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Synchronization and Signal Power of the Scalp

EEG Channels
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Abstract—In this paper, the goal is to further improve the output
of the scalp EEG source localization by the Euclidean minimum-
norm (MN) inverse during single trials. Trials have been selected
based on signal power at specific time intervals in specific loca-
tions. Then the source localization has been performed by MN. It
has been observed that close to a dominant cortical source of EEG,
as determined by the MN, both pairwise phase synchronization
of a channel with its nearest neighbors and the cumulative signal
power of the channels within that neighborhood become high (nor-
malized values remain above certain thresholds). This has also been
verified through simulations on the subject’s real head model. The
conclusion of our study is that only those sources are to be chosen
for which MN inverse, and signal power and phase synchronization
profile converge. A novel fast Fourier transform (FFT) based phase
synchronization measuring algorithm between a pair of signals has
been developed whose time complexity is no more than that of the
FFT.

Index Terms—Distributed source model, EEG, fast Fourier
transform (FFT), minimum norm (MN), phase synchronization,
real head model.

I. INTRODUCTION

INTERPRETATION of the clinical EEG almost always in-
volves speculation as to the possible locations of the sources

inside the brain that are responsible for the observed activity
on the scalp [1]. Simultaneous EEG-functional MRI (fMRI)
recordings enable the investigation of trial-by-trial fluctuations
of brain activity that reveals important insights into the dynam-
ics of cognitive functions [2]. For this, localization of sources of
the single-trial EEG signals and their comparison with the fMRI
activities will be of great interest, because these two important
brain signals apparently do not have positive correlations in
many cases [2], [3]. Single-trial source localization may also
give us insights about the transient nature of complex interac-
tions among various brain regions [4]. The dominant trend in
the EEG source localization has so far remained confined to
estimating sources from the signals averaged over multiple tri-
als in order to augment the signal-to-noise ratio (SNR) [5]–[7].
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Single-trial EEG/magnetoencephalogram (MEG) source local-
ization based on linear discrimination has been proposed in [7].
Single-trial source localization by means of expectation maxi-
mization algorithm based on Bayesian statistics has been pro-
posed in [8]–[10]. In the former case, linear discriminators
worked well for binary data, and in the latter case, the best
result was obtained with accurate priors and Bayesian statistics
based on a number of previous trials.

The study of synchronization in cortical activities has a long
history [11]–[15]. Even controlling brain–computer interfaces
using phase synchronization has been proposed [16]. Detec-
tion of synchronization is important in the study of epileptic
seizures [17], [18] and Parkinson’s disease [19], but unfortu-
nately, there is no general agreement about the notion of syn-
chronization in the signal processing community [20], biology,
or even physics [21]. Various notions of phase synchronization
and their comparative studies on EEG signals have been re-
ported in [22]. The importance of the methods for understanding
the complex interactions among brain regions using single-trial
signals to investigate phase synchronization between pairwise
sensors or directly within the MEG/EEG source map has been
well recognized [4].

The purpose of our study is to improve the accuracy of single-
trial source localization of the scalp EEG signals by simulta-
neous but independent application of two different techniques
namely: 1) minimum-norm (MN) inverse and 2) phase synchro-
nization and signal power profile of the scalp EEG channels. In
this paper, we have run both the methods on the same dataset
and only accepted those outputs in which they both agree. To
improve the localization accuracy of the sources in single trials,
selection of trials have been made based on strength of sig-
nals in the somatosensory area at the epoch determined by the
EEGLAB [23] and supported by previous findings [24], [25].
The Euclidean MN (L2-norm) and its various variations have so
far remained the most widely used regularization techniques for
the source localization inverse calculation [1], [4], [7]–[10]. In
this paper, for single-trial source localization, we have followed
the Euclidean MN regularization in a distributed source model
setup [26]. A novel fast Fourier transform (FFT) based phase
synchronization measuring algorithm between a pair of signals
has been developed here.

In the next section, we will outline the methods used in this
paper. In Section III, we will describe source localization on
simulated EEG in the subject’s real head model. Section IV con-
tains data acquisition and preprocessing. In Section V, we will
be presenting the results of source localization by simultaneous
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application of MN inverse, and signal power and phase syn-
chronization profile on the EEG signal of the subject collected
during median nerve stimulation. In the concluding section, we
will summarize the results with a view to future directions.

