 replaced by $R_2 - 2R_1$

$$\begin{bmatrix} 1 & 1 & 1 & a \\ 0 & -2 & -1 & b - 2a \\ 0 & 1 & 1 & c \end{bmatrix}$$

interchange R_2 , R_3

$$\begin{bmatrix} 1 & 1 & 1 & a \\ 0 & 1 & 1 & c \\ 0 & -2 & -1 & b - 2a \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & 1 & a \\ 0 & 1 & 1 & c \\ 0 & 0 & 1 & b - 2a + 2c \end{bmatrix}$$

$$t = b - 2a + 2c, s = c - t, r = a - s - t$$

 $t = b - 2a + 2c,$
 $s = c - b + 2a - 2c,$
 $r = a - c + b - 2a + 2c - b + 2a - 2c$

[[End of proof]]

Is the v.s. spanned by $< v_1, v_2, v_3 >$ the whole \mathbb{R}^3 ?

No.

What is the subspace $\langle v_1, v_2, v_3 \rangle$?

Ex 4

Show that vector space P_3 polynomials of degree atmost three is spanned by $1, x, x^2, x^3$.

Thm Let v, w span the vector space V. Let $x, y \in V$ be such that v and w are l.c. of x, y then $V \subset \langle x, y \rangle$

proof

Note that since v and w are I.c. of x, y

$$v = ax + by$$

$$w = cx + dy$$

for some real numbers a, b, c, d.

Let $u \in V$. Since v, w span V.

$$u = rv + sw$$

for some real numbers r, s.

substituing for v, w we get

$$u = r(ax + by) + s(cx + dy)$$
$$u = (ra)x + (rb)y + (sc)x + (sd)y$$
$$u = (ra + sc)x + (rb + sd)y$$

So every vector of V is spanned by x, y

Linear Independence

Defn Let V be a vector space. $v_1, ..., v_n \in V$ is said to be linearly dependent if there exist real numbers $r_1, ..., r_n$, not all zero, so that $r_1v_1 + ... + r_nv_n = 0$.

Otherwise $v_1, ..., v_n$ are said to be linearly independent.

Let $v_1 = (1,2,0), v_2 = (1,0,1), v_3 = (2,2,1)$ and $v_4 = (1,1,1).$

Ex 1 v_1, v_2, v_3 are linearly dependent.

Ex 2 Let V be a v.s. and $v \in V$. v is dependent if and only if v = 0.

Thm Let V be a v.s. and $v, w \in V$ be nonzero vectors. v, w are dependent if and only if v = rw for real number r.

Ex 3 Is $\{v_1, v_2, v_4\}$ linearly dependent set?

Let $r, s, t \in \mathbb{R}$ be such that

$$rv_1 + sv_2 + tv_3 = 0$$

then we get the following homogenous equation in r,s,t.

$$r + s + t = 0$$
$$2r + t = 0$$
$$s + t = 0$$

The coeffcient matrix is the following:

$$\begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

 R_2 replaced by $R_2 - 2R_1$

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & -2 & -1 \\ 0 & 1 & 1 \end{bmatrix}$$

interchange R_2 , R_3

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & -2 & -1 \end{bmatrix}$$

Replace R_3 by $R_3 + 2R_2$.

$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

So t = 0, s + t = 0 and r + s + t = 0, i.e.

r=s=t=0. So v_1,v_2,v_4 are linearly independent.

Ex 4 Does the following matrices form a linearly independent set?

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

What if we add the matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ to the set?

Thm Let V be a v.s. and $v_1, ..., v_n \in V$. The set $\{v_1, ..., v_n\}$ is lin. depend. if and only if one of the vector in this set can be written as a linear combination of the other vectors in the set.

proof If $\{v_1,...v_n\}$ is linearly dependent set then

there exist $r_1,...,r_n \in \mathbb{R}$ not all zero so that $r_1v_1+...+r_nv_n=0$. Let $r_i\neq 0$.

$$-r_i v_i = r_1 v_1 + \dots + r_{i-1} v_{i-1} + r_{i+1} v_{i+1} + \dots + r_n v_n$$

Since $r_i \neq 0$, we can multiply the above by $-\frac{1}{r_i}$ to get

$$v_i = \frac{-r_1}{r_i}v_1 + \dots + \frac{-r_{i-1}}{r_i}v_{i-1} + \frac{-r_{i+1}}{r_i}v_{i+1} + \dots + \frac{-r_n}{r_i}v_n$$

So v_i is a l.c. of the other vectors.

