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Fuzzy Differential Inclusions in Atmospheric
and Medical Cybernetics

Kausik Kumar Majumdar and Dwijesh Dutta Majumder

Abstract—Uncertainty management in dynamical systems is re-
ceiving attention in artificial intelligence, particularly in the fields
of qualitative and model based reasoning. Fuzzy dynamical sys-
tems occupy a very important position in the class of uncertain
systems. It is well established that the fuzzy dynamical systems
represented by a set of fuzzy differential inclusions (FDI) are very
convenient tools for modeling and simulation of various uncertain
systems. In this paper, we discuss about the mathematical mod-
eling of two very complex natural phenomena by means of FDIs.
One of them belongs to the atmospheric cybernetics (the term has
been used in a broad sense) of the genesis of a cyclonic storm (cy-
clogenesis), and the other belongs to the bio-medical cybernetics
of the evolution of tumor in a human body. Since a discussion of
the former already appears in a previous paper by the first author,
here, we present very briefly a theoretical formalism of cyclone for-
mation. On the other hand, we treat the latter system more elabo-
rately. We solve the FDIs with the help of an algorithm developed in
this paper to numerically simulate the mathematical models. From
the simulation results thus obtained, we have drawn a number of
interesting conclusions, which have been verified, and this vindi-
cates the validity of our models.

Index Terms—Carcinogenesis, cybernetics, cyclogenesis, fuzzy
differential inclusions, fuzzy dynamical systems.

I. INTRODUCTION

CYBERNETICS means the control and communication in
a real machine—electronic, mechanical, neural, or eco-

nomic [1]. In this paper, we add two more to this list, namely, an
atmospheric machine (the genesis of an intense tropical storm
over the sea) and the physiological machine (the evolution of a
tumor in a human body). Classically, cybernetics was concerned
only about determinate machines [1], [3]. That is the machine
whose state at any time can be uniquely predicted if the initial
state is known. During the 1960s, Bertalanffy developed gen-
eral systems theory (GST) that included biological systems in
general [38]. Majumder, in the late 1970s, developed a mathe-
matical formalism of cybernetics and GST as a unitary science
[24], but following the footsteps of the quantum mechanics, the
ubiquity of uncertainty in the real world is very well accepted
these days. With this came the notion of uncertain dynamical
systems, where neither the initial states nor the equations repre-
senting the system can be precisely known. Moreover, the nature
of uncertainty involved may not always be statistical. Chang and
Zadeh introduced the notion of fuzzy dynamical systems (FDSs)
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[4], whose most prominent subclass is the class of fuzzy con-
trollers [58], [59]. In an atmospheric dynamical system or in a
physiological dynamical system, which is the theoretical model
of an atmospheric or physiological dynamic machine, the role
of uncertainty is much greater compared to classical physics,
mechanics, or engineering. Right here, the unitary formalism
of cybernetics and GST play the role of a great integrator of
ideas emerging from diverse fields of physics, biology, and en-
gineering. This enables the scientists to understand multidisci-
plinary complex problems. In this paper, our aim is to discuss
the methodologies to model a phenomenon from atmospheric
physics and another from human biology.

Historically, the mathematical theory of FDS was almost si-
multaneously but independently introduced by Kloeden [5] and
de Glas [6]. The fuzzy differentiable dynamical system (FDDS)
was invented by Kaleva [7] and Seikkala [8] in the form of time
dependent fuzzy differential equations (FDEs). The addition of
two fuzzy numbers produces another fuzzy number whose di-
ameter (as the diameter of a fuzzy set) is in general greater than
the diameter of each of the constituent fuzzy numbers. This im-
plies that the diameter of the fuzzy point obtained as the solu-
tion of a classical FDE at a particular time is in general an in-
creasing function in , with the property that as tends to infinity,
the diameter of the corresponding fuzzy point also generally be-
comes infinite. This renders the FDEs unsuitable for modeling
and simulation. To overcome this difficulty, first, Aubin [36] and
then Hullermeier [2] introduced the notion of the FDI relation.
In [12], Hullermeier has devised an algorithm to numerically
solve general FDIs. Diamond has extended some of the classical
dynamical system theoretic notions to the fuzzy dynamical sys-
tems in general and to the systems represented by FDIs in par-
ticular [39], [40]. FDIs have turned out to be great tools to tackle
complexity due to uncertainty in an FDS [9], [10]. Differential
inclusions and fuzzy differential inclusions have already been
applied in population dynamics [35], [41]. In this paper, we dis-
cuss the role of FDIs in modeling and simulation of highly un-
certain (and, therefore, very complex) dynamics of atmospheric
and biological cybernetics.

In Section II, we will present a brief introduction to FDIs and
present an algorithm (christened as the Crystalline Algorithm)
for the numerical simulation of a system represented by a set of
one-dimensional (1-D) FDIs. In this section, as an example, we
have described a system represented by a set of 1-D FDIs and
given the numerical simulation of the system according to the
Crystalline Algorithm. In Section III, we have discussed the first
ever application of FDIs in atmospheric science [9], [37]. Here,
we have briefly reviewed the work presented in [9] and [37]. In
Section IV, we have viewed the evolution of tumor in a human
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body from a general system theoretic point of view, as done in
[24], [25], [29], and [31]. We have presented an FDI model of
the phenomenon and have suggested a therapeutic remedy of
malignancy along with its major limitations based on this model.
Section V contains the summary and conclusion of this paper.

