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Abstract. Algebraic parabolic bundles on smooth projective curves
over algebraically closed field of positive characteristic is defined. It is
shown that the category of algebraic parabolic bundles is equivalent to the
category of orbifold bundles defined in [KP]. Tensor, dual, pullback and
pushforward operations are also defined for parabolic bundles.

1. Introduction

Parabolic bundles on Riemann surfaces were introduced by Mehta and
Shehadri in [MS]. These are vector bundles V on a smooth projective curve
X over complex numbers with a filtration of fibres of V at a collection of
finitely many points S of X and certain real numbers, called weights, attached
to these filtrations. When the weights are rational it was shown that they
correspond to �-bundles for a �-cover Y → X branched at S with certain
inertia groups depending on the weights attached to the filtration. A crucial
fact that is needed for this correspondence is that over complex numbers the
inertia groups are cyclic. One can fix a generator for a inertia group and obtain
an automorphism of finite order of the fibre. The eigenvalues and eigenspaces
of this automorphism give us the weights and the filtration respectively at that
point. Similar correspondence has also been extended to higher dimensions
(see [Bi]).

In the situation when the base field has positive characteristic, one can of
course define a parabolic bundle the same way as over C. But this definition is
not the correct one from our point of view. We would like to define a parabolic
bundle in such way that we have a bijective correspondence with equivariant
bundles for some suitable cover, as in the case over C. The presence of wild
ramification ensures that the inertia groups may no longer be cyclic and
moreover they may not determine the local monodromy. So we can not hope
to get such a correspondence just from the data of weights and filtrations.
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Indeed, as we demonstrate, we need the full data of the action of the inertia
group.

One can also talk about parabolic bundles on a curve X purely in terms of
G-bundles on Y where Y is a G-Galois cover of X . In [KP] such bundles were
called orbifold bundles and it was shown that the category of orbifold bundles
do not depend on the choice of G-cover of X . Hence one could talk about
the category of orbifold bundles on X . Though a description of these orbifold
bundles as a vector bundle on X together with some more data was lacking.
The goal of this paper is to provide this description. In other words, we define
the analogue of parabolic bundles in positive characteristic and show that they
are in bijection with orbifold bundles as defined in [KP].

We recently noticed and it was also pointed out by the referee that Madhav
Nori in [No] defines parabolic bundles which is conceptually quite close to
the approach we take (see Remark 4.19). But there is a subtle difference as
well (see Reamrk 4.20).

In section 3, G-bundles on affine schemes are interpreted in terms of rings
and k-algebras with G-action. This is used to show a local variant of the main
theorem. In other words, given a faithful G-action on an affine scheme Y
and the isotropy subgroups Gi of the connected components Yi of Y , giving
a G-bundle on Y is equivalent to giving Gi -bundles on Yi satisfying various
compatibility conditions (Lemma 3.2). These lemmas along with formal
patching (Theorem 3.7) gives the main result (Theorem 4.12) in section 4.
This theorem says that the category of parabolic bundles on a geometric
formal orbifold curve (X,P) is equivalent to the category of G-bundles on
(Y, O) where (Y, O)→ (X, P) is an étale G-Galois cover (see section 4 for
definitions).

As a consequence of the main theorem, in section 5 the category of
parabolic bundles on a smooth projective curve is shown to be equivalent
to the category of orbifold bundles on X (defined in [KP]). Pullbacks and
pushforward of parabolic bundles under finite morphisms are defined. The
tensor product and duals of parabolic bundles are also defined. The definitions
are such that the functors defining the equivalence between parabolic bundles
and orbifold bundles commute with these four operations.

Acknowledgements

It is a pleasure to thank A. J. Parameswaran and Vaibhav Vaish for some useful
discussions. This work is partially funded by India-Israel project grant titled
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2. Preliminaries

Let k be an algebraically closed field of arbitrary characteristic. Let X and
Y be smooth projective curves over k. A morphism π : Y → X is called a
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cover if it is finite, surjective and generically separable. The automorphism
group of the cover, Aut(Y/X), is defined to be the group of automorphisms
σ of Y satisfying π ◦ σ = π . For a finite group G, π is said to be a G-cover
(or G-Galois cover) if we have an injective homomorphism G → Aut(Y/X)
such that OG

Y = π∗OX (where the left hand side denotes the sheaf of G
invariants). As X is a smooth curve, the last condition is equivalent to saying
that G acts simply transitively on a generic geometric fibre of π : Y → X ,
so that |Aut(Y/X)| = deg(π). For a Galois cover Aut(Y/X) will also be
denoted by Gal(Y/X).

Let π : Y → X be a G-Galois cover. Let Q be a point of Y and let
P = π(Q) ∈ X . The decomposition group at Q is the set of σ ∈ Gal(Y/X)
such that σ(Q) = Q. It is denoted by DQ and is a subgroup of G. The
number of points in the fibre π−1(P) is |G|/|DQ |. The inertia group IQ

at Q is the subgroup of DQ that induces the identity automorphism on the
residue field at Q. Since k is algebraically closed, the inertia group equals the
decomposition group. The cover is ramified at Q if IQ is non-trivial, and it is
totally ramified at Q if IQ = G. The branch locus of π is the set of points
P ∈ X for which there exists a ramified point Q ∈ π−1(P). The phrase
branched only at B means that the branch locus is contained in B. Clearly for
two points Q, Q ′ ∈ π−1(P) the groups IQ, IQ′ are conjugates of each other.
In fact, if g.Q = Q ′, then IQ = g−1 IQ′g. It is well known ([Serre]) that
inertia groups are of the form H � μr , where H is a p-group, μr is a cyclic
group of order r with (p, r) = 1 and p > 0 is the characteristic of the field k.
If char(k) = 0 then the inertia groups are cyclic groups.

In the same situation as the previous paragraph, let E be a vector bundle
on Y . We say that E is a G-bundle if there is a G action on E which is
compatible with the G action on Y . More precisely let λ : G × Y → Y
be the G action on Y and E denotes the locally free sheaf corresponding to
E , then E is a G-bundle if there exists an isomorphism � : pr∗YE

∼−→ λ∗E
of sheaves on G × Y satisfying the following cocycle condition. For each
g ∈ G, by restriction we have �{g}×Y : E ∼−→ λ∗gE where λg : Y → Y is
the isomorphism induced by λ. By identifying {g}× Y with Y we treat this as
isomorphism of sheaves on Y and denote it by�(g). The cocycle condition is
�(e) = �E and for any g, h ∈ G, �(hg) = λ∗g(�(h)) ◦�(g) : E → λ∗gE →
λ∗gλ∗hE (note that λ∗hgE and λ∗gλ∗hE are canonically identified). As G is finite,
the knowledge of �(g) is enough to reconstruct �. Note that, for any vector
bundle F on X , the pullback bundle π∗F is naturally a G-bundle. We denote
the category of G-bundles on Y by VectG(Y ).

Notations and conventions

Rings are always assumed to be commutative with identity and ring
homomorphisms take the identity to identity. Points are always closed,
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unless specified otherwise. For any point P ∈ X we use KX,P to denote the
field of fractions of the completion ÔX,P of regular functions at P . Whenever
we deal with some group of automorphisms, e.g. AutAb,AutRing,AutSch, we
assume that these morphisms are k-linear.

3. Some generalities

For later use we gather in this section a few results on G-bundles.

Lemma 3.1. Let Y = Spec(R) be an affine scheme and G be a finite group
acting on Y via λ : G → AutSch(Y ). Let E be a quasi-coherent sheaf on Y
with a compatible G action i.e. we have isomorphisms �(g) : E ∼−→ λ(g)∗E
such that �(e) = �E and �(hg) = λ(g)∗(�(h)) ◦ �(g) for any g, h ∈ G.
Let E = E(Y ) be the R module associated to the quasi-coherent sheaf E .
Then λ corresponds to a group homomorphism φ : G → AutRing(R) and
� corresponds to a group homommorphism � : G → AutAb(E) such that
�(g)(r · x) = φ(g)(r) ·�(g)(x) for any g ∈ G, r ∈ R, x ∈ E.

Moreover, let E ′ be another quasi-coherent sheaf with a compatible G
action with E ′ = E ′(Y ) and the group action given by �′ : G → AutAb(E ′)
(as in the previos paragraph). Then a G-equivariant morphism of sheaves
from E → E ′ corresponds to f : E → E ′, a morphism of R modules such
that the following diagram commutes

E
f ��

�(g)
��

E ′

�′(g)
��

E
f �� E ′

for all g ∈ G.

Proof. For each g ∈ G we are given λ(g) : Y
∼−→ Y . By the correspondence

between affine schemes and rings, we have a corresponding map λ(g)∗ :
R
∼−→ R. Define φ(g) = λ(g−1)∗. Clearly φ(g) is a ring automorphism and

and φ : G → AutRing(R) defined by g �→ φ(g) gives us the required group
homomorphism.

Similarly by the correspondence between quasi-coherent sheaves over
affine schemes and modules over rings we have maps σ(g) : E

∼−→
(E ⊗R,λ(g)∗ R) = (E ⊗R,φ(g−1) R) induced from �(g). Note that the maps
σ(g) are R-module maps where the R-module structure on E ⊗R,φ(g−1) R is
given by r · (x ⊗ s) = (x ⊗ rs) = (φ(g)(r)x⊗ s) for any x ∈ E and r, s ∈ R.
Consider the R module Eg which as an abelian group is the module E , but
the multiplication structure is given as follows: r · x := φ(g)(r)x for any
r ∈ R, x ∈ E . We can define an R linear map β(g) : E⊗R,φ(g−1) R → Eg by
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x ⊗ r �→ r · x . This map gives us an isomorphism of R modules. Define
�(g) = β(g) ◦ σ(g) which is an automorphism of E as an abelian group
and satisfies the required linearity condition. It remains to check that
�(hg) = �(h) ◦�(g). We have

σ(hg) = λ(g)∗(σ (h)) ◦ σ(g) :

E → E ⊗R,φ(g−1) R → (E ⊗R,φ(h−1) R)⊗R,φ(g−1) R

where by λ(g)∗(σ (h)) we mean the map σ(h) ⊗R,φ(g−1) I dR : E ⊗R,φ(g−1)

R → (E ⊗R,φ(h−1) R)⊗R,φ(g−1) R. Note that we have canonically identified
(E ⊗R,φ(h−1) R)⊗R,φ(g−1) R = E⊗R,φ(g−1h−1)R. Similarly

β(hg) = β(g) ◦ λ(g)∗(β(h)) :

(E ⊗R,φ(h−1) R)⊗R,φ(g−1) R → Eh ⊗R,φ(g−1) R→ (Eh)g = Ehg

(note that Ehg = (Eh)g). Now

�(hg) = β(hg) ◦ σ(hg)

= β(g) ◦ λ(g)∗(β(h)) ◦ λ(g)∗(σ (h)) ◦ σ(g)
= β(g) ◦ λ(g)∗�(h) ◦ σ(g)
= β(g) ◦ λ(g)∗�(h) ◦ β(g)−1 ◦�(g)
= �(h) ◦�(g).

Note that β(g)◦λ(g)∗�(h)◦β(g)−1 : Eg → E⊗R,φ(g−1) R → Eh⊗R,φ(g−1)

R → (Eh)g is equal to the map induced by �(h) from Eg → (Eh)g , which
we still call �(h). So we are done with the first part.

For dealing with morphisms, we first note that giving a G equivariant
morphism from E → E ′ means that for any g ∈ G we have a commutative
diagram

E �(g) ��

��

λ(g)∗E

��
E ′ �′(g) �� λ(g)∗E ′

Correspondingly we get the following commutative diagrams:

E
σ (g) ��

f

��

E ⊗R,φ(g−1) R
β(g) ��

f⊗Id
��

Eg

f
��

E ′
σ ′(g) �� E ′ ⊗R,φ(g−1) R

β ′(g) �� E ′g

Clearly the result follows. �
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Lemma 3.2. Let R = ∏l
i=1 Ri where Ri ’s are rings for all 1 ≤ i ≤ l.