Conversely, suppose one of the vector is a l.c. of other vectors. i.e.,

$$v_i = s_1 v_1 + ... + s_{i-1} v_{i-1} + s_{i+1} v_{i+1} + ... + s_n v_n$$
 for some real numbers $s_1, ..., s_n$.

Then we get,

$$s_1v_1 + \dots + s_{i-1}v_{i-1} + (-1)v_i + s_{i+1}v_{i+1} + \dots + s_nv_n = 0$$

Since the coefficient of v_i is nonzero, $\{v_1,...,v_n\}$ is a lin. depend. set.

Defn Let V be a vector space. A subset $\{v_1, v_2, ..., v_n\}$ is said to be a basis of V if $\{v_1, ..., v_n\}$ is a l.i. set and it spans V.

Ex 1 $\{(1,0),(0,1)\}$ is a basis of \mathbb{R}^2 . More basis of \mathbb{R}^2 ?

Ex 2 $\{1, x, x^2, x^3, x^4, ..., x^n\}$ is a basis on \mathbb{P}^n , polynomials of degree at most n.

Ex 3 Give a basis of M(2,2).

Shortly we will prove the following theorem:

Thm Let V be a v.s. If $\{v_1,...,v_n\}$ is a basis of V and $\{w_1,...,w_m\}$ is also a basis of V then n=m.

We will prove the following result first:

Thm Let V be a v.s. If $\{v_1,...,v_n\}$ is a l.i. subset of V and $\{w_1,...,w_m\}$ spans V then $m \ge n$.

proof

Since $\{w_1,...w_m\}$ spans V, every v_i is a l.c. of $\{w_1,...,w_m\}$.

So there are real numbers c_{ij} such that

$$v_1 = c_{11}w_1 + c_{12}w_2 + \dots + c_{1m}w_m$$
$$v_2 = c_{21}w_1 + c_{22}w_2 + \dots + c_{2m}w_m$$
.....

$$v_n = c_{n1}w_1 + c_{n2}w_2 + \dots + c_{nm}w_m$$

Suppose m < n then the following system of homogeous equations has a non trivial solution:

$$c_{11}x_1 + c_{21}x_2 + \dots + c_{n1}x_n = 0$$
$$c_{12}x_1 + c_{22}x_2 + \dots + c_{n2}x_n = 0$$
$$\dots$$

$$c_{1m}x_1 + c_{2m}x_2 + \dots + c_{nm}x_n = 0$$

since there are more variables and less equations.

Let $x_1 = r_1, ..., x_n = r_n$ be a nontrivial solution. Then

$$r_1v_1 + \dots + r_nv_n =$$

$$r_1c_{11}w_1 + r_1c_{12}w_2 + \dots + r_1c_{1m}w_m +$$

$$r_2c_{21}w_1 + r_2c_{22}w_2 + \dots + r_2c_{2m}w_m +$$

 $r_n c_{n1} w_1 + r_n c_{n2} w_2 + \dots + r_n c_{nm} w_m =$

$$(c_{11}r_1 + c_{21}r_2 + \dots + c_{n1}r_n)w_1 +$$

 $(c_{12}r_1 + c_{22}r_2 + \dots + c_{n2}r_n)w_2 +$

.

$$(c_{1m}r_1 + c_{2m}r_2 + \dots + c_{nm}r_n)w_m$$

= 0

This contradicts the linear independence of the set $\{v_1,...,v_n\}$.

[[End of proof]]

Thm Let V be a v.s. If $\{v_1, ..., v_n\}$ is a basis of V and $\{w_1, ..., w_m\}$ is also a basis of V then n = m.

Proof

Since $\{v_1,...,v_n\}$ is a l.i. set and $\{w_1,...,w_m\}$ generates V, by previous theorem $m \geq n$.

Also Since $\{w_1,...,w_m\}$ is a l.i. set and $\{v_1,...,v_n\}$ generates V, by previous theorem $n \geq m$.

Hence n = m.

[[End of proof]]

Defn Let V be a v.s. the dimension of V is the number of elements in a basis of V.

Remark By above theorem dimension of V is well defined.

Ex What is the dimension of \mathbb{R}^n ?

Ex What is the dimension of \mathbb{P}^n ?

Ex What is the dimension of M(2,2)?

Defn A v.s. is said to be finite dimensional if it has a basis consisting of finite number of elements. Otherwise it is called infinite dimensional v.s.

Ex \mathbb{P} , the set of polynomials is an infinite dimensional v.s.

