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Automatic Seizure Detection in ECoG by Differential
Operator and Windowed Variance
Kaushik Kumar Majumdar, Senior Member, IEEE, and Pratap Vardhan

Abstract—Differential operator has long been used in image
and signal processing with great success to detect significant
changes. In this paper we show that differentiation can enhance
certain features of brain electrophysiological signals, contam-
inated with noise, artifacts, and acquisition defects, leading to
efficient detection of those changes. Windowed variance method
has been very successful in detecting seizure onset in the brain
electrophysiological signals. In this paper we have combined these
two powerful methods under the name of differential windowed
variance (DWV) algorithm to automatically detect seizure onsets
in almost real time, in continuous ECoG (depth-EEG) signals of
epileptic patients. The main advantages of the method are sim-
plicity of implementation and speed. We have tested the algorithm
on 369 h of nonseizure ECoG as well as 59 h of seizure ECoG
of 15 epileptic patients. It detected all but six seizures (91.525%
accuracy) with an average delay of 9.2 s after the onset with a
maximum false detection of three in 24 h of nonseizure data. Eight
novel empirical measures have been introduced to avoid false
detections. To ascertain the reliability of the detection method a
novel methodology, called quasi-ROC (qROC) curve analysis has
been introduced. DWV has been compared with a difference filter
based sharp transient (ST) detection algorithm.

Index Terms—Automatic seizure detection, differentiation, elec-
trocorticoencephalogram (ECoG), qROC curve, windowed vari-
ance.

I. INTRODUCTION

D IFFERENTIATION of a function represents its rate of
change with respect to its argument. An image is rep-

resented as a spatial intensity function. Double differentiation
(in the form of Laplacian operator) of the intensity function is
widely used for edge detection in an image [1]. An edge can
be characterized by an abrupt change in intensity indicating the
boundary between two regions of an image [2]. Laplacian has
been used to detect the gradient. We have applied a similar logic
in this paper to detect the boundary between a significant event,
such as an epileptic seizure, and the back ground activity in
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the brain electrophysiological signals. An immediate applica-
tion of which is automatic detection of seizure onset in the data
of a continuously monitored epileptic patient [3]–[5]. It has al-
ready been observed that double differentiation of human scalp
EEG resulted in marked intensification of fast waves [6]. In fact
taking 1.4 Hz as the threshold point it has been shown that the
derivative of the EEG enhances the power associated with fre-
quencies 1.4 Hz and at the same time diminishes the power
associated with frequencies 1.4 Hz. From the argument pre-
sented in [6] it is evident that the threshold should have been
1 Hz instead of 1.4. In this paper we will use this phenomenon
as a high pass filter with cutoff frequency 1 Hz, which is advan-
tageous for eliminating movement artifacts [7].

First temporal derivative has been used as a filter to en-
hance the automatic seizure detection accuracy in the ECoG of
epileptic patients [3], [5]. Absolute value of first and second
derivative of neonatal sleep EEG were used for feature ex-
traction in order to automatically detect the sleep stages [8].
First and second derivative of EEG were also used to extract
time domain features for automatic seizure detection in [9].
Normalized absolute value of first or second derivative (de-
pending on the patient) has been used to amplify the seizure
part of the depth EEG with respect to the background [10],
which facilitated automatic seizure detection (see also [11]).
This is in conformity with the use of the differential operator
in signal processing in the measurement of small amounts
of substances in the presence of large amounts of potentially
interfering materials. In such applications it is common that
the actual signals are weak, noisy, and superimposed on large
background signals [12] from which the actual signals need to
be separated out. The biggest advantage of using a differential
operator in this context is that it is linear and therefore suitable
for online applications [5].

Seizure is often signified by abnormal synchronization in
neuronal firing either in a focal region or across several regions
in the brain. Synchronous firing during a seizure is largely
performed by the excitatory pyramidal neurons (which con-
stitute 85% of the cortical neurons). As a result sharp spiking
activities in quick succession are observed in the excitatory
postsynaptic potential (EPSP). Therefore seizure electrophysi-
ological signals both on and inside the scalp are characterized
by closely spaced spiking activities relative to the background.
Clearly windowed variance will be a simple but efficient
method to identify a seizure from the background [13], [14].
Differentiation accentuates the spiking activities and suppresses
the background [10], which makes seizure detection by the
windowed variance more accurate. This has been utilized for
automatic seizure detection in the current work. However this
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Fig. 1. Schematic block diagram of the DWV algorithm.

also enhances the rate of false detection in the nonseizure part
of the signals. To prevent this, eight novel empirical techniques
have been introduced, all of which are executable in linear time.

