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BEILINSON-HODGE CYCLES ON SEMIABELIAN VARIETIES

Donu Arapura and Manish Kumar

Given a smooth not necessarily proper complex variety U , Beilinson [B] conjectured
that all Hodge cycles in H∗(U, Q) come from motivic cohomology, or more precisely
that the so called regulator map

reg : CHi(U, j)⊗Q → HomMHS(Q(−i),H2i−j(U, Q))

from Bloch’s higher Chow group [Bl] is surjective. This is a very natural and ap-
pealing statement which includes the usual Hodge conjecture. Unfortunately, it has
turned out that it is not true in this generallity, c.f. [J, 9.11], [KL]. There is presum-
ably a restricted range of (i, j) for which this conjecture is viable. For instance the
line j = 0, which corresponds to the usual Hodge conjecture, should lie in this set.
Work of Asakura and Saito [AS] suggests that the conjecture should also hold when
i = j. Following these authors, we refer to this special case as the Beilinson-Hodge
conjecture.

Our goal here is to prove the Beilinson-Hodge conjecture when U is either a semi-
abelian variety or a product of smooth curves. The method is based on the study of
invariants under the Mumford-Tate group.

1. Reduction lemma

We recall [Bl, L] that given a variety U , Bloch has defined a bigraded abelian group⊕
CHi(U, j). The elements are represented by certain codimension i algebraic cycles

on U × Aj . There are products

CHi(U, j)× CHp(U, q) → CHi+p(U, j + q)

when U is smooth. A cycle Z ⊂ U ×Aj , representing an element of CHi(U, j), has a
fundamental class in

H2i(U × Aj , U × ∂Aj)(i) ∼= H2i−j(U)(i)

where ∂Aj is a union of the hyperplanes corresponding to the faces of Aj when viewed
as an algebraic simplex. This extends to a homomorphism

reg : CHi(U, j) → HomMHS(Z(−i),H2i−j(U, Z))

This description was indicated in [Bl]. Other explicit constructions of this map can
be found in [KLM], and [AS, §1] for the subgroup of decomposable cycles. From these
formulas, it is clear that the map respects products, and the special case

reg : CH1(U, 1) = O(U)∗ → HomMHS(Z(−1),H1(U, Z)) ⊂ H1(U, Z(1))

is just the composition of the inclusion O(U)∗ ⊂ Oan(U)∗ with the connecting map
associated to the exponential sequence.
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It is convenient to define the space of Beilinson-Hodge cycles

BHq(U) = HomMHS(Q(−q),Hq(U, Q))

Then the Beilinson-Hodge conjecture asserts that CHq(U, q) surjects onto BHq(U).
Note that the conjecture is only interesting for open varieties, because it is vacuously
true if the variety is proper, since BH∗ = 0 in this case by [D2]. The first nontrivial
case of the conjecture, when q = 1, turns out to be easy to understand and prove,
even integrally. It is not unreasonable to attribute this to Abel, since it is closely
related to his classical theorem.

Theorem 1.1 (Abel). For any smooth variety U , the map

reg : O(U)∗ → HomMHS(Z(−1),H1(U, Z))

is surjective

Proof. Choose a smooth compactification X such that D = X −U has normal cross-
ings. Let dOan

U denote the image of d : Oan
U → Ωan1

U in the category of sheaves. The
group H1(U, Z(1)) is torsion free by the universal coefficient theorem, so it can be
viewed as a subgroup of H1(U, C). An element in H1(U, Z(1)) is in BH1(U) if and
only if it lies in F 1H1(U) = ker[H1(U, C) → H1(X,OX)]. Chasing the following
commutative diagram, with exact rows,

H0(U,Oan∗
U ) δ //

d log

��

H1(U, Z(1)) //

��

H1(U,Oan
U )

H0(U, dOan
U ) // H1(U, C) // H1(U,Oan

U )

H0(X, Ω1
X(log D)) //

OO

H1(U, C) // H1(X,OX)

OO

shows that the set of these classes coincides with {δ(f) | d log(f) ∈ H0(ΩX(log D))}.
The condition d log(f) ∈ H0(ΩX(log D)) can be seen to force f to have singularities
of finite order along D. Thus

BH1(U) ∩H1(X, Z) = δ(O(U)∗).

�

Lemma 1.1. If the products BH1(U)× . . .×BH1(U) → BHq(U) are surjective for
all q, then the Beilinson-Hodge conjecture holds for U .

