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7 (4 bits), so a table with 2**? entries must be constructed. For each
possible input combination, we used the 35 fuzzy rules shown in Fig. 2
to obtain its output Z (4 bits) in advance, and then saved Z in the corre-
sponding entry. With the help of the table, which needs only 128 bytes
of memory, fuzzy reasoning can be implemented easily.

Compared with the full-search VQ, the FP-VQ may cause distortion
of image quality. Tables VIII and IX show the image quality for
both full-search VQ and FP-VQ in terms of four different measures:
1) average absolute error per pixel (ABE), 2) average mean square
error (MSE) per pixel, and 3) average signal-to-noise ratio (SNR),
and 4) average peak signal-to-noise ratio (PSNR). Obviously, FP-VQ
causes only very little distortion (slightly higher MAE and lower
PSNR) but achieves better compression efficiency (shown in Ta-
bles II-VII) and needs less computational complexity (fewer SAD
operations). Fig. 4 shows the original image and three reconstructed
images for FP-VQ with codebook sizes of 128, 256, and 512 codevec-
tors, respectively.

Since the FP-VQ encodes each index on-line without scanning
the whole index map in advance nor storing the map afterwards, the
memory required is small. Besides, it needs fewer computations and
achieves more efficient coding than VLC. Hence, the FP-VQ is very
suitable for real-time applications and hardware implementation. Its
VLSI architecture is currently under development.

IV. CONCLUSIONS

In this paper, an efficient FP-VQ algorithm is proposed. It performs
better than other VQ algorithms, such as SOC-VQ, LCIC-VQ,
STC-VQ, and DST-VQ, in terms of computational complexity and
coding efficiency. As our experimental outcomes show, FP-VQ is
both efficient and robust not only for various test images, but also
for codebook sizes and codebook initialization methods. Since its
computation complexity is low and its memory size is small, it is a
good real-time coder for image vector quantization.
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Fuzzy Fractals and Fuzzy Turbulence

Kausik Kumar Majumdar

Abstract—In this paper, we have defined and discussed fuzzy fractals
from image generation point of view. We have also proposed a fuzzy system
modeling of a two dimensional turbulence just as a chaotic occurrence of
fuzzy vortices in a two dimensional dynamic fluid.

Index Terms—Fuzzy differential inclusion (FDI) relations, fuzzy dynam-
ical systems (FDS), fuzzy fractals, fuzzy turbulence, iterated fuzzy sets sys-
tems (IFZS).

I. INTRODUCTION

The contractive iterated function systems on 1% have been exten-
sively studied by Barnsley [1]. Since these are dissipative systems they
must have attractors. The attractors of such systems turn out to be
fractal subsets of 2% or at least these subsets are regarded as fractals
in a broad sense. Barnsley has shown that with just a few (often not
more than four) simple contractive iterated functions a very compli-
cated shaped image can be generated [1]. This has been fuzzified by
Cabrelli et al. [3]. They have treated any grey level image as a fuzzy
subset of R?, where the membership value at each point (pixel) is a
normalized grey level pixel intensity value at that point (pixel). They
have shown how an IFZS can generate a grey level image. In Section II
of this paper we have simplified and extended this method. We have
defined fuzzy fractals (which Cabrelli et al. did not do) in a very broad
sense. Crisp fractals (e.g., those generated by Barnsley’s systems) turn
out to be special cases of fuzzy fractals.

In Section III we have treated turbulence as a chaotic occurrence of
vortices in a dynamic fluid [2]. Then we have presented a simple two
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dimensional model of a turbulence, which satisfies this notion. In this
model we have treated the generation of vortices as fuzzy systems. We
have presented the algorithm and the simulation results. For the com-
plete MATLAB program, see [20]. In the entire simulation process all
the parameters have been kept uncontrolled so that it becomes very un-
likely that any two turbulence generated by this program, even with the
same argument, turn out to be identical. This is an essential feature of
turbulence, e.g., it is very unlikely that any two coils of smoke ema-
nating out of the same chimney at different time will ever be identical.

II. Fuzzy FRACTALS AND IMAGE GENERATION

Mandelbrot defined fractal as a special class of subsets of a complete
metric space for which the Hausdorff—Besicovitch (or just Hausdorft)
dimension strictly exceeds the topological dimension [12]. Barnsley
has shown that, fractal sets can be generated as attractors of a class of
randomized, contractive or hyperbolic, iterated function system (IFS)
[1]. In other words a given set of randomized, hyperbolic, IFS is able to
generate a particular image as a fractal set. But such a system is a dis-
crete dynamical system with a fractal attractor. The initial mathemat-
ical background for this work was earlier prepared by Hutchinson [8].
Barnsley further extended this background by proposing and proving
a number of important mathematical results [1]. A fractal attractor is
called a strange attractor, where the underlying dynamical system may
or may not be chaotic [9]. Of course there is no universal agreement yet
over this point [13].