Let Yi = Spec(Ri), Y = Spec(R). G be a finite group acting on Y via
λ : G → AutSch(Y ) and correspondingly acting on R via a group
homomorphism φ : G → AutRing(R). Let Gi := StabG(Yi ). We have
induced group actions λi : Gi → AutSch(Yi ) and φi : Gi → AutRing(Ri ).
Let Ei be a coherent sheaf on Yi with compatible Gi action i.e. we
are given group homomorphisms �i : Gi → AutAb(Ei ) such that
�i (g)(r · x) = φi(g)(r) · �i(g)(x) for any g ∈ Gi , r ∈ Ri , x ∈ Ei where
Ei is the Ri module corresponding to the sheaf Ei . Suppose we are given the
following data:

(i) elements {gi j}1≤i, j≤l where gi j ∈ G for all i, j such that λ(g ji)(Y j ) = Yi

inducing isomorphisms of rings αi j : Ri → R j ;
(ii) isomorphisms of abelian groups θi j : Ei → E j for all i, j ;

which satisfy the following conditions:

(A) gik = g jkgi j , gii = 1 (equivalently g−1
ik = g−1

i j g−1
j k );

(B) θik = θ j kθi j , θi i = I d (equivalently θ−1
ik = θ−1

i j θ
−1
j k );

(C) � j (gi j ag−1
i j ) = θi j ◦�i (a) ◦ θ−1

i j for any a ∈ Gi;
(D) θi j (r · x) = αi j (r) · θi j (x) for any r ∈ Ri , x ∈ Ei .

Then there exists a coherent sheaf E on Y with a compatible G action such
that E |Yi gives back the sheaf Ei along with the Gi action.

Proof. We begin by observing that: αik = α j kαi j (this follows from condition
(A) and the fact that αi j ’s are appropriate restrictions of φ(gi j)’s) and
φ j (gi j ag−1

i j ) = αi j ◦ φi (a) ◦ α−1
i j for any a ∈ Gi . Also observe the following

relation between φ and φi ’s: for any r = (r1, . . . , rl) ∈ R, g ∈ G, say
s = (s1, . . . , sl) = φ(g)(r). Assume λ(g)(Yi) = Y j then g−1

i j g ∈ Gi and we

can write g = gi j gi for some gi ∈ Gi . Note that i and gi are determined by
g and j . Then s j = αi j (φi (gi)(ri)).

As Y = ∐l
i=1 Yi , we can define a coherent sheaf E on Y by simply

demanding that E |Yi = Ei . The corresponding R module is E = ∏l
i=1 Ei .

Now we define the G action on E as follows: let v = (v1, . . . , vl) ∈ E,
vi ∈ Ei and w = �(g)(v). Given 1 ≤ j ≤ l find i and gi ∈ Gi as above.
Then w j := θi j (�i(gi)(vi )). First we check that � satisfies the necessary
linearity condition as described in Lemma 3.1. Let w′ = �(g)(r · v), r ∈ R.
Then by our definition

w′ j = θi j (�i (g
i)(ri · vi)) = θi j (φi (g

i)(ri) ·�i(g
i)(vi))

= αi j (φi(g
i)(ri )) · w j
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(here we have used the linearity condition for �i and condition (D)). On the
other hand, the j th component of φ(g)(r) ·�(g)(v) is nothing but s j · w j =
αi j (φi(gi)(ri )) · w j . Hence�(g)(r · v) = φ(g)(r) ·�(g)(v).

Clearly g �→ �(g) gives us a function G → AutAb(E). It remains to check
that this defines a group homomorphism. We need to show that �(hg)(v) =
�(h)(�(g)(v)) for h, g ∈ G, v ∈ E . Let w = �(g)(v), x = �(h)(w).
Fix an index k, and assume λ(h)(Y j ) = Yk, λ(g)(Yi) = Y j . As before write
g = gi j gi , h = g jkh j for some gi ∈ Gi , h j ∈ G j . Note that λ(hg)(Yi) = Yk .
Then using condition (A) we write:

hg = g jkh j gi j g
i = g jkgi j (g

−1
i j h j gi j g

i) = gik(g
−1
i j h j gi j g

i)

By our definition (hg)i=g−1
i j h j gi j gi . Then (�(hg)(v))k=θik(�i ((hg)i)(vi)).

On the other hand

xk = θ j k(� j (h
j )(w j)) = θ j k� j (h

j )θi j (�i(g
i)(vi ))

= θ j kθi j�i (g
−1
i j h j gi j )θ

−1
i j θi j (�i(g

i)(vi))

(by condition (C))

= θik�i(g
−1
i j h j gi j g

i)(vi )
(by condition (B))

= θik�i((hg)i)(vi).

Hence clearly the necessary equality holds and we have defined a group
homomorphism G → AutAb(E) given by g �→ �(g). From the construction
it is clear that E is the desired sheaf. �

Remark 3.3. We can construct a set of {gi j }’s as described above in the
following way: first choose elements {gii+1} such that λ(gii+1)(Yi ) = Yi+1

for 1 ≤ i ≤ l − 1. Then for any i < j we define gi j = g j−1 j . . . gi+1i+2gii+1

and g ji = g−1
i j . Put gii = 1 ∀i and we have the required set of elements.

In fact we now show that the G-bundle constructed as in the Lemma is
independent of the choice of {gi j }’s.

Lemma 3.4. Suppose we are in the set up of Lemma 3.2. Assume we are
given the following data:

(i) elements {gδi j }1≤i, j≤l where gδi j ∈ G for all i, j and δ = 1, 2 such that

λ(gδj i)(Y j ) = Yi inducing isomorphisms of rings αδi j : Ri → R j ;

(ii) isomorphisms of abelian groups θδi j : Ei → E j for all i, j ;

which satisfy the following conditions:

(A) gδik = gδj kgδi j , gδi i = 1;

(B) θδik = θδj kθ
δ
i j , θ

δ
i i = I d;
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(C) �δj (g
δ
i j agδi j

−1) = θδi j ◦�δi (a) ◦ θδi j
−1 for any a ∈ Gi ;

(D) θδi j (r · x) = αδi j (r) · θδi j (x) for any r ∈ Ri , x ∈ Ei .

Moreover we make the assumption that �1
1 = �2

1. Let Eδ be the coherent G
sheaf on Y corresponding to {gδi j}, {θδi j} as given by 3.2. Then we have an

isomorphism of G sheaves E1 ∼= E2.

Proof. In view of Lemma 3.2, it is enough to show that there exist a
G-equivariant isomorphism τ : E → E where E = E1(Y ) = E2(Y ), and E
is equipped with two G-actions coming from the given two sets of data.

We have elements hi ∈ Gi such that g2
i i+1 = g1

i i+1hi for 1 ≤ i ≤ l − 1.
Put h′j = g1

1 j
−1h j g1

1 j , h′j ∈ G1. Now a simple computation tells us that for
any i < j

g2
i j = g1

1 j h
′
j−1h′j−2 . . . h

′
i g

1
1i
−1.

In particular g2
1 j = g1

1 j h
′
j−1h′j−2 . . . h

′
1 = g1

1 j f j (say).

Put � = �1
1 = �2

1. Now for b ∈ G j

�2
j (b) = θ2

1 j ◦�(g2
1 j
−1bg2

1 j ) ◦ θ2
1 j
−1

= θ2
1 j ◦�( f −1

j g1
1 j
−1bg1

1 j f j ) ◦ θ2
1 j
−1

= θ2
1 j ◦�( f −1

j ) ◦�(g1
1 j
−1bg1

1 j ) ◦�( f j ) ◦ θ2
1 j
−1

= (θ2
1 j ◦�( f −1

j ) ◦ θ1
1 j
−1) ◦�1

j (b) ◦ (θ1
1 j ◦�( f j ) ◦ θ2

1 j
−1).

Setting τ j = θ2
1 j ◦ �( f −1

j ) ◦ θ1
1 j
−1 : E j → E j we obtain �2

j (b) =
τ j ◦�1

j (b) ◦ τ−1
j . Hence τ j is also an isomorphism of G j -modules where the

G j -action on the source and the target are given by �1
j and �2

j respectively.

Define τ = ∏l
i=1 τ j : E

∼−→ E . We need to check that �2(g) ◦ τ =
τ ◦ �1(g). For this we check the equality of j th component of both sides.
Assume λ(g)(Yi) = Y j . Hence we can write g = g1

i j g
i1 = g2

i j g
i2 for

giδ ∈ Gi . Now a simple computation shows us that gi2gi1−1 = g1
1i fi f −1

j g1
1i
−1

.
To complete the proof we need to check that the following diagram commutes

Ei
τi ��

θ1
i j ◦�1

i (g
i1)

��

Ei

θ2
i j ◦�2

i (g
i2)

��
E j

τ j �� E j

Equivalently θ2
i j ◦ τi ◦�1

i (g
i2) = τ j ◦ θ1

i j ◦�1
i (g

i1) (by definition of τi ).
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Since �1
i is a group action and all the maps are isomorphisms it is enough

to show

�1
i (g

i2gi1−1
) = τ−1

i θ2
i j
−1
τ jθ

1
i j

The LHS= �1
i (g

1
1i fi f −1

j g1
1i
−1
) = θ1

1i�
1
1( fi f −1

j )θ1
1i
−1

by condition (C).

Also note that the condition (B) implies θδi j = θδ1 jθ
δ
i1. Hence RHS

simplifies to

RHS = τ−1
i θ2

i j
−1
τ jθ

1
i j

= τ−1
i θ2

i1
−1
θ2

1 j
−1
τ jθ

1
1 jθ

1
i1

= τ−1
i θ2

1i�( f −1
j )θ1

i1

= θ1
1i�( fi )�( f −1

j )θ1
1i
−1

= LHS (as � = �1
1)

�

Lemma 3.5. Suppose we are in the set up of Lemma 3.2. In addition
we are also given the data of quasi-coherent Gi sheaves E ′i over Yi with
isomorphisms θ ′i j : E ′i → E ′j which satisfy the compatibility conditions as
in Lemma 3.2 with respect to the same {gi j }1≤i, j≤l . Let fi : Ei → E ′i be
Ri module homomorphisms such that θ ′i j ◦ fi = f j ◦ θi j and fi ◦ �i(g) =
�′i (g) ◦ fi for all 1 ≤ i, j ≤ l, g ∈ Gi. Then there exists a G equivariant
morphism of quasi-coherent G sheaves f : E → E ′ such that f |Yi = fi for
all 1 ≤ i ≤ l.

Proof. By the proof of Lemma 3.2 we know that E |Yi = Ei and E ′|Yi = E ′i .
Hence obviously we have a morphism of quasi-coherent sheaves f : E → E ′
such that f |Yi = fi . We just need to verify that f is G equvariant.
More concretely, for v = (v1, . . . , vl) ∈ ∏l

i=1 Ei , g ∈ G we show that
f (�(g)(v)) = �′(g)( f (v)). For some j ∈ {1, . . . , l} we compare the
j -th component of both sides. As before we find i and gi ∈ Gi . Then
by our construction (L H S) j = f jθi j�i (gi)(vi) = θ ′i j fi�i(gi)(vi ) =
θ ′i j�

′
i (g

i) fi(vi ) = (R H S) j . Hence we are done. �

We recall the following formal gluing result from [Ha], Corollary 3.1.9.

Theorem 3.6. Let V be a Noetherian scheme, and let W be a finite set of
closed points in V . Let R∗ be the ring of holomorphic functions along W in
V , let W ∗ = Spec(R∗), let V 0 = V −W, and let W 0 = W ∗ ×V V 0. Then the
base change functor M(V )→M(W ∗)×M(W 0) M(V 0) is an equivalence of
categories.
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Here M(V ) denotes the category of coherent sheaves on V and W ∗ is
nothing but the completion of V along W .

We need the following variant of this result:

Theorem 3.7. Let G be a finite group. Let V be a noetherian scheme with
a G action and S a finite set of closed points of V invariant under G. Let
V 0 = V − S, Ŝ the completion of V along S and S0 = Ŝ ×V V 0. Then
the base change functor is an equivalence of categories between G(V ) and
G(V 0)×G(S0) G(Ŝ) where G(V ) is the category of coherent G-sheaves of OV

modules.

Proof. Observe that the natural inclusion of categories G(V ) → M(V ) is
faithful and the same is true for the other schemes involved. From this it easily
follow that the natural morphism G(V 0)×G(S0)G(Ŝ)→M(V 0)×M(S0)M(Ŝ)
is faithful. We have a commutative diagram of categories and functors:

G(V ) ��

��

G(V 0)×G(S0) G(Ŝ)

��
M(V ) �� M(V 0)×M(S0) M(Ŝ)

where the two vertical and the bottom functors are faithful, hence the
top one must also be so. To show that this functor is full, assume we
are given E, E ′ ∈ G(V ) and a morphism ( f0, f1) : (E |V 0, E |Ŝ, can) →
(E ′|V 0, E ′|Ŝ, can) in G(V 0) ×G(S0) G(Ŝ). We may consider ( f0, f1) as a

morphism in M(V 0) ×M(S0) M(Ŝ). Hence by the above Theorem we have

a morphism f : E → E ′ in M(V ) such that f |V 0 = f0, f |Ŝ = f1. Let us
denote the G actions on V , V 0, Ŝ and S0 by λ, λ0, λ1 and λ0 respectively.
By our choice f0 and f1 are G-equivariant i.e. for all g ∈ G

λ0(g) ◦ f0 = f0 ◦ λ0(g), and λ1(g) ◦ f1 = f1 ◦ λ1(g).

