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VALUATIONS AND RANK OF ORDERED ABELIAN GROUPS

MANISH KUMAR

(Communicated by Bernd Ulrich)

Abstract. It is shown that there exists an ordered abelian group that has
no smallest positive element and that has no sequence of nonzero elements
converging to zero. Some formulae for the rank of ordered abelian groups have
been derived and a necessary condition for an order type to be rank of an
ordered abelian group has been discussed. These facts have been translated

to the spectrum of a valuation ring using some well-known results in valuation
theory.

1. Introduction

An ordered abelian group, (G,+), is a linearly ordered, abelian group such that
the ordering is compatible with the group operation, i.e., if x ≥ 0 and y ∈ G, then
x + y ≥ y and x ≥ 0 ⇔ 0 ≥ −x. A subgroup H of G is an isolated subgroup if
H is a segment, i.e., if x ∈ H , then the interval [−x, x] ⊂ H . Let k be a field. A
homomorphism, v, from (k∗, .) → G is a valuation if v(x + y) ≥ min(v(x), v(y)).
Rv = {x ∈ k : v(x) ≥ 0}∪{0} is the valuation ring and the image of v, denoted by
Gv, is a subgroup of G and is known as the value group of the valuation v. Ordered
abelian groups play an imporant role in the study of valuation rings. These rings
are of interest to algebraic geometers. Ideals of a valuation ring have close asso-
ciation with the isolated subgroups of the corresponding value group. In the next
section, some well-known results in this direction are stated, which shall be used
subsequently. A fact from topology has also been proved. In Section 3 an ordered
abelian group has been constructed with no smallest positive element and which
has no sequence of nonzero elements converging to zero. This with slight general-
ization allows us to construct, corresponding to any infinite cardinal λ, a valuation
ring whose maximal ideal cannot be generated by any set of cardinality less than
or equal to λ. Section 4 provides some formulae for the rank of an ordered abelian
group which also enables us to explicitly construct groups with certain preassigned
rank. A necessary condition for an order type to be the rank of an ordered abelian
group has also been observed. The interested reader may also look up the appendix
of [Ab2] for results concerning embedding of an ordered abelian group of rank S in
RS , with lexicographic ordering.
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2. Preliminaries

Result 1. There is a one-to-one inclusion reversing correspondence between the
prime ideals of a valuation ring R and the isolated subgroups of the corresponding
value group G.

Proof. Let us denote the set of all isolated subgroups of G by F(G) and the set of
all prime ideals in R by spec(R). The maps

φ : H 7→ {x ∈ R : v(x) 6∈ H}

and

ψ : I 7→ {g ∈ G : |g| < v(x), ∀x ∈ I} = {v(y),−v(y) : ∀y ∈ R\I}

are defined on the set of all segments of G and the set of all ideals in R respectively.
Clearly, φ(H) is an ideal and ψ(I) is a segment. Also note that φ and ψ are inverses
of each other. These maps, when restricted to F(G) and spec(R) respectively, give
the required bijection. For, if H is also a subgroup, then x, y 6∈ φ(H)⇒ v(x), v(y) ∈
H ⇒ v(xy) = v(x) + v(y) ∈ H ⇒ xy 6∈ φ(H). Hence φ(H) is prime. On the other
hand, if I is prime, then for g, h ∈ ψ(I), let x, y be such that v(x) = g, v(y) = h.
Clearly x, y 6∈ I, which implies xy 6∈ I ⇒ v(x) + v(y) = v(xy) ∈ ψ(I). Hence ψ(I)
is a subgroup. �

We also know that if the value group is Z, then all ideals are principal and if the
value group is prediscrete, i.e., it has a smallest positive element, then the maximal
ideal of the ring is principal. In fact, a more general result is true.

Result 2. With the notation of the previous result, let H be a nonempty segment
of G. A subset A of φ(H) generates φ(H) if and only if whenever g > 0 and g <
inf{v(x) : x ∈ A}, then g ∈ H .