Definition 2.1: Let (X, d) be a complete metric space. f: X — X
is a hyperbolic iterated function system if there exist N contraction
mappings {w; }iy, w;: X — X fori € {1,..., N},st, f(D) =
Ul w; (D) for D C X. When each w; is an affine transformation then
f is called an Hutchinson operator.

Definition 2.2: Let (X, d) be a complete metric space. f:
X — X is a randomized hyperbolic iterated function system if
f=(wi,...,wn,p1, ..., pn). Bachw;: X — X is a contraction
mapping. Each p; is the probability of occurring w;. Thus &/ p; = 1.
And forany D C X, f(D) = U, w; (D) f, under iterations, has
been called chaos game in [1].

Barnsley has shown how a simple randomized, hyperbolic IFS,
often consisting of just three to four such simple contractive functions,
can generate extremely complicated arbitrary shaped images [1]. This
method has been extended, with suitable modifications, by Cabrelli
et al. to generate, analyze and/or approximate images as the fractal
attractors of IFZS [3].

Images with grey or color levels admit a natural representation in
terms of fuzzy sets. In this regard our method incorporates the tech-
nique of the discrete dynamical system of IFS. Let f be an IFS as
defined in Definition 2.2. Since each w; is contractive [i.e., d(w;(z),
w;(y)) < sd(z, y),s € (0, 1)] f is also contractive or dissipative. So
f must have an attractor A C X, i.e,, limp—oo f"(X) = A, where
f™ = fo ™' Under each iteration of f, the possibility (for a de-
tailed discussion on possibility refer to [19]) of occurrence of w; is p;.
For a given set of possibilities {p; } there exists a unique invariant fuzzy
membership measure ¢ with support A. The novelty of our approach
may be summarized in terms of the following two key points:

1) The entire setting is provided by a subclass (3, 8) of the class
F(X) of fuzzy subsets of X, where &' is the collection of all
the nonempty compact fuzzy subsets of a compact metric space
(X, d) and 6 is the metric defined on < (the collection of all
nonempty compact fuzzy subsets of X'). All images are consid-
ered as fuzzy sets. This leads to two possible interpretations:

a) in image representation the value of the fuzzy membership
function at a point (pixel) x € X, within the image will be

interpreted as the normalized (values lying in [0, 1] only)
grey level intensity associated with that point (pixel);

b) in pattern recognition, the membership value of = when
lies in (0, 1] indicates the possibility that the point # is in
the foreground of an image.

Associated with each contraction map w;, ¢ = 1, ..., N, is a grey
level map ¢;: I — I, where I = [0, 1] is the grey level domain. The
collection of maps {w;, ¢;} is used to define an operator T: U™ —
U™ (U™ is the collection of normal, uppersemicontinuous members
of &), which is contractive with respect to the metric 6 on U™. This
metric is induced by the Hausdorff distance defined on the collection
of the nonempty compact subsets of X . Starting with an arbitrary initial
fuzzy set ug € U", the sequence u,, € U™ produced by the iteration
u,+1 = T'(uy) converge in the § metric to a unique invariant fuzzy
setv € U™, where T(v) = v.
Definition 2.3: f:' S — I will be called iterated fuzzy sets
systems (IFZS) if f = (w1, ..., wn, p(wy), ..., pl(wn)). Bach w;:
3 — J is a contraction mapping. Each p(w;) is the possibility or
fuzzy membership value [19] associated with w;. For any u € U™

N

F()*) = J wi([u]”)

=1

2.1

where [u]® is the a-level set of u for0 < a < 1.

Definition 2.4: The compact set X will be called the base space of
the IFZS.

If there exists a fuzzy set v. € U™ such that, f"([v]*) C [v]*
for 0 < a < 1 and for all positive integral n, then v is clearly the
fuzzy nonwandering set or invariant set of the discrete fuzzy dynamical
system (5, f) or just f. When f™([v]*) = [v]* holds for 0 < a < 1
and for all positive integral n, v will be the unique invariant (fuzzy)
set of f under iterations [8]. Then clearly v is an (fuzzy) attractor of
the IFZS f.

Definition 2.5: A fuzzy subset A of a complete metric space (X, d)
is called a fuzzy fractal if A is also a fractal subset of X according to
Mandelbrot’s definition.

Clearly v is the fuzzy attractor of the image generating operator 7’
in (2). In addition if v is a fractal subset of X (which is more often than
not the case) v is a grey level fuzzy fractal image generated by T just
like Barnsley’s chaos games generating crisp fractal images.