II. FUZZY DIFFERENTIAL INCLUSION

An FDI relation, as introduced in [2] and [36], is written as

(2.1)

is a fuzzy valued continuous function defined on ,
which is the collection of all normal, upper semi-continuous,
convex, compact supported fuzzy subsets of [2], [7], [8],
[39], and [40]. is a variable crisp trajectory (a continuous
curve starting at one point and ending up at another) varying
over an entire fuzzy set of crisp trajectories. is the fuzzy set
to which all possible initial values of belong. .
The fuzzy set of crisp trajectories is the fuzzy solution of (2.1).

is the ordinary crisp derivative of with respect to
(time).

To understand the FDI relation (2.1), let us first consider the
ordinary crisp differential equation

(2.2)

Here, everything is very specific and absolutely without any
chance of uncertainty in determining the values of the variables,
constants, and the form of the equation(s), but in reality, it may
so happen (and it does indeed happen in many cases) that we
may not be able to determine the value of and the values of
parameters of very precisely. Each measurement may
involve some fluctuation due to uncertainty. The more you want
to be accurate in your measurements, the more complex your
job will be. So to keep the complexity within some manageable
limit, we actually allow some uncertainty to remain for ever with
our measurement [11]. In the process, becomes a fuzzy set
of possible values of , and becomes a fuzzy set of
crisp functions. Any specific form in the fuzzy set of crisp func-
tions and any specific value of in may satisfy
(2.2) up to a certain possibility measure or membership value.
So we allow and in (2.2) to become fuzzy sets, and
consequently, the equal signs in (2.2) become meaningless. All
“ ” are replaced by “ ” (inclusion), and (2.2) takes the form
of (2.1). Moreover, we may exercise the freedom of restricting
our choice to certain -level subsets of the fuzzy sets in order to
ignore solutions that represent the system behavior (modeled by
(2.1)) with a degree of possibility less than , where .
Obviously, the best system behavior is represented by the solu-
tions of (2.1) for .

A. Algorithm

Numerical simulation of FDIs has been discussed in detail in
[2] and [12]. In [12], an algorithm to numerically solve general
FDIs has been described. In this paper, we have found an easier
algorithm to solve 1-D FDIs, which cannot be extended to the
multidimensional cases. In 1-D cases, our algorithm is easier to

implement and less computation intensive compared to that in
[12].

Crystalline Algorithm [Solution of FDIs]:

1) Fix .
2) Calculate by Zadeh’s extension principle

[13] or otherwise as the case may be (the -level set
is an -tuple of -cuts of fuzzy numbers for

some ).
3) Solve (directly or numerically) the ordinary crisp DE

only for the boundary
values of the -level set of step 2.

4) The region of enclosed by the graphs of the solutions
obtained in step 3, possibly along with the coordinate
axes, is the -level set of the solution of the FDI (2.1)
for the fixed of step 1.

B. Example

Find the solution representing the best possible behavior of
the system given by

(2.3)

(2.4)

(2.5)

(2.6)

where . K is a trapezoidal fuzzy number
. is a triangular fuzzy number

. L is a triangular fuzzy number . M is a tri-
angular fuzzy number . We
also show the simulated solution (state) space of the system.

1) Solution: Notice that we are to determine the solution
representing the best system behavior only. In that case, .
So . is a crisp variable, but can
take any crisp value from a fuzzy number. This contributes to the
“fuzziness” of (there may as well be other factors to con-
tribute in this direction), that is, becomes a crisp member
of a fuzzy set of crisp functions. So in search of a seed solution,
it suffices to take

(2.7)

where , and x is an ordinary crisp variable. We shall
proceed by solving (2.7) just like an ordinary crisp differential
equation. Multiplying both sides of (2.7) by and then in-
tegrating, we get

(2.8)

where C is an integration constant. From (2.5), we get that
for , which means for
. Since L and M, are triangular fuzzy numbers

of and , respectively, we have
for . Hence, from (2.8), we get , or

(2.9)

Solving (2.9), we get

(2.10)
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where D is an integration constant, and we are considering the
positive square root of k only. From (2.6), we get ,
but we are interested only in or . So

(2.11)

where . Equation (2.11) is the seed solution of (2.3)–
(2.6) for any . To determine the fuzzy flow corre-
sponding to the best possible behavior of the system represented
by (2.3)–(2.6) in the phase space, we shall have to determine the
boundary of the lighter fuzzy flow in . The boundary is repre-
sented by the graphs of and .

The general situation when has been indicated by the
entire fuzzy flow colored by darker fuzzy flow in Fig. 1.

