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a b s t r a c t

Differential operators can detect significant changes in signals. This has been utilized to enhance the

contrast of the seizure signatures in depth EEG or ECoG. We have actually taken normalized

exponential of absolute value of single or double derivative of epileptic ECoG. This in short we call

differential filtering. Windowed variance operation has been performed to automatically detect seizure

onset on differentially filtered signal. A novel method for determining the duration of seizure has also

been proposed. Since all operations take only linear time, the whole method is extremely fast. Seven

empirical parameters have been introduced whose patient specific thresholding brings down the rate of

false detection to a bare minimum. Results of implementation of the methods on the ECoG data of four

epileptic patients have been reported with an ROC curve analysis. High value of the area under the ROC

curve indicates excellent detection performance.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Broadly speaking signal processing has two parts—(1) decom-
posing the signal into simpler components, and (2) analyzing the
components in search of specific patterns. Because of (2) substan-
tial part of signal processing may be considered as pattern
recognition [1,2]. The pattern recognition part acquires an extra
importance for biomedical signals in which detection of specific
patterns has implications on diagnosis and monitoring of dis-
eases. Electrophysiological signals generated by the human brain
are known to carry signatures of epilepsy [3], Parkinson’s disease
[4], dementia [4], Alzheimer’s disease [5] and schizophrenia [6].

In this paper we will concentrate on the identification of
patterns in the prolonged brain electrophysiological recordings
of the epileptic patients. Since the monitored signal may be
several days long, automatic identification of patterns in real
time is of practical importance. We are interested in seizure onset
and offset detection in the continuously monitored depth EEG or
ECoG of the epileptic patients. Ironically, any good detection
algorithm tends to produce false detections in the ECoG when
there is no seizure at all. This may happen because of presence
of artifacts in the ECoG, many of which may look like a seizure.
In order to avoid this there need to be sufficient measures to
prevent false detections. In this paper we have devised seven such
measures.

Second derivative based Laplacian operator is widely used for
edge detection in an image [7]. An edge can be characterized by an
abrupt change in intensity indicating the boundary between two

regions of an image [8]. We have applied the same logic in this
paper to detect the boundary between seizure and nonseizure in
ECoG signals of epileptic patients, which indicates a seizure onset
or offset. For automatic seizure detection see [9–11]. Differential
operator has been utilized in seizure detection in [12–14]. Earlier
first and second derivative of neonatal sleep EEG were used for
feature extraction in order to automatically detect the sleep stages
[15]. First and second derivative of EEG were also used to extract
time domain features for automatic seizure detection in [16].

In the next section we will describe the methods used in this
work. In Section 3 data acquisition will be described. Section 4
will contain the results of implementation on depth EEG or
ECoG of four epileptic patients. We will use EEG and ECoG
interchangeably throughout this letter. The last section contains
some concluding remarks.

2. Method

In this letter we will be dealing with digital signals only.
Derivative is discrete derivative or difference operation. Let a, b and
c be successive time points. If a spike occurs at b then statistically
x(b)�x(a) and x(c)�x(b) both have high numerical value, where x() is
the signal. The second derivative x(a)þx(c)�2x(b) has an even higher
numerical value. Whereas these values for the back ground signal
will not be much higher. Let us take the transformation expðð1=wÞ

9D2x9Þ, where D2 is the second derivative, 9.9 is absolute value and w

is a positive valued normalization constant. expðð1=wÞ9D2x9Þ acts as a
spike enhancement filter with respect to the back ground EEG (spike
enhancement through appropriate filter for the detection purpose
has also been accomplished in [17]). expðð1=wÞ9Dx9Þ too acts the
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same way, where D denotes the first order derivative. Depending on
the data set one gives better results than the other. Both of these two
filtering methods will be denoted as differential filtering. Fig. 1 gives a
schematic block diagram of the seizure onset detection.