Proof. This follows from the following commutative diagram and theorem 1.1

CH1(U, 1)× . . .× CH1(U, 1) //

��

CHq(U, q)

��
BH1(U)× . . .×BH1(U) // BHq(U)

�
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2. Mumford-Tate groups

The category of rational mixed Hodge structures form a neutral Tannakian cate-
gory over Q [DMOS, chap II]. Let 〈H〉 denote the Tannakian category generated by
a mixed Hodge structure H. This is the full subcategory consisting of all subquo-
tients of tensor powers Tm,nH = H⊗m ⊗ (H∗)⊗n. This construction extends to any
set of Hodge structures. The Mumford-Tate group MT (H) is the group of tensor
automorphisms of the forgetful functor from 〈H〉 to Q-vector spaces. By Tannaka
duality 〈H〉 is equivalent to the category of representations of this group. When H is
a pure Hodge structure, MT (H) can be defined in a more elementary fashion as the
smallest Q-algebraic group whose real points contains the image of the torus defining
the Hodge structure. We define two auxillary groups. The extended Mumford-Tate
group EMT (H) is MT (〈H, Q(1)〉), and it surjects onto MT (H). (Some authors con-
sider EMT (H) to be the Mumford-Tate group). The special Mumford-Tate group
SMT (H) = ker[EMT (H) → Gm] with respect to the map that is induced by the
inclusion 〈Q(1)〉 ⊂ 〈H, Q(1)〉.

Theorem 2.1.
(1) If Q(1) (respectively Q(m) with m 6= 0) lies in 〈H〉, then MT (H) is isomor-

phic (respectively isogenous) to EMT (H). Otherwise EMT (H) ∼= MT (H)×
Gm.

(2) MT (H) ⊂ GL(H) is the largest subgroup leaving every rational element of
type (0, 0) in Tm,nH invariant for all m,n. SMT (H) leaves rational elements
of type (q, q) in Tm,nH invariant for all m,n, q.

(3) If H is pure and polarizable, then MT (H) is connected and reductive.
(4) Let Hsplit =

⊕
k GrW

k H, then MT (H) is a semidirect product of MT (Hsplit)
with a unipotent group.

Proof. For the first statement, see [Mi, pp 466-467]. The next two properties are
standard and proved in [DMOS, chap I], although [An, §2] would be a more concise
reference. The last part is essentially given in [An]. We indicate the proof for com-
pleteness. Let P be the group linear automorphisms of H preserving the flag W•.
The unipotent radical UP ⊂ P is the subgroup which acts trivially on GrW

k . We have
inclusion of tensor categories

ι : 〈Hsplit〉 → 〈H〉

with a right inverse H ′ 7→ (H ′)split. Therefore we get a split surjection of Tannaka
duals ι∗ : MT (H) → MT (Hsplit). The kernel ι∗ lies in UP , and is therefore unipotent.

�

Corollary 2.2. MT (Hsplit) is the quotient of MT (H) by its unipotent radical.

Let us turn to the case where U is either a semiabelian variety or a smooth curve.
Set MT (U) = MT (H1(U)) = EMT (H1(U)), where the last equality follows from
the theorem. Also let SMT (U) = SMT (H1(U)).

Let H = H1(U) and let W = W1H = H1(X). Choose a complementary subspace
V to W in H. We also know that MT (U) preserves the weight filtration on H1(U)
([An, Lemma 2c]). Hence Φ the kernel of MT (H) → MT (Hsplit) and the unipotent
radical of MT (U) is a subspace of HomQ(V,W ).
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Corollary 2.3. As a subgroup of GL(H) = GL(V ⊕W )

SMT (U) = {
(

I 0
f S

)
| S ∈ SMT (W ) and f ∈ Φ}.

3. Main theorem

Let H be the first cohomology of a semiabelian variety or a smooth affine curve.
We want to refine the description of SMT (H) given by corollary 2.3. We define three
subspaces Vi ⊂ H. Let V3 = W1H, let V1 ⊆ HSMT (H) be a complement to V3 in
W1H + HSMT (H), and finally choose V2 to be a complement to V1 + V3 in H. Thus
we have a decomposition

(1) H = V1 ⊕ V2 ⊕ V3

with respect to which SMT (H) becomes a subgroup of the following matrix group:

{

I 0 0
0 I 0
0 f S

 | S ∈ SMT (V3) and f ∈ Hom(V2, V3)}.

The unipotent radical U(SMT (H)) lies in the subgroup

(2) {

I 0 0
0 I 0
0 f I

 | S ∈ SMT (V3) and f ∈ Hom(V2, V3)}.

Lemma 3.1. For any nonzero u ∈ V2, we can find a g ∈ U(SMT (H)) such that
gu 6= u, or equivalently such that f(u) 6= 0 with respect to the matrix (2).