III. FDI MODELING OF CYCLOGENESIS: A BRIEF SURVEY

With earthquakes and volcanic eruptions, tropical cyclones
(known as hurricanes in the United States) rank among the
most catastrophic natural disasters on earth. Because of their
devastating power, the study of cyclones has always held much
scientific interest. Decades of intensive and extensive study
has resulted in some understanding of the physics behind such
storms. A standard way of research is making mathematical
models of the storm and then trying to make the models more
and more realistic in order to study and predict various aspects
of storms as accurately as possible. A remarkable success in
this direction was achieved by Ooyama in 1969 [17]. Numerous
models of cyclones have been proposed, and every now and
then, a new mathematical model of a tropical storm appears in
the atmospheric science journals. Different models focus on dif-
ferent aspects of the storms. Each model is represented by a set
of equations, some of which are partial differential equations.
Some of these equations are time dependent. The equations
typically govern the fluid dynamic and thermodynamic aspects
of a storm. A storm is modeled as a cylindrical vortex of 20
to 200 km in diameter spanning from the sea surface to up to
15 km above like a big trough. In a mature intense storm, this
vortex may revolve around its axis at an angular speed of about
10 revolutions/hr. The energy of this huge vortex is supplied by
the enormous heat reserve of ocean water at the tropical region
(where sun rays fall more or less normally). This heat induces
a convective current into the surrounding atmosphere, which
in turn keeps the cyclonic vortex rotating by supplying the
required angular momentum. The detail of these mechanisms
may be seen in [15], [17], [18], and [20]. Due to variation in air
pressure this huge cyclonic vortex, which most often forms on
the seas in the tropics, always has a propensity to drag toward
the land. As long as it remains on the sea (usually for five to
six days), it intensifies by consuming heat energy from the
warm tropical sea water. The more it intensifies, the greater
the rotational speed of the vortex. Its real devastation begins
on reaching the coast. If at the time of hitting the coast the
vortex is revolving around its axis at a rate of 8 revolutions/hr
and the radius is 20 km, then the maximum wind speed of the
cyclone will be km/h. An early forecast of such
devastation is of utmost importance and, hence, the need for
reliable models.

Fig. 1. Fuzzy state space of the system represented by (2.3)–(2.6). The lighter
flow is representing the best system behavior has been considered. The darker
flow represents the system behavior for � < 1 (assuming � ! 0 and �! 0).

In a mathematical model represented by a set of equations, the
variables and parameters are all measurable quantities. Unfor-
tunately, the precise measurement of the atmospheric quantities
is very difficult. Almost always, a lot of uncertainties remain
involved in any such measurement. Therefore, a precise mathe-
matical formulation of a system like a cyclone may be theoret-
ically beautiful, but practically, it is unrealistic. Here, we have
the fuzzy dynamical system. In [9], one of the present authors
has demonstrated the power of FDIs in modeling an atmospheric
system like the generation of cyclones. To the best of our knowl-
edge, this is the first ever attempt to apply fuzzy set theory-based
techniques to atmospheric science. Here, we present a brief re-
view of that model.

It is well known that favorable climatic and geographical con-
ditions for the formation of a tropical storm of sufficient inten-
sity prevail over large part of the globe during the storm seasons,
yet the actual occurrence of a strong tropical storm of hurricane
strength (wind speed 90 km/h or more) is a relatively rare phe-
nomenon [15], [16]. It is believed that along with other favor-
able conditions, a sufficiently strong initial disturbance is abso-
lutely necessary to generate a storm of hurricane strength. This
has also been supported by extensive numerical modeling and
simulation [15], but the nature of this initial disturbance is not
yet clear to the scientists [15], [18]. One of the present authors
has tried to shed some light on this aspect by proposing a math-
ematical model of this strong initial climatic disturbance, as a
precursor for a cyclone, by means of fuzzy differential inclusion
relations in [9] and [37], where it has been clearly demonstrated
how a logspiral-shaped (the shape of a cyclonic vortex as seen
from the satellite and RADAR images [14], [19]) vortex can be
created from the collision of two linear wind jets propagating
parallel to the ground. One of them is of high intensity (speed
40 km/h or more), and the other is very weak (speed about 5
km/h). The first one is much more significant, because it is rare.
The second one almost always remains present. Under favor-
able conditions [9], the created vortex may mature into a severe
cyclone.
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In this model, all the uncertain quantities are fuzzy numbers.
We have solved the FDI by Crystalline Algorithm, and the sim-
ulation gives us the initial spiral shaped cyclonic vortex. Once
the initial vortex is created, its transformation into a steady-state
cyclone may be modeled in the usual way.

This model has a number of advantages, as for example, it
can give a satisfactory explanation of the phenomena where
the most intense cyclonic storms occur either during April
and May (just before the onset of the monsoon in the Indian
sub-continent) or during October and November (just after
the withdrawal of the monsoon from the Indian subcontinent).
During these times of the year, major changes take place in
the wind pattern over the seas surrounding the Indian coasts
(Indian Ocean, Bay of Bengal, and Arabian Sea). The wind
changes course from land-to-sea to sea-to-land (April–May)
and from sea-to-land to land-to-sea (October-November).
Naturally, during these periods, the possibility of simultaneous
occurrence of one major and one minor disturbances as de-
scribed above is very high, and hence, there will be the relative
high frequency of intense cyclones.

According to this model, the knowledge of the speed of wind,
above certain threshold levels and coming from different direc-
tions over a region, can be utilized to detect the formation of a
cyclone at a very early stage, even earlier than what we usually
get today.