In case of image generation, u(w;) will depend on a normalized grey
level pixel intensity value. We could also take p(w;) = p;, where p; is
a probability measure. Thatis, 0 < p; < land ), p; = 1. When p; is
a probability measure instead of a possibility measure the underlying
IFZS reduces to Barnsley’s chaos game and the resulting fractal set
generated is a crisp fractal. So crisp fractal is only a special case of
fuzzy fractal.

A. Images as Fuzzy Sets

A black and white digitized image is a pixel matrix {p;, }, where p;
is the (4, j) (both are nonnegative integers) coordinate point (pixel) in
R?. Associated with each pixel p;; is a nonnegative grey level or bright-
ness value #;;. We assume a normalized measure for grey levels, i.e.,
0 < t;; <1 (0= black: the background, 1 = white: the foreground).

Definition 2.6: The function h: {p;;} — [0, 1] defined by the grey
levels distribution of the image is called the image function.

The digitized image is fully described by its image function %. This
is also the situation in the more theoretical case where grey level are
distributed continuously on the base space X . At this point one can see
that, an image as described by an image function is nothing but a fuzzy
setu: X — [0, 1].

It is usual to classify the pixels according to their grey levels in
the following way. For each o € (0, 1], we consider the set {z €
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Xlu(z) > a} = [u]*, ie., the set of all pixels whose grey levels
exceed the threshold value « is the a-level set (a-cut) of u. For o €
(0, 11, [u]® represents a thresholding of the grey level distribution at a.
Clearly there is a one to one correspondence between the image func-
tion h as a fuzzy set and the a-cuts of u.

Since X is a compact metric space (5, 8) is also a compact metric
space [6]. In particular it contains all the «-level sets [u]®, 0 < a < 1,
of allu € U". ¢ is the Hausdorff metric [6, 8]. The metric space
(U™, &) is complete [6]. f is the [FZS of Definition 2.3, which being a
contraction map (time-evolution law of a dissipative dynamical system)
must have an attractor [v]" = A C X, where v € U™. In all practical
situations X is a compact subset of R? and A is a fractal subset of X,
which is also a fuzzy subset of X.

Definition 2.7: A as described above is called a fuzzy fractal image
generated by the IFZS f.

One very important thing to notice in this subsection is a novel inter-
pretation of fuzzy membership value. Traditionally fuzzy membership
values signify the degree of vagueness or nonspecificity [5]. But in this
subsection fuzzy membership value can not be interpreted that way.
Here, fuzzy membership value means “lack of uniformity” (in the nor-
malized grey level pixel intensity values). So far we have not gone into
the detail of the grey level intensity distribution of the pixels p;; of the
fuzzy fractal image A. In the next subsection we are going to take up
this issue.

B. Determination of the Grey Level Pixel Intensity

In Barnsley’s randomized IFS each component w; of the hyperbolic
map f has a probability of occurrence p; under each iteration of f (Def-
inition 2.2). In the definition of IFZS (Definition 2.3) p; of hyperbolic
randomized IFS is to be replaced by u(w;), where u(w;) is the possi-
bility (in sense of Zadeh [19]) of occurrence of w; under each iteration
of f. Since value of possibility is equal to fuzzy membership value,
p(w;) is the fuzzy membership value associated with w;. From image
generation and processing point of view we are going to give here an
interpretation of y(w; ) in terms of the grey level map ;: I — I, where
I = [0, 1] is the grey level domain.

Definition 2.8: A function ¢: [0, 1] — [0, 1] is said to be nonde-
creasing right continuous (n.d.r.c) if and only if i) ¢ is nondecreasing
and ii) ¢ is right continuous.

The following lemma justifies this definition.

Lemma 2.1: Let ¢: [0, 1] — [0, 1] and X be an infinite compact
metric space, then a necessary and sufficient condition for ¢ o u to be
upper-semicontinuous for all u € U™ is that ¢ is n.d.r.c.

Proof: Reference [3].

We are now in a position to summarize properties, which should be
satisfied by a set of grey level maps {¢;}, i = 1, ..., N, so that they
can be associated with p(w;) of an IFZS f.

1) ¢i: [0, 1] — [0, 1] is nondecreasing.

2) ; is right continuous in [0, 1).

3) »i(0) = 0.

4) Foratleastonej € {1,..., N}, ¢;(1) = 1.

Properties 1), 2), and 4) above and Lemma 2.1 together will guar-
antee that the associated IFZS maps U™ into itself. Property 3) is a nat-
ural assumption in the consideration of the grey level functions, which
says that, if the grey level of a point (pixel) x € X is zero, then it
should remain zero after being acted upon by the maps ¢ .