In the next section we will describe the method of seizure
detection. In Section III we will describe the methods for pre-
vention of false detection. In Section IV data acquisition will be
discussed. Section V will contain the results of implementation
of the methods on ECoG of 15 epileptic patients. Detection per-
formance study by the newly introduced qROC curve analysis
will also be presented. In Section VI we have compared differ-
ential windowed variance (DWV) with a difference filter based
ST detection algorithm that has been described in [3]. We will
use EEG and ECoG interchangeably throughout this paper. The
last section contains concluding remarks.

II. AUTOMATIC SEIZURE DETECTION

Fig. 1 represents a schematic block diagram of our auto-
matic seizure detection algorithm DWV: stands for time. The
MATLAB code of implementation of the DWV can be down-
loaded from the first author’s website. The DWV algorithm as
presented in Fig. 1 has three major subparts, namely enhance-
ment (accentuate the seizure part of the signal compared to
the background), filtering (apart from the low pass Gaussian
filter that we have used here, DWV also works as a high pass
filter), and detection (which actually identifies the seizure onset
point). We will be elaborating each of these three parts in the
following three subsections.

Here we have used Gaussian low pass filter on the raw ECoG
data rather than the more conventional infinite or finite impulse
response (IIR or FIR, respectively) low pass filters. When
Gaussian filtering is used, more weights are assigned to the
particular point where Gaussian filtering is applied and higher
weights closer to the same point whereas less and less weights
are assigned to the points away from the point of application of
the filter. This width of influence is controlled by the variance
of the Gaussian [15]. This we have found particularly useful in
preserving the distinct shapes of epileptic seizure spikes and
sharp waves over the spikes of artifacts.

In case of IIR/FIR, both feed forward and feed back signal
points are considered. That is, for applying IIR/FIR at a partic-
ular point (say, th point), signal value of the previous points
(n-1, n-2, etc., up to the length of IIR/FIR window) one also has
to consider the filtered signal (that is output from n-1, n-2, etc.).
This second part is the major difference of the IIR/FIR filters

Fig. 2. A 1 h snapshot of a time domain raw ECoG from a seizure focal channel
of patient 4. Epileptologist identified clinical seizure onset and offset have been
marked by . The raw signal is full of chewing artifacts (C). Normalized ex-
ponential of absolute value of differentiation of the low pass filtered signal at
50 Hz (B). Normalized exponential of absolute value of double differentiation
of the same (A). Onset detection based on (B) is about 7.5 s closer to the actual
onset than that based on (A).

with the Gaussian filter. However it is quite possible to approx-
imate Gaussian filtering with some variations of IIR/FIR filters
[15], although the implementation may become slightly more
complicated.

A. Enhancement

DWV achieves seizure features enhancement in a single
channel brain electrophysiological signal (ECoG and
EEG) in the following way.

1) , where is Gaussian (low pass) filter
and is the cutoff frequency.

2) , is the derivative with
respect to and is a normalization constant (positive and
large; in the present work throughout; it is
very important to note that most of the threshold values that
we have used in this work are sensitive to ) [Fig. 2(b)].

Due to the transformation as described in 1 and 2,
in case is from the seizure focus in the brain of an epileptic
patient, the seizure part of gets enhanced considerably with re-
spect to the background (which is suppressed to a good extent)
in . The reason is very simple. Let , , and are successive
time points. If a spike occurs at then statistically
and both have high numerical value, which are
two successive points in . On the other hand if all the three
points belong to normal background signal then and

both will have small values (actually smaller than the
average background signal amplitude). Thus will enhance
the spikes of , but will suppress its background. This partic-
ular property of differentiation of the seizure EEG has already
been observed in [4]. The effectiveness of 1 and 2 varies across
the patient population. For some patients the enhancement in
the seizure part may be quite weak, for others it may be pretty
sharp. In some cases it may even help nonexperts to identify
seizure by visual inspection, which is not so prominent in the
raw signal. It can be seen in Fig. 2(a) and (b) how filters based
on double differentiation and single differentiation respectively
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have suppressed (to a good extent) the chewing artifacts that are
quite prominent in the raw signal [Fig. 2(c)].

B. High Pass Filter

Fourier expansion of can be written as

(1)

where is Fourier coefficient associated with each frequency
component , is the period of the signal and is the phase
associated with given by [16]. Al-
though EEG is never periodic (nonstationary), but if its Fourier
expansion is assumed to be valid then (1) must have to be true
for some [17, Ch. 11]. Differentiating (1) we get

(2)

where is the derivative of . If right side of (1) is to converge
to the left then as . Also . So
components for small values of tend to vanish. Therefore (2)
acts as a high pass filter with respect to a phase shift of
(a phase shift preserves many features of a signal including
the spike trains). We can reasonably assume that it is a high pass
filter with cutoff frequency (also see [6]).

