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a  b  s  t  r  a  c  t

Presently  high  density  EEG  systems  are  available  at affordable  cost,  with  which  the  data  dimension  has
gone  up  considerably.  For  efficient  computation  of  this  high-dimensional  data,  various  soft  computing
paradigms  are  receiving  increasing  attention.  In  this  survey  we  have  identified  certain  soft  computing
techniques  (by  soft  computing  techniques  we  mean  computational  techniques  that  take  into  account  the
inherent  uncertainties  in the  data  and/or  in  the  computing  model)  for  pattern  recognition/data  mining,
such  as,  neural  networks,  fuzzy  logic,  evolutionary  computation,  statistical  discrimination  and  Bayesian
inference,  which  have  turned  out  to  be  particularly  useful  in processing  human  scalp  EEG. Wherever
possible  results  of  comparative  studies  among  various  techniques  have  been  presented.  Analyses  of  EEG
for various  feature  extraction  are exceedingly  challenging  pattern  recognition  tasks.  This  survey has
shown that  on  an average  the  artificial  neural  networks  and  Bayesian  approaches  have  emerged  more
successful  in  EEG  analysis  than  the other  soft  computing  paradigms.  For  readability  the  paper  has  been
kept as  little  technical  as possible.  Large  number  of  references  have  been  listed  to  aid  searching  for  the
technical  details.
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1. Introduction

In EEG analysis, most methods of analysis follow, explicitly
or not, a pattern recognition approach [1,2]. These analyses have
important applications in brain computer interface (BCI) [3–5],
epilepsy research [6,7], sleep studies [8–10], psychotropic drug
research and monitoring patients in critical condition in the ICUs
[11,12]. However, automated analysis of EEG data is a huge chal-
lenge because of the volume of the data sets and dynamic nature of
the signals with high temporal resolutions (in millisecond range). In
case of the human scalp EEG signals this challenge has been further
augmented by the introduction of high density EEG nets consist-
ing of more than 300 channels [13] and with increasing sample
frequency (1000 Hz or more) of digitization by means of advanced
technologies.

Human scalp EEG was born in 1920s when the German physician
Hans Berger first measured traces of brain electrical activities on the
scalp [14,15]. Since then the interpretation of patterns in the scalp
EEG, in the most part, has remained a challenging issue. Synaptic
activity in the pyramidal neurons (85% of excitatory human cortical
neurons are of this type) is the principal source of scalp EEG [16]
(p. 914). Modulatory dynamical actions of the neural ensembles,
both at local and global scales, give rise to patterns in the scalp EEG
[17,18]. With clever quantitative methods it is possible to measure
(cognitive) task related integration [19–21] and differentiation [22]
(in some sense) from even the single trial EEG signals.

The online epoch identification in human scalp EEG signals
has a long history [23]. In this classic, the vision propounded for
spatio-temporal data reduction and processing by soft computing
approaches, like the Bayesian statistics, in order to bring down the
computational loads to a manageable limit, are being largely fol-
lowed even today [24]. For the sake of computational efficacy it is
desirable to keep the analysis linear as far as possible. But, then
comes the vital issue – are we not overlooking the nonlinear fea-
tures? It has been argued in [25] that the advantage of a nonlinear
analysis, at greater cost, of the multi-channel noisy scalp EEG data
is rather marginal over the corresponding linear methods.

Since the early days of the BCI [26] the need for real time analysis
of EEG and ERP has been felt. Linear analysis and soft comput-
ing techniques are the two most promising approaches in this
regard. In contrast to classical approach of exact computation at
a greater cost, which may  be prohibitive for the complex prob-
lems like multidimensional EEG analysis, soft computing strives to
achieve tangible results at reasonable cost by allowing inexactness
and uncertainty to be part of the computational model. It includes
neural networks, fuzzy logic, statistical discrimination, Bayesian
inference and genetic algorithms. This list is of course not exhaus-
tive, but would be sufficient for our purpose in this paper. Here
we will be reviewing various soft computing techniques that have
been followed for human scalp EEG/ERP processing. Such a review,
even if non-exhaustive, would hopefully be useful for the research
community.

Broadly speaking, EEG processing has two parts namely, (1)
decomposing the complicated signal into simpler components (by
FFT, wavelet transform, ICA, PCA, etc.) and (2) bunching those com-
ponents together in search of specific structures in the data (the
pattern recognition part). It is in the latter part, where almost all of
these approaches are to deal with uncertainty and therefore they
are soft computing approaches.

In the next two sections we will be briefly presenting a physio-
logical overview of scalp EEG and dimensionality reduction of the
data respectively. In Section 4 we will be reviewing neural network
applications on human scalp EEG, in Section 5 fuzzy systems appli-
cations, in Section 6 applications of evolutionary computation, and
in Sections 7–9 applications of statistical discrimination, support
vector machine (SVM) and Bayesian inference, respectively. Not all

these branches have found equal applications on human EEG. In
this survey we have tried to be as exhaustive as we could, sacrific-
ing the technical details, which can be found out in the references.
This, we hope, will enhance the readability and usefulness of the
paper.