IV. EVOLUTION OF TUMOR

The evolution of a tumor turning malignant (carcinogenesis)
is a very complex physiological process that scientists have yet
to understand fully. Several attempts are being made to better
understand the process from various points of view. Here, we
propose to view the entire physiological process from a cyber-
netic and GST outlook, as suggested in [24], [25], [29], and [31].
In physics, there are a few wonder equations like Schrodinger’s
equation, Dirac’s equation, Yang–Mill’s equation, etc., that may
not explain everything in their envisaged areas of application.
Yet they can explain many things and play a very important role
in the understanding of some of the most complicated behav-
iors of nature. There is an attempt in biology and physiology to
develop mathematical tools using cybernetics and general dy-
namical system theoretic outlook that is similar to the spirit of
physics [25], [29], [31], [35], [43]. Systems theoretic pioneer
Bertalanffy initiated this approach as a mathematical biologist
in 1968 [38]. His equation is used for study of growth in an-
imals and tumors. Tsetlin had also taken a similar approach
in modeling some properties of a muscle and a ganglion [43].
Uncertainties inherent in medical diagnostic systems have long
been recognized. Adlassnig attempted to tackle this uncertainty
by developing a fuzzy logic-based medical diagnostic expert
system [42]. Many more attempts have been made to apply
fuzzy set theory based techniques in medical science, but intro-
duction of FDI in modeling a biological system is only a recent
trend [41].

Another recent trend in the contemporary dynamical system
theoretic studies is the emphasis on fractal sets. The definition
of a fractal set as given by Mandelbrot is a complicated one [45].

To us, the most important fact is that, many important dynam-
ical systems have fractal attractors. Usually, a dynamical system
which has a fractal attractor often (but not always [33]) turns out
to be a chaotic dynamical system (for simplicity, let us assume
in this paper that a chaotic dynamical system is one which has
at least one positive Liapunov exponent or in other words it has
sensitive dependence on initial condition, which means that the
system states change exponentially fast, and therefore, it is un-
predictable). Studying the fractal attractors is a very standard
way to understand such systems [46], [47]. In the last 20 years,
this notion has found wide spread application in physical, bio-
logical, and social systems. Some works have also been done on
fuzzy chaos [48]–[51]. So far, however, they have not found any
significant application though an attempt has been made in [51].
Only recently Devaney’s comprehensive definition of a (crisp)
chaotic dynamical system [52] has been extended to the fuzzy
dynamical systems [10], [55]. Fuzzy fractal is an even less ex-
plored area. Fuzzy fractals come naturally as attractors of the
iterated fuzzy sets systems (IFZS) [60] exactly the same way as
the crisp fractals are generated as attractors of contractive iter-
ated function systems [53]. In [54] Cabrelli et al., have treated
any gray level image as a fuzzy subset of the euclidean plane.
A normalized gray level pixel intensity value at each pixel is
taken as the fuzzy membership value of that pixel or point. In
[53], IFZSs have been used to generate gray level images. The
method used here is a bit complicated. Majumdar has recently
introduced some simplifications in this method and proposed a
broad based definition for fuzzy fractals, such that, crisp fractals
become special cases of fuzzy fractals [55], [60]. Fuzzy chaos
and fuzzy fractals have not yet been related as in case of crisp
dynamical systems. This is not possible in case of fuzzy differ-
ential equation based dynamical systems (due to the same rea-
sons as described in the last paragraph of Subsection C of Sec-
tion IV). However, FDI relations hold a great promise in this di-
rection. Although we have not used the notions of fuzzy fractals
and fuzzy chaos in our modeling of atmospheric and bio-med-
ical cybernetics, fuzzy fractals and fuzzy chaos hold the promise
to find useful applications in FDI modeling of complex natural
phenomena. A typical outline of exploration for the future re-
searchers should be as follows. Choose a natural phenomenon.
Make a model of it in terms of a set of FDI(s). Solve the system
of FDI’s. Let the solution (phase) space X be bounded. Then, as
time the fuzzy trajectory converges to a subset A of X. A
is called the attractor of the underlying dynamical system. Ob-
viously, A is a fuzzy subset of X (fuzzy attractor). In addition,
if A is also a fractal subset of X, we shall call A a fuzzy fractal
[55], [60]. If the dynamical system during evolving on A sat-
isfies the conditions to be a fuzzy chaotic dynamical system as
laid down in [10] and [55], then it is a fuzzy chaotic dynamical
system with a fuzzy fractal attractor. Many important natural
systems will turn out to be of this type. Many important proper-
ties of such systems will be found by analyzing the fuzzy fractal
attractor.

A. Model

We present a kinetic model of the onset of tumor that involves
the coupling of three principal phenomena [29]:
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1) the transformation of normal into neoplastic cells (tumor
cells);

2) the replication of transformed cells;
3) the immunological interaction of the host organizm with

transformed cells, i.e., the immunological propensity of
the T-lymphocyte (a kind of white blood corpuscle) and
some other cells to fight and destroy the unwanted growth
of cells in a tumor.

The schematic presentation of 1)–3) are given in (1a), (1b), and
(1c), respectively. The left side of the arrow of (1a) is deliber-
ately kept empty. This empty place represents normal cells.