II. METHODS

A. Trial Selection

The scalp EEG signals collected from the subjects during
stimulus presentation often contain hundreds of trials. Even
after preprocessing, the signal strength across all the channels
varies significantly from one trial to another. This variation is
quite random across all the trials. Since the focus of our study is
source localization in the single-trial EEG signals, selection of
appropriate trials has been an important step. If the scalp EEG
signal strength across all the channels in a trial is sufficiently
weak, the cortical activity localization is likely to be faint and
unreliable. To ensure adequate signal strength in the trial under
experimentation, we have used the following straightforward
algorithm.

It is important to note that once a trial is selected based
on signal strength in a subset of channels, the actual source
localization is done in that trial for the EEG signals from all the
scalp channels.

B. Forward and Inverse Calculations

The head has been modeled as a set of nested regions (brain,
skull, and scalp) with constant conductivities and separated by
interfaces in between two mutually adjacent regions [22]. Each
class of tissues of the head, like brain, skull, scalp, has been
assumed to have constant conductivity (0 for air, 1 for scalp
and brain, and 0.01 for skull). Based on these assumptions,
the mathematical detail of the boundary-element-method-based
forward calculation has been described in [27], which has also
been schematically summarized in [28]. The sources of the scalp
EEG have been identified with the Euclidean MN inverse cal-
culation. The details of the inverse calculation can be found
in [26] (also see [10]). Briefly, the following expression needs
to be minimized:

J(s) = ‖Hs − m‖2 + λ ‖s‖2 (1)

where s denotes the cortical source vector and m denotes the
scalp channel vector. If there are p sources and q channels, then
H is a q × p matrix, called the gain matrix, which is determined
by the forward calculation. The parameter λ is a regularization
term (value taken as 10−20 in our calculations) introduced to
make the ill-posed inverse problem a well-posed one. The right-
hand side of (1) has a unique minimum, and therefore, the
minimization of (1) gives a unique source vector s.

C. Phase Synchronization

Definition 1: If α and β are two distinct phases, then they are
synchronous if and only if mα − nβ = C, where C is a fixed
number such that 0 ≤ C < π, where m and n are integers [29],
[30].

For convenience of calculation, in this paper, we shall keep
m = n = 1. The general case has been dealt with in [31]. Here,
we are concerned about processing of stationary EEG signals.
So, we can use an FFT-based phase synchronization measuring
algorithm. A wavelet-based algorithm for phase synchronization
detection, particularly for the nonstationary brain signals, can
be found in [32].

Let xj (t) and xk (t) be the EEG signals collected from the
jth and kth electrodes, respectively. Their Fourier expansions
can be written as follows:
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where ajn and bkn are to be determined by FFT within a suitably
chosen time window [33]. If xj (t) and xk (t) are synchronous
signals, then the phase lag should be almost uniform across all
the harmonics, which is our basic assumption (for mathematical
as well as physical motivations, see [33]). We are interested to
study not exactly phase-synchronous signals, but almost phase-
synchronous signals. In other words, we are looking for

αj1 − αk1 ≈ · · · ≈ αjn − αkn ≈ · · · (6)

which implies

aj1bk1 − ak1bj1

aj1ak1 + bj1bk1
≈ · · · ≈ ajnbkn − aknbjn

ajnakn + bjn bkn
≈ · · · . (7)

This implies that both the mean and the standard deviation of
the quantities

ajnbkn − aknbjn

ajnakn + bjn bkn
− ajn+1bkn+1 − akn+1bjn+1

ajn+1akn+1 + bjn+1bkn+1
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over all n would be small when xj (t) and xk (t) are almost
phase-synchronous. Let

E(n) =
∣∣∣∣ajnbkn − aknbjn

ajnakn + bjn bkn
− ajn+1bkn+1 − akn+1bjn+1

ajn+1akn+1 + bjn+1bkn+1

∣∣∣∣ .