Thm Suppose $\{v_1,...,v_n\}$ spans a v.s. V. Then some subset of $\{v_1,...,v_n\}$ is a basis of V.

proof If $\{v_1,...,v_n\}$ is a l.i. set then $\{v_1,...,v_n\}$ is a basis and we are done.

Otherwise, $\{v_1, ..., v_n\}$ is linearly dependent. So by Thm 3.5, one of the vector is a l.c. of the others. Let

$$v_i = s_1 v_1 + \dots + s_{i-1} v_{i-1} + s_{i+1} v_{i+1} + \dots + s_n v_n$$

Let $u \in V$, then

$$u = r_1 v_1 + \dots + r_i v_i + \dots + r_n v_n$$

$$= r_1 v_1 + \dots + r_{i-1} v_{i-1} +$$

$$r_i (s_1 v_1 + \dots + s_{i-1} v_{i-1} + s_{i+1} v_{i+1} + \dots + s_n v_n)$$

$$+ r_{i+1} v_{i+1} + \dots + r_n v_n$$

So $\{v_1, ..., v_{i-1}, v_{i+1}, ..., v_n\}$ spans V.

If $\{v_1, ..., v_{i-1}, v_{i+1}, ..., v_n\}$ is l.i. then it is a basis of V, it is a subset of $\{v_1, ..., v_n\}$ and we are done.

Otherwise keep continuing the above steps to get smaller subsets which spans V.

Eventually we will stop with a l.i. set or an empty set. If we get an empty set means $V = \{0\}$ and is spanned by the empty set. In this case the basis of V is the empty set.

[[End of proof]]

Corollary If a v.s. V is spanned by finite number of vectors then V is finite dimensional.

Proof Let $\{v_1, ..., v_n\}$ spans V.

By the above theorem, V has a basis consisting of at most n elements.

So V is finite dimensional.

Ex $\{x^2 + x + 2, x^2 + 1, x + 1, x^2 + 2x, 3x^2 + 2x + 1\}$ spans \mathbb{P}^2 . Find a subset which is a basis.

Lemma Let $\{v_1,...,v_n\}$ be a l.i. subset of a v.s. V. If $v \in V$ is not a l.c. of $\{v_1,...,v_n\}$ then $\{v_1,...,v_n,v\}$ is a l.i. set.

Proof

Let $r_1, ..., r_n, r$ be real numbers such that

$$r_1v_1 + r_2v_2 + \dots + r_nv_n + rv = 0$$

If $r \neq 0$ then

$$v = \frac{-r_1}{r}v_1 + \frac{-r_2}{r}v_2 + \dots + \frac{-r_n}{r}v_n$$

which contradicts the hypothesis.

So r = 0 and

$$r_1v_1 + r_2v_2 + \dots + r_nv_n = 0$$

But $\{v_1,...,v_n\}$ is a l.i. set.

So $r_i = 0$ for all i. And we know that r = 0.

Hence $\{v_1,...,v_n,v\}$ is a l.i. set.

[[End of Proof]]

Thm Let $\{v_1,...,v_n\}$ be a l.i. subset of a finite dimensional v.s. V. There exist $v_{n+1},v_{n+2},...,v_m \in V$, where m is the dimension of V such that $\{v_1,...,v_m\}$ is a basis of V.

proof If $\{v_1,...,v_n\}$ spans V then $\{v_1,...,v_n\}$ is a basis.

m=n and we are done.

Otherwise let $v_{n+1} \in V$ but not in $\langle v_1, ..., v_n \rangle$.

Then by the above theorem, $\{v_1,...,v_n,v_{n+1}\}$ is a l.i. set.

Continue the above process to obtain $v_{n+1},...,v_m\in V$ so that

 $\{v_1,...,v_n,v_{n+1},...,v_m\}$ is a l.i. set.

If $\{v_1,...,v_n,v_{n+1},...,v_m\}$ does not span V then

by previous theorem there exist $v \in V$ so that

$$\{v_1,...,v_n,v_{n+1},...,v_m,v\}$$
 is I.i. set.

But dimension V is m. So V can be spanned by m elements.

So by thm 3.9, V cannot have a l.i. set contain more than m elements.

A contradiction. So $\{v_1, ..., v_n, v_{n+1}, ..., v_m\}$ spans V and hence is a basis of V.

Ex Extend the following to a basis of M(2,2).

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

Cor Let S be a subspace of a v.s. V then $dim(S) \leq dim(V)$.

proof If $\{v_1, ..., v_n\}$ is a basis of S then it is a l.i. subset of V.