C. Detection

It has been observed that the windowed variance is one of the
most efficient methods to detect changes in an EEG or ECoG
signal due to epileptiform activities [13], [14]. At the same time
it is a linear method. We calculate , where
is the windowed variance operation with window length and
sliding distance . The windowed variance graph

has been shown in Fig. 3 with peak onset and
offset clearly identified as local minimum before and after the
seizure peak respectively. The seizure peak has been automati-
cally identified as the maximum value of in a 1-h-long
snapshot of continuous stream ECoG data. Once a peak is iden-
tified as a seizure it is marked and never taken into considera-
tion for further identification. The process continues to search
for seizure peak after the last identified one. Please note that al-
though the seizure peak identification is in real time, the actual
seizure onset detection is slightly behind the real time. We will
see in Section V that in almost all cases that have been studied
the computer identified onset is very close to the epileptologist
identified onset (Fig. 2).

III. AVOIDANCE OF FALSE DETECTION

The more efficient a seizure detection method the higher is
the chances of false seizure detection in the nonseizure data. In
order to eliminate false detection as far as possible we have in-
troduced eight novel empirical tests as following. To be quali-
fied as a seizure the data must be identified as having seizure by
each of the eight tests separately. Otherwise it will be classified
as a nonseizure.

Fig. 3. A ������� snapshot of patient 1 during the seizure at the 13th hour
of recording at channel 1, where the seizure pillar (enclosed in the rectangular
box) is distinctly visible. Epileptologist identified seizure onset and offset points
are 82 010 and 83 855, respectively, and those by DWV are 76 802 and 83 702,
respectively. Seizure onset and offset time points are indentified by the ver-
ical arms of the small solid retangles (right arm for the left most yellow rec-
tangle and left arm for all other rectangles), red for epileptologist indentified
points and yellow for DWV identified points. Abscissa denotes time in second
���	 points 
 � s� and ordinate denotes normalized amplitude.

A. Maximum Windowed Variance on Differentiated Signal

The windowed variance operation is to be performed on
for fixed window length (across all patients, we have taken it
to be 4000 time points, i.e., s long) and
fixed sliding distance (across all patients, we have taken it to be
100 time points long). We denote the output of this operation as

or more simply . In the DWV block dia-
gram in the Section II, we have taken “Segmentation in time”

h. The Maximum windowed variance over a 1-h-long
is denoted by (barring one or two excep-
tions we are following the same notations and symbols in this
paper that we have used in our MATLAB programs that are
available online in the first author’s website). For a given pa-
tient if B is below certain threshold (to be determined by sample
seizure data of the patient) then it is a nonseizure. Otherwise it
is a seizure. In fact we have also observed that the value should
lie not only above a threshold, but below another threshold. If it
goes above the latter threshold it is most likely to be an artifact
rather than a seizure. So ideally B should lie in an interval (pa-
tient specific).

B. Maximum Windowed Variance on Undifferentiated Signal

Let us take as in point 1 of Section II-A. Maximum win-
dowed variance operation has been performed on the absolute
value of with the same window length and sliding distance
as in Section II-A across all the patients. The variance of the
window of maximum variance has been denoted by C. If C falls
below certain threshold (to be determined by sample seizure
data of the patient) then it is a nonseizure. Otherwise it is a
seizure. Just for the same reasons as in Section III-A in case
of a seizure C should lie within a patient specific interval.

C. Window After the Maximum Variance Window

We take as in Section III-A. Let us denote the
window of maximum variance B by . In the same vain we
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can denote the window immediately after as . Let
be an array of variance values of successive windows. Let us
write , where denotes the variance.
Let us consider . If falls below
certain threshold (to be determined by sample seizure data of
the patient) then it is a nonseizure. Otherwise it is a seizure.
Here too for seizure the value should lie within a patient specific
interval.