Success of windowed variance method in seizure detection is
well established [18]. In Section 4 we will see that the above
filtering can significantly improve the seizure detection accuracy
by windowed variance. Ironically a good seizure onset detection
method tends to produce high number of false detection alarms
on non-seizure signals. In order to minimize false alarms, follow-
ing parameters have been introduced. Patient specific threshold
needs to be set for each of them in order to avoid false detection
to a very large extent. For the detail of implementation see the
MATLAB programs with elaborate documentation along with

supplementary materials in the author’s website [19]. The auto-
matic detection of onset and duration of a seizure for particular
patients at any given time slot and channel location are summar-
ized in Fig. 2 (for single differential filter or SDF) and Fig. 3
(for double differential filter or DDF).

(a) Maximum of the windowed variance B of the differentially
filtered data (single channel ECoG signal). Each window has a
fixed length. We have taken this length to be 4000 time points
across all the data sets.

(b) Maximum of the windowed variance of absolute value of the
data C.

(c) 9maxðBÞ�mmð1Þ9, where mm(1) is the variance of the differ-
entially filtered data in the window next to the window of the

Raw ECoG x(t) Low pass filtering

Normalization and
exponentiation

Segmentation in
time

Windowed
variance

Maximum
Window before the
maximum variance

window, W-1(t)

Minimum (W-1(t)) = The
seizure onset point 

Absolute value of 
dt

dx (t)  or
dt2

d2 x(t)

Fig. 1. A schematic block diagram of the automatic seizure detection algorithm. It has three major subparts, namely enhancement (accentuate the seizure part of the signal

compared to the background), filtering and detection (which actually identifies the seizure onset point).

Fig. 2. Automatic detection of seizure and its duration at a single channel for patient 1. Seizure part has been demarcated by parallel vertical lines in the plot of raw EEG at

the bottom panel. In the second panel from the bottom the filtered (based on single derivative) signal has been plotted, in which the seizure part is appearing as a distinct

pillar like structure with respect to the back ground. The third panel from below plots DE, whose distinct shape corresponds to seizure. The top panel plots mm, which

determines a tentative duration of the seizure. Automatic detection is from 74,501 to 78,501 time points, whereas the actual seizure occurred from 73,382 to 78,125 time

points. 256 time points¼1 s.
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maximum variance. If there are more than one windows with
maximum variance then mm(1) is the window after the first
window of maximum variance.

(d) mm(i) is the variance of filtered data at the ith window after the
first maximum window. Now let us take a stipulated number of
windows after the first window of maximum variance. Here we
have taken the stipulated number as 16. Let the first of the
windows with minimum variance among the stipulated number
of windows be the n1(1)th window. If M is the starting point of
max(B) then N1¼Mþ (number of time points in a window) *
n1(1). M has been treated as the onset of seizure in this paper (in
majority of the cases it happens to be several seconds after the
actual onset) and N1 is the offset (usually several seconds after
the actual offset). E is an array consisting of windowed variance of
the filtered data starting from two windows before M up to N1. x

is an array consisting of maximum values of E. F is another array
consisting of values of E, which are greater than or equal to
ð3=4ÞmaxðEÞ. We have observed that 9 meanðFÞ�xð1Þ

� �
9 is a

quantity whose threshold distinguishes between seizure and
non-seizure EEG.

(e) stdðFÞ
� �

, where std stands for standard deviation, which
distinguishes between seizure and non-seizure ECoG subject
to a threshold.

(f) DE¼ expðð1=vÞ9D2E9Þ, where v is a positive valued normal-
ization constant. K is an array consisting of values of DE,
which are greater than or equal to 0.999max(DE). Length of K,
whose threshold distinguishes between seizure and non-
seizure EEG.

(g) For seizure EEG max(DE) must lie within an interval.

Let us mention once again that all the thresholding in the
above parameters and the interval in (g) are patient specific.