By above theorem, $\dim(V) \ge n = \dim(S)$.

[[End of Proof]]

Cor If $\dim(V) = n$ and $\{v_1, ..., v_n\}$ is l.i. then it is a basis of V. If $\{w_1, ..., w_n\}$ spans V then $\{w_1, ..., w_n\}$ is a basis of W.

Consider the following vectors in \mathbb{R}^2 ,

They span \mathbb{R}^2 but they are not a basis.

A vector (5,21) can be expressed in many ways using these vectors.

$$(5,21) = 5(1,1) + 8(1,2) - 8(1,0)$$
$$= 21(1,1) - 16(1,0)$$
$$= (1,1) + 10(1,2) - 6(1,0)$$

But (1,1),(1,2) is a basis.

$$(5,21) = -11(1,1) + 16(1,2)$$

there is no other l.c. of (1,1) and (1,2) which will give (5,21).

Let $B = \{(1,1), (1,2)\}$ be an ordered set. i.e. we remember the order in which the elements are listed. Then the co-ordinates of (5,21) with respect to B is $(-11,16)_B$.

We shall switch notation for \mathbb{R}^n .

A $n \times 1$ coloumn matrix will denote an element of \mathbb{R}^n .

Defn Let V be a v.s. and $B=\{v_1,...,v_n\}$ be an ordered basis of V. Let $u\in V$. $\begin{bmatrix} r_1\\r_2\\\vdots\\r_n\end{bmatrix}$ is the coordinate of u with respect to B

if $u = r_1v_1 + r_2v_2 + \dots + r_nv_n$.

We write
$$u = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix}_B$$

Ex 1 Let $B = \{e_1, ..., e_n\}$ be the ordered standard basis of \mathbb{R}^n .

Then
$$\begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix} = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix}_B$$

Ex 2 Note $B = \{x+2, x-2, x(x-2), x^2(x-2)\}$ is a basis of \mathbb{P}^3 . Write the coordinates of x^3-2 w.r.t. B.

Thm Let $\{v_1,...,v_n\}$ be a subset of a v.s. V. $\{v_1,v_2,...,v_n\}$ is a basis of V if and only if for every $u \in V$, there exist unique $r_1,...,r_n \in \mathbb{R}$ so that $u = r_1v_1 + r_2v_2 + ... + r_nv_n$.

proof

 (\Rightarrow)

Let $u \in V$. Since $\{v_1, v_2, ..., v_n\}$ is a basis there exist $r_1, ..., r_n \in \mathbb{R}$ such that

$$u = r_1 v_1 + r_2 v_2 + \dots + r_n v_n$$

We only have to show uniqueness. Suppose there exist $s_1,...,s_n \in \mathbb{R}$ so that

$$u = s_1 v_1 + s_2 v_2 + \dots + s_n v_n$$

substracting the two expression, we get

$$0 = (r_1 - s_1)v_1 + (r_2 - s_2)v_2 + ... + (r_n - s_n)v_n$$
 Since $\{v_1, v_2, ..., v_n\}$ is I.i., $r_i - s_i = 0$ for all i .

So $r_i = s_i$ for all i proving uniqueness of $r_1, ..., r_n$.

 (\Leftarrow)

By hypothesis, $\{v_1, v_2, ..., v_n\}$ spans V.

$$r_1v_1 + r_2v_2 + ... + r_nv_n = 0$$

and

$$0v_1 + 0v_2 + \dots + 0v_n = 0$$

So by uniqueness, $r_i = \mathbf{0}$ for all i. Hence $\{v_1, v_2, ..., v_n\}$ is I.i.

Hence $\{v_1, v_2, ..., v_n\}$ is a basis.

Chapter 4: Inner products

We shall define various operations on vector spaces which is behaves like multiplication. These operations are called inner products.

Inner product is a function from $V \times V$ to \mathbb{R} , where V is a vector space. So given a pair of vectors, you can "multiply" them to get a real number.

Defn Let V be a vector space. A function which assigns a real number $\langle v,w\rangle$ to vectors $v,w\in V$ is said to be an *inner product* if the function satisfies the following properties. Let u,v,w be any vectors in V

1.
$$\langle v, v \rangle \ge 0$$
 and $\langle v, v \rangle = 0$ if and only if $v = \vec{0}$.

2.
$$\langle v, w \rangle = \langle w, v \rangle$$
.