D. The 3/4th Rule

Let be the variance of at the th window after
. Number of windows to be considered after is to be stip-

ulated beforehand (we typically kept it at 16). Let be the
position (taken to be the first or starting point of the window)
of the first of the windows with minimum variance among the
stipulated number of windows. Let is the position of
and window length . Local minimum of

within has been treated as the onset of seizure in this
paper (Fig. 3) and local minimum of within the window

is the offset (the bottom right panel of Fig. 3). In general we
have noticed that this onset is quite satisfactory, but the offset
is not that up to the mark. Therefore we are not going to report
the offset results in this paper. However it has important role
in distinguishing between seizure and nonseizure peaks as we
will see in Section III-H below. Let be an array consisting of
values of starting from two windows before , i.e.,

through . Let is an array consisting of maximum
values of . Let be another array consisting of values of
which are greater than or equal to . We have no-
ticed that is a quantity whose threshold dis-
tinguishes between seizure and nonseizure EEG. If it lies below
certain threshold then it is a seizure. Otherwise it is a nonseizure.
Let us mention that compared to the other thresholds described
in Sections III-A to III-C this threshold took fewer different
values across the patient population that we have tested. In other
words this threshold has remained more uniform across the pa-
tient population.

E. The Above 3/4th Rule

, where stands for standard deviation, is a quan-
tity whose patient specific threshold will distinguish between
seizure and nonseizure signal windows. There is no seizure if
the value is greater than the threshold. This threshold also re-
mained more uniform across the patient population that we have
tested compared to the thresholds in Sections III-A to III-C.

F. Double Derivative of E (DDE) Rule

Let , where denotes double
differentiation and is a positive normalization constant (kept
fixed across all the patients). is as in Section III-D. Let
be an array consisting of values of , which are greater
than or equal to . Length of is a quantity,
whose threshold distinguishes between seizure and nonseizure
EEG. Greater than threshold length indicates nonseizure. This
threshold is also more uniform across the patient population.

Fig. 4. ���� form (see Section II-A, point 2) of a 1-h-long seizure ECoG ����.
The seizure peak appears distinctively as a short thick dense pillar above the time
point ���� . A tall thin nonseizure peak appears between ���� and ���� ,
which is to be eliminated by the peak rejection method. �	� time points 
 � s.

G. Maximum DE (MDE) Rule

For seizure EEG must lie within a specified in-
terval. This interval is patient specific.

H. Peak Rejection

The difference between the seizure onset and offset points as
described in Section III-D gives the width of a seizure peak or
pillar. In case of some patients’ data where there are too many
noisy spikes this method will help eliminate nonseizure spikes
from the signal, thereby making the detection more accurate
(Fig. 4). The noise spikes are usually less wide than the seizure
spikes (Fig. 4). So if the peak width is less than the threshold it
is taken to be a nonseizure peak. Otherwise it is a seizure peak.

It is to be noticed that each of the above operations executes
in linear time. The whole method is extremely fast—takes less
than 4 s for a 1-h-long snapshot of continuous stream data, with
15.625-s window length and 15.234 s overlap on an Intel Core 2
Duo Processor T8100 (2.1 GHz/800 MHz FSB, 3M L2 cache),
Ubuntu machine with 4 GB RAM. The implementation was in
MATLAB (in C++ code the program is likely to run even faster).
In a much slower Windows Vista based machine the operations
did not take more than 15 s.

Both the DWV and the false detection avoidance rules have
been incorporated in the same MATLAB program to run seri-
ally one after the other on any single channel continuous ECoG
signal (parallel implementation on multi-channel data has also
been achieved). First DWV identifies a window and a point of
onset of a seizure, irrespective of whether the signal actually
contains a seizure or not. Then each of the false detection avoid-
ance rules is run on the signal. If each of them confirms that the
identified window then only it is accepted as a seizure window
and the onset is calculated as described in Section II.

IV. DATA ACQUISITION

To test the effectiveness of the DWV algorithm on brain elec-
trophysiological signals along with the false detection avoid-
ance rules, we have chosen to run our algorithm on the pub-
licly available ECoG data from the Seizure Prediction Project
of the Albert-Ludwig-Universitat Freiburg, Germany [18]. The
ECoG data were acquired using Neurofile NT digital video EEG
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TABLE I
PATIENT DETAILS

SP = simple parietal, CP = complex parietal, GTC = generalized tonic-clonic, H = hippocampal, NC = neocortical. Electrode: grid (g), strip (s), depth
(d). Seizure frequency varies between 0.1 and 6.8 per day [21, Table I].

system (It-med, Usingen, Germany) with 128 channels, 256 Hz
sampling rate, and a 16 bit analog to digital converter. In all
cases the ECoG from only six sites have been analyzed. Three
of them from the focal areas and the other three from out side
the focal areas (this is the configuration with which the data was
available to us). See Table I for the patient details. The patient
population have earlier been studied in [19]–[21], where further
details can be found.