(8)
Since we are interested in phase synchronization only, we have
taken E(n) for all n irrespective of the power associated with
the band n (for a justification, see [33]). The measure of phase
synchronization between xj (t) and xk (t) is given by the syn
function defined as

syn(xj (t), xk (t))= syn(j, k)=
1

1 + mean(E(n)) + std(E(n)
(9)

which gives a measure of synchronization between xj (t) and
xk (t) in a 0 (no synchronization) to 1 (perfect synchronization)
scale. A complete derivation of the syn(xj (t), xk (t)) in pseu-
docode form has been given in [33]. Since measurements over
all n have been incorporated in (9), it actually gives a more
minute measure of phase synchronization based on finer reso-
lution than the statistical-correlation-based measures. It can be
shown that the time complexity of the algorithm equals to that
of the FFT [33].

We have validated this algorithm by simulation on ten artifi-
cially generated signals. Each of the signals has been generated
by adding a few Fourier components with arbitrary frequency
and amplitude. The only exceptions are the sixth and seventh
signals as they have been created to be phase-synchronous with
each other, in the sense that the seventh has been created from
the sixth by uniformly suppressing its amplitude by a constant
factor (see [33] for more detail). All other signals are pairwise
phase-asynchronous. Out of the 10C2 = 45 values of synchro-
nization, 44 values are less than or equal to 0.0881, and that
between the sixth and seventh signal is 1 in a 0 to 1 scale [cal-
culated by (9)]. Another validation comes from the simulation
results on a real head model (details presented in Section III).
When only a single cortical source is active, it always generates
perfectly phase-synchronous signals [with value 1 as calculated
by (9)] between any two pairs of scalp EEG electrodes, which
is perfectly reasonable.

D. Clustering

Here, clustering means the neighborhood construction for
each EEG electrode. It should not be confused with clustering
in pattern recognition. Fig. 1 gives the position of all the 60
channels on the scalp diagrammatically. By neighborhood of a
channel we mean the channel itself along with the channels clos-
est to it (see the examples in Fig. 1). For 60 channels, there are
60 neighborhoods or clusters. The ith cluster, i ∈ {1, . . . , 60},
has been formed according to the following rules.

1) Include the ith channel.
2) Draw a circle centering the ith channel so that at least

one channel falls on the circumference and no channel is
inside other than the ith channel.

3) Include all the channels falling within the circumference.
It is clear from Fig. 1 that a cluster will contain at least two

and at most five channels.

Fig. 1. Locations of all the 60 channels. Formation of two typical clusters
according to the nearest channels norm has been shown. Cluster 4 consists of
channels 13, 14, 15, 29, and 51. Cluster 56 contains only channels 55 and 56.

Calculation of the average cumulative phase synchronization
and the average cumulative signal power of the ith cluster have
been done according to the following equations:

P (i) =
1
|Λ|

∑
j∈Λ

syn(i, j) (10)

W (i) =
1

|Λ| + 1


∑

j∈Λ

pow(j) + pow(i)


 . (11)

Here, P (i) is the average cumulative phase synchronization in
the ith cluster, Λ is the set consisting of all the channels of
the ith cluster other than the ith channel, |Λ| is the cardinality
of Λ, W (i) is the average cumulative signal power of the ith
cluster, and pow(j) denotes the signal power at channel j. Since
different clusters consist of different numbers of channels, we
have taken the average of cumulative values of both the phase
synchronization and power of each cluster in order to nullify
the effects of channel population in a cluster. The signal power
pow(j) can be calculated in many ways. Here, we have taken the
mean across all the windows in the Welch method in MATLAB.
In this paper, we will often use the words channel and cluster
interchangeably.

III. SIMULATION OF SOURCE LOCALIZATION

First we have tested our method by simulation on the real
head model of the subject constructed from his structural MRI
data. The cortex of the subject has been modeled as a grid of
triangular mesh consisting of 8959 points. Each point of this
cortical mesh is called a cortical point in this paper. Cortex and
cortical mesh will be used interchangeably. Precise location of
each point has been given in a 3-D Euclidean reference frame.
Precise location of each of the 60 scalp electrodes (recorded by
MRI) has also been given with respect to the same reference
frame. We have constructed each cortical source as a collec-
tion of four to seven closely spaced cortical points. They have
been activated by artificial time-varying signals, each of which
has been generated as a summation of a few arbitrary Fourier

Authorized licensed use limited to: Florida Atlantic University. Downloaded on June 26, 2009 at 02:10 from IEEE Xplore.  Restrictions apply.