C. Image Generating Fuzzy Contraction Map

Let us define a contraction map 7,: U™ — U™ such that,
6(Ts(u), Ty(v)) < s6(u, v) forallu, v € U" and 0 < s < 1.

Since T is a fuzzy valued contraction map defined over a collection
of fuzzy sets, the system of iterated 7', is a discrete dissipative fuzzy

Fig. 1. The attractor of the IFZS f = (w1, ..., wn, p(w1), ..., p(wy)).
Each w;: § — S is a contraction mapping. pt(w;(«)) = ¢ (u(w; *(x))) for
all z € X. Note that x €  also. (Adopted from [3].)

dynamical system and hence must have an attractor. This is an IFZS,
where 1, consists of [N contraction mappings {w,-};N:1

T(u(@)) = sup{pr (0w (2), -, o (0 (0 (@)} 22)

where
u'(B)=sup u(y)ly E BC X}, if B#D 23)
-0, ifB=0. '
Obviously, u'({x}) = u(x) for any 2 € X. Since IFZS of iterated 7’
must have an attractor

lim 7 (u) = v.

n—oo

2.4)

v is the fuzzy attractor of the IFZS, which is the generated fuzzy
(fractal) image. In the next subsection we shall be generating two such
fuzzy fractal images.

Equivalently, we can take f: 3 — 3 of Definition 2.3 as the image
generating IFZS, where

(i) = pi(uw] ' (2)))

forall # € X and u € . When pu(w;(x)) € [0, 1] is a constant func-
tionfori € {1, ..., N},suchthat, ), pu(w;) = 1, thatis, pu(w;) is
a random (probability) measure then the IFZS is simply crisp random
hyperbolic IFS as described in [1] (Definition 2.2) and the fuzzy fractal
attractor reduces to crisp fractal attractor, that is, the crisp fractals are
only special cases of fuzzy fractals.

One important thing to note here is that in case of fuzzy fractals the
determination of ¢;, for each ¢, is the most computationally intensive
part. Compared to the crisp fractals as generated by a contractive IFS,
the generation of a fuzzy fractal in terms of an IFZS is computationally
more complex due to the complexity in determining the grey level pixel
intensity values in terms of ;.

(2.5)

D. Examples

In the two examples considered in this subsection the base space
is X = [0, 1] x [0, 1]. Computer approximation of the attractors of
the IFZS has been shown as normalized grey level distribution. The
brightness value ¢;; of a pixel p;; representing a point 2 € X obeys
0 < t;; <1, witht;; = v(x), where v is as defined by the equation
(2.4). t;; = 0 if x is in the background.

0.1
{ 0.04 ]

Example 2.1[3]: N = 4.
v _ |05 0 T 0.25
wl(z1, 22)7) = { 0 0.5} L:J + { 0.4]

_|_

, 0.8 0]«
wil(er, 42)") = { 0 0.8} {ij
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Fig. 2. Sierpinski’s gasket generated as the fractal attractor of the IFZS
described above. The starting point is on the gasket.

—0.355 | | =1 + 0.266
0.355 | | x2 0.078

[ 0355 0.355] [an 0.378
wal(er, #2)7) = {—0.355 0.355 | Lo | T [0.434]

0.355

ws((x1, 22)") = {o 355

To define a base space IFZS f =
(wiy .oy wn, plwr), ..., plwn)), whose attractor
A C X is shown in Fig. 1, we consider the identity grey level
intensity maps given by o;(t) = ¢ for ¢« € {l,...,4}. Since
pi(l)y=1fori € {1,...,4},v = xa, thatis,v(z) = lifz € A

and v(z) = 0 if = ¢ A. The attractor v is shown in Fig. 1.
Example 2.2: N = 3.

05 01 [ar]  [0.005]

wi((a1, w2)") = 0 0.3 r; *10.005
05 071 [a1]  [0.005]

wal(@r22)) = |7 o r; * o255
, 05 01 [a1] [0.125]
wal(a1, w2)") = 0 05| |as| T]0255]"

To define a base space IFZS f = (w1, ..., wn, p(wy),
.., p(wn)), whose attractor A C X is shown in Fig. 2, we consider
the constant grey level intensity maps given by ¢;(¢) = 1/3 for
i € {1, 2, 3}. Since ¢;(1) = 1 fori € {1,..., 4}, v = xa, that
is,v(z) =life € Aand v(z) = 0if z ¢ A. The attractor v has
been shown in Fig. 2. Note that here ©;(t) is a probability distribution
function and the generated attractor is the Sierpinski’s gasket, which is
a crisp fractal. Definition 2.3 and Definition 2.5 have been formulated
in such a manner that the crisp fractal of Fig. 2 becomes only a special
case of fuzzy fractal. This is true in general.