There are 21 medically intractable focal epileptic patients’
ECoG data [18]. For each patient there are 2–5 h of seizure data
and 24–26 h of nonseizure data (except patient 2, for whom no
nonseizure data is available). We have tested our algorithm on
all of them. Only on 15 of the patients it worked satisfactorily
and in this paper we are going to report results on these fifteen
patients only. Excluding some patients’ data from the actual ex-
periment for various reasons is not uncommon as can be seen in
[5]. The six patients’ data on which our methods did not work
satisfactorily had one or more of the following problems. Data
contained heavy artifacts. Because of amplifier box disconnec-
tion and reconnection there were sharp jumps in voltage, which
have been identified as “seizure” by the DWV and also could not
be identified as nonseizure (i.e., not clinical seizure) by the false
detection avoidance rules of Section III. For patients 10 and 21’s
seizure data the authors could not find any seizure spikes by vi-
sual inspection.

Patient specific performance of the automatic seizure detec-
tion algorithms is well recognized [22], [23]. Since the patient
data we have used here is an open source data, we will maintain
the patient number, so that the future workers get a chance to
compare with our findings.

V. RESULTS

A. Preprocessing

Gaussian low pass filter, with cut off frequency 100 Hz (50 Hz
for patient 4, whose data contains high concentration of chewing
artifacts [see Fig. 2(c)] has been used to remove muscle contrac-

TABLE II
DETAIL OF THE PATIENT SPECIFIC RESULTS

For Patient 4, the cutoff frequency in the Gaussian filter is 50 Hz, for all
other it is 100 Hz. For Patient 2, no nonseizure data is available. The number
in bracket in the last column indicates channel threshold.

tion artifacts and noise. Since differentiation has been applied,
it worked as a high pass filter with cutoff frequency 1 Hz. The
phase shift keeps the seizure part intact. For each of the 15 pa-
tients we have tested the data of common reference montage
as well as bipolar montage. In a patient specific way one gives
better results over the other (Table II), and we have opted for the
better in each case. The bipolar montage has been indicated as
c1-c2, c2-c3, c3-c1, where c1 is channel 1, etc. (only channels
1, 2, and 3 are associated with seizure focus).

B. Seizure Detection

In this paper we are only concerned about the automatic de-
tection of the clinical seizure onset (CSO). The gold standard
of CSO is the seizure onset identification by a certified epilep-
tologist. The data that have been provided to us by the Al-
bert-Ludwig-Universitat Freiburg, came with the CSO and the
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TABLE III
PATIENT-WISE SENSITIVITY, SPECIFICITY, PERCENTAGE DETECTION, AND ERROR RATE

clinical seizure termination (CST) points identified by certified
epileptologists. In all automatically detected seizures but one
the CSO detection by the DWV has been achieved within 20 s of
the CSO identified by epileptologist. Only for the seizure of 46th
hour of the patient 8 the detection by DWV took place 66.3867 s
after the CSO identified by the epileptologist. Therefore we have
considered a CSO detection is successful by the DWV only if
the detection by DWV occurs within 67 s of the epileptologist
identified onset (in [5] this has been taken to be 2 min).

The detection algorithm was run on 1-h snapshots of ECoG
from the epileptic patients containing both seizure and non-
seizure signatures (most of them did not contain any seizure
and the challenge was to avoid false detections on those data).
Window length of 4000 time points (15.625 s) with 3900
(15.234 s) time points overlap (i.e., sliding by 100 points) has
been used s . Seizure portions were identified
by certified epileptologists at the place of origin of the data
at each given time slot, but not for individual channels. The
algorithm was implemented on each of c1, c2, and c3, or c1-c2,
c2-c3, and c3-c1 to automatically detect the onset and the
offset of a seizure (please see Table II). Onset of the seizure
has been taken to be the earliest point detected as the onset
among all the three channels (same has been followed in [5]) or
the three channel pair subtractions, as the case may be. In this
paper we have identified the offset for each channel or channel
pair subtraction for only one purpose i.e., for determining the
spike width (as shown in Section III-H) in order to distinguish
seizure spikes from the nonseizure spikes (the width may not be
accurate all the time, but it nicely serves our purpose of seizure
nonseizure spike train distinction).

The single differentiation operation (SDO) has been applied
on all patients. For the application of double differentiation op-
eration (DDO) see [10]. SDO works better with more noisy data.
In the ECoG of patient 1 windowed variance could not detect
seizures in the preprocessed signals. But after filtering with the
SDO all the seizures could be detected by windowed variance
(in this case DDO performed even better as can be seen in Fig. 1
of [10]). Out of total 59 seizures tested in 15 patients, 54 could
be detected accurately (91.525% accuracy, which is comparable
with [24]), with a total of eight false detections in 369 h of non-
seizure data belonging to the 15 patients (Table II). Patient spe-
cific sensitivity, specificity, detection rate, and error rate have
been given in Table III.