By making the identification λ0(g)|S0 = λ1(g)|S0 = λ0(g) we observe that
the above relationships become the same when restricted to S0. Hence again
because of the previous Theorem we must have λ(g) ◦ f = f ◦ λ(g) i.e. f is
G-equivarint. So the functor under consideration is full.

It remains to check that this functor is also essentially surjective. Let
(E0, E1, θ) be an object of G(V 0)×G(S0) G(Ŝ) where E0 ∈ G(V 0), E1 ∈ G(Ŝ)
and, θ : E0|S0 ∼−→ E1|S0 is an isomorphism in G(S0). Consider (E0, E1, θ)

as an element of M(V 0) ×M(S0) M(Ŝ). Hence we have E ∈ M(V ) and

isomorphisms E |V 0 φ−→ E0 in M(V 0) and E |Ŝ ψ−→ E1 in M(Ŝ) such that
ψ |S0 = θ ◦ φ|S0. For each g ∈ G, let �0(g) : E0 → λ0(g)∗E0 and
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�1(g) : E1 → λ1(g)∗E1 be the isomorphisms induced by the respective G
actions. As θ is an isomorphism in G(S0) the following diagram commutes

E0|S0 �0(g)|S0
��

θ
��

λ0(g)∗E0|S0

λ0(g)∗θ
��

E1|S0 �1(g)|S0
�� λ1(g)∗E1|S0

which is equivalent to saying that we have an isomorphism (�0(g),�1(g)) :
(E0, E1, θ) → (λ0(g)∗E0, λ1(g)∗E1, λ

0(g)∗θ) in M(V 0) ×M(S0) M(Ŝ).
Hence by the previous Theorem we get an isomorphism �(g) : E → λ(g)∗E
(it is easy to check that λ(g)∗E corresponds to the triple (λ0(g)∗E0, λ1(g)∗E1,
λ0(g)∗θ)). Note that we are identifying λ0(g)|S0 = λ0(g) = λ1(g)|S0.
To say that �(g)’s define a G action on E we need to check that �(hg) =
λ(g)∗�(h) ◦ �(g) for any g, h ∈ G. But we know that restricted to
M(V 0) and M(Ŝ) this identity holds true (we are making the identifications
�(g)|V 0 = �0(g) and �(g)|Ŝ = �1(g)). Again an application of the
previous theorem tells us that the required identity holds true.

So we have constructed E ∈ G(V ) and from our construction it is clear that
its image in G(V 0) ×G(S0) G(Ŝ) is isomorphic to (E0, E1, θ). Hence we are
done. �

4. Parabolic bundles

Let X be a smooth curve over k. We recall the following definitions from [KP].

Definition 4.1. A quasi-branch data on X is a function P which sends a
point x of X to a finite Galois extension P(x) of KX,x in some fixed algebraic
closure of KX,x . Let P and P ′ be two quasi-branch data on X, we say
P ≤P ′ if P(x) ⊆P ′(x) for all closed points x ∈ X.

The support of P , Supp(P) is defined to be the set of all x ∈ X such that
P(x) is a non trivial extension of KX,x . A quasi-branch data P is said to be
a branch data if Supp(P) is a finite set. The branch data on X with empty
support is denoted by O and is called the trivial branch data.

A smooth projective curve with a branch data is called a formal orbifold
curve.

Remark 4.2. We do not make the assumption that the underlying curve of a
formal orbifold curve is always connected.

Definition 4.3. Let p be a point in X and V be a vector bundle on X.
A parabolic structure on V supported on {p} is defined by the following data:
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(i) a finite Galois extension K/KX,p with Galois group I ;
(ii) a group homomorphism � : I → AutAb(Vp ⊗OX,p R) where R is the

integral closure of ÔX,p in K;

which satisfy the following conditions:

(a) �(g)(r ·x)=ψ(g)(r) ·�(g)(x) for any g∈G, r ∈ R and x ∈ Vp⊗OX,p R
where ψ : I → AutRing(R) is the natural action;

(b) for the induced actions �0 = I
�−→ AutAb(Vp ⊗OX,p R) →

AutAb(Vp⊗OX,p K) and ψ0 = I
ψ−→ AutRing(R)→ AutRing(K) we have

an I equivariant isomorphism Vp ⊗OX,p K μ−→ Vp ⊗OX,p K where the
action on the left is given by IdVp ⊗ ψ0 and the action on the right is
given by �0.

This definition easily generalizes to the situation with multiple points on X .

Definition 4.4. Let S = {p1, . . . , pN } be a set of finitely many points in X
and V be a vector bundle on X. A parabolic structure on V supported on S is
defined by the following data:

(i) finite Galois extensions Kp/KX,p with Galois group I p for every p ∈ S;
(ii) group homomorphisms �p : I p → AutAb(Vp⊗OX,p Rp) where Rp is the

integral closure of ÔX,p in Kp for every p ∈ S;

which satisfy the following conditions ∀p ∈ S:

(a) �p(g)(r · x) = ψp(g)(r) · �p(g)(x) for any g ∈ I p, r ∈ Rp and
x ∈ Vp ⊗OX,p Rp where ψp : I p → AutRing(Rp) is the natural action;

(b) for the induced actions �0
p = I p

�p−→ AutAb(Vp ⊗OX,p Rp) →
AutAb(Vp ⊗OX,p Kp) and ψ0

p = I p
ψp−→ AutRing(Rp) → AutRing(Kp)

we have Ip equivariant isomorphisms Vp ⊗OX,p Kp
μp−→ Vp ⊗OX,p Kp

where the action on the left is given by IdVp ⊗ ψ0
p and the action on the

right is given by �0
p.

Definition 4.5. Let P be a branch data on X with Supp(P) =
{p1, . . . , pN }. By an algebraic parabolic bundle on X with branch data P we
would mean a triple (V, {�p}p∈Supp(P), {μp}p∈Supp(P)) where V is a vector
bundle on X and ({P(p)/KX,p}p∈Supp(P), {�p}p∈Supp(P), {μp}p∈Supp(P))

is a parabolic structure on V supported on {p1, . . . , pN }.
It is clear from the definition that the trivial parabolic bundle of rank n on X

with branch data P is nothing but the trivial rank n vector bundle O⊕n
X along

with trivial action and gluing data. More precisely, for each p ∈ Supp(P) we
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must have �p = I dVp ⊗ ψp and μp = I dVp⊗OX,pKp . We will denote it by

O⊕n
X .

Definition 4.6. A morphism between two algebraic parabolic bundles on X,
(V, {�p}p∈Supp(P), {μp}p∈Supp(P)) and (V ′, {� ′p}p∈Supp(P), {μ′p}p∈Supp(P))

with the same branch data P is given by a pair (g, {σp}p∈Supp(P)) where
g : V → V ′ is a homomorphism of bundles and σp : Vp ⊗OX,p Rp →
V ′p ⊗OX,p Rp is a homomorphism of Rp modules where Rp is the integral

closure of ÔX,p in P(p) for every p ∈ Supp(P). Also σp is assumed to be
I p equivariant with respect to the actions induced by �p, �

′
p and further it

makes the following diagram commute:

Vp ⊗OX,p P(p)
gp⊗Id

��

μp

��

V ′p ⊗OX,p P(p)

μ′p
��

Vp ⊗OX,p P(p)
σ 0

p �� V ′p ⊗OX,p P(p)

where σ 0
p is the map naturally induced from σp.

We denote the category of algebraic parabolic bundles on X with branch
data P by PVect(X,P). A typical element of PVect(X,P) will be written
as (V, {�x }x∈Supp(P), {μx}x∈Supp(P)), or as (V, �, μ), or just as V when the
additional data is clear from the context.

Remark 4.7. Note that KX,x ∼= k((t)) where t is a uniformizing parameter
of ÔX,x . This would force Gal(P(x)/KX,x ) to be either a cyclic group
(when characteristic of k is zero) or be of the form H � μr where H is
p-group and μr is a cyclic group with (p, r) = 1 (when characteristic of k is
p > 0). See [Serre, Chapter IV, Corollary 4] for more details.

Convention

For the next two subsections we restrict ourselves to the case when the support
of the branch data consists of only a single point i.e. Supp(P) = {p} and we
denote K = P(p), I = Gal(P(p)/KX,p) and the integral closure of ÔX,p

in P(p) by R.

4.1 G-bundles to parabolic bundles

As before, let π : Y → X be a G-Galois cover. Let E be a G-bundle
on Y . We want to construct a parabolic bundle out of E on X . Consider the
sheaf π∗E . The G action on E induces a G action on the direct image sheaf.
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Define V = (π∗E)G , the sheaf of invariant sections. As π is finite and flat, the
sheaf π∗E is locally free. Clearly (π∗E)G ⊆ π∗E and hence locally free.

Let B be the branch locus of π . Then B is a finite set. For simplicity we
assume B contains just one point p. Let π−1(p) = {q1, . . . , ql} = S and
Y 0 = Y − S. Let Gi be the inertia group at qi for 1 ≤ i ≤ l. We know that
KY,qi /KX,p is a Galois extension with Galois group Gi . Let Ri := ÔY,qi ,
which can also be thought of as the integral closure of ÔX,p in KY,qi = Ki ,
and let R = ∏l

i=1 Ri . Let Ŝ := Spec(R) = ∐l
i=1 Spec(Ri ) which can also

be thought of as the completion of Y along S.
Let us denote by λ : G → AutSch(Y ) the G action on Y . Observe that λ

induces a transitive action of G on S. This induces a transitive action of G on
the set of indices {1, . . . , l} given by : i �→ g · i ⇔ λ(g)(qi) = q j . We also
have an induced action of G on Ŝ. We call this action also as λ. Note that
Gi = StabG(Spec(Ri)). Hence we have an induced action of Gi on Spec(Ri)

denoted by λi .
Let �(g) : E ∼−→ λ(g)∗E , for any g ∈ G, denote the G action on E .

As above �(g)’s induce G action on Ê := lim←−E/I n
S E = E ⊗OY

OŜ compatible with the G action on Ŝ. Also we observe that Ê ∼=
(E ⊗OY OS) ⊗OS OŜ

∼= (
∏l

i=1 Eqi ) ⊗OS OŜ . By our construction, we can
naturally identify Eqi with Vp ⊗OX,p OY,qi . Hence

Êqi
∼= Vp ⊗OX,p ÔY,qi , Ê ∼=

l∏

i=1

(Vp ⊗OX,p ÔY,qi ). (4.1)

Let Êi := Ê ⊗OŜ
Ri ∼= Vp ⊗OX,p ÔY,qi . Then we have an induced Gi action

on the bundle Êi , denoted by �i , which is compatible with λi .
Now using Lemma 3.1 we would restate all the data obtained in terms

of rings and modules. λ : G → AutSch(Ŝ) corresponds to a group
homomorphism φ : G → AutRing(R). For any g ∈ G and 1 ≤ i ≤ l

we have we have isomorphisms α(g) : Ri
∼−→ Rg·i induced by φ(g).

λi : Gi → AutSch(Spec(Ri)) corresponds to a group homomorphism
φi : Gi → AutRing(Ri ). From our definitions it is clear that φg·i (gag−1) =
α(g) ◦ φi (a) ◦ α(g)−1 for any a ∈ Gi .

Now we take note of the fact that Ri is a DV R for 1 ≤ i ≤ l. Hence
Êi (Spec(Ri)) = Vp ⊗OX,p Ri and Êi (Spec(Ki)) = Vp ⊗OX,p Ki . Further

Ê(Ŝ) = ∏l
i=1 Êi (Spec(Ri)) ∼= ∏l

i=1 Vp ⊗OX,p Ri . The G action on Ê
corresponds to a group homomorphism � : G → AutAb(

∏l
i=1 Vp⊗OX,p Ri ),

such that �(g)(r · x) = φ(g)(r) · �(g)(x) for any g ∈ G, r ∈ R,
x ∈ ∏l

i=1 Vp ⊗OX,p Ri . As before �(g) induces isomorphisms θ(g) :

Vp ⊗OX,p Ri
∼−→ Vp ⊗OX,p Rg·i . Similarly the Gi action on Êi corresponds
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to a group homomorphism �i : G → AutAb(Vp ⊗OX,p Ri ) such that
�i (g)(r · x) = φi (g)(r) ·�i(g)(x) for any g ∈ Gi , r ∈ Ri , x ∈ Vp⊗OX,p Ri .
As before, we have �g·i (gag−1) = θ(g) ◦ �i (a) ◦ θ(g)−1 for any
a ∈ Gi , g ∈ G. We also have θ(g)(r · x) = α(g)(r) · θ(g)(x) for any
g ∈ G, r ∈ Ri , x ∈ Vp ⊗OX,p Ri (this is nothing but the linearity condition
on �(g) restated).