2. Cortical source of scalp EEG

Excitatory postsynaptic potential (EPSP) at the apical dendritic
trees of pyramidal neurons is the principal source of the scalp EEG
[15,16]. When these neurons receive inputs through their apical
dendrites EPSPs are generated in the apical dendritic tree. The
apical dendritic membrane becomes transiently depolarized and
consequently extracellularly electronegative with respect to the
cell soma and the basal dendrites. This potential difference causes a
current to flow through the volume conductor from the nonexcited
membrane of the soma and basal dendrites to the apical dendritic
tree sustaining the EPSPs [1,15].

Some of the current takes the shortest route between the source
and the sink by traveling within the dendritic trunk (primary cur-
rent in blue in Fig. 1). Conservation of electric charges imposes that
the current loop be closed with extracellular currents flowing even
through the most distant part of the volume conductor (secondary
current in red in Fig. 1). Intracellular currents are commonly called
primary currents, while extracellular currents are known as sec-
ondary, return, or volume currents. With the spatial arrangement
and the simultaneous activation of a large population of the cells, as
shown in center of Fig. 1, contribute to the spatio-temporal super-
position of the elemental activity of every cell, resulting in a current
flow that generates detectable scalp EEG signals [15].

Both primary and secondary current contribute to scalp EEG.
Macrocolumns of tens of thousands of synchronously activated
large pyramidal cortical neurons are thus believed to be the prin-
cipal sources of scalp EEG because of the coherent distribution of
their large dendritic trunks locally oriented in parallel, and pointing
perpendicularly to the cortical surface [27]. The currents associ-
ated with the EPSPs generated among their dendrites are believed
to be at the source of most of the signals detected in MEG  and
EEG because they typically last longer than the rapidly firing action
potentials traveling along the axons of excited neurons [15,28].

3. Dimensionality reduction

Dimension of scalp EEG data at the preprocessing stage is cal-
culated as number of channels × number of trials (e.g., the way the
data representation is made [29]). For dense array EEG consisting of
more than 100 channels, a recording session spanning through hun-
dreds of trials each spanning through several seconds or minutes or
even hours (in case of say, epilepsy monitoring) with a sample fre-
quency of 1000 Hz or more, the amount of generated data may be of
the order of tens or even hundreds of gigabytes. Without some kind
of data reduction it would be impossible even to load the data set
into the main memory of most modern day work stations. Dimen-
sionality reduction can be done by selecting appropriate channels
[30,31] or time epochs or trials [32].

Dimension of EEG at the postprocessing stage is calculated usu-
ally in terms of the dimension of the feature space. Dimension
reduction (also known as feature extraction)  is achieved either by
projection to a lower dimensional space or by selecting a subspace
of the original one [30,33]. In [22] dimensionality reduction has
been achieved by projecting EEG from all the channels into a single
one dimensional time domain signal. More of it will be discussed
in Section 7.
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Fig. 1. Left: EPSPs are generated at the apical dendritic tree of a cortical pyramidal cell. Center: Large cortical pyramidal nerve cells are organized in macro-assemblies with
their  dendrites normally oriented to the local cortical surface. Right: Functional networks made of these cortical cell assemblies and distributed at possibly multiple brain
locations are the main generators of EEG signals.

Adopted from [15].

4. Neural networks

This section will be organized in accordance with [34]. Low sig-
nal to noise ratio (SNR) in case of scalp EEG is a good reason for
using ANN to process them [35].

4.1. Artifact removal

Eye blinks; movements of eyeballs and tongue; face, head and
neck muscle contractions; cardiac rhythms; frequency of the alter-
nating current supply to the equipment (steady state 50 or 60 Hz)
are the major sources of artifacts in scalp EEG (for a nice overview
see Ref. [36]). Some of these may  be avoided if the subject follows
appropriate guidelines. For the others, automated artifact detection
and removal techniques are the most practical solutions. When the
patterns of artifacts are different from the patterns of evoked poten-
tial ANNs can theoretically be used to separate the artifacts out from
the EEG. Some advancement in this direction has been reported in
[37–46].

Various features of artifacts are extracted and fed into the input
of an ANN to train it. At the end of the training, success rate of a
radial basis function (RBF) network has been reported to be 75% in
artifact detection [43].

4.2. Source localization

Interpretation of the clinical EEG almost always involves specu-
lation as to the possible locations of the sources inside the brain that
are responsible for the observed activity on the scalp [47]. For excel-
lent reviews see [15,48,49].  However computational cost of most
source localization algorithms is prohibitive. An error back prop-
agation NN approach was first proposed to overcome this hurdle
in case of dipole source localization [50]. In general dipole source
localization problem is an optimization problem – to find optimum
coordinate and orientation of dipoles, and hence suitable for being
solved by ANN. It is possible to do away with computation inten-
sive head models if there is sufficient input–output data to train the
network.