(1a)

(1b)

(1c)

X denotes the population of the tumor cells. The rate of transfor-
mation from normal to neoplastic cells is proportional to a con-
stant A. is the population of effector cells (T-lymphocytes,
macrophages, natural killer cells etc. [29]) having recognized
and bound a target cell (tumor cell). is the population of the
free effector cells, i.e., those T-lymphocytes, macrophages, nat-
ural killer cells etc., which have not yet identified and attacked
a target cell. is a replication rate constant. are rate con-
stants. The first two steps represent phenomenologically two
ways in which the X population can grow: either by transfor-
mation of the normal cells into the neoplastic ones [step (1a)] or
by cellular replication [step (1b)]. In step (1c), free effector
cells bind (recognize and attack) X target cells depending upon
the rate constant to produce number of bound effector
cells. From number of bound effector cells depending on an-
other rate constant we ultimately get the number , where
P is the number of tumor cells destroyed in the operation, which
will not replicate any more. We assume that is
constant. Within this framework the dynamics of the growth in
time of the target population X is given by [29], [31]

(4.1)

where N is the maximum number of target cells which can be
packed in a given volume element. Let us notice that (4.1) does
not refer to the total population of these cells in the entire tumor.
The problem of main interest in this model is the local transi-
tion mechanism (involving the local interactions of target and
effector cells) between tissual states of different nature and not
the process of growth of the tumor as a whole. Thus, the factor

expresses simply the existence of an upper limit N for
X in the volume element under consideration. For the sake of
convenient dynamical system theoretic analysis (4.1) can be re-
formulated in the following simple form:

(4.2)

where
, and . u remains fixed

and its value is taken as 0.1.

Fig. 2. Plot of dm=dt (y-axis) against m (x-axis) with critical r and v, i.e.,
r = 6:4 and v = 2:7.

Fig. 3. Plot of dm=dt (y-axis) against m (x-axis) for r = 5 (above) and r = 7
(below). Note that for r = 5 dm=dt 6= 0 when m 2 [0; 6]. But for r =
7 dm=dt becomes 0 once for m 2 [0; 6].

B. Dynamical System Theoretic Analysis

A critical point (that is where vanishes) of (4.2) is
given by , and

. Putting and (obtained by putting
in the expressions of v and r respectively) at (4.2),

we have the following graph of , which shows the
remarkable feature of a cusp catastrophe with an unstable saddle
critical point at . For becomes negative,
that is, the density of the malignant cells decreases with time.

In (4.2), r is the most important quantity from clinical and
therapeutic point of view. In fact a therapy of malignancy has
been suggested in [25] by an induced statistical fluctuation on r
beyond certain threshold limit. Comparing Fig. 2 with Fig. 3, it
becomes evident that 6.4 is a threshold value for r (for ).
If r is much smaller than 6.4, the value of will not become
negative for (the admissible range of m [25]) , and
therefore m, which is proportional to the malignant cell density,
will not start to decrease. So to become successful any therapy
must strive to fluctuate the value of r beyond 6.4. Only then
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will become negative and m will start decreasing, pro-
vided of course u remains 0.1. This way the increased fluctua-
tion of r can destabilize a tumor according to the Glansdorff–Pri-
gogine theorem [28], which has been therapeutically utilized in
[25].

Assuming that at (when (4.2) models the
growth of tumor cells then at , we take , but latter
when from a therapeutic point of view the same equation will be
used to model the diminishing of m due to the therapy we shall
take high positive value at ) (4.2) has solutions of
the form

(4.3)

where are the roots of
, and

Each of , and is a function of u, v, and r. To know the
exact form of these functions any book of theory of equations,
like [32], may be consulted.

For and , a bifurcation occurs in the phase space
of (4.2). The values of m lies on two different branches, one
corresponds to low values of neoplastic cell population (micro-
cancer focus) and the other branch corresponds to higher values
of the same (macro-cancer focus). In [25] and [29] studies have
been made about how to shift the focus from macro-cancer to
micro-cancer through externally induced statistical fluctuations
on r and . Based on this, multi-pronged therapies of tumor have
been reported in [25].

A remarkable feature of (4.3) is that for or t

becomes minus infinite. This means that either all of and
are negative (so that m can never take these values) or one

is negative and the rest are complex (again so that m can never
take these values). In the latter case, since the imaginary parts
of the two complex roots have opposite signs a Hopf bifurcation
[33] occurs in the phase space of (4.2). Notice that Hopf bifurca-
tion is a multidimensional phenomenon [33] and can occur only
if we allow m to be complex (complex plane is topologically
equivalent to ). Though, for our practical purpose, we never
allow m to be complex (to be more precise values of m lies in [0,
6] [25]) but for the dynamical system theoretic analysis, it is illu-
minating to allow m to take all possible values (for non-negative
\it t only). In (4.3) for any nonnegative t m has three values. For
those values of u, v, and r for which m has one real and two com-
plex values the Hopf bifurcation occurs. This means that when
the discriminant [32] of

(which is a function in r and v, assuming that u is fixed)

changes sign from negative to positive a Hopf bifurcation oc-
curs. This Hopf bifurcation is responsible for the change in
stability of focus from macro-cancer to micro-cancer (or vice
versa) in the dynamical system represented by (4.2).