We do not have any nonseizure data for the Patient 2. Pa-
tient 4’s data are heavily contaminated with chewing artifacts
[Fig. 2(c)]. We have kept the cutoff frequency of the Gaussian
low pass filter for this patient at 50 Hz (this gives better detection
than 100 Hz, because chewing artifacts are high frequency arti-
facts). For all other patients it has been 100 Hz. The fifth seizure
ECoG of patient 4 required a very special preprocessing (sup-

pression of all values 0.15 of the maximum value irregardless
of sign) after which the seizure could be detected accurately. But
this does not work for other seizures of the same patient. There-
fore we will treat it as a failure of the DWV. For patient 5 there
are five false detections if channel threshold is 2, but there are
only two false detections if the channel threshold is 3 (Table II).
This means if a seizure is detected it will have to be detected in
not just 1 single focal channel but in 2 to (all) 3 focal channels
(almost) at the same time. When, detection is recognized only
if it occurs almost simultaneously at 2 of the focal channels, we
call the channel threshold 2. Similarly for channel threshold 3.

For some patients is full of nonseizure spikes. One
way to efficiently detect the seizure spikes is to eliminate the
nonseizure spikes. For this we have developed a peak rejection
method (Section III-H). It has been observed that seizure peaks
have distinctive pillar like shape compared to much slender
artifact peaks in the signals of the patients (Fig. 4). A
peak is rejected if it is a spike window having lower width than
a subsequent much wider peak window. A wider peak window
typically turns out to be a seizure window. Peak rejection
method has been applied only on the data that are heavily
contaminated with spike artifacts (ECoG of patients 6, 13, and
14).

Since the available seizure ECoG was rather scarce for each
patient, thresholds were set at the time of detection. Then the
effectiveness of the method was tested by the number of false
positives on the 24 or more hour long seizure free signals. Per-
formance measure has been given in terms of the area under the
qROC curve in the next subsection. The average seizure detec-
tion time lag is 9.2 s after the epileptologist determined onset,
which is 9.3 s in [23].

C. Robustness

DWV together with the false detection avoidance measures
has been successful to automatically detect seizures in 15 out
of 21 patients satisfactorily. Out of these 15 patients the data of
patients 4, 6, 13, and 14 contain heavy artifacts. For patient 4
high-frequency muscle contraction artifacts due to chewing
[Fig. 2(c)] have been suppressed to some extent by Gaussian
low pass filter with cutoff frequency 50 Hz. DWV tended
to identify artifacts as seizure, but false detection avoidance
methods helped them to identify as nonseizure artifacts. For
patient 4 it was helpful to detect seizures by taking shorter
segment signal (30 min instead of 1 h) during one particular
hour. Also amplitude suppression tended to improve automatic
detections when high amplitude artifacts were present (we did
not report results on amplitude suppression in this paper). The
data of patients 6, 13, and 14 contain plenty of nonseizure
spike artifacts, which had to be identified by peak rejection
method (Section III-H, Fig. 4) for DWV to successfully detect
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TABLE IV
Patient-Wise False Positive Rate (FPR) and True Positive Rate (TPR)

Fig. 5. The quasi-ROC curve (the thick black curve) of seizure detection.
��� � ���� 	
����� ���� and ��� � ����� 	
����� ���� (values are in
Table IV). Data points are denoted by “�.” There are multiple data on some
points. (0,0) and (1,1) have been taken as the starting and the ending points of
the curve. The dimension of the rectangle R encompassing all the data points
is (1/3) � (1/8). The area under the quasi-ROC curve is 0.9583.

seizures. However DWV along with the false detection avoid-
ance methods did not work for the six patients out of the total
21 whose data we have tested. We can conclude that for some
patients the methods of Sections II and III work excellently
(such as patients 1, 2, and 3), but for some others they may
fail on a significant portion of the data (such as patient 18).
Given the fact that seizure characteristics vary widely across
the patients and there may even be significant variations in the
same patient over the time, this is not unexpected. In fact we
have always tested our method on 1-h-long data segment, which
is unusually long in the seizure detection research [14], [22].
We have done so to test our method in presence of very long
trains of artifacts. 15 out of 21 patients it worked satisfactorily,
which indicates good patient specific robustness of the method
(both automatic detection and false alarm avoidance methods
taken together).