MAJUMDAR: CONSTRAINING MN INVERSE BY PHASE SYNCHRONIZATION AND SIGNAL POWER OF THE SCALP EEG CHANNELS 1231

TABLE I
RESULTS OF SIMULATION: COMPARISON OF SOURCE LOCALIZATION BY:

1) MN AND 2) SYNCH AND POWER ON A REAL HEAD MODEL

components (like in Section II-C). These time-varying signals
have the same number of time points as the original EEG data
collected from the subject during the stimulation. All the corti-
cal points belonging to a single source have been activated by
the same signal. The signal represents the event related potential
(ERP) generated at the point. Different sources have been acti-
vated by different signals. No two sources have been activated
by mutually phase-synchronous signals. All nonsource points
in the cortical mesh have been assigned zero value uniformly
across the time. After activation of the sources, the EEG signals
have been generated by the forward model [27], [28] and col-
lected through the 60 scalp electrodes. Then the sources have
been localized by: 1) the MN inverse method [26], [28] and 2)
the phase synchronization and signal power profile, applied on
the collected EEG. In 2), the locations of sources are directly
underneath the scalp channels. For comparing 1) and 2), the
distance between the sources localized by 1) and 2) has been
calculated on the scalp between the channel right on top of the
source calculated by 1) and the channel on top of the source
calculated by 2). The result has been accepted when both the
sources fell within 4.5 cm of each other as measured on the scalp
(4.5 cm is enforced by the average interchannel gap in the scalp
electrode placements that can be improved by increasing the
number of channels). Measurements on the scalp (rather than
on the cortex) have been preferred, for it helps us to understand
the reliability of method 2) that can only localize a source as a
cortical activity under a scalp electrode within a few centimeters
of the error range. The results have been summarized in Table I.

When there is only one source, the generated EEG sig-
nals collected from any two channels are phase-synchronous
(syn(i, j) = 1 for all i, j). In the cluster right on top of the
source and also in the neighboring clusters, signal power is very
high. In all other locations, signal power is very low. In these
cases, localizing the source both by MN inverse and by synchro-
nization and signal power profile becomes quite straightforward.
So, we have tested our method on scalp EEG signals generated
by two cortical sources in each trial: one is stronger than the
other by a factor of about 10. The sources are separated by a
distance of 7 cm or more in the cortex. The sources are ei-
ther in the somatosensory area or in some neighboring region.
Simulated results on 20 trials have been presented in Table I.

Table I shows that for almost 58% of the total sources and
92% of the detected sources, localization by MN inverse and by
phase synchronization and signal power profile match with each
other. In our simulations, in each trial, the two sources have an

Fig. 2. Cortical source localization during 284th trial of right stimulation
25 ms after the stimulus onset. The source on somatosensory cortex (below) is
rather weak. Arrows indicate possible orientation. The upper source falls right
underneath channel 33 and the lower right underneath 13.

intensity disparity of order 10. The result can be improved by
reducing this disparity.

IV. EXPERIMENT AND DATA

Transcutaneous stimulation of the right median nerve was
administered with conventional nicolet bipolar bar electrodes
placed 3 cm apart on a 35-year-old healthy right-handed male
volunteer. The stimulation was in the form of constant cur-
rent square-wave pulses (duration 100 µs, 8 mA, 2 Hz). During
the stimulation scalp, EEG of the subject was collected with
SynAmps (Compumedics Neuroscan, El Paso, TX) 64-channel
system (data from only 60 channels were used for analysis).
Electrodes were placed on the scalp with QuickGel (same com-
pany) according to the international 10/10 convention in which
channel 14 (Fig. 1) falls right on top of the central position of the
left somatosensory cortex. The sample frequency is 5000 Hz,
bandpass-filtered between 1 and 1000 Hz. After the bad trial re-
moval, a total of 490 trials have been selected, each of them
segmented from 30 ms before the stimulus onset to 50 ms
afterward.