Proof. For the “if part”, let z ∈ φ(H), i.e., v(z) 6∈ H . H being nonempty, 0 ∈ H .
So v(z) > 0 and hence by hypothesis v(z) ≥ inf{v(x) : x ∈ A}. This means that
there exists y ∈ A with v(y) ≤ v(z), so that z ∈ yRv ⊂ ARv. Hence φ(H) = ARv.
“Only if part”: Let g ∈ G, 0 < g < inf{v(x) : x ∈ A} and y ∈ Rv be such that
v(y) = g. Clearly, y 6∈ ARv = φ(H); hence g ∈ H . �

For any element x in a well-ordered set (T,≤), I(x, T ) = {y ∈ T : y ≤ x} is called
the segment of x in T . It is known that there exists an uncountable well-ordered
set S every segment of which is countable. To see this, let T be an uncountable
well-ordered set, and let A = {x ∈ T : I(x, T ) is uncountable }. If A = ∅, then take
S to be T . If A 6= ∅, then, A being well-ordered has a smallest element, say a. Let
S = I(a, T ) \ {a}. Then S is an uncountable well-ordered set such that I(b, S) is
countable for every b ∈ S. Note that S has no maximal element.

Remark 1. We generalize the observations made in the previous paragraph. Let Tλ
be a well-ordered set of cardinality strictly greater than a given infinite cardinal λ.
Let again A = {x ∈ Tλ : |I(x, Tλ)| > λ}. If A 6= ∅, then define Sλ = I(a, Tλ)\{a},
where a is the minimal element of A. Otherwise Sλ = Tλ. Hence we have a set of
cardinality strictly greater than λ, every segment of which has cardinality less than
or equal to λ.
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3. Construction of a non-prediscrete detachable group

Definition 1. H is real discrete if H = Z, discrete if H = Z[d] for some d ∈ N,
prediscrete if either H = 0 or H has a smallest positive element. H is detachable if
H has no sequence of nonzero elements converging to zero, where a sequence {an}
is said to converge to zero if given any ε > 0, ε ∈ G, there exist an integer N ≥ 1
such that for all n > N , |an| < ε.

It follows from Result 2 that G has a sequence of nonzero elements converging
to zero if and only if the maximal ideal of the corresponding valuation ring is
countably generated. So if the value group is detachable and not prediscrete, then
the maximal ideal of the corresponding valuation ring is not countably generated.
The construction of an ordered abelian group with this property is given in the next
paragraph. We know that given any ordered abelian group G, the set k(X)G of all
maps from G to k with well-ordered support is naturally a field. Here k is any field.
On k(X)G define a valuation v, given by v(f) = min supp(f). The value group
for this valuation is clearly G. Hence this along with the group constructed below
exhibits the existence of a valuation ring whose maximal ideal is not countably
generated. In fact, Remark 2 generalizes this result to any cardinal.

Let H be a nonzero ordered abelian group and S be an uncountable well-ordered
set, all of whose segments are countable. Let G = HS and make G into an additive
abelian group by componentwise addition. Declare f < g to mean that upon letting
c be the smallest element in S with f(c) 6= g(c) we have f(c) < g(c). Clearly G has
no smallest positive element, since S has no maximal element. Let (fn)1≤n≤∞ be
any sequence of nonzero elements in G and for each n let cn be the smallest element
of S with fn(cn) 6= 0. Now

⋃
1≤n<∞ I(cn, S) is countable since I(cn, S) is; hence

there exists d ∈ S with d > cn for all n. So |fn| > ε where ε > 0 in G is obtained
by taking ε(a) = 0 for all a < d in S and ε(d) > 0 in H . Thus G has no sequence
of nonzero elements converging to zero.

Remark 2. In the above if we take G = HSλ , where Sλ is as in Remark 1, then the
maximal ideal of the valuation ring with this value group is not generated by any
set of cardinality less than or equal to λ. For, let A be a subset of the maximal
ideal with |A| ≤ λ. Then |{v(x) : x ∈ A}| ≤ λ. By an argument similar to that
in the above paragraph and using the fact that, for a set I, with |I| ≤ λ and sets
Ai, i ∈ I, |Ai| ≤ λ, where λ is any infinite cardinal, |

⋃
i∈I Ai| ≤ λ, it follows that

there exist g ∈ G with 0 < g < inf{v(x) : x ∈ A}. So by Result 2, the assertion
follows.