3.
$$\langle rv, w \rangle = r \langle v, w \rangle = \langle v, rw \rangle$$
 for any $r \in \mathbb{R}$.

4.
$$\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$$
.

V together with an inner product is called an inner product space.

Example Let $V = \mathbb{R}^3$, define $\langle v, w \rangle := v \cdot w$, the dot product. i.e. $\langle (a_1, a_2, a_3), (b_1, b_2, b_3) \rangle = a_1b_1 + a_2b_2 + a_3b_3$.

This is an inner product on \mathbb{R}^3 .

More generally, on \mathbb{R}^n the following is an inner product $\langle (a_1, a_2, ..., a_n), (b_1, b_2, ..., b_n) \rangle = a_1b_1 + a_2b_2 + ... + a_nb_n$.

Thm Let V be a vector space and $\langle .,. \rangle$ be an inner product on V. Then

$$\langle v, 0 \rangle = \langle 0, v \rangle = 0$$
 and $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$.

proof $\langle v, 0 \rangle = \langle 0, v \rangle$ by axiom 2 of inner product.

Shall show
$$\langle 0, v \rangle = 0$$
.
 $\langle 0 + 0, v \rangle = \langle 0, v \rangle + \langle 0, v \rangle$ by axiom 4
 $\Rightarrow \langle 0, v \rangle = \langle 0, v \rangle + \langle 0, v \rangle$
 $\Rightarrow \langle 0, v \rangle - \langle 0, v \rangle = \langle 0, v \rangle + \langle 0, v \rangle - \langle 0, v \rangle$
 $\Rightarrow \langle 0, v \rangle = 0$

$$\langle u, v + w \rangle = \langle v + w, u \rangle$$
 (by axiom 2)
= $\langle v, u \rangle + \langle w, u \rangle$ (by axiom 4)
= $\langle u, v \rangle + \langle u, w \rangle$ (by axiom 2)

[[End of proof]]

Examples (1) For a < b real numbers, let V = C([a,b]) be the vector space of continuous real valued function on the interval [a,b]. The following is an inner product on V:

For $f, g \in V$ let

$$\langle f, g \rangle = \int_a^b f(x)g(x)dx$$

(2) On \mathbb{R}^n the following is an inner product $\langle (a_1, a_2, a_3), (b_1, b_2, b_3) \rangle = 2a_1b_1 + \sqrt{3}a_2b_2 + \pi a_nb_n$

(3) On \mathbb{P}_3 there is an inner product given by

$$\langle f, g \rangle_1 = \int_0^1 f(x)g(x)dx$$

and

$$\langle f,g \rangle_2 = a_0b_0 + a_1b_1 + a_2b_2 + a_3b_3$$
 where $f(x) = a_0 + a_1x + a_2x^2 + a_3x^3$ and $g(x) = b_0 + b_1x + b_2x^2 + b_3x^3$

Defn A *norm* is a function from a an inner product space $(V,\langle.,.\rangle)$ to $\mathbb R$ given by $||v||=\sqrt{\langle v,v\rangle}$

Thm Let V be an inner product space and $v \in V$.

- 1. $||v|| \ge 0$ and ||v|| = 0 if and only if $v = \vec{0}$.
- 2. ||rv|| = |r| ||v|| for any $r \in \mathbb{R}$.

 \mathbb{R}^n will be viewed as an inner product space where the inner product $\langle v,w\rangle$ is the dot product $v\cdot w$, unless otherwise mentioned.

Thm Let θ be the angle between two nonzero vectors v, w in \mathbb{R}^n , then

$$v \cdot w = ||v|| \, ||w|| \cos(\theta)$$

Remarks

(1) So given two nonzero vectors $v,w\in\mathbb{R}^n$, the angle between v and w is given by

$$\theta = \arccos(\frac{v \cdot w}{||v|| \, ||w||}); \quad \text{where } \theta \in [0, \pi]$$

(2) Note that $\theta = \pi/2$ if and only if $v \cdot w = 0$

Defn Two vectors v, w in \mathbb{R}^n are said to be orthogonal if $v \cdot w = 0$.

Remark $\vec{0}$ is orthogonal to very vector in \mathbb{R}^n .

Example

Let $V=\{v\in\mathbb{R}^3|v\text{ is orthogonal to }(1,2,3)\}.$ Show V is a subspace of \mathbb{R}^3 . Find a basis of V.

Orthogonal projection

Thm (Cauchy-Schwarz Inequality) Let V be an inner product space and $v,w\in V$. Then $\langle v,w\rangle\leq ||v||\,||w||$.