V. RESULTS ON HUMAN EEG

To elaborate the derivation of the results on human EEG,
analysis of signals from a trial, namely the 284th trial, at 25th
ms after the stimulus onset will be explained. Sources have been
localized by MN, supported by high average cumulative phase
synchronization and signal power at a nearby (within 4.5 cm, all
distances are Euclidean) channel (Fig. 2). Fig. 2 contains only
those sources identified both by the MN inverse [1) implemented
by OPENMEEG [28]], and phase synchronization and signal
power profile across the scalp channels. Identification of sources
by synchronization and power profile has been done according
to Fig. 3 and Table II. During the stimulation trials, activation of
other parts of the cortex beyond somatosensory areas are quite
common [34]. This is also shown in Fig. 2.
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Fig. 3. Mean cumulative phase synchronization and signal power at each
cluster during the 284th trial of right stimulation 25 ms after the stimulus onset.
Horizontal lines show thresholding.

TABLE II
ACTIVE CORTICAL POINTS IDENTIFIED BY MN INVERSE DURING THE 284TH

TRIAL ALONG WITH PHASE SYNCHRONIZATION AND SIGNAL POWER PROFILE

ON THE SCALP

The normalized thresholding for phase synchronization is 0.2
(for the simulated data, it was taken to be 0.4 because the signals
were pure). Table II shows the relationship between cortical
activities identified by MN method (with half (maximum value)
thresholding) and the channel-wise phase synchronization and
signal power profile of the scalp EEG signals during the 284th
trial of right stimulation 25 ms after the stimulus onset. Regions
with less than two active cortical points have been ignored.
Even with half maximum value thresholding, the number of
active cortical points remained less than 0.004% for all 30 trials
we have examined. For the MN inverse calculation at the 25th
ms, the average value of the reconstructed sources has been
taken from 24.5 to 25.5 ms in order to have a better SNR. For
phase synchronization and signal power profile calculation, the
window has been extended by 5 ms on either side of [24.5 25.5]
in order to have a better approximation by the FFT (55 time
points).

In some trials, by combining the MN inverse and the phase
synchronization and signal power profile, it is even possible
to estimate the orientation of the sources. From Table II, it is

clear that for the 284th trial, the cortical region below channel
28 (compare Figs. 1 and 2) is the most active, but the high
signal power and phase synchronization occur at channel 33.
This indicates that the orientation of the cortical source below
channel 28 might be toward channel 33, i.e., right upward (see
Fig. 1). Similarly for the cortical source below channel 13, the
high signal power and phase synchronization are observed at
channel 50, and the orientation of the source is likely to be
straight downward.

The phase synchronization and signal power profile of the
scalp EEG channels may give a very crude estimation about
where a dominant cortical source is likely to be. MN inverse, on
the other hand, is a more accurate method. This is the reason why
we have ignored the false positives shown in the graphs of Fig. 3.
In other words, the synchronization and power profile have been
used to further constrain the MN method in order to better
converge toward the actual cortical sources. For this reason, we
have ignored the cortical regions shown to be active by MN
below channels 47–49 (Table II). Channel 14 (C3) is situated
right on top of the central position of the left somatosensory
cortex [24].

It is clear that when two signals are dominated by the same
noise, they may appear phase-synchronous to a good extent
by (9). In other words, some times phase-asynchronous signals
with low SNR may look phase-synchronous. This is clearly not
the case here, for when we slid the effective window by just
1 ms, significant changes were observed in the phase synchro-
nization profile while the signal power profile usually remained
the same. To emphasize this point, further simulation studies in
Section III have been done without any additive noise. In case
of the scalp EEG, we have selected trials based on signal ampli-
tude in channels 13, 14, 15, 29, and 51 that cover the central part
of the left somatosensory cortex (Fig. 1). The aforementioned
channels are situated at a location where the effects of eye blink
and muscle contraction artifacts would be minimal. Moreover,
a careful visual inspection of the EEG data in the selected tri-
als did not reveal any abnormal behavior in the aforementioned
channels.

We have selected the 25th ms time epoch after stimulus on-
set by the EEGLAB [23], and the single trials in that epoch
according to signal amplitude by measuring the signals across
channels 13, 14, 15, 29, and 51 (i.e., cluster 14, Fig. 1) during
that time epoch. Selection of trials this way may be thought
of a kind of “informed prior” [9], [10]. This makes possible
better observation of the effect of stimulus in conformity with
known activations. The results of the best 30 trials have been
summarized in Table III.