III. Fuzzy TURBULENCE

In this section we will be concerned about another novel application
of fuzzy set theory based techniques in general and FDS in particular.
Here we have proposed a simple model of an idealized turbulence. Tur-
bulence is considered as one of the most complex natural phenomena,
which has defied persistent efforts to reveal its mysteries by some of
the most brilliant fluid dynamicists. Here by no means we claim to have
solved this problem. We have made only a humble attempt to model an
ideal turbulence in terms of an FDS. The model is so idealistic that it
may not have any significant practical value. However our purpose in
this section is not to delve deep into the mystery of turbulence but only
to indicate the potentiality for application of fuzzy dynamical systems.
This idealistic model at least serves this purpose.

A. Preliminary Discussion

Turbulence occurs in a moving fluid in the form of a spontaneous yet
completely irregular appearance and disappearance of vortices. Despite
relentless efforts of last more than hundred years, particularly by the
fluid dynamicists, turbulence has not yet been completely understood.
Naturally there is no mathematical model yet which can completely
describe a turbulence. “Historically, many models have been proposed
and many are currently in use. It is important to appreciate that there is
a broad range of turbulent flows and also a broad range of questions to
be addressed. Consequently it is useful and appropriate to have a broad
range of models, that vary in complexity, accuracy and other attributes”
[16]. An usual description of turbulence starts with the Navier—Stokes
equations describing the motion of the underlying body of the fluid
[16]. Here we have not considered Navier—Stokes equations. In this
section starting from a simple definition of turbulence we shall try to
present a mathematical model of an ideal turbulence in terms of an
FDS. This may serve as yet another example to emphasize the poten-
tiality of FDS to model various complex real life phenomena. To start
with a definition of turbulence let us state.

Definition 3.1 (Brown [2]): Turbulence is chaotic occurrence of
vortices in a dynamic fluid.

Devaney’s definition of chaos has been stated in [4], [17]. For the
sake of simplicity we shall keep our model only two dimensional. It
is a common practice to use a discrete distribution of point vortices in
the analysis of two and three dimensional flows of fluid [18]. In [18]
an elliptic function (doubly periodic function in the complex plane)
has been used to describe the distribution of vortices in a two dimen-
sional channel flow. It is also a very common practice to describe the
distribution of such vortices by probability distribution functions [16].
Here, we have described the distribution of vortices by a two dimen-
sional chaotic function. We have outlined an extension of this method
to three-dimensional case in the Conclusion.

We locate a two dimensional vortex by the center of its core. In a
two dimensional cross section of a turbulent fluid to model the chaotic
distribution of vortices we need some chaotic function. Let the two
dimensional cross section be the xy-plane. According to our idealized
model if in the zy-plane the coordinate of the center of a vortex is given
by (x(s), y(s)) for some s then x(s) and y(s) are given by

w(s) = a.lim f"(s) and y(s)="0.lim f"(s)

n— 00

(3.1)

where f(s) = 4s(1 — s), s € [0, 1] and coordinates of the ver-
tices of the rectangle enclosing the cross-sectional area is given by
(0, 0), (a, 0), (a, ) and (0, ). For practical computational purpose
n can never be infinite. Only a sufficiently large value of n can be
taken. Here it is important to remember that for every value of s there
may not be a vortex with center of the core (or just center for short) at
(z(s), y(s)) but every center of the core of a vortex will be given by
(x(s), y(s)) for some s. It’s a well known fact, that z(s) and y(s) as
given by equation (3.1) are chaotic [4], [15], [17]. Here, we are only
invoking these results for our modeling purpose. In actual computer
simulation the value of 7 is finite but large, say » > 20 000. Then we
get the famous Feigenbaum diagram (Fig. 3).

We assume that the vortex centering (z', y') [we shall write (z', y")
in place of (2'(s), y'(s)) whenever there is no risk of confusion] is
generated by two local tiny fluid jets coming from different direc-
tions and colliding. We are not bothered about the origin of the wind
jets here. Number of such collisions will be more at higher Reynolds
number. After collision the resultant fluid jet will create a spiral like
vortex under certain conditions. To understand these conditions let us
concentrate into the Fig. 4. In Fig. 4 for convenience the coordinate
system is polar (r, #), where r = ((x — 2')* + (y — y")*)"/? and
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Fig. 3. Feigenbaum diagram of x(:s) for very large n and a = 1, irrespective
of s, provided s € [0, 1]. f(s) = ps(1 —s), 3 < p < 4. x(s) is plotted
along the ordinate and  along the abscissa. For p = 4 x(s) can converge on
any pixel along the ordinate. Exactly the same diagram will also hold for y(s).
(Reproduced from [15].)

6 =tan *((y — y')/(x — 2')). On the other hand = = 2’ + r. cos
andy = y' + r.sind.