In this work duration of seizure has been calculated as described
in (d). Each of the operations executes in linear time. The whole
method is extremely fast—takes less than 4 s for a 1 h long signal
with 15.625 s window length and 15.234 s overlap on an Intel
Core 2 Duo Processor T8100 (2.1 GHz/800 MHz FSB, 3M L2 cache),
Ubuntu machine with 4 GB RAM. The implementation was in
MATLAB.

3. Data acquisition

Four medically intractable focal epileptic patients’ ECoG data
that have been analyzed in this work have been provided by the
Seizure Prediction Project of the Albert-Ludwig-Universitat
Freiburg, Germany [20]. In order to obtain a high signal to noise
ratio (SNR), fewer artifacts and to record directly from focal areas
intracranial grid, strip and depth electrodes were utilized. The
ECoG data were acquired using Neurofile NT digital video EEG
system (It-med, Usingen, Germany) with 128 channels, 256 Hz
sampling rate, and a 16 bit analog to digital converter. In all cases
the ECoG from only six sites have been analyzed. Three of them
from the focal areas and the other three from outside the focal
areas. See Table 1 for the patient details. A superset of the patient
population has been studied in [21].

4. Results

4.1. Preprocessing

Since the data were collected over a couple of years, the
conditions under which the data had been collected are likely to

Fig. 3. Same as in Fig. 1, but for patient 2. In this case the filter is based on double derivative of the signal. Automatic detection is from 827,901 to 859,901 time points,

whereas the seizure has been identified by epileptologist is from 819,373 to 857,094 time points. 256 time points¼1 s.
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be different from patient to patient. We have performed different
preprocessing for different patients for the optimum results. We
have chosen the method by trial and error. Gaussian low pass
filter, with cut off frequencies either 50 or 100 Hz depending on
the patient, has been used to remove muscle contraction artifacts.
Montage change from common reference to bipolar has helped to
suppress chewing artifacts in patient 4 to some extent. See
Table 2 for the details. For patient 4 the three in-focus electrodes
have been put in bipolar reference among themselves and three
out-focus electrodes have been put in bipolar reference among
themselves (although intensity of seizure decreases due to sub-
tracting one channel from another, which may result in detection
failure, in this particular case it helped to eliminate artifacts to a
large extent while still preserving the strength of the signal,
which has turned out to be sufficient for the detection purpose).

4.2. Automatic detection

The detection algorithm was run on one hour long segments of
ECoG of the patients containing one seizure per segment. Running
the algorithm on longer data segments gives us a better oppor-
tunity to test the efficacy of our method in presence of artifacts.
Window length of 4000 time points (15.625 s) with 3900
(15.234 s) time points overlap (i.e., sliding by 100 points) has
been used. Seizure portions were identified by certified epileptol-
ogists at the place of origin of the data at each given time slot. The
algorithm was implemented on each channel to automatically
detect onset and offset of a seizure. Onset of the seizure has been
taken to be the earliest point detected as onset among all the
channels. For offset also the earliest point detected among the
channels has been taken to be the offset.

The SDF has been applied on patients 1 and 4. The DDF has
been applied on patients 2 and 3. Data of 1 and 4 contain more
artifacts or noise than those of 2 and 3. DDF could not detect some
of the seizures of patient 1. In relatively artifact free signals DDF
usually gave more accurate measure of the seizure onset than
SDF. In the ECoG of patient 1 windowed variance could not detect
seizures in the preprocessed signals. But after filtering with the
SDF all the seizures could be detected by windowed variance.

For the first three patients seizures were detected with cent
percent accuracy. Data of the last four out of five seizures of
patient 4 were heavily contaminated by chewing artifact. First
seizure has been detected nicely on all channels. Second and
fourth seizures have been detected on all focal channels. The third

and the fifth seizures have been detected in two out of three focal
channels and in one the seizure could not be detected although it
showed up clearly in the plot (see supplementary materials in
[19]). The fifth seizure ECoG of patient 4 required a very special
and unique preprocessing (suppression of all values Z0.15 of the
maximum value regardless of sign), and therefore we will treat it
as a failure to detection. For patients 1, 3 and 4 seizure free data
for 24 h were available on which the detection algorithm was run
to test for false positives. There were 4 false detections for patient
1, 5 for patient 3 and 0 for patient 4.