A general ANN system for EEG source localization is illustrated
in Fig. 2. According to [51], the number of neurons in the input layer
is equal to the number of electrodes and the features at the input
can be directly the values of the measured voltage. The network also
consists of one or two hidden layers of N neurons each and an output

layer made up of six neurons, 3 for the coordinates and 3 for dipole
components. In addition each hidden layer neuron is connected
to the output layer with weights equal to one in order to permit
a non-zero threshold of the activation function. Weights of inter
connections are determined after the training phase where the neu-
ral network is trained with predetermined examples from forward
modeling simulations [49]. Localization accuracy has been claimed
to be less than 5% by various ANN approaches [34,35,50–57] and
high accuracy in case of [58]. Clearly ANN approach is not very prac-
tical for distributed source models, where sources may  consist of
any subset of thousands of cortical mesh points [32].

4.3. Sleep studies

K-complexes are said to be the largest events in healthy human
sleep EEG [59]. It is natural that ANN had been tried on them quite
early with 90% success rate of identification and 8% false positive
[60], also [61]. Sleep spindle identification by ANN also started get-
ting attention at the same time [60,62]. A simple feed forward ANN
was applied on sleep EEG even earlier [63]. 61–80% accuracy was
achieved in classifying seven different sleep stages in infant EEG
(wake, movement, sleep stage 1, sleep stage 2, sleep stage 3/4, para-
doxical sleep and artifacts) [64]. A pioneering study was undertaken
to distinguish sleep EEG power spectrum patterns under the influ-
ence of different sleeping pills using ANN [65]. For a detailed review
of early ANN applications on sleep studies see [66] (also see [34] for
more references).

Use of ANN for automatic sleep stage scoring has been reported
in [67] with an average 87.5% agreement with two human experts.
A dominating trend in sleep EEG analysis has been – first to extract
features (such as shape, frequency and power spectrum) by a suit-
able wavelet transform (in some cases Fourier transform [68]) and
then using these features as input to an ANN [67,69,70].  Accuracy of
recognition runs from as low as 44.44% [69] to around 95% in [70].
Automatic recognition of alertness and drowsiness has been per-
formed by three different ANNs with the best performance reported
for the learning vector quantization (LVQ) network [71], which is
94.37 ± 1.95% in agreement with the human experts.

4.4. Epilepsy

EEG analysis is an integral part of diagnosis and monitoring of
epilepsy and it has a long history [72]. The effort for automatic
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Fig. 2. Block diagram for source localization by artificial neural networks (ANN).
Adopted from [49].

detection of epileptic activities in prolonged EEG recordings is also
quite old [73]. Neural networks started being used for epileptic
seizure detection since early nineties [74,75] followed by others
[76–86]. In case of neonatal seizure detection by error back propa-
gation NN the average detection rate is from 79.6% to 91% [85,86].
Feed forward NN and quantum NN have been used to detect neona-
tal epileptic seizure with moderate specificity (little over 79% by
both types of NN) [87]. Elman networks (ENs) have also been used
for seizure detection [88]. These are a form of recurrent NN which
have connections from their hidden layer back to a special copy
layer. This means that the function learnt by the network can be
based on the current inputs plus a record of the previous state(s)
and outputs of the network. The results that EN yields are said
to be the best with a single feature fed as the input. The over-
all reported detection accuracy is about 99.6% [88]. Recurrent NN
based seizure prediction has been reported in [89]. For better per-
formance of spike detection by NNs, preprocessing of the EEG has
been emphasized in [90]. Recurrent NN has been used for seizure
EEG classification in [91]. Scalp EEG of 418 epilepsy patients was
classified with a multilayer perceptron (MLP), which matched with
two human experts in 89.2% instances [92].

Let us conclude this subsection with a prophetic observation
of Alan S. Gevins, “Brain electromagnetic signals can be quite use-
ful for providing corroborating evidence about the presence of a
seizure disorder and also for determining the site of seizure ori-
gin. Therefore, despite their limited clinical impact to date, efforts
at automated “epileptiform” transient detection will undoubtedly
continue” [93].

4.5. Brain computer interface

BCI started with the seminal paper of Farwell and Donchin [94].
Soon afterward NN was applied to classify the scalp EEG signals
during right and left hand movements in the hope of predicting the
side of movements before they occurred [95,96]. Power spectrum
of extended �-band (5–16 Hz) had been used to train and test an
hybrid of K-means and back propagation NN to achieve a classifi-
cation accuracy of 85–90% [97]. Cascade NN has been used for the
same prediction purpose has shown widely varying results depend-
ing on the power spectrum of � EEG [98]. 91% or more classification

accuracies were achieved for mere left or right index finger move-
ments discrimination by employing on ANN for each channel and
selecting only the ‘best’ classification results [99,100] ([100] also
includes right foot movements in addition to the two mentioned
earlier).

The performances of a back propagation ANN with four layers
have been compared in [101] with two  human investigators when
both the ANN and the humans were engaged in classifying scalp
EEG of six subjects during right middle finger extension tasks. For
a cube rotation task in BCI an adaptive NN based algorithm has
achieved a 68.3% classification accuracy in [102]. Imagined hand
movement in four out of seven subjects is reported to be pre-
dictable with 80% accuracy in [103]. In a more recent study fast
Fourier transform (FFT) based amplitudes of the EEG have been
used as input to a multilayer NN with reported improved accuracy
on test sets 80% or more [104]. FFT and NN based EEG classification
of intention of right and left elbow movement has been reported in
[105,106]. EEG classification of limb movement imagination by NN
based on particle swarm optimization has been reported in [107].