Fig. 4 is self-explanatory. For detail explanation of radial and cross-
radial component of velocity any elementary text on particle dynamics,
e.g., Loney [10] may be consulted. From elementary particle dynamics
we know that the expression for radial component of velocity at a point
(r, #) is dr /dt and that of the cross-radial component is r(d8/dt) [10]
with respect to some polar coordinate system. If

Resultant radial component of velocity ~ dr/dt
Resultant cross-radial component of velocity ~ +(df/dt)

(3.2)

=m
where m is a constant holds then

dr/de = mr. (3.3)

B. Dealing Nonlinearity With Fuzzy Quantities

In (3.3), if m is a constant then the solution of (3.3) will produce
a log-spiral, which describes the shape of a vortex. But in reality m
can not be constant. Instead the values of m are liable to fluctuate
within some range. Note that (3.3) is a simple linear equation mod-
eling the generation of a vortex in a dynamic fluid. But the generation
of a vortex is supposed to be a nonlinear phenomenon. Then the im-
mediate question is how is it possible to model a nonlinear phenom-
enon by a simple linear equation? We assume that the nonlinearity is
responsible for giving rise to uncertainty in the model. Had there been
no uncertainty involved in the model it would have been perfectly de-
terministic. In that case we could have described it with a set of linear
equations. Here we take the opposite approach. We assume that the
model is deterministic in the first place. So we describe it with a set of
linear equations. Next, to bring it closer to the reality we try to accom-
modate the elements of inherent uncertainty within it. In this spirit the
generation of vortex in a dynamic fluid has been described by (3.3). Our
next task is to accommodate the uncertainty, inherent in the underlying
nonlinearity of the system, within (3.3) (thereby bringing it closer to the
real life nonlinear model). To accomplish this, we should notice that m
being the ratio of two wind speeds, can not be a fixed value even for a
short time. m will fluctuate within some closed bounded interval of R.
In the most general case this interval is a fuzzy subset R, the member-
ship distribution function, whose support is the interval. Without much
loss of generality we may assume that this membership distribution
function satisfies all the three properties (normality, upper-semiconti-

Resultant Cross-radial component of velocity,
Fluid jet 1

(r,0)

Resultant radial component of velocit

Initial line

Fig. 4. Fluid jet 1 and fluid jet 2 are colliding at (r, 8). Their resultant radial
component of velocity and resultant cross-radial component of velocity after
collision have been shown. If the ratio of these two components is constant a
spiral shaped vortex is generated.

TABLE 1
NUMERICAL ESTIMATION OF THE CONSTANT FUzZY NUMBER A FOR A ZERO
VISCOSITY FLUID IN A MODEL WITH MODERATE SHEAR

a c d b
0.001 0.05 0.1 0.2

nuity and compactness of support) to become a fuzzy number. So this
fuzzy subset of R is actually a fuzzy number, say A € R, where R is
the set of all fuzzy real numbers. Similarly, the measurement of 7(0),
the initial value of r, is also subject to uncertainty due to measurement
error [uncertainties involved in m and 7 (0) are different, in m it is due
to smoothing out the nonlinearity and in 7(0) it is due to measurement
error]. Classically, the probability distribution of the error in measuring
r(0) will follow the normal distribution law. So when we are going to
model this uncertainty with a fuzzy quantity we should opt for a trian-
gular fuzzy number, say B, to describe 7(0), such that, 7(0) € B € R.

A being a fuzzy number must be increasing and continuous from
right in [a, ¢), decreasing and continuous from left in (d, b], where
[a, b] is the support of A and a < ¢ < d < b. Also A([e, d]) = {1},
which means that the values of highest possibility within the universe of
discourse of A liesin [¢, d]. So a trapezoidal fuzzy number {a, ¢, d, b)
may be an approximation of A.

For the purpose of modeling, next we shall have to make some rea-
sonable estimate for the values of a, ¢, d and b, which we have given
in Table I. One very important thing to note that if m € [A]® then also
m € [—A]°. Som € [A]° U[—A]°. We shall take the triangular fuzzy
number B as {(r(0) — &, r(0), r(0) + &), where 6 > 0 is a crisp real
number, whose value depends upon the employed measurement tech-
niques. The more accurate the technique is the smaller is the value of
6.

In this section our aim is just to present an ideal hypothetical example
to exhibit the potentiality of FDS in general and FDI in particular as a
powerful tool for modeling and simulation of complex physical phe-
nomena. Therefore we are not too bothered about the actual numerical
specifications. These may be adjusted according to the outcomes of ex-
periments to fit the model with real physical world.