Let S0 := Ŝ ×Y Y 0. Note that S0 ∼= ∐l
i=1 Spec(Ki) and we have a

G action on S0 induced by φ. In our situation we have E |Y 0 ∈ G(Y 0)

and Ê ∈ G(Ŝ). As the map π : Y 0 → X0 = X − B is unramified
Galois, we know that E |Y 0 ∼= π∗(V|X0) and the G action on π∗(V|X0)

is the natural action induced on pullback sheaves. After base change
to S0 we have E |Y 0 ⊗OY 0 OS0 ∈ G(S0) with the induced G action.

Note that E |Y 0 ⊗OY 0 OS0 ∼= ∏l
i=1(Vp ⊗OX,p Ki ) and the G action on

∏l
i=1(Vp ⊗OX,p Ki ) is defined by the composite : G

φ−→ AutRing(R) →
AutRing(

∏l
i=1 Ki ), which we denote by φ0.

On the other hand we have Ê with G action given by �(g)’s. After base
change to S0 we have Ê⊗OŜ

OS0 ∈ G(S0)with the induced G action. Note that

Ê⊗OŜ
OS0 ∼= ∏l

i=1(Vp⊗OX,p Ki ) and the G action on
∏l

i=1(Vp⊗OX,p Ki ) is

defined by G
�−→ AutAb(

∏l
i=1 Vp ⊗OX,p Ri )→ AutAb(

∏l
i=1 Vp ⊗OX,p Ki ),

which we denote by�0. Now we have a canonical isomorphism of G-sheaves
E |Y 0⊗OY 0 OS0

∼−→ Ê⊗OŜ
OS0 . In other words an isomorphism of G-sheaves

τ :
∏l

i=1(Vp ⊗OX,p Ki )
∼−→ ∏l

i=1(Vp ⊗OX,p Ki ) where the G action on the
source is given by φ0 and on the target it is given by �0. As before we have
induced isomorphism of Gi -sheaves τi : Vp⊗OX,p Ki

∼−→ Vp⊗OX,p Ki which
satisfy τg·i = θ(g) ◦ τi ◦ θ(g)−1 for any g ∈ G.

All of the above can be summarized as:

Proposition 4.8. Let π : Y → X be a G-Galois cover with branch
locus {p}. Let E be a G-bundle on Y . Then we can construct an algebraic
parabolic bundle V on X with branch data P such that Supp(P) = {p}.
Proof. We define V = (π∗E)G,K/KX,p := K1/KX,p, � := �1, μ := τ1.
From the above discussion it is clear that this defines an algebraic parabolic
bundle on X with branch data supported on {p}. �

Now given a morphism of two G-bundles on Y , f : E → E ′, we have
an induced homomorphism of bundles g = (π∗ f )G : V → V ′ where
V ′ = (π∗E ′)G . Similarly we have induced morphisms of Gi -bundles
f̂i : Êi → Ê ′i . Note that f |Y 0 = π∗(g|X0).

Proposition 4.9. Let π : Y → X be a G-Galois cover with branch
locus {p}. Let E, E ′ be G-bundles on Y and let f : E → E ′ be a morphism
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of G-bundles. Let V,V ′ be the algebraic parabolic bundles constructed on X
with branch data P according to Proposition 4.8. Then there is a morphism
(g, σ ) : V → V ′ of algebraic parabolic bundles with branch data P .

Proof. Put σ = f̂1 and the result follows. �

4.2 Parabolic bundles to G-bundles

Let (V, �, μ) be an algebraic parabolic bundle on X with branch data P .
Suppose we are given a G-Galois cover π : Y → X such that

(i) π is branched only at p with π−1(p) = {y1, . . . , yl} = S;
(ii) let Ki be the quotient field of Ri := ÔY,yi , then the extension Ki/KX,p is

isomorphic to the extension K/KX,p for 1 ≤ i ≤ l.

In particular we have induced isomorphisms of Galois groups Gi ∼= I for
1 ≤ i ≤ l. We would like to construct a G-bundle on Y from this data.

Without loss of generality we may assume that K1 = K and consequently
R1 = R,G1 = I . As discussed before, the data of a G-Galois cover gives
us group homomorphisms φ : G → AutRing(

∏l
i=1 Ri ) and φi : Gi →

AutRing(Ri ) for 1 ≤ i ≤ l. Note that by our assumption φ1 = ψ : I →
AutRing(R).

Let us fix elements gi j ∈ G such that gi j · yi = y j for 1 ≤ i, j ≤ l and
gik = g jkgi j , gii = 1. Then we have induced isomorphisms αi j : Ri → R j

which satisfy φ j (gi j ag−1
i j ) = αi j ◦ φi (a) ◦ α−1

i j for a ∈ Gi and αik = α j k ◦
αi j , αi i = I d . Define θi j : Vp ⊗OX,p Ri → Vp ⊗OX,p R j by x ⊗ r �→
x ⊗ αi j (r). Set �1 = � : G1 → AutAb(Vp ⊗OX,p R1). Define � j : G j →
AutAb(Vp⊗OX,p R j ) by� j (b) = θ1 j ◦�1(g

−1
1 j bg1 j )◦θ−1

1 j . Then the following
holds

• θik = θ j k ◦ θi j ;
• θi j(r · x) = αi j (r) · θi j (x) for r ∈ Ri , x ∈ Vp ⊗OX,p Ri ;

• � j (gi jag−1
i j ) = θi j ◦�i (a) ◦ θ−1

i j for a ∈ Gi ;
• �i(g)(r ·x) = φi (g)(r)·�i(g)(x) for any g ∈ Gi , r ∈ Ri , x ∈ Vp⊗OX,p Ri .

Hence, by Lemma 3.2, we have a G-bundle E1 on Ŝ corresponding to a group

homomorphism G
�−→ AutAb(

∏l
i=1 Vp ⊗OX,p Ri ). Note that by Lemma 3.4

the G-bundle E1 is independent of our choice of {gi j}’s.
Let E0 := π∗(V|X0) which is a G-bundle on Y 0 with a natural G

action. As before E0 ⊗OY 0 OS0 ∼= ∏l
i=1(Vp ⊗OX,p Ki ) and the G action

on
∏l

i=1(Vp ⊗OX,p Ki ) is defined by the composite: G
φ−→ AutRing(R) →

AutRing(
∏l

i=1 Ki ), which we denote by φ0. Similarly we can check that
E1⊗OŜ

OS0 ∼= ∏l
i=1(Vp⊗OX,pKi ) and the G action on

∏l
i=1(Vp⊗OX,pKi ) is
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defined by G
�−→ AutAb(

∏l
i=1 Vp ⊗OX,p Ri )→ AutAb(

∏l
i=1 Vp ⊗OX,p Ki ),

which we denote by �0.
Define a map τ :

∏l
i=1 Vp ⊗OX,p Ki → ∏l

i=1 Vp ⊗OX,p Ki by

τ (x1, . . . , xl) = (y1, . . . , yl) where y j := θ1 j ◦ μ ◦ θ−1
1 j (x j ). Note that

by an abuse of notation, we are denoting the map induced by θi j from
Vp⊗OX,p Ki → Vp⊗OX,p K j also by θi j . Then it follows from the definitions
that τ is G- equivariant where G acts on the source by φ0 and on the target
by �0 and hence an isomorphism of G-bundles. By Theorem 3.7 we get a G
bundle E on Y .

Proposition 4.10. Let (V, �, μ) be an algebraic parabolic bundle on X
with branch data P as defined in Definition 4.5. Suppose we are given a
G-Galois cover π : Y → X such that

(i) π is branched only at p with π−1(p) = {y1, . . . , yl};
(ii) let Ki be the quotient field of Ri := ÔY,yi , then the extension Ki/KX,p is

isomorphic to the extension K/KX,p for 1 ≤ i ≤ l.

Then we can construct a G bundle E on Y which gives back the original
algebraic parabolic bundle when we apply the construction in Proposition 4.8.

Proof. It is immediate from the construction above and the construction in 4.8.
�

Let (V ′, � ′, μ′) be another algebraic parabolic bundle on X with the same
branch data P . By the above Proposition we get a G bundle E ′ on Y . Let
(g, σ ) be a morphism of parabolic bundles from (V, �, μ) → (V ′, � ′, μ′).
Define f1 = σ : (Vp ⊗OX,p R1)→ (V ′p ⊗OX,p R1) and f j = θ ′1 j ◦ f1 ◦ θ−1

1 j :
(Vp ⊗OX,p R j )→ (Vp ⊗OX,p R j ), for 2 ≤ j ≤ l. Then it is easy to see that
the condition of Lemma 3.5 are satisfied and hence we have a morphism of
G-bundles Ê → Ê ′. We also have the morphism π∗(g|X0) : E |Y 0 → E ′|Y 0

of trivial G-bundles. The compatibility condition between g and σ allows us
to use Theorem 3.7 and we get a morphism of G-bundles f : E → E ′.

Finally we have

Theorem 4.11. Let X, Y be smooth projective algebraic curves over an
algebraically closed field k. Let P be a branch data on X. Let π : Y → X
be a morphism which makes Y into a G-Galois cover of X such that

(i) π is branched only at p with π−1(p) = {y1, . . . , yl};
(ii) let Ki be the quotient field of Ri := ÔY,yi , then the extension Ki/KX,p is

isomorphic to the extension K/KX,p for 1 ≤ i ≤ l.

Then the category PVect(X,P) is equivalent to the category VectG(Y ).
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Proof. Starting from a G-bundle E on Y we construct an algebraic parabolic
bundle (V, �, μ) on X with branch data P as in Proposition 4.8. Let Ẽ be the
G-bundle on Y , constructed as in Proposition 4.10, from (V, �, μ). We need
to show that E ∼= Ẽ as G-bundles.

Let S = π−1(p). First we construct an isomorphism E ⊗OY OŜ
∼−→ Ẽ ⊗OY

OŜ . Note that as
∏l

i=1 Ri modules, both E⊗OY OŜ and Ẽ⊗OY OŜ are the same

module viz.
∏l

i=1(Vp⊗OX,p Ri ). Define ρ1 : Vp⊗OX,p R1 → Vp⊗OX,p R1 to
be the identity map. By our construction in Proposition 4.10 �1 = �, clearly
ρ1 is an isomorphism of G1 bundles. Define ρi = (I dVp ⊗ α1i ) ◦ θ−1

1i from
Vp ⊗OX,p Ri → Vp ⊗OX,p Ri for i > 1. Then for a ∈ Gi

ρi ◦�i(a)

= (I dVp ⊗ α1i ) ◦ θ−1
1i ◦ θ1i ◦�1(g

−1
1i ag1i ) ◦ θ−1

1i

= (I dVp ⊗ α1i ) ◦�(g−1
1i ag1i ) ◦ θ−1

1i

= (I dVp ⊗ α1i ) ◦�(g−1
1i ag1i ) ◦ (I dVp ⊗ α1i )

−1 ◦ (I dVp ⊗ α1i ) ◦ θ−1
1i

= �̃i (a) ◦ ρi

where �̃i corresponds to the G action on Ẽ restricted to Gi as constructed
in Proposition 4.10. Hence ρi is Gi -equivariant. Define ρ = ∏l

i=1 ρi :
∏l

i=1(Vp⊗OX,p Ri )→∏l
i=1(Vp⊗OX,p Ri ). It can be easily checked that ρ is

an isomorphism of G-bundles. After changing the base to S0 we would denote
this isomorphism by ρ0. Note that as per our construction, on Y 0 = Y − S
we have canonical isomorphism of G bundles E |Y 0 ∼= π∗(V|X0) = Ẽ |Y 0

where X0 = X − {p}. Now one can easily see that after base change to S0,
this isomorphism is nothing but ρ0 (recall how G acts on π∗(V|X0)) .