4.6. Other patterns

Several studies have been reported pertaining to the analysis of
evoked potential (EP) in the scalp EEG using NN [108–110].  Some of
them are concerned about visual EPs [109–122], some about audi-
tory EPs [100,110,118,123–134] and some about somatosensory
EPs [110,135–139].  For a fundamental treatment of use of NN in
the analysis of event related potential (ERP) see Ref. [140].

Using EEG recordings several investigators have developed
neural network based systems to assess the vigilance level
of the subject under investigation [141–147]. In [147] a
Levenberg–Marquardt (LM) multilayer perceptron (MLP) was  used
to classify EEG signals from 30 subjects for alertness (success rate
93.6%), drowsiness (96.6%) and sleep (90%) (the LM network has
been reported to be performing poorer than the LVQ in [71]). The
input to the MLP  was obtained by spectral analysis of the EEG
through a discrete wavelet transform (DWT).

Analysis of maturation level of neonatal brains (28–112 weeks
after birth) has been determined using NN on the EEG [148]. NN
was used on EEG of 131 children aged between 4 and 16 years to
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detect possible abnormality in brain [149]. NN was applied on audi-
tory EP of brainstem to detect hearing impairments in newborns
[150]. Attention deficit hyper active (ADHA) disorder is a recog-
nized problem in child psychiatry, in which NNs have been used on
EEG to identify symptoms with good success [151,152].

In certain neurological disorders EEG tends to be different from
the normal. Tacitly using this fact NN based classification of dis-
ordered EEG with respect to the control has been achieved. This
was done for headache and migraine [153–155], neuroophthal-
mological disorder [156], head injury [140], multiple sclerosis
[39,157], schizophrenia [158–163], Alzheimer disease [164–167],
Parkinson’s disease [167], Huntington’s disease [162,168–171],
depression [161] and alcoholics [172,173].  Probabilistic NN has also
been used for EEG classification in [174] with moderate success and
slightly poorer performance than SVM, but with much better per-
formance in [175]. For some clinical applications of NN on EEG see
Section 4 of [176].

MLP  and EN have been used on EEG to determine the depth
of anesthesia during surgery with 99% success for the EN [177]
(for a survey of applications of NN on EEG during anesthesia see
Ref. [178]). EN has been shown to perform better on human visual
evoked potential (VEP) than the k nearest neighbor (kNN) algo-
rithm [179]. Continuous monitoring of brain state by means of NN
application on EEG of the critically ill patients in the intensive care
unit (ICU) has been reported in [12,180]. Use of NN on EEG under
the effects of drugs (sedatives) in order to classify the effects due
to different drugs has been reported in [181,182].  Classification of
online scalp EEG by NN during three different mental tasks has been
performed with 70% accuracy, but with only 5% mis-classification
[183]. Convolutional NN has been used in BCI for classifying EEG
during different activities with 95% accuracy [184].

5. Fuzzy logic

Fuzzy logic based analysis of human scalp EEG started with the
pioneering paper [8]. Fuzzy clustering and neuro-fuzzy techniques
have remained the most notable methodologies in this regard.

5.1. Fuzzy clustering

Cluster analysis is based on partitioning a collection of data
points into a number of subgroups, where the objects inside a clus-
ter (a subgroup) show a certain degree of closeness or similarity.
Hard clustering assigns each data point (feature vector) to one and
only one of the clusters, with a degree of membership equal to one,
assuming well defined boundaries between the clusters. This model
often does not reflect the description of real data, where boundaries
between subgroups might be fuzzy, and where a more nuanced
description of the object’s affinity to the specific cluster is required
[10]. In case of human EEG this was first utilized in [8] (before this
fuzzy clustering was applied on sleep EEG of chimpanzee [185]). An
efficient human sleep EEG data classification has been reported in
[10] by means of unsupervised fuzzy partition-optimal number of
classes (UFP-ONC), which is a combination of fuzzy k-means (FKM)
algorithm [186] and fuzzy maximum likelihood estimation. This
has been able to decompose the sleep EEG from a single subject
into optimum number of distinct classes, which has been treated
as a priori unknown [10,187,188].

A different fuzzy clustering algorithm was used in [189] for EP
identification in low signal to noise ratio (SNR) EEG. In this FKM
algorithm has been applied with the number of clusters determined
by the criterion proposed in [190]. Trials with prominent (same) EP
were grouped together using fuzzy clustering before being aver-
aged for extraction of the EP. Single instances of EP have been
reported to be classified up to 95% accuracy. FKM clustering (also
known as fuzzy c-means clustering) was used in conjunction with

an ANN to classify epileptic spikes (ES) in scalp EEG [191]. However
the performance is not very impressive.

Fuzzy if-then rule-based online classification of a single sub-
ject’s EEG signal during pain and no pain experiences has been
reported in [192] with only 64% overall classification accuracy,
which is slightly poorer than the corresponding hidden Markov
model (HMM)  classification studied on the same data set. A fuzzy
classification technique for epilepsy risk level has been proposed
in [193].