Proof If v = 0 or w = 0 then both sides are zero and the inequality holds.

So assume v,w are nonzero vectors. So a=1/||v|| and b=1/||w|| are real numbers.

$$\langle av - bw, av - bw \rangle > 0$$

$$\Rightarrow \langle av, av - bw \rangle - \langle bw, av - bw \rangle \ge 0$$

$$\Rightarrow \langle av, av \rangle - \langle av, bw \rangle - \langle bw, av \rangle + \langle bw, bw \rangle \ge 0$$

$$\Rightarrow a^2 ||v||^2 - 2ab\langle v, w\rangle + b^2 ||w||^2 \ge 0$$

$$\Rightarrow 1 - \frac{2\langle v, w \rangle}{||v|| \, ||w||} + 1 \ge 0$$

$$\Rightarrow 2 \ge 2 \frac{\langle v, w \rangle}{||v|| \, ||w||}$$

$$\Rightarrow ||v|| ||w|| \ge \langle v, w \rangle$$

[[End of Proof]]

Thm (Triangle inequality) Let V be a inner product space and $u,v\in V$ then $||u+v||\leq ||u||+||v||$

Proof $||u + v||^2 = ||u||^2 + 2\langle u, v \rangle + ||v||^2$ $\leq ||u||^2 + 2||u|| ||v|| + ||v||^2$ by Cauchy's Schwarz inequality $= (||u|| + ||v||)^2$

$$\Rightarrow ||u+v|| \le ||u|| + ||v||$$

[[End of proof]]

Defn Let V be an innerproduct space and $u \in V$ be nonzero vector. For a vector $v \in V$ the orthogonal projection of v on u is denoted by $proj_u(v)$ and defined as

$$proj_u(v) = \frac{\langle u, v \rangle}{\langle u, u \rangle} u$$

Remark $v - proj_u(v)$ is orthogonal to u. Hence

$$v = proj_u(v) + (v - proj_u(v))$$

is a decomposition of \boldsymbol{v} into two orthogonal components.

Defn Let V be an inner product space. A vector $u \in V$ is said to be a *unit vector* if ||u|| = 1.

Example Let $(1,2,3) \in \mathbb{R}^3$. Find a unit vector which has the same direction as (1,2,3).

Defn Let V be an inner product space. A subset S of V is said to be *orthogonal set* if given any two distinct vectors $u, v \in S$ u is orthogonal to v. Moreover, if each vector in S is a unit vector then S is called an *orthonormal set*.

Example In \mathbb{R}^3 , $\{(1,0,0),(0,2,0),(0,0,3)\}$ is an orthogonal set.

In general in \mathbb{R}^n , $\{e_1,...,e_n\}$ is an orthonormal set.

Thm Let $\{v_1,...v_n\}$ be orthogonal set of nonzero vectors in an inner product space V then $\{v_1,...,v_n\}$ is a linearly independent set.

proof Suppose for some real number $r_1, r_2, ..., r_n$,

$$r_1v_1 + r_2v_2 + \dots + r_nv_n = 0$$

Then for each i,

$$\Rightarrow \langle v_i, r_1v_1 + r_2v_2 + \dots + r_nv_n \rangle = \langle v_i, 0 \rangle$$

$$\Rightarrow \langle v_i, r_1 v_1 \rangle + \langle v_i, r_2 v_2 \rangle + \dots + \langle v_i, r_n v_n \rangle = 0$$

$$\Rightarrow r_1 \langle v_i, v_1 \rangle + r_2 \langle v_i, v_2 \rangle + \dots + r_n \langle v_i, v_n \rangle = 0$$

Since $\{v_1,...v_n\}$ is an orthogonal set, $\langle v_i,v_j\rangle=0$ for $j\neq i$. So

$$r_i \langle v_i, v_i \rangle = 0$$

$$\Rightarrow r_i = 0$$
 (Since $v_i \neq 0$.)

Hence $\{v_1,...,v_n\}$ are I.i.

Defn A subset $\{v_1, ..., v_n\}$ of an inner product space V is said to be an *orthogonal basis* if $\{v_1, ..., v_n\}$ is a basis and an orthogonal set.

 $\{v_1,...,v_n\}$ is said to be an *orthonormal basis* if $\{v_1,...,v_n\}$ is a basis and an orthonormal set.

Examples

Next we shall see that from any given basis of an IP space V be can obtain an orthonormal basis by an algorithm called Gram-Schmidt orthonormalization process.