Now the gluing data is given by the isomorphisms τ = ∏l
i=1 τi ,

τ̃ = ∏l
i=1 τ̃i corresponding to E, Ẽ respectively. By our construction

τi = θ1i ◦ τ1 ◦ θ−1
1i , τ̃i = (I dVp ⊗ α1i ) ◦μ ◦ (I dVp ⊗ α1i )

−1 and τ1 = μ. It is
now trivial to check that τ̃i ◦ ρ0

i = ρ0
i ◦ τi and hence τ̃ ◦ ρ0 = ρ0 ◦ τ . Thus

we have the necessary isomorphism E ∼−→ Ẽ .
It is obvious that if we start with an algebraic parabolic bundle on X

with branch data P then construct the associated G bundle on Y (as in
Proposition 4.10) and from that construct the associated algebraic parabolic
bundle on X (as in Proposition 4.8) we get the bundle we started with. �

4.3 Generalization

We now generalize to the situation when the branch locus and Supp(P)

contains more than one point.
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Theorem 4.12. Let X, Y be smooth projective algebraic curves over an
algebraically closed field k. Let S = {p1, . . . , pN } be a set of finitely many
points in X and let P be a branch data on X with Supp(P) = S. Let
π : Y → X be a morphism which makes Y into a G-Galois cover of X such
that

(i) π is ramified precisely at S with π−1(pi ) = {yi1, . . . , yili };
(ii) let Ki j be the quotient field of Ri j := ÔY,yi j , then the extension Ki j/KX,pi

is isomorphic to the extension P(pi )/KX,pi for 1 ≤ j ≤ li and
1 ≤ i ≤ N.

Then the category PVect(X,P) is equivalent to the category VectG(Y ).

Proof. Let X0 = X − S, X1 = X0 ∪ {p1}, . . . , X = X N = X N−1 ∪ {pN }.
Given a parabolic bundle on X with branch data P , by repeated use
of Theorem 4.11 we successively construct G bundles on π−1(X1), . . . ,

π−1(X N−1) and finally on π−1(X N ) = Y . The construction of a parabolic
bundle out of a G bundle on Y is exactly same as before. Thus we have our
equivalence. �

Remark 4.13. One could modify the proof of Theorem 4.11 by working
simultaneously with multiple branch points and obtain Theorem 4.12 directly.
This has been avoided just to simplify the notation.

Remark 4.14. It is clear from our construction that under this equivalence
the trivial G-bundle corresponds to the trivial parabolic bundle with branch
data P .

We recall the following definitions from [KP]

Definition 4.15. Let (X,P) and (Y,Q) be formal orbifold curves.
A morphism of formal orbifolds f : (Y,Q) → (X,P) is a finite cover
f : Y → X such that for all y ∈ Y the extension Q(y)/KX, f (y) contains the
extension P( f (y))/KX, f (y).

A morphism of formal orbifolds f : (Y,Q)→ (X,P) is called et́ale at y
if Q(y) =P( f (y)) and is called et́ale if it is et́ale for all points y ∈ Y .

We say that a formal orbifold (X,P) is geometric if there exists a
connected et́ale cover (Y, O) → (X,P) where O is the trivial branch data
on Y . In this situation P is called a geometric branch data on X.

Let f : (Y,Q)→ (X,P) be a morphism of formal orbifolds. It is called
a G-Galois cover for a finite group G if f : Y → X is a G-Galois cover,
Q(y)/P( f (y)) is a Galois extension for all y ∈ Y and for all g ∈ G, y ∈ Y ,
the extension Q(y)/KX, f (y) is isomorphic to Q(gy)/KX, f (y).
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Remark 4.16. Let P,P ′ be two branch data on X . Then I dX defines a
morphism of fromal orbifolds (X,P ′) → (X,P) iff P ′ ≥ P and the
morphism is et́ale iff P ′ =P .

Given any branch data P on X we can always find a branch data Q such
that P ≤ Q and Q is a geometric branch data on X .

Notation

In Theorem 4.12 we assume that P is a geometric branch data and that
there is a G-Galois étale cover (Y, O) → (X,P). The equivalence of
the categories PVect(X,P) and VectG(Y ) has been shown only under this
assumption. In this situation let us denote the functor we have constructed
from PVect(X,P) → VectG(Y ) by T Y

(X,P) and the one from VectG(Y ) →
PVect(X,P) by SY

(X,P).

Remark 4.17. Suppose we have a commutative diagram of formal orbifolds

(Z , O)
g ��

f ◦g ����������� (Y, O)

f
��

(X,P)

where both (Z , O)
f ◦g−−→ (X,P) and (Y, O)

f−→ (X,P) are Galois étale with

Galois groups � and G respectively. Then obviously (Z , O)
g−→ (Y, O) is also

Galois étale with Galois group H such that H is a normal subgroup of � and
�/H ∼= G.

Now we know the following fact: g∗ defines an equivalence of categories
VectG(Y )

∼−→ Vect�(Z) (see [KP]). An inverse to g∗ is given by the functor
gH∗ which takes W �→ (g∗W)H for W ∈ Vect�(Z). One can check that
g∗ = T Z

(Y,O), modulo the identification PVect(Y, O) = Vect(Y ) and after

restricting both the functors to VectG(Y ). Similarly we also have gH∗ = S Z
(Y,O)

applied to Vect�(Z). Moreover by our construction the following holds in this
situation

T Z
(X,P) = g∗ ◦T Y

(X,P), gH∗ ◦T Z
(X,P) = T Y

(X,P),S Z
(X,P) ◦ g∗ = SY

(X,P)

or, equivalently

T Z
(X,P) = T Z

(Y,O) ◦T Y
(X,P),S Z

(Y,O) ◦T Z
(X,P) = T Y

(X,P),

S Z
(X,P) ◦T Z

(Y,O) = SY
(X,P)

(here we have replaced canonical isomorphisms by equality).
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Corollary 4.18. Let (X,P) be a geometric formal orbifold. Then the
category of algebraic parabolic bundles on X with branch data P is
equivalent to the category of “vector bundles” on (X,P) as defined in [KP],
Definition 3.5.

Proof. As per the definitions in [KP], a geometric formal orbifold (X,P)

comes with a G-Galois cover Y → X which satisfies the conditions stated
in the Theorem above. Also, a “vector bundle” on (X,P) was defined as a
G-bundle on Y . Hence from Theorem 4.12 the statement follows. �

Let X be smooth projective curve over k and S be a finite subset. For
x ∈ S, let K̄X,x be the algebraic closure of KX,x and R̂x be the integral
closure of ÔX,x in K̄X,x . Let Y1 = X\S, Y2 = Spec(⊕x∈S R̂x ) and
Y3 = Spec(⊕x∈SK̄X,x). Then there are natural morphisms f j : Y3 → Y j for
j = 1, 2. In [No] Nori defines parabolic bundles on X\S to be the 5-tuple
(V1, V2, V3, φ1, φ2) where Vi are vector bundles on Yi for 1 ≤ i ≤ 3 and
φ j : f ∗j V j → V3 are isomorphisms for j = 1, 2. Nori’s definition is closely
related to Definition 4.3.

Remark 4.19. Given a parabolic bundle (V, {�x }x∈Supp(P), {μx}x∈Supp(P))

on X with branch data P whose support is in S, it corresponds to a parabolic
bundle on X\S. This is done by taking V1 to be the pullback of V to Y1, V2

is pullback of the vector bundle cooked up on Spec(⊕x∈Supp(P)Rx ) using the
local data {�x}x∈Supp(P) and V3 is taken to be the pullback of V2 to Y3. The
local comparison maps {μx }x∈Supp(P) gives an isomorphism of V3 with the
pullback of V1 to Y3.

Remark 4.20. Note that in our branch data P(x)/KX,x is a separable
extension while K̄X,x contains inseparable extensions as well. This suggests
that there may be parabolic bundles in the sense of Nori on X\S which may
not come from a parabolic bundle (in the sense of Definition 4.3) on X with
branch data P whose support is in S. In particular it is not clear if every
parabolic bundles on X\S in the sense of Nori can come from a equivariant
G-bundle on a G-Galois cover of X branched only on S.

5. Orbifold bundles vs parabolic bundles

Now we proceed to define the category of parabolic bundles on a smooth
projective curve and show that it is equivalent to the category of “orbifold
bundles” on X as defined in [KP].

Definition 5.1. Let P,P ′ be two branch data on X such that P ≤P ′. Let
(V, {�x }x∈Supp(P), {μx}x∈Supp(P)) and (V ′, {� ′x}x∈Supp(P ′), {μ′x}x∈Supp(P ′))
be two algebraic parabolic bundles on X with branch data P and
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P ′ respectively. We say that these two algebraic parabolic bundles are
equivalent if (i) V ∼= V ′, (ii) ∀x ∈ Supp(P ′), g ∈ Gal(P ′(x)/KX,x )

we have � ′x (g)|(Vx ⊗OX,x Rx ) = �x (ḡ) where ḡ is the image of g in
Gal(P(x)/KX,x ) under the natural map and Vx is thought of as V ′x via the
given isomorphism, and (iii) ∀x ∈ Supp(P ′) we haveμ′x |(Vx⊗OX,x P(x)) =
μx . It is denoted by the notation (V, {�x }x∈Supp(P), {μx}x∈Supp(P)) ∼
(V ′, {� ′x }x∈Supp(P ′), {μ′x}x∈Supp(P ′)).

Remark 5.2. For x ∈ Supp(P ′) but x /∈ Supp(P)we take�x as the trivial
map. Note that ∀x ∈ X we have Rx ⊆ R′x ,P(x) ⊆ P ′x , hence Vx ⊗OX,x

Rx ⊆ V ′x⊗OX,x R′x ,Vx⊗OX,x P(x) ⊆ V ′x⊗OX,x P ′(x) (via the isomorphism
V ∼= V ′).

Now given branch data P ≤ P ′ on X and (V, �, μ) ∈ PVect(X,P)

we would like to construct a parabolic bundle with branch data P ′ which is
equivalent to the given one. We take the same underlying vector bundle for
the new parabolic bundle i.e V . For any x ∈ X , let Rx , R′x denote the integral
closure of ÔX,x in P(x),P ′x respectively. Denote the natural action of
Gal(P ′(x)/KX,x ) on R′x by ψ ′x i.e. ψ ′x : Gal(P ′(x)/KX,x )→ AutRing(R′x ).
Note that

Vx ⊗OX,x R′x ∼= (Vx ⊗OX,x Rx )⊗Rx R′x
Vx ⊗OX,x P ′(x) ∼= (Vx ⊗OX,x P(x))⊗P(x) P ′(x)

We have the following natural group homomorphism Gal(P ′(x)/KX,x ) �
Gal(P(x)/KX,x ). Define � ′x : Gal(P ′(x)/KX,x) → AutAb(Vx ⊗OX,x R′x )
by

� ′x (g)(v ⊗ s) = �x (ḡ)(v)⊗Rx ψ
′
x (g)(s)

for every g ∈ Gal(P ′(x)/KX,x ), v ∈ Vx ⊗OX,x Rx , s ∈ R′x where ḡ is the
image of g in Gal(P(x)/KX,x ). Similarly we define μ′x = μx ⊗P(x) I dP ′(x)
(via the isomorphism stated above).

Lemma 5.3. (V, {� ′x }x∈Supp(P ′), {μ′x }x∈Supp(P ′)) as defined above is an
algebraic parabolic bundle on X with branch data P ′.

Proof. The linearity condition for � ′x follows immediately from the
definition. For the patching condition we need to prove that for any
g ∈ Gal(P ′(x)/KX,x )

μ′x ◦ (I dVx ⊗ ψ ′0x (g)) = � ′0x (g) ◦ μ′x .
An arbitrary element of Vx ⊗OX,x P ′(x) may be written as finite sum of
elements of the form (v ⊗ 1)⊗ s for some v ∈ Vx , s ∈P ′x , 1 ∈P(x). Then
we have
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μ′x ◦ (I dVx ⊗ ψ ′0x (g))((v ⊗ 1)⊗ s)

= μx (v ⊗ 1)⊗ ψ ′0x (g)(s)
= μx ◦ (I dVx ⊗ ψ0

x (ḡ))(v ⊗ 1)⊗ ψ ′0x (g)(s)
= �0

x (ḡ)(μx (v ⊗ 1))⊗ ψ ′0x (g)(s)
= � ′0x (g)(μx(v ⊗ 1)⊗ s)

= � ′0x (g) ◦ μ′x ((v ⊗ 1)⊗ s).