Table III shows the relation between cortical activity and
phase synchronization, and signal power becomes weaker with
trials consisting of weaker signals in cluster 14. This indicates
that the increased synchronization is due to the presence of ERP
source rather than noise. Fig. 4 shows the ERP map during all the
490 trials at the 25th ms after stimulus onset. It also supports
the activity profile generated by the MN method during the
best 30 trials (Table IV), and the phase synchronization and
signal power profile of the scalp channels during that time, as
shown in Table IV. Fig. 5 presents a comparison between the
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TABLE III
SUMMARY OF RESULTS FOR THE BEST 30 TRIALS

Fig. 4. ERP map of all the 490 stimulation trials by EEGLAB during 25th
ms after the stimulus onset. The dark spot indicates the most active cortical
source of ERP. Channels 13, 28, and 29 are the EEG electrodes underneath
which cortical sources have most consistently been identified by MN, and phase
synchronization and signal power.

TABLE IV
PROFILE OF CHANNELS 13, 28, AND 29 WITH THE MOST ACTIVE ERP

AT 25TH MS DURING THE BEST 30 TRIALS

Fig. 5. Localized sources in each of the best 30 stimulation trials out of 490 by
MN (blue or left bar). Each right bar (red) indicates the subset of the identified
sources by MN that have also been identified by phase synchronization and
signal power profile of the scalp EEG channels, both 25 ms after the stimulus
onset. Agreements occur most consistently in and around the left somatosensory
area (channels 13, 28, and 29).

Fig. 6. Dominant cortical sources during 30% or more of the best 30 trials.
Sources have been localized in each trial by MN, and phase synchronization
and signal power. Cortical points that were active in the largest number of trials
(9–11 out of 30) have been taken to reconstruct the sources. Please see the color
figure online.

two methods for 30 best trials. It also shows how the sources
identified by MN are further refined by synchronization and
power profile. Since the agreements between the two methods
occur most consistently in and around the left somatosensory
area (channels 13, 28, and 29) 25 ms after the stimulus onset,
their combination does make good sense.

It is clear from Table IV that the cortical activity is rather
stable underneath channels 13 and 28. Under the channel, 29
active points occurred rather haphazardly. In most cases, active
points under channels 13 and 28 occur in the same trial. Ac-
tive points under channel 29 occur without much relationship
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with the occurrence of active points under channels 13 and 28.
Fig. 6 shows the dominant cortical sources during the 30 best
trials, which is consistent with the ERP diagram of Fig. 4. The
sources have been localized by MN inverse and also supported
by high phase synchronization and signal power on the scalp.
Orientations are different in different trials, and therefore, have
not been shown.

VI. CONCLUSION

In this paper, we have applied the classical MN inverse solu-
tion for the scalp EEG source localization during median nerve
stimulations simultaneously, but independently, with the phase
synchronization and power profile of the EEG signals in single
trials. Both the methods agree with each other most consis-
tently underneath channels 13, 28, and 29 (covering parts of so-
matosensory and adjacent areas), where the ERP is the strongest
at 25th ms after the stimulus onset. This indicates a more accu-
rate (certain) single-trial source localization by combining the
two methods rather than by just one.

Here, we have described an FFT-based phase synchronization
measuring algorithm whose time complexity is equal to that of
the FFT. It may be useful for processing epileptic EEG sig-
nals [18], particularly for seizure focus lateralization [30]. The
algorithm can capture interesting variations in synchronization
during sliding the window even by as small a time step as 1 ms
while the signal power profile remains unchanged, as has been
observed on human scalp EEG data. This indicates that the syn-
chronization measure may not be due to noise. An interesting
future study would be to see how it performs with varying SNR.
However, during the present study, it has been able to localize
sources in single trials of noise-free simulated EEG as well as
human scalp EEG (bandpass-filtered between 1 and 1000 Hz)
with comparable efficiency with MN when the signal power is
high.

In this paper, we have been constrained by the interchannel
gaps in the EEG net, which, in most cases, are more than 3 cm,
and in some cases, more than 4 cm. So we could not improve the
results presented in this paper, where the resolution of distance
could not be shortened less than 4.5 cm. The results are likely
to be better with a denser EEG net.

A future goal will be to estimate the priors with phase syn-
chronization and signal power profile across the scalp EEG
channels and then apply the estimation maximization in a
Bayesian framework in order to more accurately estimate the
sources with the help of the weighted MN algorithm, as de-
scribed in [8]–[10].
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