5.2. Neuro-fuzzy techniques

Combination of NN and fuzzy logic gives a powerful soft com-
puting methodology, which has been applied on human EEG with
mixed success. In one of the first applications auditory evoked
potential (AEP) from the EEG of a patient under anesthesia was
analyzed by an NN. The output of the NN was utilized as input to
a fuzzy if-then rule-based controller, which controlled the dosage
of the anesthetic drug. The performance was graphically compared
with a trained anesthetist during a real surgery [194].

About 88.2% infant sleep–wake stage classification on the test
EEG data has been achieved by ANFIS-based classifier [195] (Fig. 3).
The architecture is in Fig. 3. Layer 1 is the fuzzification layer. X1, X2,
and X3 are three of the input variables, each with two associated
fuzzy concepts (Ai and Bi). Layer 2 generates all the possible rules of
the form IF X1 is A1 and X2 is B2 and X3 is A3, with a T-norm operator
(·), considering one fuzzy concept per input variable. The output of
layer 2 is a strength parameter for each of the rules. Each node at
layer 3 performs a linear combination of the rules and uses a sig-
moidal function to determine the degree of belonging of the input
pattern to each class (C1, C2, C3). In another study ANFIS classifiers
were used on features extracted from EEG by wavelet transfor-
mations (WTs) for classification pertaining to five different classes
with a total accuracy of 98.68% [196]. WT  on EEG followed by ANFIS
could classify normal subjects from epileptic patients with 93.7%
and 94.3% respectively, which is slightly higher than that achieved
by an MLP  [84]. WT  followed by ANFIS has been used to analyze
EEG pertaining to left and right hand movements [197],  state of
alertness [198]. Neuro-fuzzy NN has been used to determine the
states of fatigue or alertness in drivers [199]. EEG feature extrac-
tion by Lyapunov exponent followed by ANFIS classification was
used to detect changes in the signal [200]. A comparative study of
neuro-fuzzy classifiers with some other classification methods is
also available [201]. For a comprehensive treatment of the subject
see Ref. [202].

Combining adapted resonance theory (ART) NN with fuzzy logic,
fuzzy ARTMAP NN was  created [203], which has found several
applications in human EEG processing [169,204–208],  often with
classification success rate of 90% or above. Very recently a faster
self-organizing fuzzy neural network has been applied in BCI with
up to 70% processing time reduction [209].

5.3. Other fuzzy systems

After extracting features from EEG by DWT  fuzzy SVM
(FSVM) has been applied for the classification [210]. However
FSVM is reported to have given poor results on classification
of schizophrenic EEG from the control subjects [211].  Features
extracted from EEG using wavelet packet have been sorted by fuzzy
logic for optimum performance [212]. Fuzzy if-then rules have been
used on features extracted by time frequency analysis of EEG in
order to determine the depth of anesthesia on 22 patients [213].
Fuzzy rule based detection of �-band activity has been proposed
in [214]. EEG based use of a fuzzy controller has been proposed to
administer anesthesia in [215].
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Fig. 3. A simple adaptive neuro-fuzzy inference system (ANFIS) for infant sleep–wake stage classification.
Adopted from [195].

6. Evolutionary computation

Signals in medicine, such as EEG, processing is subject to several
important constraints. First, the number of signals to be pro-
cessed is high, and often tightly interdependent. Second, signals
are unique, in the sense that the circumstances under which they
were obtained are normally not repeatable. Third, given the char-
acteristics of their sources, medical signals are often very noisy.
Finally, in some cases information about the signals is required in
real time in order to take crucial decisions [216]. Genetic algorithm
(GA) was applied on EEG during different mental tasks in order to
classify them in task specific categories. The goal was achieved with
76% accuracy [25]. Genetic programming (GP) has been applied
on human scalp EEG for epileptic pattern recognition [217] with
success rate of 93% or more (in intracranial EEG seizure precursor
features have been detected by GP in [218]). GP has been used for
normal EEG classification in [219]. Epilepsy risk assessment with
GA has been done in [220,221].

7.  Statistical discrimination

Statistical discriminants are standard tools for classification
of multidimensional patterns (for a general introduction see Ref.
[222]). Their need in human scalp EEG classification has long been
felt [23]. Using them on scalp EEG, classification of dyslexia patients
was performed in [223]. EEG of mild head injury patients was
classified (with respect to a group of normal control subjects) by
statistical discriminants with more that 90% accuracy in [224,225].
[226] presents a review of classification of scalp EEG by discrimi-
nators in case of traumatic brain injury. Discriminants have been
used to classify EEG belonging to subjects with neuropsychiatric
disorders [227]. Unfortunately, very little detail is available of the
discriminators implemented in [224–227].

Scalp EEG of normal human subjects has been classified dur-
ing rapid serial visual presentation (RSVP) of ‘interesting’ and
‘uninteresting’ scenes by statistical discrminants [22,228,229]. Dis-
criminant analysis has been performed in single trials on the
weighted sum of all the scalp channels, where the optimum weight
has been selected by fine tuning a logistic regression (LR) function
(for a nice exposition of LR see Ref. [230]) with the help of gra-
dient descent method [22]. Then normalized projection of signal
from each channel on this average is calculated. Intensity of this
projection is used to classify signals between interesting (91.8%
classification accuracy) and uninteresting scenes (98.3% classifica-
tion accuracy) [228].