Proof. Given a nonzero u ∈ V2, we have g1u 6= u for some g1 ∈ SMT (H). Writing

g1 =

I 0 0
0 I 0
0 f S


we see that f(u) 6= 0. Set

g2 =

I 0 0
0 I 0
0 0 S−1


This lies in SMT (H), since the map SMT (H) → SMT (H)/U(SMT (H)) splits.
Then g = g1g2 has the desired property. �

Let

BHq(H) = Hom(Q(−q),H⊗q)

for H as above.

Theorem 3.1. The product maps BH1(H)×. . .×BH1(H) → BHq(H) are surjective
for all q
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Proof. To simplify book keeping, we will usually write tuples (j1, . . . jn) as strings
j1 . . . jn. Juxtaposition is used to denote concatenation of strings, with exponents
used for repetition. For example, 12 2 30 = 11 2.

(1) leads to a decomposition

(3) H⊗n =
⊕

j1,...,jn

V (j1 . . . jn),

where
V (j1 . . . jn) = Vj1 ⊗ . . .⊗ Vjn

Let τ ∈ BHn(H) i.e. suppose that it is a Beilinson-Hodge cycle. Our goal is to
show that τ ∈ BH1(H)⊗n. Let us decompose

τ =
∑

τj1...jn

with respect to (3). It suffices to show that τ ∈ V ⊗n
1 , since V1 ⊆ BH1(H). After

replacing τ by τ − τ1n , we will show τ equals 0.
We next argue that any component τ ′ = τj1j2...jn with all of the ji ∈ {1, 2} must

be zero. Assume that τ ′ 6= 0, then we will derive a contradiction. Let

τj1j2...jn
= x1 ⊗ x2 ⊗ . . .⊗ xn

with xi ∈ Vji
. From the previous paragraph, j1 . . . jn = 1n12n2 1n3 . . . must have

at least one 2. Since u = xn1+1 ∈ V2 − {0}, we can choose a g ∈ U(SMT (H))
so that f(u) 6= 0, with f as in (2). Then gτ ′ − τ ′ will have a nonzero component in
V (1n1 3 2n2−11n3 . . .). We must have gτ−τ = 0, since τ is invariant under SMT (H) by
theorem 2.1. Thus τ must have another term τ ′′ whose image under g−I has a nonzero
component of type 1n1 3 2n2−1 . . .. The only possible candidate is τ ′′ = τ1n132n2−1....
However, after expanding this as a product of xi’s as above, we can see that (g− I)τ ′′

has no nonzero components of the required type. For example, (g − I)τ ′′ = 0 if the
second 2 is absent from j1j2 . . . jn, (g − I)τ ′′ is sum of types 1n1321n3 , 1n1321n3 and
1n1231n3 if j1j2 . . . jn = 1n1221n3 and so on. Therefore τ ′ = 0 as claimed.

To conclude, we note that the projection of a nonzero Beilinson-Hodge cycle to
(GrW

2 H)⊗n must be nonzero. We deduce from the previous paragraph that for every
component of τ , must have at least one ji = 3. This implies that τ projects to zero
in (GrW

2 H)⊗n. Therefore it must already be zero. �

Corollary 3.2. The Beilinson-Hodge conjecture holds for a product of smooth curves.

Proof. Let U =
∏

Ui, where Ui are smooth curves. Let H = H1(U). Then by
Künneth’s formula and the theorem, the conditions of lemma 1.1 hold. �

Corollary 3.3. The Beilinson-Hodge conjecture holds for a semiabelian variety.

Proof. Let U be a semiabelian variety. Let H = H1(U). By the theorem, we have
that BHn(H) = BH1(H)⊗n. Now observe that H∗(U) = ∧∗H which is a direct
summand of the tensor algebra. So the BH cycles on Hn(U) are given by products
of BH-cycles on H. �

The referee pointed out the following interesting corollary which can be proved
along the same lines as the first corollary.
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Corollary 3.4. Let U =
∏

Ui be a product of n smooth curves with smooth projective
completions Xi. Then BHn(U) 6= 0 if and only if there exists torsion cycles in J(Xi)
with nonempty support on Xi − Ui for each i.

Proof. Using the theorem, this can be reduced to the case of n = 1. By theorem 1.1,
a nonzero element of BH1(U1) lifts to an element f ∈ O(U1)∗ ⊗ Q, which in turn
defines a divisor (f) ∈ Div(U1)⊗Q with nonempty support in X1 − U1. Conversely,
any such Q-divisor determines a nonzero element of BH1(U1) �
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