4. Order type of rank of ordered abelian groups

Definition 2. Let H be an ordered abelian group. We define the rank of H ,
ρ(H), to be the linearly ordered set of all nontrivial isolated subgroups of H , with
inclusion as the ordering.

Notation 1. If S is a linearly ordered set, then S ∪ {∞} denotes the set with an
element ∞ augmented to it that is greater than every other element, and similarly
{−∞} ∪ S denotes the set with an element −∞ augmented to it that is smaller
than every other element.

Notation 2. If S is a linearly ordered set, then S′ denotes the same set with the
reverse ordering.
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Definition 3. Let I be a linearly ordered set and for each i ∈ I, let Si be a linearly
ordered set. Define the concatenation of Si’s to be the set {(i, s) : i ∈ I and s ∈ Si},
denoted by ?i∈ISi, with the ordering (i, s) ≤ (j, t) if i < j or i = j and s ≤ t.

Being consistent with Notation 2, ?i∈I′Si is {(i, s) : i ∈ I and s ∈ Si} with the
ordering (i, s) ≤ (j, t) if j < i or i = j and s ≤ t. Note that for i, j ∈ I, by i < j we
will always mean i <I j (and NOT i <I′ j). Also observe that ρ(G) = ρ(G

′
).

Theorem 1. If I is well-ordered, for each i ∈ I, ρ(Gi) = Si and G =
⊕

i∈I Gi
with the ordering, f < g if f(c) <Gc g(c) where c = min{i : f(i) 6= g(i)}, then
ρ(G) = ?i∈I′Si.

Proof. Let H ∈ Si, and define Ĥ = {f : f(i) ∈ H and f(j) = 0 for all j < i}.
Clearly, Ĥ is a subgroup of G. We shall show that it is an isolated subgroup,
i.e., if g ∈ G and h ∈ Ĥ with |g| <G |h|, then g ∈ H . |g| <G |h| exactly means
|g(c)| <Gc |h(c)| where c = min{i : g(i) 6= h(i)}. So h(c) 6= 0 and hence, by
definition of Ĥ , i ≤ c.

So g(j) = h(j) = 0 ∀j < i and |g(i)| ≤Gi |h(i)|; in particular, g(i) ∈ H , H
being isolated. Hence g ∈ Ĥ . This enables us to define the map (i,H) 7→ Ĥ from
?i∈I′Si → ρ(G). Clearly this map is injective.

We shall first show that it is surjective and later that it is order preserving. This
would complete the proof.

Let T be a nontrivial isolated subgroup of G. We need to show that T = Ĥ for
some H ∈ Si for some i ∈ I. Let J = {i : T ⊃

⊕
j>iGj}. Let f 6= 0 belong to

T and k be such that f(k) 6= 0. If g ∈
⊕

j>k Gj , then |g| <G |f | ⇒ g ∈ T ; hence
k ∈ J . Therefore, J is a nonempty subset of a well-ordered set. Let c = min(J).

Now, if f ∈ T and d = min supp(f), then d ≥ c and hence f ∈
⊕

j≥dGj ⊂⊕
j≥cGj . So we have ⊕

j≥c
Gj ⊃ T ⊃

⊕
j>c

Gj .

Let H = {f(c) : f ∈ T }. H is trivially an isolated subgroup of Gc. Finally, we
claim that T = Ĥ.
f ∈ T ⇒ f(c) ∈ H and f(i) = 0 for all i < c, since

⊕
j≥cGj ⊃ T . Hence f ∈ Ĥ.

Also, f ∈ Ĥ ⇒ ∃g ∈ T such that f(c) = g(c)⇒ f − g ∈
⊕

j>cGj ⊂ T ⇒ f ∈ T.
It remains to see that the map is order preserving. Let (i,H) ≤ (j,K). If i = j,

then H ⊂ K; hence Ĥ ⊂ K̂ and if i > j, then K̂ ⊃
⊕

k>j Gk ⊃
⊕

k≥iGk ⊃ Ĥ . �

Theorem 2. If I is well-ordered, for each i ∈ I, ρ(Gi) = Si and G =
⊕

i∈I Gi
with the ordering, f < g if f(c) <Gc g(c) where c = max{i : f(i) 6= g(i)}, then
ρ(G) = ?i∈ISi if I has a maximal element, and otherwise ρ(G) = ?i∈ISi ∪ {∞}.