C. Use of FDI

Equation (4.2) has been treated as a stochastic differential
equation (SDE) of Ito or Stratonovich type in [25] and [29] and
effects of various fluctuations on it have been studied. Fluctua-
tions or, in other words, stochasticity is not intrinsic to this type
of fundamental equations. Rather stochasticity arises because
we do not follow up all microscopic events but rather try to de-
scribe the system macroscopically. The microscopic events are
taken care of by statistical approaches. In that way fluctuations
mirror a lack of knowledge. This lack of knowledge is intro-
duced, so to speak, at our will in order not to be overloaded
with unessential details [34]. Various SDEs are used to model
nonlinear stochastic processes [34]. Method to solve an SDE
may not always be unique. Depending upon the situation one
method is preferred over the others. In the SDE model of [25]
and [29] the fluctuation has been introduced as white noise, but
white noise is a purely mathematical construct, which though a
reasonable model of the noise encountered in physics may not
be a suitable description of perturbations in biological systems
[35], [41].

Reformulation of stochastic differential equations by FDIs
has two advantages [41]:

1) The corresponding FDI is well defined and has a solution.
2) Using FDIs allows us to define “likelihood” and thus de-

velop a nonstochastic analog of systems with uncertain
dynamics.

The concept of FDIs generalizes the notions of differential in-
clusion [41].

On the other hand, from a therapeutic point of view, the in-
duced fluctuations are not objective but subjective in nature,
because these are administered by human experts according to
their skill. This administration is bound to differ from one ex-
pert to another or even for a particular expert at different times.
So the fluctuation should not be statistical in nature. Instead the
fluctuation or the lack of knowledge involved here is fuzzy in
nature. Attempts for nonstochastic modeling of uncertainty in
a biological system have been made in [35], [41], where a dif-
ferential inclusion modeling of population dynamics has been
proposed. We have already indicated the need to introduce FDI
in place of SDE as the fuzzy set theory has a very long and suc-
cessful history of dealing with this kind of subjective uncertainty
in complex systems [10].

In this section, we shall subject (4.2) to fuzzy fluctuations.
We shall induce fuzzy fluctuations on r and v. This means that
the entire fluctuating range of r and v will be treated as fuzzy
real numbers. Introduction of fuzzy membership functions in
place of probability density functions have its own advantages
and may be disadvantages also. For example, introduction of
fuzzy membership function is much less rigorous and computa-
tionally less complex. It may smooth out many finer detail re-
sulting in elimination of unnecessary information. On the other
hand there is no rigorous method to construct fuzzy membership
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functions. It depends on the experience and skill of the expert
who is administering the therapy by induced fluctuations.

For the therapeutic purpose fluctuations in r and v have been
considered in [25]. So an FDI formulation of (4.2) is necessary,
where without loss of generality we can take the values of r and
v lying in some fuzzy real numbers following the spirit of [35],
where the noise is taken to lie within some closed and bounded
interval of R. Now, the question is “What type of fuzzy real
numbers are the most appropriate for this purpose?”

We have already seen that for a therapeutic purpose the value
of r must be influenced in such a way that it can go beyond some
critical value (depending on u, which is fixed). Like in [35], we
(arbitrarily) assume some range beyond which the values of r
cannot go. We take . For the X population, and
hence, m is also close to its maximum value, and the tissue is in a
cancerous state. On the contrary, if , the m population be-
comes vanishingly small, and the tissue tends to normality [31].
Here, the range of r is consistent with [25], [29], and [31]. The
best possible range of r to be attained during a therapy, to reach
the micro-cancer focus, should be [5.95, 7] (which is compat-
ible with [25]). Arbitrary large values of r is not desirable, for in
that case, (4.2) may not represent the dynamics properly. Since
we are interested in the best possible solution only (we have dis-
cussed about the general case of the other solutions at the end
of this sub-section), without loss of generality, we can take r to
lie in the trapezoidal fuzzy number for the
following reason. The standard definition of fuzzy real number
requires that fuzzy real number is a membership
function, where R is the set of (crisp) real numbers. satisfies
the following properties [22]. The support of must be a closed
bounded interval of R, say, [a, b]. There must be numbers c, d,
such that . must be increasing and continuous
from right in . must be decreasing and continuous from
left in for any . Since we are inter-
ested in the best possible (fuzzy) solution only, we are interested
in the domain of , where it takes the value 1, i.e., [c, d]. We are
not actually bothered about the shape of either in [a, c) or (d,
b]. The shape of the fuzzy number on the portion [c, d] are iden-
tical in all cases. So as long as only the best possible (fuzzy)
solution is required, there is absolutely no difference between a
trapezoidal fuzzy number and any other arbitrary type of fuzzy
number.

Determining the proper range for the values of v is even more
challenging. If v, which is proportional to the rate of conversion
of the normal cells into the neoplastic ones, remains positive,
then after stopping the therapy, there is a chance of reviving ma-
lignancy. On the other hand, if v becomes 0 during the therapy,
(4.2) will give abnormal results, which means that it no longer
models the dynamics properly. In Fig. 4, an approximation of the
solution space of (4.2) has been presented for . The be-
havior of the system is very abnormal and chaotic for . If
we increase v, this range also increases significantly (see Fig. 5),
which means that we cannot predict the progress of the therapy
beyond m is reduced to certain level (e.g., in case of Fig. 4, it is
1). This point has not been taken care of in [25] and [29]. It is
to be kept in mind that t is a smooth function and its graph
cannot exactly be like Fig. 4 or 5. Here, the graphs are generated
with a resolution of m as fine as 0.01. Finer resolution will give

Fig. 4. Approximation of the solution space of (4.2) for r = 5:95; v = 2, and
u = 0:1. Resolution of m is taken as 0.01.