Hence we have the required patching condition and the statement is
true. �

We denote this bundle by ı∗(V, {�x}x∈Supp(P), {μx}x∈Supp(P)) where
ı : (X,P ′)→ (X,P) is the map induced by I dX .

Proposition 5.4. Let P,P ′ be two branch data on X such that
P ≤ P ′. Let (V, {�x }x∈Supp(P), {μx}x∈Supp(P)) and (V ′, {� ′x }x∈Supp(P ′),
{μ′x }x∈Supp(P ′)) be two algebraic parabolic bundles on X with branch data
P and P ′ respectively. Let ı : (X,P ′) → (X,P) be the morphism of
formal orbifolds induced by I dX . Then (V, {�x}x∈Supp(P), {μx }x∈Supp(P)) ∼
(V ′, {� ′x }x∈Supp(P ′), {μ′x}x∈Supp(P ′)) iff ı∗(V, {�x}x∈Supp(P), {μx}x∈Supp(P))∼= (V ′, {� ′x}x∈Supp(P ′), {μ′x}x∈Supp(P ′)).

Proof. First we note that in both of the above situations we have V ∼= V ′.
Hence to simplify notation throughout this proof we would treat these two
isomorphic bundles as the same bundle.

For the ‘if’ part, by our hypothesis, for any x ∈ Supp(P ′),
g ∈ Gal(P ′(x)/KX,x ) we have� ′x (g)(v⊗r ′) = �x (ḡ)⊗Rx ψ

′
x(g)(r

′) where
v ∈ Vx ⊗OX,x Rx , r ′ ∈ R′x and ḡ is the image of g in Gal(P(x)/KX,x ). Then
it immediately follows that � ′x (g)|(Vx ⊗OX,x Rx ) = �x (ḡ). We also have
μ′x = μx ⊗P(x) I dP ′(x) ⇒ μ′x |(Vx ⊗OX,x P(x)) = μx . Hence the required
equivalence holds.

For the ‘only if’ part, we have

� ′x (g)(v ⊗ r ′) = � ′x (g)(r ′ · v ⊗ 1) = ψ ′x (g)(r ′)� ′x (g)(v ⊗ 1)

= ψ ′x (g)(r ′)(�x (ḡ)(v)⊗ 1) = �x (ḡ)⊗ ψ ′x(g)(r ′)
(note we are using that Vx ⊗OX,x R′x ∼= (Vx ⊗OX,x Rx )⊗Rx R′x ). Similarly

μ′x (u ⊗ α′) = α′μ′x (u ⊗ 1) = α′(μx (u)⊗ 1) = μx (u)⊗ α′

where u ∈ Vx ⊗OX,x P(x), α′ ∈ P ′(x). Clearly this proves that
ı∗(V, {�x}x∈Supp(P), {μx }x∈Supp(P)) ∼= (V, {� ′x }x∈Supp(P ′), {μ′x }x∈Supp(P ′)).

�
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Proposition 5.5. Let (X,P) and (X,P ′) be geometric formal orbifolds
such that P ≤ P ′. Let (Y, 0) and (Y ′, 0) be their respective connected
Galois étale covers with Galois groups G,G ′ which fit into the following
commutative diagram of fromal orbifolds

(Y, 0)

f
��

(Y ′, 0)

f ′
��

ı̃
��

(X,P) (X,P ′)ı
��

where the map ı is induced by I dX . Let (V, {�x}x∈Supp(P), {μx }x∈Supp(P))

and (V ′, {� ′x }x∈Supp(P ′), {μ′x}x∈Supp(P ′)) be two algebraic parabolic
bundles on X with branch data P and P ′ respectively. Let E = T Y

(X,P)(V)
and E ′ = T Y ′

(X,P ′)(V ′). Then (V, {�x}x∈Supp(P), {μx}x∈Supp(P)) ∼
(V ′, {� ′x }x∈Supp(P ′), {μ′x}x∈Supp(P ′)) iff E ′ ∼= ı̃∗E as G ′-bundles.

Proof. First we note that in the given situation ı̃ is a H-Galois cover of curves
where H is a normal subgroup of G ′ such that G ′/H ∼= G. Assume E ′ ∼= ı̃∗E
as G ′-bundles. Then as vector bundles V ′ ∼= ( f ′∗E ′)G

′ ∼= ( f∗ı̃∗ı̃∗E)G ′ ∼=
( f∗E)G ∼= V . Moreover (ı̃∗E ′)H ∼= E as G-bundles. Hence for any
x ∈ Supp(P ′) we must have (V ′x ⊗OX,x R′x )Hx ∼= (Vx ⊗OX,x Rx ) where
Hx = Gal(P ′(x)/P(x)). It follows that � ′x (g)|(Vx ⊗OX,x Rx ) = �x (ḡ) for
any g ∈ G ′x and ḡ is the image of g in Gx (note that Vx is thought of as V ′x
via the isomorphism above). Keeping in mind Theorem 3.7, E ′ ∼= ı̃∗E also
gives us the condition on μ,μ′. In other words V is equivalent to V ′.

Conversely assume that V and V ′ are equivalent. We need to show that
E ′ ∼= ı̃∗E as G ′-bundles. Let Ṽ be the parabolic bundle on X with branch data
P ′ corresponding to the G ′-bundle Ẽ := ı̃∗E on Y ′ i.e. Ṽ = SY ′

(X,P ′)(Ẽ).
Then it suffices to prove that Ṽ ∼= V ′ as parabolic bundles.

Now as vector bundles Ṽ ∼= ( f ′∗ı̃∗E)G
′ ∼= ( f∗E)G ∼= V ∼= V ′. For

x ∈ Supp(P ′), let y′ ∈ Y ′ be a point lying above x and y ∈ Y be the image
of y′ in Y . Note that P ′(x) = KY ′,y ′ and P(x) = KY,y . By the construction

of parabolic bundles from G-bundles we have Êy ∼= Vx ⊗OX,x ÔY,y (see 4.1).

Also (̂ı̃∗E)y ′ ∼= Êy ⊗ÔY,y
ÔY ′,y ′ ∼= Vx ⊗OX,x ÔY,y ⊗ÔY,y

ÔY ′,y ′ ∼= Ê ′y ′ .
Note that Ẽ is a also G ′-bundle on Y ′ ([KP, Lemma 3.3]). Moreover the

proof of this lemma shows that if � defines the G-bundle structure of E on Y
then q∗(�) defines the G ′-bundle structure of ı̃∗E on Y ′ where q : G ′ ×Y ′ →
G × Y is the induced map from G ′ → G and Y ′ → Y . Translating this
in terms of rings and modules imply that the action �̃x (g) for g ∈ G ′x on
Ê ′y ′ ∼= Êy ⊗ÔY,y

ÔY ′,y ′ is given by �x (ḡ) ⊗Rx ψ
′
x (g) where ψ ′x denotes the

action of G ′x on R′x . Thus �̃x = � ′x . Similarly we get μ̃x = μx⊗P(x) I dP ′(x)
and hence μ̃x = μ′x . This implies that Ṽ is isomorphic to V ′. �
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Remark 5.6. The diagram in the above Proposition may be obtained as
follows: let (Y, O) → (X,P) and (Ỹ , O) → (X,P ′) be connected
Galois étale covers of the respective formal orbifolds. Let Y ′ be a connected
component of the normalization of Y ×X Ỹ . Then one can check that
(Y ′, O) → (X,P ′) is a Galois étale cover and we have a commutative
diagram of formal orbifolds as in the Proposition.

Corollary 5.7. Let us be in the situation of Proposition 5.5. Then
(V ′, {� ′x }x∈Supp(P ′), {μ′x}x∈Supp(P ′)) ∼= ı∗(V, {�x }x∈Supp(P), {μx}x∈Supp(P))

iff E ′ ∼= ı̃∗E as G ′-bundles. In other words, (V ′, � ′, μ′) ∼= ı∗(V, �, μ) iff
T Y ′
(X,P ′)(V ′) ∼= ı̃∗T Y

(X,P)(V).
Corollary 5.8. Let us be in the situation of Proposition 5.5. Then
T Y ′
(X,P ′) ◦ ı∗(V) ∼= ı̃∗ ◦ T Y

(X,P)(V) for any V ∈ PVect(X,P). Equivalently,

ı∗ ◦ SY
(X,P)(E) ∼= SY ′

(X,P ′) ◦ ı̃∗(E) for any E ∈ VectG(Y ).

Proposition 5.9. Let ı : (X,P ′) → (X,P) be a morphism of formal
orbifolds. Then the operation ı∗ defines a functor ı∗ : PVect(X,P) →
PVect(X,P ′). Moreover, given another morphism of formal orbifolds
j : (X,P

′′
) → (X,P ′) we have a natural isomorphism of functors

j∗ı∗ ∼= (ıj)∗ : PVect(X,P)→ PVect(X,P
′′
).

Proof. We need to define the functor on morphisms. Let (θ, {σx}x∈Supp(P)) be
a morphism in PVect(X,P). Define ı∗(θ, {σx}x∈Supp(P)) to be the morphism
(θ, {σ ′x}x∈Supp(P ′)) where σ ′x = σx ⊗Rx I dR′x for any x ∈ Supp(P ′). Then
it is straightforward to check that (θ, {σ ′x}x∈Supp(P ′)) defines a morphism
between two objects of PVect(X,P ′) obtained by applying ı∗ on two objects
of PVect(X,P). The rest of the properties are also routine to check. �

Corollary 5.10. Let us be in the situation of Proposition 5.5. Then the
functor ı∗ : PVect(X,P)→ PVect(X,P ′) is an embedding.

Proof. From what we have already proved we know that (V ′, {� ′x }x∈Supp(P ′),
{μ′x }x∈Supp(P ′)) ∼= ı∗(V, {�x }x∈Supp(P), {μx}x∈Supp(P)) iff E ′ ∼= ı̃∗E as
G ′-bundles. Then we would have ı∗(V1, �1, μ1) ∼= ı∗(V2, �2, μ2) iff
ı̃∗E1 ∼= ı̃∗E2 as G ′-bundles. But by our choice ı̃ is a H-Galois cover. Hence
ı̃∗E1 ∼= ı̃∗E2 ⇒ E1 ∼= E2 and the statement is true. �

Now we generalize the definition of equivalence of two parabolic bundles
even if their branch data are not comparable.

Definition 5.11. Let P,P ′ be two branch data on X. Let (V,
{�x }x∈Supp(P), {μx}x∈Supp(P)) and (V ′, {� ′x}x∈Supp(P ′), {μ′x}x∈Supp(P ′))
be two algebraic parabolic bundles on X with branch data P and
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P ′ respectively. We say that these two algebraic parabolic bundles are
equivalent if there exists a branch data Q on X such that P ≤ Q,P ′ ≤Q
and under the functors ı∗ : PVect(X,P) → PVect(X,Q) and ı ′∗ :
PVect(X,P ′) → PVect(X,Q) the respective images are isomorphic.
We again use ∼ to denote equivalence of two parabolic bundles.

Lemma 5.12. The relation ∼ between parabolic bundles with branch data
defined on X is an equivalence relation.

Proof. We only need to check transitivity. Suppose we are given branch
data P1,P2,P3 on X and parabolic bundles Vi with branch data Pi for
i = 1, 2, 3. Assume that V1 ∼ V2 and V2 ∼ V3. Then by definition
we have branch data Qi , i = 1, 2, on X such that f ∗1 V1 ∼= f ∗2 V2

and g∗2V2 ∼= g∗3V3 where fi : (X,Q1) → (X,Pi), i = 1, 2, and
g j : (X,Q2) → (X,P j ), j = 2, 3, are the natural maps between formal
orbifolds. Let R = Q1Q2 be the compositum of these two branch data.
We have maps hi : (X,R) → (X,Qi), i = 1, 2, of formal orbifolds such
that f2 ◦ h1 = g2 ◦ h2. Hence h∗1 f ∗2 V2 ∼= h∗2g∗2V2 ⇒ h∗1 f ∗1 V1 ∼= h∗2g∗3V3.
Hence by our definition V1 ∼ V3 and we are done. �

Definition 5.13. A parabolic bundle on a smooth projective curve X is an
equivalence class under ∼ of algebraic parabolic bundles on X with some
branch data. We denote this category by PVect(X).

From our definition of equivalence it is clear that the trivial parabolic
bundle on X corresponds to the equivalence class of O⊕n

X with trivial branch
data O. The trivial parabolic bundle with branch data P obviously belongs
to this equivalence class.

Proposition 5.14. The category PVect(X) is equivalent to the category of
“orbifold bundles” on X as defined in [KP], Definition 3.8.