Although LR is more robust, it is a less efficient classifier and
takes more resources to compute compared to the normal sta-
tistical discriminators [231]. A study was  undertaken to compare
performance between Fisher’s discriminant (FD, see [232,233] for
description) and LR on the scalp EEG of three subjects (two males
and one female, mean age thirty years, all of them left handed).
They did not have any known neurological or vision disorder. The
data was collected using 256 channel Hydrocell Geodesic Sensor
Net (Electrical Geodesics, Inc., Eugene, OR) during a series of RSVP
tasks at a rate of 3 grey level satellite images per second [234]. The
analysis was performed on single trials. LR turned out to be good in
identifying target, but poor in identifying non-target data (Table 1).

Table 1
Average performance of LR vis-à-vis FD on the EEG of three subjects during RSVP
(3  images per second) of three different targets vs. non-target. ROC  area means the
area under the receiver operator characteristic (ROC) curve.

LR FD

Target 0.9752 0.7601
Non-target 0.5768 0.8770
ROC area 0.9311 0.8700
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Table  2
Average performance of LR vis-à-vis FD on the EEG of three subjects during RSVP
(3  images per second) of target tank and target truck in different sessions (each
consisting of about 300 trials) in each of which only one type of target images are
mixed with non-target images roughly at 1:4 ratio.

LR FD

Tank 0.6186 0.9858
Truck 0.7623 0.9751
ROC  area 0.7067 0.9939

On the other hand FD was poor in identifying target data, but much
better in identifying non-target data (Table 1). FD was also good
in separating various pairs of target EEG data (see Table 2 for an
example). The general conclusion was that there is no particular
discriminator uniformly suitable for all types of EEG data. Differ-
ent discriminators perform differently on different data sets [234].
FD was used on EEG after feature extraction by a combination of
continuous WT  and student t-statistic with the best classification
accuracy in the 2003 BCI competition [235]. FD was  used for random
classification of EEG channels for BCI in [236] with a very moderate
accuracy of 56.66%. A comparison of FD and two of its variants with
SVM and k nearest neighbor (kNN) algorithm on EEG data before
onset of finger movements appears in [237]. The outcomes are pre-
sented in Table 3. For a review of applications of linear discriminant
analysis in BCI research see Ref. [238].

LR has been compared with NN on seizure EEG data [83]. Clas-
sification accuracy of two different MLPs has been reported to be
more than 91% compared to 89% for the LR. Superior performance
of NN over LR has been reported in [239,240].  On an average LR had
performed better on the single trial EEG than a conventional spatial
pattern (CSP) based classifier [241].

A statistical discriminant was used to classify EEG signals
belonging to schizophrenic patients for negative and positive fea-
tures associated with the symptoms. 78% classification accuracy
for schizophrenia was achieved on a test data set (disjoint from the
training data) with 85% specificity [242]. Quadratic discriminant
function was applied on EEG of 33 subjects to classify among differ-
ent tasks with 93% accuracy for the training data and 85% accuracy
for the testing data [243].

8. Support vector machine

Despite greater difficulty in implementation and longer running
time on test data compared to the NN and linear discriminants, SVM
has become a popular classification algorithm for the EEG for its
usually higher classification accuracy compared to the former. For
an excellent tutorial on SVM see Ref. [244]. The primary motivation
behind SVM is to directly deal with the objective of generalization
from training data to testing data with minimization of error and
complexity of the learning algorithm [25]. Table 3 shows superior
performance of SVM on EEG data. A recent study on classification
(vis-à-vis a human expert) of neonatal EEG of six infants has shown
that SVM has outperformed the FD and NN (Fig. 4) [245].

Table 3
Test set error (±std) for classification at 120 ms  before keystroke. ‘mc’ refers to the
21  channels over (sensori) motor cortex, ‘all’ refers to all 27 channels. RFD and SFD
stand for regularized and sparse FD respectively. ch stands for channel.

Filter ch’s FD RPD SFD SVM k-NN

<5 Hz mc 3.7 ± 2.6 3.3 ± 2.2 3.3 ± 2.3 3.2 ± 2.5 21.6. ± 4.9
<5  Hz all 3.3 ± 2.5 3.1 ± 2.5 3.4 ± 2.7 3.6 ± 2.5 23.1 ± 5.8
None mc 18.1 ± 4.8 7.0 ± 4.1 6.4 ± 3.4 8.5 ± 4.3 29.6 ± 5.9
None all 29.3 ± 6.l 7.5 ± 3.8 7.0 ± 3.9 9.8 ± 4.4 32.2 ± 6.8

Reproduced from [237].