Fig. 5. Approximation of the solution space of (4.2) for r = 5:95;v = 2:5,
and u = 0:1. Resolution of m is taken as 0.01. Almost in the whole range of m,
the result is very abnormal and beyond any meaningful prediction.

more realistic figure. However, we then have the question of the
size of a pixel: No resolution can be finer than that.

In reality, v remains positive and due to the cytotoxicity of the
T-lymphocytes tumor cell density X, and therefore, m cannot
grow [31]. In an abnormal situation where m grows unusually,
therapeutic remedy is needed. In [29], v must satisfy

(4.4)

In view of the limit of r we have taken (or taken in [25], [31])
this means

(4.5)

For the values of v given by (4.5), is negative for m
(the admissible range of m [25], [29]). If we take
then according to (4.4) , but since our model

is very sensitive to values of v according to this model only
for , it is possible to devise meaningful therapy.
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Fig. 6. Region enclosed by the curves (t;m(t)) for which r = 7 and v = 1
(left), r = 5:95 and v = 1:75 (right), and the t axis is the region of the best
possible solution (with the degree of possibility � = 1) of (4.6).

So we can take . By introducing fuzzy membership
grades in the range, we can get a trapezoidal fuzzy number

such that .
By now, we are in a position to give an equivalent FDI for-

mulation of (4.2).

(4.6)

where . is a triangular fuzzy number,
where is a very small positive (crisp) number. We have taken
the initial condition to be the worst, i.e., at , we have taken

, which is the highest possible value
of m (in [25], the maximum value of m is 6). The region of
best possible solution as computed according to the crystalline
algorithm, described in Section II, has been shown in Fig. 6.

One important thing is to note that in Fig. 6, we have kept
all our computations within the range for which . We
have already seen that for abnormal results occur. This
means that for , (4.6) no longer represents the dynamics
of the system faithfully. We may have to model the dynamics
for this range in a different way. This is also the case for .
Designing the dynamical system for or is likely
to pose great challenge to the future researchers.

The best possible solution region indicates the desired effects
of the therapy on the patient. Due to the therapy, the possibility
of m coming down from 6 to 1 in to is very high (the
degree of possibility or the value of fuzzy membership of such
an happening is 1). Remember that m is the normalized (and
not actual) tumor cell density, and is the normalized time. To
estimate the actual value of the tumor cell density and actual
value of time we must know the normalization factor. Let us
remember that and , where X is
the actual tumor cell density and t is the actual time.

For in (4.6), we get a solution that represents the
system behavior with degree of possibility or more. Obvi-
ously, the solution representing the best possible system be-
havior is included within this solution space (or the fuzzy set
of solutions, as shown in Fig. 1), as for example, for
in (4.6), the admissible range of in Fig. 6 will be a larger
closed bounded interval containing [2.3, 8] as a proper subset.
In general, for , the solution of FDI(s) tends to converge
less and diverge more. Let us explain this point. The fuzzy tra-
jectory (also known as fuzzy attainability set mapping or fuzzy
reachable set mapping in the fuzzy dynamical system theory
parlance), which is obtained as the fuzzy set of crisp trajecto-
ries (solutions) of the corresponding FDI(s), at any given time
will give a fuzzy subset of the solution space (called fuzzy at-
tainability set (FAS) or fuzzy reachable set). The diameter of
the FAS at any given time will generally increase if
(the FAS for is a proper subset of the FAS for ).
This makes the fuzzy trajectory obtained as the solution of the
system of FDI(s) inconvenient or even completely unsuitable
for the dynamical system theoretic analysis. This is exactly the
reason why FDI’s are preferred over fuzzy differential equations
in modeling and simulation (this point has been very nicely elab-
orated in [39] and [40]). In FDI modeling, we have the choice to
take the solution representing the best possible system behavior
for the highest value of , which often turns out to be 1. Once
this restriction is imposed the trajectory becomes more “crisp
like” (but not always crisp exactly, particularly when not all the
fuzzy quantities are triangular fuzzy numbers). Crisp like trajec-
tories are more convenient for dynamical system theoretic anal-
ysis. In the particular case of (4.6), it is obvious from the simu-
lation that for , there will not be any qualitative change in
the solution (Only [2.3, 8] will be replaced by a bigger interval
properly containing this. This has been clearly demonstrated in
Fig. 1 for the example treated in Section II.) We practically get
the same thing by keeping . In some cases, considering
the solutions for does radically alter the whole situation.
We shall come to this point in Section V.

D. Therapy

Any therapy devised according to the dynamics given by (4.6)
must presume that 1) the value of v will never exceed 2, and 2)
after reducing m to approximately 1, the entire course of the
treatment may have to be changed. This has not been taken care
of in [25]. Our basic principle of therapy remains the same as
in [25], where the target was to shift from the macro-cancer
focus to the micro-cancer focus. Here however we shall continue
this act of shifting only until m comes near to 1. For ,
we cannot predict the effectiveness of the therapies under the
present dynamical system modeling. At present a trial and error
heuristic method is perhaps the only way out. A fluctuation on r
is to be induced in order it to reach the value 6.4 or even surpass
it (assuming ). To fluctuate r, the following therapies
have been suggested, which are broadly subdivided into two
categories [25].