Proof. As any branch data can be dominated by a geometric branch data, it is
clear that an object in PVect(X) can be represented by an algebraic parabolic
bundle over X with geometric branch data, say P . But we have already seen
that PVect(X,P) is equivalent to VectG(Y ) where (Y, O) is a connected
Galois étale cover of (X,P) with Galois group G. This implies the desired
equivalence of categories. �

Proposition 5.15. Let characteristic of k be zero. Then the category
PVect(X) is equivalent to the category of “parabolic bundle with rational
weights” on X according to the definition in [MS].

Proof. For the sake of convenience we start with the case when we have a
parabolic bundle V with parabolic structure supported on just a single
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point {p}. By our definition we have � : I → AutAb(Vp ⊗OX,p R). Note
that I is a cyclic group and R is a complete local ring with the residue
field being k. So we get an induced map �̄ : I → AutAb(Vp ⊗OX,p k).
The linearity condition on � implies that �̄ is k-linear (by our definition
the map induced by ψ is I d on k). Note that Vp ⊗OX,p k is nothing but the
fibre of the vector bundle V at p which we denote by V(p). Let I = 〈γ 〉.
Then we may choose a basis for V(p) consisting of eigenvectors of �̄(γ ).
Clearly the eigenvalues of �̄(γ ) are N -th roots of unity where N = |I | i.e.
of the form exp(2π

√−1a/N), 0 ≤ a ≤ N, a ∈ Z. We can arrange these
eigenvalues such that the integers a are in increasing order . From this we
can easily construct a decreasing filtration of V(p) along with weights given
by the rational numbers a/N . Thus we recover the classical definition of
parabolic bundle as given in [MS]. In the general case we just apply the above
procedure for each point in the support of the branch data.

Now starting from a “parabolic bundle with rational weights”, first we write
the weights as elements of 1

N Z for some integer N . It is well known that we

can construct Galois cover Y
f−→ X such that the branch locus B contains

the parabolic divisor and ramification index at each ramification point is N .
Now we can treat the original parabolic bundle as having divisor B by adding
some points to the original parabolic divisor with trivial parabolic structure at
those points. We know that there is an equivalence between the category of
parabolic bundles with weights lying in 1

N Z and parabolic divisor B and the
category of �-bundles on Y where � = Gal(Y/X). But Theorem 4.12 gives
us that Vect�(Y ) is equivalent to PVect(X, B f ) where B f is the branch data
associated to f . Thus we get an element of PVect(X). One easily checks that
these two functors are inverse to each other. �

In what follows we will define pullback, tensor product, dual and
pushforward operations on PVect(X). We will also show that the functors
defining equivalence between PVect(X) and orbifold bundles on X are well
behaved with respect to these operations.

5.1 Pullback

We would like to construct a pullback operation for parabolic bundles i.e.
given a cover f : Y → X of curves, we want a functor f ∗ : PVect(X) →
PVect(Y ). Let V ∈ PVect(X) and we may assume, without loss of generality,
that the associated branch data P is ≥ B f . Here B f is the branch data
associated to the map f : Y → X . Then clearly the induced morphism

(Y, f ∗P)
f−→ (X,P) is étale. Now we can get a Galois étale cover (Z , O)→

(X,P) such that it factors through (Y, f ∗P)→ (X,P). In other words we
have a commutative diagram of formal orbifolds
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(Z , O)

g
��

h

������������

(Y, f ∗P)
f �� (X,P)

where g and h are G-Galois étale and H-Galois étale covers respectively. Now
we define f ∗V as the equivalence class of the parabolic bundle S Z

(Y, f ∗P) ◦
T Z
(X,P)(V). Of course we need to check that this operation is well defined.
Firstly, if we made another choice of Galois étale cover (Z ′, O)→ (X,P)

factoring through f , then we need to show that S Z
(Y, f ∗P) ◦ T Z

(X,P)(V) ∼=
S Z ′
(Y, f ∗P) ◦T Z ′

(X,P)(V). Now we can construct a Galois étale cover (Z̃, O)→
(X,P) which dominates both (Z , O) and (Z ′, O). Then we have

T Z̃
(X,P) = T Z̃

(Z ,O) ◦T Z
(X,P) ⇒ S Z̃

(Y, f ∗P) ◦T Z̃
(X,P)

= S Z̃
(Y, f ∗P) ◦T Z̃

(Z ,O) ◦T Z
(X,P)

= S Z
(Y, f ∗P) ◦T Z

(X,P)

Similarly we get S Z̃
(Y, f ∗P) ◦ T Z̃

(X,P) = S Z ′
(Y, f ∗P) ◦ T Z ′

(X,P) and we have the
required isomorphism.

Secondly, if we have (V, �, μ) ∼ (V ′, � ′, μ′), where V ′ has branch data
P ′ ≥ B f , then we need to show that S Z

(Y, f ∗P) ◦ T Z
(X,P)(V) ∼ S Z ′

(Y, f ∗P ′) ◦
T Z ′
(X,P ′)(V ′) where Z ′ has been chosen in the same manner as Z . Choose

branch data Q on X such that Q ≥P,P ′ and ı∗(V, �, μ) ∼= ı ′∗(V ′, � ′, μ′)
where ı∗, ı ′∗ are the functors described in Proposition 5.9. Now we can get a
commutative diagram:

(Z , O)

��

(Z̃ , O)
ı̃��

��

ı̃ ′ �� (Z ′, O)

��
(Y, f ∗P)

��

(Y, f ∗Q)j��

��

j ′ �� (Y, f ∗P ′)

��
(X,P) (X,Q)

ı�� ı ′ �� (X,P ′)

where (Z ′, O)→ (X,P ′) and (Z̃, O)→ (X,Q) is chosen in the same way
as (Z , O)→ (X,P). Moreover, like Proposition 5.5 we can choose (Z̃, O)
such that ı̃ and ı̃ ′ are Galois covers. Clearly f ∗Q ≥ f ∗P, f ∗P ′. Hence it
suffices to show that

j∗ ◦ S Z
(Y, f ∗P) ◦T Z

(X,P)(V) ∼= j ′∗ ◦ S Z ′
(Y, f ∗P ′) ◦T Z ′

(X,P ′)(V ′)
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⇔ S Z̃
(Y, f ∗Q) ◦ ı̃∗ ◦T Z

(X,P)(V) ∼= S Z̃
(Y, f ∗Q) ◦ ı̃ ′∗ ◦T Z ′

(X,P ′)(V ′)
(by Corollary 5.8)

⇔ ı̃∗ ◦T Z
(X,P)(V) ∼= ı̃ ′∗ ◦T Z ′

(X,P ′)(V ′)
(as S Z̃

(Y, f ∗Q) is an equivalence)

⇔ T Z̃
(X,Q) ◦ ı∗(V) ∼= T Z̃

(X,Q) ◦ ı ′∗(V ′) (by Corollary 5.8)

⇔ ı∗(V) ∼= ı ′∗(V ′) (as T Z̃
(X,Q) is an equivalence)

Hence we are in good shape and we can make the following definition

Definition 5.16. Let : Y → X be a covering map between smooth projective
curves. Then for any V ∈ PVect(X) the pullback bundle f ∗V ∈ PVect(Y ) is
defined as the equivalence class of S Z

(Y, f ∗P) ◦ T Z
(X,P)(V) where P, Z has

been chosen as above.

Remark 5.17. Let V ∈ PVect(X,P) where P is a geometric branch
data on X and let f : (Y, O) → (X,P) be a G-Galois étale cover. Let
E = T Y

(X,P)(V). Then by our construction, we have a natural isomorphism
f ∗V ∼= E as G-bundles.

Proposition 5.18. Let f : Y → X be a covering map of smooth projective
curves. Then we have a functor f ∗ : PVect(X) → PVect(Y ). We also have
f ∗(O⊕n

X ) = O⊕n
Y . Moreover given another cover g : Z → Y we have a

natural isomorphism of functors ( f g)∗ ∼= g∗ f ∗.

Proof. Given two objects of PVect(X), we can always choose representatives
for them with the same branch data. Thus a morphism in PVect(X) can be
represented by a morphism in PVect(X,P) for some branch data P . So we
define the functor f ∗ for morphisms in the same way as defined for objects
i.e. by the equivalence class of S Z

(Y, f ∗P) ◦ T Z
(X,P) applied to the morphism

where (Z , O) is a Galois étale cover of (X,P) chosen as above. The rest of
the details are left to the reader for verification. �

5.2 Tensor operation

First we give the definition when the parabolic bundles have the same branch
data.

Let (X,P) be a formal orbifold and (V1, {�1x }x∈Supp(P), {μ1x }x∈Supp(P))

and (V2, {�2x }x∈Supp(P), {μ2x }x∈Supp(P)) be two objects of PVect(X,P).
Define V = V1 ⊗OX V2. We have the following canonical isomorphisms

(V1x ⊗OX,x V2x )⊗OX,x Rx
∼= (V1x ⊗OX,x Rx )⊗Rx (V2x ⊗OX,x Rx )

(V1x ⊗OX,x V2x )⊗OX,x P(x)∼=(V1x ⊗OX,x P(x))⊗P(x) (V2x ⊗OX,x P(x))
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for any x ∈ Supp(P). Using them define � : Gal(P(x)/KX,x ) →
AutAb((V1x ⊗OX,x V2x) ⊗OX,x Rx ) by �x = �1x ⊗Rx �2x and similarly
define μx = μ1x ⊗P(x) μ2x .

Lemma 5.19. (V, {�x }x∈Supp(P), {μx}x∈Supp(P)) as defined above is an
object of PVect(X,P).

Proof. The required properties follow from those of the given parabolic
bundles keeping in mind the natural isomorphisms stated above. �

Definition 5.20. Let (X,P) be a formal orbifold and (V1, {�1x }x∈Supp(P),
{μ1x }x∈Supp(P)) and (V2, {�2x }x∈Supp(P), {μ2x }x∈Supp(P)) be two objects of
PVect(X,P). Then their tensor product, denoted by (V1, {�1x }x∈Supp(P),

{μ1x }x∈Supp(P)) ⊗ (V2, {�2x }x∈Supp(P){μ2x }x∈Supp(P)), is defined as the
parabolic bundle (V, {�x }x∈Supp(P), {μx}x∈Supp(P)) constructed in the
above Lemma.

Proposition 5.21. Let (X,P) be a geometric formal orbifold and let
V1,V2 ∈ PVect(X,P). Let (Y, O) be a connected Galois étale cover of
(X,P) with Galois group G and let Ei = T Y

(X,P)(Vi) for i = 1, 2. Then

T Y
(X,P)(V1 ⊗ V2) ∼= E1 ⊗ E2 as G-bundles. Equivalently SY

(X,P)(E1 ⊗ E2) ∼=
V1 ⊗ V2 as parabolic bundles.

Proof. The first isomorphism follows from the fact that both the G-bundles
have the same local data after we take into account the canonical isomorphism
used in the definition above. The second isomorphism is obviously equivalent
to the first. �

Proposition 5.22. Let ı : (X,Q) → (X,P) be a morphism of formal
orbifolds. Then the functor ı∗ : PVect(X,P) → PVect(X,Q) commutes
with the tensor operation i.e. if V1,V2 ∈ PVect(X,P) then ı∗(V1 ⊗ V2) ∼=
ı∗V1 ⊗ ı∗V2.

Proof. It is a routine check. �

Now we would like to extend the tensor product operation to the category
PVect(X). Given two objects in PVect(X) we can choose representatives
V1 ∈ PVect(X,P) and V2 ∈ PVect(X,P) with the same branch data
P . Then we can consider the equivalence class of V1 ⊗ V2 to be the
tensor product of the given parabolic bundles. Let V ′1 ∈ PVect(X,P ′) and
V ′2 ∈ PVect(X,P ′) be different representatives for the given parabolic
bundles. Then we also have the tensor product V ′1 ⊗ V ′2.

Lemma 5.23. V1 ⊗ V2 ∼ V ′1 ⊗ V ′2.
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Proof. As V1 ∼ V ′1, by definition there is a branch data Q ≥ P,P ′ such
that ı∗V1 ∼= j∗V ′1 and ı∗V2 ∼= j∗V ′2. Here ı, j are the morphisms inuced
by I dX from (X,Q) to (X,P), (X,P ′). Then the statement follows from
Proposition 5.22. �

Using this Lemma we can make the following definition.