Artifacts such as, eye blink potential and electrocardiogram
(ECG) have been removed from EEG using SVM [246]. A nonlin-
ear SVM was applied to distinguish P300 EEG epochs from the
other EEG signals during visualization of different words with 84.5%
accuracy [247]. In another application on P300 based speller clas-
sification a self-supervised SVM has been applied to reduce the
training efforts [248]. In [249] average P300 classification accuracy
by SVM has been reported to be above 95%. Superior performance of
SVM than linear discriminant analysis and k nearest neighbor clas-
sifier on the EEG of five subjects during limb and tongue movements
has been reported in [250]. Better performance of SVM over PNN
and multilayer PNN in EEG classification has been reported in [174].
90% accuracy in EEG classification by SVM during left, right finger
movements has been reported in [251]. SVM as part of ensemble
classification for EEG has been considered in [252].

9. Bayesian approaches

9.1. Source localization

If Jn is an n-dimensional vector of cortical sources and Mp be a
p-dimensional measurement of scalp EEG, where n and p are num-
ber of sources and number of channels respectively. Then by Bayes
theorem

p(Jn|Mp) = p(Mp|Jn)p(Jn)
p(Mp)

,  (1)

where p(A|B) is the conditional probability of event A, given event
B. p(Mp) is constant. The configuration Jn for which maximum of
(1) will be achieved is the most probable source of Mp. This is
called maximum a posteriori (MAP) estimation [253,254].  We  can
write p(Jn|Mp) = (1/Z)exp(− U(Jn)), Z is a normalization constant and
U is an ‘energy’ function. Taking logarithm and treating p(Mp)
as a constant throughout, we can write U(Jn) = U1(Jn) + �U2(Jn),
where � is a constant, and U1(Jn) and U2(Jn) are associated with
p(Mp|Jn) and p(Jn) respectively. U1(Jn) =

∥∥Mp − GJn
∥∥, where G is a

p × n mixing matrix made out of the head model of the subject.
U2(Jn) = Us(Jn) + Ut(Jn), where Us and Ut are associated with spatial
and temporal priors respectively. Five different algorithms were
used in [253] to calculate the MAP  in (1).  In [254] Bayesian MAP
has been used to estimate error in the reconstructed sources. Unlike
[253], in [254] the prior has been modeled by chi-square distribu-
tion function.

Bayesian model averaging has been applied for EEG source local-
ization, which determined the posterior probability of the sources
according to the best available model [255]. Repeated Bayesian esti-
mation of maximum entropy of EEG has been used for the source
localization [256]. A hybrid of two source models – equivalent cur-
rent dipole (ECD) model and distributed source (DS) model has been
proposed in [257]. Source reconstruction has been performed under
suitable spatial and temporal constraints estimated by Bayesian
method. EEG source reconstruction was done in [258] according
to both ECD and DS models by formulating the inverse problem as
Bayesian inference, like in (1).  The forward model was  constructed
by Markov chain Monte Carlo (MCMC) method.

A general framework for Bayesian interpretation of brain images
has been proposed in [259]. It has been applied for EEG source
localization in [24]. Source localization has been performed with
no prior, accurate prior, inaccurate prior, and a mixture of accu-
rate and inaccurate prior. Results obtained on spherical head
model with simulated data under different SNR and three different
inverse methods subject to Bayesian expectation maximization. A
result is shown in Fig. 5. Automatic selection of multiple cortical
sources with compact support in a DS model has been achieved
in [260] with a new application of [259]. In another application
evoked and induced responses with respect to a stimulus has been
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Fig. 4. Six infants shown in abscissa. Performance measure is given by area under curve (AUC) of the ROC curve. FLD stands for Fisher’s linear discriminant.
Adopted from [245].

reconstructed in the cortical surface from scalp EEG data [261].
Bayesian learning has been utilized to identify common sources of
EEG and fMRI (functional Magnetic Resonance Imaging) in human
subjects in [262].

9.2. Brain computer interface

Bayesian NN was used on EEG to detect imagined finger move-
ments in [263] with a typical accuracy of 75%. A real time BCI
was designed with minimum training and using only one channel
EEG data with 86.5 ± 6.9% classification accuracy for cursor move-
ment task in [264]. The minimum training was possible under a

Bayesian paradigm. A Bayesian inference scheme to predict contin-
uous cursor movement has been proposed in [265,266].  A dynamic
Bayesian network (DBN) model has been used to predict the move-
ment intention, where the DBN has learned from the EEG and EMG
(electromyogram) [267].

A comparative study among Bayesian graphical network, neu-
ral network, Bayesian quadratic, Fisher linear and hidden Markov
model as classifiers of EEG for BCI applications has been presented
in [268] (Table 4). BGN and Bayesian quadratic classifier seem to
have performed better than others. Bayesian linear discriminant
analysis has been applied for EEG classification in BCI in [269], with
a superior performance than SVM and linear discriminant.

Fig. 5. Example of a source used in the simulations (top left) with the corresponding accurate location priors (top right), as well as inaccurate location priors (close, bottom
left,  and distant, bottom right).

Adopted from [258].
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Table  4
The Bayesian graphical network (BGN), neural network, Bayesian quadratic classifier, Fisher linear and hidden Markov model (HMM)  are compared for classification of binary
combinations of five mental tasks. The results in the table are averaged over ten different possible binary combinations of mental tasks.