D. Quasi-ROC Curve Analysis

ROC curve analysis is a simple, efficient and widely used tool
to evaluate the performance of binary classifiers like seizure de-
tectors. In order to compute an ROC curve one needs to have
either a genuine probability distribution function (pdf) or some
kind of a probability score [25] with which the classifier will
classify an object or instance into either of the two classes. How-
ever a pdf or a probability score may not always be available for
a classifier. In such cases thresholding with respect to the prob-
ability score (probability measure is also a probability score),

which is essential for generating an ROC curve [25], does not
work. This is exactly the situation with the seizure detection
(seizure—no seizure classification) in this work. We do not have
a probability score to sort the instances in increasing order with
respect to that score and therefore cannot generate an ROC curve
per se. Also our dataset consisting of only 15 patients is too
small a sample to infer a distribution. Here we introduce a new
concept called quasi-ROC curve or qROC curve which can eval-
uate the performance of a classifier without associating any pdf
or probability score with it. In fact to generate a qROC curve no
notion of probability is necessary.

To evaluate the performance of the DWV along with the
false detection avoidance measures, we classify the automatic
detections into two classes, positive and negative, which
can then be categorized into four subclasses of detections:
TP true positive, TN true negative, FP false positive,
and FN false negative. A detection is considered TP if an
actual seizure has been detected (in one or more focal channels
as the case may be) within 67 s of onset (see Section V-B for
detail). Detection of a seizure on a nonseizure signal (where
all the eight parameters described in Section III have failed
to identify it as a nonseizure) has been classified as FP. If a
seizure did not occur and also it had not been detected then it
is classified as TN. If a seizure occurred yet it had not been
detected then it is classified as FN [26].

All this has been summarized in the quasi-ROC curve or
qROC curve (Fig. 5) that gives a performance measure of the
DWV along with the false detection avoidance rules. Just like
ROC curve it has been plotted as true positive rate (TPR, plotted
along the Y-axis) versus false positive rate (FPR, plotted along
the X-axis). TPR and FPR must be equal length vectors, with
length equal to the number of patients. The th entry of TPR
and FPR, TPR and FPR respectively correspond the th
patient. FPR specificity TN TN FP
and TPR sensitivity TP TP FN , where
TN is the true negative value of the th patient, etc. For the
purpose of the qROC curve plotting we have assigned three
false detections to patient 2 in 24 h (otherwise TPR and FPR
will be unequal length vectors), which is the highest in the
poll of patients under study (Table II). For a discussion on
missing values conventions see [27]. Always the least number
of false positives have been chosen (with respect to channel
thresholding, see Section V-B and Table II).

For generating the qROC curve we have used the following
algorithm called Proc_qROC.

1) Sort FPR in increasing order.
2) Sort each string of repeated entries in FPR in the increasing

order of the corresponding TPR values.
3) Plot FPR versus TPR.
4) Select the lowest TPR value and denote it by .
5) Select the highest FPR value and denote it by .
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6) Complete the rectangle R with corner points ,
(0,1) and .

7) Include (0,0) as the point of origin.
8) Include (1,1) as the point of termination.
9) The quasi-ROC curve is generated by the lines

, ,
and .

Notice that the shorter are the arms of R (whose one corner point
is (0,1), Fig. 5), the better is the performance of the classifier
(each instance has low FPR and high TPR value). This implies
that for high performance classifier the area under the qROC
curve will be close to 1. In the case of DWV along with the false
detection avoidance measures the area of R is

, which indicates that the classifier’s performance is very
good. The area under the qROC curve is
(Fig. 5).

Note that in case of a qROC curve of a classifier if all the
arms of R (the rectangle on the upper left corner encompassing
all the data points) remain quite small the classifier’s perfor-
mance is very good. An R with small arms is a better indicator
of classifier performance than the qROC curve with area under
the curve close to 1. Consider the case when R may have an arm
of length close to 1 and another arm with length close to zero,
the area under the curve area of . Yet the
performance of the classifier is poor, for either the TPR is low
or the FPR is high (but not both). In case of DWV along with
the false detection avoidance measures the R associated with
the qROC curve has arms length 1/3 and 1/8, i.e., TPR is never
below and FPR is never more than 1/8, which is
quite good.

VI. COMPARISON

Before concluding this paper we briefly want to discuss a
comparative study of the DWV algorithm with a difference filter
based algorithm described by Qian et al. in [3], which we would
like to call as the QBB algorithm (for a schematic block diagram
of the QBB see [3, Fig. 1]). QBB detects sharp transients (STs)
in the ECoG signals. Longer duration STs with amplitude higher
than certain threshold have been associated with seizure in [3].
See Table V for a technical comparison between the two algo-
rithms. We have implemented the QBB in the following steps
(MATLAB code can be downloaded from the first author’s web-
site), where denotes the input ECoG [3].