1) Multi-step therapy or multiplicative therapy: Here, we
can use perturbation in the form of increasing arterial
pO to 90 mmHg, decreasing venus pO to 20 mmHg,
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using hyperthermia up to 105 F, hyperglycaemia up to
600 mg% blood glucose level, which also produce pH
perturbations (up to 6.5 from the normal tissue level of
7.8). Owing to variation of oxygenation, there is a pertur-
bation in the oxygen index of the blood as

.
2) Multiplex therapy: Here, one uses the combined pertur-

bation of glucose level, temperature, anti-tumor drugs,
radiation, thermolabilizer, and radiosensitizer. Concen-
trated glucose solution is administered through superior
vena caval catheter and the following perturbations are
induced:

a) Hyperglycaemia—Glucose level is varied between
400 mg/100 ml blood and normal level of 100
mg/100 ml blood.

b) Hyperthermia—Temperature variation used is from
98 F to 103 F, using high-frequency inductive
heating.

c) Oxygenation—This is administered through pul-
monary ventilation.

Success has been reported under both the above categories of
therapies in [25]. If we examine the region of the phase space
of (4.6) corresponding to the best possible solution (see Fig. 6),
we observe that under the therapies m reduces from 6 to 1 quite
smoothly. This means that the cancer cell population X also
reduces accordingly. The corresponding values of lies in the
range of 2.3 to 8 (remember that is not time but proportional
to time). Within this best possible solution region of the FDI re-
lation (4.6), the response to the therapies is quite reasonable and
predictable, just as in case of the conventional SDE modeling.

V. SUMMARY AND CONCLUSION

We started this paper with an investigation into the role of
FDIs in the atmospheric and bio-medical cybernetics. The math-
ematical theory of FDS in general and the FDI in particular
have so far found few applications [9], [37], [41] despite their
immense potentiality to model complex systems. We have dis-
cussed in detail the complexity dealing aspects of the FDS in
general and the FDI in particular in [10].

So far, only the first-order and first-degree FDIs have been
considered in literature. However, in Section II, we have applied
Crystalline Algorithm to solve the 1-D second-order FDIs. Later
in Section IV, we have solved FDIs modeling the evolution of
tumor in human body.

In Section III, the notion of cybernetics has been extended
to the atmospheric sciences, where we have reviewed the FDI
modeling of a climatic disturbance leading to cyclogenesis as
described in detail in [9], which is the first known application
of the fuzzy set theory based techniques in the atmospheric sci-
ence (it is interesting to note that the fuzzy set theory-based tech-
niques were applied to the earth science in 1986 [56]). One of
the present authors has recently presented a model of turbulence
in terms of FDIs [55], [60]. This modeling technique can be ex-
tended to model atmospheric turbulence. The emphasis here will
be on presenting an FDI modeling of the genesis of a storm from
atmospheric turbulence. Unlike the FDIs treated in the current
paper, it will be shown that in the modeling of the genesis of

a storm from the atmospheric turbulence the solutions of FDIs
for play very important roles. It should be appreciated
that treating the solutions of a set of FDIs for and
are two different paradigms ([39] and [40] may be consulted to
have a feel of it).

In Section IV, a dynamical system theoretic study of the evo-
lution of tumor in a human body has been made. Here, we have
followed the precedence set in [25], [29], and [31], but we have
gone even further. We have shown that an FDS (FDI to be more
precise) modeling of a biological system is no less effective
than a modeling in terms of the stochastic differential equations.
Again, this is the maiden effort to introduce FDI relations into
the realm of biomedical cybernetics. We have undertaken the
dynamical system theoretic analysis of the model of Lefever and
Horsthemke [29] in a new direction and discovered the range
within which the model should work. Based on these limita-
tions, therapeutic suggestions have been made. This shows that
a more pragmatic therapeutic planning needs to be introduced
in treating malignancy, as suggested in [25]. Our study opens
up the need for research on a new dynamical system to model
the evolution of tumor in human tissues when either 1) the neo-
plastic cell density X and hence, m becomes very low ,
or 2) the conversion rate from normal cells to the neoplastic ones
becomes very high (for which ) or both. The authors be-
lieve that these two are the most important open problems sug-
gested by the present work.

Since both the systems discussed in Sections III and IV are
uncertain systems, we have been able to model them using FDIs.
In Section IV, we have mentioned where ever the system be-
haves chaotically (remember that in this paper, for simplicity, we
have interpreted chaotic as unpredictable). In Fig. 4, the system
behaves chaotically for m [0, 1], and in Fig. 5, the system be-
haves chaotically in the entire range of m. It will be interesting
to determine the fractal dimension of the graphs of Figs. 4 and 5
in the euclidean plane. By fractal dimension, we mean the Haus-
dorff–Besicovitch dimension [57]. The problem will be a little
easier if we take the box counting dimension [57] as the fractal
dimension. If the fractal dimension is a number between 1 and
2, that is a good indication that the system may behave chaoti-
cally.
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