Subject BGN Neural network Bayesian Fisher lilies HMM

1 94.07 ± 2.2 92.48 ± 2.9 93.78 ± 2.8 91.15 ± 2.7 70.18 ± 8.8
3 87.43  ± 3.9 85.04 ± 4.3 89.22 ± 3.5 82.77 ± 4.1 64.10 ± 9.1

82.48  ± 2.8 82.61 ± 3.0 86.58 ± 3.4 81.79 ± 3.1 62.43 ± 7.8
6  90.31 ± ± 2.7 89.39 ± 3.1 92.49 ± 3.2 90.38 ± 3.1 64.61 ± 8.3
Means  88.57 ± .3.0 87.38 ± 3.4 90.51 ± .3.2 86.63 ± 3.3 65.33 ± 8.5

Reproduced from [268].

9.3. Bayesian classification

There are two standard approaches to EEG classification – dis-
criminative and generative.  Bayesian classification falls under the
generative class. For a nice overview see Ref. [270]. In a genera-
tive approach, we define a model for generating data V belonging
to particular mental task c ∈ {1, . . .,  C} in terms of a distribution
p(V|c). Here, V will correspond to a time-series of multi-channel
EEG recordings, possibly preprocessed. The class c will be one
of the mental tasks. For each class c, we train a separate model
p(V|c), with associated parameters �c, by maximizing the likeli-
hood of the observed signals for that class. We  then use Bayes rule
to assign a novel test signal V* to a certain class c according to:
p(c|V∗) = p(V∗|c)p(c)

p(V∗) . That model c with the highest posterior proba-
bility p(c|V*) is designated the predicted class [270].

Input output Hidden Markov model (IOHMM, see Ref. [271], and
Fig. 7(d) for the architecture) based classification of EEG, which is
a special case of Bayesian classification, has been applied in BCI
[270]. IOHMM has performed better than HMM, Gaussian mixture
model (GMM) and MLP  with reduced classification error rate. HMM
was applied on whole night EEG of nine subjects for sleep stage
classification with accuracy ranging from 26% (rapid eye move-
ment sleep) to 86% (wake stage) [272]. To overcome the problem
of nonstationarity in EEG signals HMM  has been introduced, which
then according to the scheme presented in Fig. 6 determines if the
movement intention is on left or right by evaluating the expression
MAX(PP(V|HMML), PP(V|HMMR)) [273]. The online classification

Fig. 6. BCI system comprising HMML for left movement feature selection and HMMR

that for the right.

Adopted from [273].

rate occurring in four healthy subjects varied between 75% and 95%
[274]. For theory and some applications of HMM  see Refs. [275,276].
HMM  on EEG was used to classify arousal and sleep states in [277].
Various HMM  architectures have been shown in Fig. 7. A compar-
ative study of their performances on human EEG data has been
presented in [278]. HMM  along with Principal Component Analy-
sis (PCA) and SVM has been applied on EEG to classify left right
movement in [279].

Kernel PCA and HMM  are combined to identify mental fatigue
features in EEG in [280] with a classification accuracy of 88%. The

Fig. 7. Various HMM  architectures. The empty circles are the hidden states and the shaded ones are observation nodes, the lightly shaded ones (in d) are input nodes. (a)
Standard coupled HMMs;  (b) event coupled HMMs; (c) factorial HMMs; (d) input–output HMM.

Adopted from [278].
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signal was collected during prolonged viewing at visual display ter-
minal (VDT). HMM  has also found applications in designing and
validating seizure prediction algorithms [281].

10. Conclusion

EEG signals are multidimensional, nonstationary (i.e., statistical
properties are not invariant in time), time domain biological signals,
which are not reproducible. It is supposed to contain information
about what is going on in the ensemble of excitatory pyrami-
dal neuron level, at millisecond temporal resolution scale. Since
scalp EEG contains considerable amount of noise and artifacts, and
exactly where it is coming from is poorly determined, extract-
ing information from it is extremely challenging. So far the two
major paradigms used to understand scalp EEG are – segregation
(classification, clustering, etc.) and integration (synchronization,
coherence, etc.), both of which are computation intensive. The cur-
rent explosion of interest in BCI, on the other hand, underscores
the need of online processing. This is a compelling reason for the
popularity of soft computing algorithms in human scalp EEG pro-
cessing.

The class of soft computing algorithms is not precisely defined.
Any algorithm which employs inexact or approximate calculations
may  fall under this category. But for this paper by a soft comput-
ing algorithm we have understood any technique falling under one
or more of the following categories: neural networks, fuzzy logic,
evolutionary computation, statistical discrimination, support vec-
tor machine and Bayesian approaches. From a literature survey
it appears that neural networks and Bayesian approaches are the
two most popular choices in EEG processing. Linear statistical dis-
criminants are easier to implement, but support vector machines
give (many a times marginally) better classification accuracy. It is
a choice between cost of implementation and significance of dif-
ference in performance. The popularity of fuzzy logic and genetic
programming based techniques in human scalp EEG processing are
yet to catch up with the remaining four. In general there is no ‘good’
or ‘bad’ technique in EEG processing. An ‘efficient’ technique is to be
chosen depending on the data set and processing goal. In this sense,
along with more ‘exact’ computing, the soft computing technique
paradigms discussed in this paper constitute major human scalp
EEG processing methodologies for the last three decades.
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