1) , where signifies the width of
frequency band of interest.

2) , where is a nonnegative integer.
3) If holds, where denotes ab-

solute value and denotes the mean of the abso-
lute values of for all , for three successive values of

then all the three values belong to the ST of the input
ECoG. is the threshold value (see [3]
for the derivation). We have taken first such triplet as the
seizure onset (the first point of the triplet) and last such
triplet as the seizure offset (the last point of the triplet).

Here there are two parameters in the algorithm, namely,
and . We have taken the values and as in [3].
The performance of the QBB has been summarized in Fig. 6 for

TABLE V
DWV VERSUS QBB

Fig. 6. ST detection by the QBB algorithm on the seventh hour of patient 1 in
channel 1–2. A little over 78 s of recording during a seizure has been presented.
Epileptologist identified seizure onset time point is 11 100 and offset 16 090,
that by DWV are 7302 and 16 102, respectively, and by the QBB are 11 522 and
16 018, respectively. The horizontal line in the top panel signifies the threshold.

78.13 s of focal electrode ECoG recording of patient 1 during
the seventh hour. Channel to channel variation in seizure onset
and offset detection is smaller in case of the DWV compared to
the QBB. However the false positive rate of seizure detection on
nonseizure ECoG by the QBB is very high.

VII. CONCLUSION

Automatic seizure detection with electronic computers was
first reported in the 1970s [28]. In about last 35 years numerous
automated detection methodologies have been proposed, but to
the best of knowledge of the authors none has turned out to
be reliable enough to be used in a clinical setting. A reliable
automated seizure detection methodology is also important for
intervention at the moment of seizure onset (say by electrical
stimulation [29]) or earlier. Therefore research efforts to find
new efficient automated detection methodologies are on. In this
paper we have proposed a differential operator, normalization
and exponentiation based filtering which enhances the seizure
part of the ECoG signal and suppresses other artifacts. It op-
erates in linear time and therefore if applied with a linear time
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detection algorithm, such as windowed variance, the whole de-
tection process becomes real-time, what is exactly needed for
all practical purposes. An efficient seizure detection algorithm
tends to make more false alarms, which erodes its usefulness. To
prevent this a battery of eight empirical tests have been devised
to verify if seizure has indeed occurred in the detected patch of
the continuously monitored signal. Statistical analysis of these
false detection prevention methodologies will be a challenging
future research.

In this paper we have proposed a novel measure called qROC
curve analysis for performance evaluation of a binary classi-
fier, where no probability distribution function is available. In
many cases the data set may be too small to infer a distribu-
tion function. Moreover epileptic seizures vary widely across
patient populations. They may even vary in the same patient over
the time. So defining a probability distribution for seizure de-
tectibility by a classifier is an awesome task. To bypass this chal-
lenge if a classifier validation methodology is available without
relying on probability measures that would be advantageous. A
qROC curve exactly does that. A theoretical analysis of qROC
curves is beyond the scope of this paper. We will undertake this
in future.

In our present work excellent patient specific accuracy has
been achieved in detecting seizures with a small number of false
detections (Tables II and III) in case of 15 out of 21 patients. The
seizure onset detection time has substantially been improved
compared to the previous work reported in [10]. Here we have
achieved average onset detection delay of 9.2 s for 15 patients
as against 20.45 s for four patients in [10].

The current method has shown promising success on ECoG,
which is relatively noise free, but not artifact free (in fact
some patient’s data is heavily contaminated with artifacts).
In the last section we have compared DWV with a difference
operator based ST (and therefore seizure) detection algorithm
described in [3], whose false positive rate is very high and
channel to chanel difference in onset detection points fluc-
tuate more irratically compared to the DWV. The differential
operator can greatly enhance the isolated spikes with respect
to the background and therefore may be a potential tool for
spike detection in single cell recordings. Since spike detection
in electrophysiological data is of predominant importance in
neuroscience [30], numerous statistical techniques have been
developed for the detection tasks [31]. Our current work shows
that differentiation of the signal can improve the outcome of
the detection tasks. It can also suppress low frequency artifacts
like those generated by body movements and eye blinks. The
same is true for low intensity noise.

The algorithm is not specific to brain electrophysiolo-gical
signals only. It can be applied to any one dimensional time do-
main signal to detect abrupt changes, which may be useful for
other biomedical signal processing, such as ECG.
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