Definition 5.24. Let X be a smooth projective curve. Then we define a
tensor product of two objects in PVect(X) as follows: let V1 ∈ PVect(X,P)

and V2 ∈ PVect(X,P) be representatives of these two objects. Then the
equivalence class of V1 ⊗ V2 is defined to be the tensor product of the given
objects.

Proposition 5.25.

(i) The tensor product operation defined on PVect(X) is compatible with the
tensor product operation on PVect(X,P) for any branch data P .

(ii) For any covering morphism f : Y → X of smooth projective curves, the
pullback functor f ∗ : PVect(X) → PVect(Y ) commutes with the tensor
product operation.

Proof. The statement in (i) holds by our construction. The statement in (i i)
holds because of Proposition 5.22. �

5.3 Pushforward

Given a covering morphism of smooth projective curves f : Y → X we
would like to define a direct image functor f∗ : PVect(Y )→ PVect(X) which
extends the usual functor f∗ : Vect(Y )→ Vect(X).

Given a branch data Q on Y we can find a branch data P on X such that
P ≥ B f and f ∗P ≥ Q. In view of this fact, given a object of PVect(Y )
we may choose a representative with branch data of the form f ∗P such that
P ≥ B f . Let W ∈ PVect(Y, f ∗P) be the chosen representative. Choose
(Z , O) → (X,P), a Galois étale cover with Galois group G. Consider

the normalization of the fibre product Z̃ := Z̃ ×X Y . Then Z̃ → Z is
étale, though not necessarily connected. Moreover (Z̃ , O) → (Y, f ∗P) is
a Galois étale cover of formal orbifolds with Galois group G. So we have a
commutative diagram of orbifolds

(Z̃ , O)

��

f̃ �� (Z , O)

��
(Y, f ∗P)

f �� (X,P)
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Note that the usual direct image functor f̃∗ takes VectG(Z̃) to VectG(Z).
We define f∗W as the equivalence class of S Z

(X,P) ◦ f̃∗ ◦ T Z̃
(Y, f ∗P)(W).

Suppose we choose another representative W1 with branch data f ∗P1 where
P1 ≥ B f . As above we choose a Galois étale cover (Z1, O) → (X,P1)

and construct Z̃1. We have to show that S Z
(X,P) ◦ f̃∗ ◦ T Z̃

(Y, f ∗P)(W) ∼
S Z1
(X,P) ◦ f̃1∗ ◦T Z̃1

(Y, f ∗P1)
(W1).

Now we choose a branch data Q ≥P,P1 such that j∗W ∼= j∗1W1 where

(Y, f ∗Q) j−→ (Y, f ∗P) and (Y, f ∗Q) j1−→ (Y, f ∗P1) are the natural maps.
Now we have the following commutative diagram

(Z̃ ′, O)
f̃ ′ ��

�
�
�

���
�
�

j̃������������
(Z ′, O)

ı̃������������

��

(Z̃ , O)
f̃ ��

��

(Z , O)

��

(Y, f ∗Q) ����� �������

j��� � � � � �
(X,Q)

ı
������������

(Y, f ∗P)
f

�� (X,P)

where Z ′ and Z̃ ′ are chosen in the same way as above with natural maps
f̃ ′, ı, ı̃, j̃ . Then

ı∗ ◦ S Z
(X,P) ◦ f̃∗ ◦T Z̃

(Y, f ∗P)(W) ∼= S Z ′
(X,Q) ◦ ı̃∗ ◦ f̃∗ ◦T Z̃

(Y, f ∗P)(W)

∼= S Z ′
(X,Q) ◦ f̃ ′∗ ◦ j̃∗ ◦T Z̃

(Y, f ∗P)(W) ∼= S Z ′
(X,Q) ◦ f̃ ′∗ ◦T Z̃ ′

(Y, f ∗Q) ◦ j∗(W)

Now we can get a commutative cube as the one above for (X,P1) with the
same choice of Z ′, Z̃ ′ and in the same way deduce that

ı∗1 ◦ S Z1
(X,P) ◦ f̃1∗ ◦T Z̃1

(Y, f ∗P1)
(W1) ∼= S Z ′

(X,Q) ◦ f̃ ′∗ ◦T Z̃ ′
(Y, f ∗Q) ◦ j∗1 (W1)

As j∗W ∼= j∗1 W1, clearly we have the required equivalence. So our definition
makes sense.

Definition 5.26. Let : Y → X be a covering map between smooth projective
curves. Then for any W ∈ PVect(Y ) the direct image bundle f∗(W) is

defined as the equivalence class of S Z
(X,P) ◦ f̃∗ ◦T Z̃

(Y, f ∗P)(W) where P and

f̃ : Z̃ → Z has been chosen as above.
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Proposition 5.27. Let : Y → X be a covering map between smooth
projective curves. We have a functor f∗ : PVect(Y ) → PVect(X). Moreover
given another cover g : Z → Y of curves, we have a natural isomorphism of
functors f∗ ◦ g∗ ∼= ( f ◦ g)∗.

Proof. Functoriality of f∗ is clear from the definition. For showing the
isomorphism of functors we just need to observe that given any object in
PVect(X, Z) we may choose representative with branch data of the form
g∗ f ∗P such that P ≥ B f and f ∗P ≥ Bg. Further we can get a
commutative diagram of formal orbifolds

( ˜̃U, O)
g̃ ��

��

(Ũ, O)
f̃ ��

��

(U, O)

��
(Z , g∗ f ∗P)

g �� (Y, f ∗P)
f �� (X,P)

where the vertical maps are all Galois étale. Then the statement follows from
the definition. �

Proposition 5.28. Let : Y → X be a covering map between smooth
projective curves. Let V ∈ PVect(X) and W ∈ PVect(Y ).

(i) We have a natural isomorphism

HomPVect(Y )( f ∗V,W) ∼= HomPVect(X)(V, f∗W)

(ii) We have a natural isomorphism

f∗( f ∗V ⊗W) ∼= V ⊗ f∗W

Proof. We choose a representative for V with branch data P ≥ B f and a
representative for W with representative f ∗P . Then we fix a commutative
diagram involving (Y, f ∗P) → (X,P) as in the definition of the direct

image functor. Note that f ∗V ∼= S Z̃
(Y, f ∗P) ◦ f̃ ∗ ◦ T Z

(X,P)(V) as parabolic
bundles (by functoriality of pullback and the fact that for Galois étale covers
the pullback functor is same as the functor T ). Now

HomPVect(Y )( f ∗V,W) ∼= HomPVect(Y )(S Z̃
(Y, f ∗P) ◦ f̃ ∗ ◦T Z

(X,P)V,W)

∼= HomVectG (Z̃)
( f̃ ∗ ◦T Z

(X,P)V,T Z̃
(Y, f ∗P)W)

∼= HomVectG (Z)(T
Z
(X,P)V, f̃∗ ◦T Z̃

(Y, f ∗P)W)

∼= HomPVect(X)(V,S Z
(X,P) ◦ f̃∗ ◦T Z̃

(Y, f ∗P)W)

∼= HomPVect(X)(V, f∗W)
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Here we have used that the functors T Z
(X,P) and S Z̃

(Y, f ∗P) are equivalences.
We also used that the adjointness property holds for G-equivariant morphisms
i.e. given a G-equivariant map f̃ : Z̃ → Z , we have a natural isomorphism

HomVectG (Z̃)
( f̃ ∗E,F) ∼= HomVectG(Z)(E, f̃∗F)

Clearly the natural maps E → f̃∗ f̃ ∗E and f̃ ∗ f̃∗F → F are G-equivariant.
Hence the same way as in the classical case we have the required isomorphism.

By definition we have

f∗( f ∗V ⊗W) = S Z
(X,P) ◦ f̃∗ ◦T Z̃

(Y, f ∗P)( f ∗V ⊗W)

∼= S Z
(X,P) ◦ f̃∗( f̃ ∗ ◦T Z

(X,P)V ⊗T Z̃
(Y, f ∗P)W)

∼= S Z
(X,P)(T

Z
(X,P)V ⊗ f̃∗ ◦T Z̃

(Y, f ∗P)W)

∼= V ⊗ S Z
(X,P) ◦ f̃∗ ◦T Z̃

(Y, f ∗P)W ∼= V ⊗ f∗W

Here we have used that the functors T Z̃
(Y, f ∗P) and S Z

(X,P) commute with
tensor product (see Proposition 5.21). Also see Theorem 3.14, [KP]. �

5.4 Dual

We construct the dual of a parabolic bundle using the equivalence obtained
in Theorem 4.12. Given a parabolic bundle on X , we choose a representative
V ∈ PVect(X,P). Fix a Galois étale cover (Y, O) → (X,P). Then
we have the corresponding orbifold bundle T Y

(X,P)(V) on Y . Consider

the dual orbifold bundle T Y
(X,P)(V)∗. We define the equivalence class of

SY
(X,P)(T

Y
(X,P)(V)∗) to be the dual of the given parabolic bundle. As before

one easily checks (using Proposition 5.5) that this definition does not depend
on our choice of the representative or the Galois étale cover.

Definition 5.29. Let V be a parabolic bundle on X. The dual parabolic
bundle of V , denoted by V∗, is defined to be the equivalence class of
SY
(X,P)(T

Y
(X,P)(V)∗) where P, Y has been chosen as above.

Remark 5.30. Note that the underlying vector bundle of V∗ is the dual
of the underlying vector bundle of V and if V has a representative in
PVect(X,P) then there is a natural representative of V∗ in PVect(X,P) as
well.

Now we would like to figure out what the local data for the dual parabolic
bundle looks like in terms of the original one. Let us denote the dual parabolic
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bundle by (V∗, �∗, μ∗). Choose y ∈ Y, f (y) = x such that x ∈ Supp(P).
We have canonical isomorphisms

(Ê∗)y
∼= (Êy)

∗ ∼= HomRy (Vx ⊗OX,x Ry, Ry) ∼= V∗x ⊗OX,x Ry

where V∗x is the dual of Vx as OX,x -module. Fix a basis {vi}ni=1 of Vx

as an OX,x -module. We also fix the corresponding dual basis {v∗i }ni=1

of V∗x . Note that {vi ⊗ 1}ni=1 and {v∗i ⊗ 1}ni=1 gives Ry bases for Êy =
Vx ⊗OX,x Ry and (Ê∗)y = V∗x ⊗OX,x Ry respectively. Let v = ∑n

i=1
ai (vi ⊗ 1) be an arbitrary element of Vx ⊗OX,x Ry , where ai ∈ Ry∀i ,
which can be thought of as the column vector (a1, . . . , an)

tr. For any
g ∈ Gal(KY,y/KX,x ), let ((αg

i j )) and ((βg
i j )) be the matrix representatives

of semilinear maps �x (g) and �∗x (g) respectively with respect to these
bases. More precisely �x (g)(v) = ((αg

i j ))(ψx(g)(a1), . . . , ψx (g)(an))
tr and

�∗x (g)( f ) = ((βg
i j ))(ψx(g)(b1), . . . , ψx (g)(bn))

tr where f =∑
bi (v

∗
i ⊗ 1).

We know that action of the inertia groups on the stalks Êy and (Ê∗)y of
the G-bundles E and its dual E∗ on Y satisfy the relation �∗x (g)( f )(v) =
f (�x (g−1)(v)) where f ∈ (Ê∗)y, v ∈ Êy . Even for the semilinear maps,

like the linear case, it follows that ((βg
i j )) =

(
(α

g−1

i j )
)tr. Denoting

(
(α

g−1

i j )
)tr

by �x (g)∗, the above relation can be written as �∗x (g) = �x (g)∗. It is
easy to check that this relation does not depend on the choice of basis. In a
similar fashion we deduce that if ((μi j )) is the matrix corresponding to the
Gx -equivariant isomorphism μx then the matrix corresponding to μ∗x is given
by ((μi j ))

tr. All these can be summarized as

Proposition 5.31. Let V be a parabolic bundle on X. Then the dual
parabolic bundle V∗ is same as the equivalence class of the parabolic bundle
(V∨, �∗, μ∗) where V∨ is the dual vector bundle of V and �∗ and μ∗ are as
defined above.

The usual results for dual vector bundles are also true for dual parabolic
bundles.

Proposition 5.32. Let V be a parabolic bundle on X.

(i) V ⊗ V∗ ∼= O⊕n2

X where n = rank(V).
(ii) (V∗)∗ ∼= V as parabolic bundles.

(iii) For any cover f : Y → X we have f ∗(V∗) ∼= ( f ∗V)∗ as parabolic
bundles.

Proof. All the proofs are just routine checks and follows from the corresponding
results for orbifold bundles. �
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