First detection algorithm identifies a window in which seizure
is supposed to have occurred. Then the threshold values accord-
ing to (a) to (g) of Section 2 are calculated. The available seizure
ECoG was rather scarce for each patient (at most five seizures).
So, the threshold values are set in such a manner that none of the
seizures goes undetected. At the same time the threshold values
are chosen to be bare minimum or bare maximum as the case
may be so that the actual seizures are all detected.

Then the effectiveness of the method was tested by the
number of false positives on the 24 h long seizure free signals,
with the threshold values that were set on the seizure data.
Performance measure has been given in terms of the area under
the ROC curve in the subsection 4.3. The average seizure onset
detection time lag is 20.45 s after the epileptologist determined
onset, which is 9.3 s in [10]. The average seizure offset detection
time lag is 26.49 s after the epileptologist determined offset.

4.3. ROC curve analysis

ECoG recording of 28 h for patient 1 is available. For patient 2 the
recording is of 3 h duration (the 24 h seizure free data is not
available). For patients 3 and 4 it is for 29 h each. The receiver
operator characteristic (ROC) curve has been plotted as true positive
rate (TPR, plotted along the Y-axis) vs. false positive rate (FPR,
plotted along the X-axis) following [22] (Fig. 4). For the purpose of
the ROC curve plotting we have assigned 5 false detections to
patient 2 in 24 h, which is the highest in the poll of patients under
study. For a discussion on missing values conventions see ref. [23].
FPR¼1�specificity¼1�(TN/TNþFP) and TPR¼sensitivity¼(TP/
TPþFN) [22]. The area under the curve is E0.98, which indicates
excellent identification accuracy.

Table 1
Patient details.

Patient Sex Age Seizure type H/NC Origin # Seizures

1 F 15 SP,CP NC Frontal 4

2 M 38 SP,CP,GTC H Temporal 3

3 M 14 SP,CP NC Frontal 5

4 F 26 SP,CP,GTC H Temporal 5

SP¼simple parietal, CP¼complex parietal, GTC¼generalized tonic�clonic,

H¼hippocampal, NC¼neocortical.

Table 2
Detail of the patient specific preprocessing.

Patient Cut-off freq. (Hz) Montage

1 100 Com. ref.

2 50 Com. ref.

3 100 Com. ref.

4 50 Bipolar

Fig. 4. The ROC curve of seizure detection. TPR¼true positive rate and FPR¼false

positive rate. The area under the curve is E0.98.
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5. Conclusion

In this paper the power of first order and second order
differential operators in detecting significant changes in one
dimensional signals such as single channel ECoG has been
studied. Excellent accuracy has been observed in detecting
clinical seizure onsets with a small number of false detections.
The method made up of differential operators, exponentiation and
variance has turned out to be extremely fast. Seven parameters
have been identified whose patient specific threshold can distin-
guish between seizure and non-seizure signals for a given patient
with impressively high automatic onset detection and low false
detection rate. Further improvements in elimination of false
detection are possible with multidimensional statistical analysis
of these parameters. Wavelet based feature detection of the
filtered signal followed by appropriate clustering techniques
may result in further improvement in reducing the gap between
the detection time and the actual onset time.

The current method has shown promising success on ECoG,
which is relatively noise free, but not artifact free. The proposed
filter can greatly enhance isolated spikes with respect to the back
ground and therefore may be a potential tool for spike detection
in single cell recordings. It can also suppress low frequency
artifacts like those generated by eye blinks. The same is true for
low intensity noise. It is yet to be tested for strong event related
potential (ERP) detection in scalp EEG. However it is likely to give
good results for automatic quake detection in seismological
signals. Particularly many low intensity quakes are difficult to
detect, yet they contain important information about the inside of
our planet. At times they may even be precursor to an impending
major earth quake.
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