Proof. Let H ∈ Si, define Ĥ = {f : f(i) ∈ H and f(j) = 0 for j > i}. That Ĥ is
an isolated subgroup of G follows similarly as in the previous proof. It allows us
to define the map (i,H) 7→ Ĥ from ?i∈ISi → ρ(G) and again this map is clearly
injective.

For surjectivity, let T be a nontrivial isolated subgroup of G and J = {i : T ⊂⊕
j≤iGj}. If J = ∅, then T ⊃

⊕
j≤iGj for all i ∈ I ⇒ T = G. Now, if m = max(I)

exists, then T = Ĝm = G; otherwise ∞ 7→ T . When J 6= ∅, let c = min(J). We
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shall show ⊕
j≤c

Gj ⊃ T ⊃
⊕
j<c

Gj .

The first inclusion is obvious. Let f ∈
⊕

j<cGj and d = max supp(f). Then
d < c ⇒ f ∈

⊕
j≤dGj ⊂ T , since

⊕
j≤dGj is an isolated subgroup of G and

T 6⊂
⊕

j≤dGj . Hence the second inclusion.
Let H = {f(c) : f ∈ T }. H is again an isolated subgroup of Gc and, as in

previous proof, T = Ĥ .
Finally, we need to see that the map is order preserving. Let (i,H) ≤ (j,K). If

i = j, then H ⊂ K; hence Ĥ ⊂ K̂ and if i < j, then K̂ ⊃
⊕

k<j Gk ⊃
⊕

k≤iGk ⊃
Ĥ. �

Now, we move on to show one interesting corollary of the two theorems above.

Corollary. There exist ordered abelian groups with rank N∪{∞},Z∪{∞} and N′ .
Hence there exist valuation rings with N ∪ {∞}, {−∞}∪ Z ∪ {∞} and {−∞} ∪ N′

as the order type of its prime spectrum.

Proof. ρ(Z) is clearly a singleton set, the whole group being the only nontrivial
isolated subgroup. Hence with I = N, Gi = Z ∀i, applying Theorem 1 and Theorem
2, we get ordered abelian groups, say, K1 and K2, with ρ(K1) = N′ and ρ(K2) =
N∪{∞} respectively. Now, applying Theorem 2 with I = {1, 2} to K1 and K2, we
get another ordered abelian group, say K, with ρ(K) = Z ∪ {∞}.

Recall that for an ordered abelian group G, ρ(G) differs from F(G), the set of all
isolated subgroups, by the trivial subgroup only. By Result 1, we know that F(G)′

is order isomorphic to spec(RG), where RG is any valuation ring with the value
group G.

So we get that spec(RK1) is order isomorphic to N ∪ {∞}, spec(RK2) is order
isomorphic to {−∞} ∪N′ and spec(RK) is order isomorphic to {−∞} ∪ Z ∪ {∞}.

Finally, we give a necessary condition for a linearly ordered set to be the rank
of an ordered abelian group G. Note that if A ⊂ ρ(G), then K =

⋃
H∈AH is

an isolated subgroup. Also note that K = supA. Hence we have the condition
that every subset of ρ(G) has a supremum. Similarly every subset of ρ(G) that
is bounded below has an infimum. The intersection being nontrivial does the job.
Some trivial consequences of this condition are that Z,N,Q or Q∪ {∞} cannot be
the rank of any ordered abelian group.

A necessary condition for a partially ordered set to be the prime spectrum of
a ring, which could be found in [LOh], when translated to ordered abelian groups
says that if H1, H2 ∈ ρ(G) with H1 ( H2, then there exist K1,K2 ∈ ρ(G) with K2

the successor of K1 and H1 ⊂ K1 ( K2 ⊂ H2. This condition tells us that R∪{∞}
cannot be the rank of an ordered abelian group.

Interestingly, the above two necessary conditions together turn out to be suffi-
cient for a linearly ordered set to be ρ(G) for some ordered abelian group G. This
was observed by S. S. Abhyankar, Hagen Knaf and Franz-Viktor Kuhlmann recently
and was communicated to me by Prof. Abhyankar. �
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