So by now (3.3) is no longer an ordinary differential equation (ODE).
Instead we shall have to reformulate it as a fuzzy differential inclusion
(FDI) relation to make the modeling more realistic. The FDI formula-
tion of (3.3) is described below

¥ (8) € [mr(6)], m € [A]", r(0) € [B]” (3.4)

where, as usual, 0 < « < 1. Similar formulation also holds for —A.
The solution of (3.4) by Crystalline Algorithm [11] described below
yields the following phase space or solution space diagram (Fig. 5),
which resembles a generated vortex in a dynamic fluid. For conve-
nience we describe step by step the solution of (3.4) below.
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Fig. 5. The simulated diagram of a fuzzy vortex centering at (0.5, 0.5), where
ro (in cm) belongs to a fuzzy number, with the best possible value <0.1. This
diagram is the phase (solution) space of (3.4) for &« = 1. The range of 6 is
a random number <167. The enclosed region indicated by the spirals is the
fuzzy flow representing the most possible (grade of membership 1) behavior of
the system represented by (3.4). We get the spirals by putting rn € [0.05, 0.1]
in (3.4). If we replace A by —A in (3.4) the orientation of the vortex will be
reversed.

C. Simulation

Crystalline Algorithm

1) replace € by = in (3.4);

2) calculate the right hand side of the equation thus obtained by
Zadeh’s extension principle [14];

3) fix o € [0, 1];

4) take the «-level set on the right hand side, which is an n-tuple of
a-cuts of fuzzy numbers for some n;

5) solve (directly or numerically) the ordinary crisp DE’s only for
the boundary values of the «-level set (more solutions may be
derived within the region enclosed by the boundary);

6) the space enclosed by these solutions is the «-level set of the
solution of the equation obtained by replacing € by = in (3.4)
and hence the solution of FDI (3.4) for the given .

Fuzzy vortex is modeled by (3.4) and its chaotic occurrence within a
finite rectangular cross section of area ab is given by (3.1). The simula-
tion diagram is presented in Fig. 6, where « = b = 1 and n = 20 000.
r(0) and range of # varies from vortex to vortex. From equation (3.1)
and Fig. 3 it appears that (x(s), y(s)) can be any pixel in [0, 1] X [0,
1]. So this model can account for all possible occurrence of vortices
in [0, 1] x [0, 1]. In this sense it is the most general representation of
fuzzy turbulence.

Definition 3.2: Since we get a simulated vortex in a dynamic fluid
by solving the FDI (3.4), we call the vortex a fuzzy vortex. Chaotic
occurrence of such fuzzy vortices in a dynamic fluid will be called fuzzy
turbulence.

The MATLAB program used to simulate the turbulence in Fig. 6,
has been given in [20]. Interested readers may generate more such two
dimensional fuzzy turbulence using this program. This program gen-
erates turbulence in an uncontrolled manner. The probability of two
turbulence generated with the same set of arguments being identical is
very low, which is an essential feature of real turbulence.

The program generates a two dimensional turbulence only as a
“Chaotic occurrence of fuzzy vortices.” Here we have not taken care
of the detail of the fluid and its motion in generating the turbulence. In
this section our aim is only limited to indicating how FDS can be used
to model a turbulence. A vast scope of improvement in this simulation
is remaining open. For example the program can be so written to take
arguments like “viscosity” and “Reynold’s number,” which represents
the fluid and its flow to a good extent.

Fig. 6. Simulation of a two dimensional fuzzy turbulence in a two dimensional
dynamic fluid. Light and dark vortices have different orientation.

IV. SUMMARY AND CONCLUSION

In this paper fuzzy fractals have been introduced. We have defined
fuzzy fractals. Then we have shown that fuzzy fractals can be generated
by iterated fuzzy sets systems as attractors. We have treated any grey level
image as a fuzzy subset of R*, where the membership value at each point
(pixel)isanormalized grey level pixel intensity value at that point (pixel).
This approach due to Cabrelli et al. [3] is possibilistic in nature. Where as
theclassical approach of Barnsley [ 1] was probabilisticin nature. Here we
have achieved an unification of these two approaches and have shown that
all fractals generated in the latter method can be generated in the former
method also. It is worthy to note that there does not exist any bijective
transformationbetween thetwosatisfyingall therequired properties [21].
Kandel observed that [22], “... impossibility implies improbability but
not vice versa.” This means probability implies possibility (but not vice
versa). In Section II we have exactly utilized this premise and assigned
each probability measure a possibility measure. As animplementation of
the theory developed we have considered two examples of fuzzy fractal
image generation.

Here a hypothetical mathematical model of turbulence is proposed.
By the term “turbulence” we have meant chaotic occurrence of vor-
tices in a dynamic fluid. We have kept the model two dimensional for
simplicity. We have defined a two dimensional chaotic function, which
gives the distribution of the vortices. It is assumed that the vortices have
been created by collision of fluid jets coming from different directions
under certain conditions. To model a vortex, a fuzzy differential inclu-
sion relation has been formulated by considering the ratio of radial and
cross-radial components of the resultant velocity of the colliding fluid
jets at a point as a constant fuzzy number. The solution space of this
FDI, obtained by the Crystalline Algorithm gives the simulation of a
vortex. We call this a fuzzy vortex. Chaotic occurrence of such fuzzy
vortices gives rise to fuzzy turbulence. We have presented a simulated
model of a fuzzy turbulence.

Very little work has so far been undertaken in fuzzy fractal based
image generation. The pioneering work in this direction is due to
Cabrelli et al. [3]. We have introduced some modification and extension
intoitto make it easier to implement. However in terms of computational
complexity both the methods will perform at the same level. But the
whole method is for the grey level images only, where the values of
intensity of red, green and blue (RGB) at each pixel are equal and
measured by integral values from 0 to 255. A very challenging work for
the future researchers will be to extend it to the color images also. This
means that the intensity values of red, green and blue will be independent
of each other at any pixel. Each point (pixel) I on the image will have
three membership grades instead of usual one, namely p,, 1ty and i,
where ji,-( P) is the membership grade of P to belong to the red region,
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wg(P) is the membership grade of P to belong to the green region and
s (P) is the membership grade of P to belong to the blue region. Values
of ;- (P), etc. may be determined the way described in Section II.

As far as we know fuzzy turbulence is a completely new concept, in-
troduced only in this paper. To be more realistic this model should be
three dimensional or if we also want to incorporate time into it, it will
be a four dimensional space time model. In this four dimensional space
the location of the center of a vortex will be denoted by (. y, z)atsome
instant ¢. The vortex will be of cylindrical shape, whose axis may make
anglesa, (3 and~respectively withx, y and z axes. Obviously, cos® o+
cos® B + cos® v = 1. To describe the vortex at (z, y, z) alocal cylin-
drical coordinate system (r, 8, ) is necessary. Also another parameter
m as described in Section III is needed. ~ will be expressed in terms of
m and 6. So to make a more realistic model of this type of turbulence we
will need the following independent parameters: =, y, z, t, any two out
of o, 4 and v and m, ¢ and h, i.e., nine in all. Modeling of turbulence
involving all these nine independent parameters (some of them including
m are fuzzy numbers) will be the subject of future research.

The author has recently proposed a model of generation of intense
tropical storms over the seas in terms of fuzzy dynamical systems [23].
It has long been suspected that atmospheric turbulence plays an impor-
tant role behind generation of such storms. The model of turbulence
proposed here and the model of generation of storms proposed in [23]
have one very common aspect, namely the “fuzzy vortex.” This, at least
to some extent, supports the validity of the hypothesis of generation of
storms from atmospheric turbulence. In near future the author has plans
to work toward a modeling of generation of storms from atmospheric
turbulence.
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Obstacle Avoidance for Kinematically Redundant
Manipulators Using a Dual Neural Network

Yunong Zhang and Jun Wang

Abstract—One important issue in the motion planning and control of
kinematically redundant manipulators is the obstacle avoidance. In this
paper, a recurrent neural network is developed and applied for kinematic
control of redundant manipulators with obstacle avoidance capability. An
improved problem formulation is proposed in the sense that the collision-
avoidance requirement is represented by dynamically-updated inequality
constraints. In addition, physical constraints such as joint physical limits
are also incorporated directly into the formulation. Based on the improved
problem formulation, a dual neural network is developed for the online so-
lution to collision-free inverse kinematics problem. The neural network is
simulated for motion control of the PA10 robot arm in the presence of point
and window-shaped obstacle.

Index Terms—Dual neural network, obstacle avoidance, quadratic pro-
gramming, redundant manipulators.

I. INTRODUCTION

Robot manipulators have been applied in factory automation doing
repetitive and dull work, such as carrying radioactive materials and
working in hazardous or cluttered environments. It is very important for
a robot manipulator to avoid collisions with obstacles; otherwise, the
manipulators or the object being held may result in serious damage. Un-
like nonredundant manipulators that may not have the ability to avoid
obstacles while completing the specified end-effector motion, redun-
dant manipulators with extra degrees of freedom (DOF) [4] may be
utilized to improve their dexterity such that they can work effectively
while avoiding obstacles [5]-[16].

Many studies have been reported on the obstacle avoidance issue.
For example, the pseudoinverse method and its variants [1], [5]-[7]
generally yield an minimum-norm particular solution plus a homoge-
neous solution. A goal of obstacle avoidance can then be specified to
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