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Abstract. The objective of this paper is to study wandering subspaces for commuting
tuples of bounded operators on Hilbert spaces. It is shown that, for a large class of analytic
functional Hilbert spaces HK on the unit ball in Cn, wandering subspaces for restrictions of
the multiplication tuple Mz = (Mz1 , . . . ,Mzn) can be described in terms of suitable HK-inner
functions. We prove that HK-inner functions are contractive multipliers and deduce a result
on the multiplier norm of quasi-homogenous polynomials as an application. Along the way
we prove a refinement of a result of Arveson on the uniqueness of minimal dilations of pure
row contractions.

1. Introduction

Let T = (T1, . . . , Tn) be an n-tuple of commuting bounded linear operators on a complex
Hilbert space H. A closed subspace W ⊂ H is called a wandering subspace for T if

W ⊥ T kW (k ∈ Nn \ {0}).
We say that W is a generating wandering subspace for T if in addition

H = span{T kW : k ∈ Nn}.
Wandering subspaces were defined by Halmos in [10]. One of the main observations from

[10] is the following. Let E be a Hilbert space and let Mz : H
2
E(D) → H2

E(D) be the operator
of multiplication with the argument on the E-valued Hardy space H2

E(D) on the unit disc D.
Suppose that S is a non-trivial closed Mz-invariant subspace of H2

E(D). Then
W = S ⊖ zS

is a wandering subspace for Mz|S such that

Mp
zW ⊥ M q

zW
for all p ̸= q in N and

S = span{zmW : m ∈ N}.
Hence

S =
∞
⊕

m=0
zmW

and up to unitary equivalence

Mz|S on S ∼= Mz on H2
W(D).
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In particular, we have S = V (H2
W(D)), where V : H2

W(D) → H2
E(D) is an isometry and VMz =

MzV . One can show (see Lemma V.3.2 in [14] for details and more precise references) that any
such intertwining isometry V acts as the multiplication operator V = MΘ : H2

W(D) → H2
E(D),

f 7→ Θf, with a bounded analytic function Θ ∈ H∞
B(W,E)(D) such that Θ possesses isometric

boundary values almost everywhere. In this case

S = ΘH2
W(D)

and (cf. Theorem 5.2 below)

(1.1) S ⊖ zS = ΘW .

Thus the wandering subspaces of Mz on H2
E(D) can be described using the Beurling-Lax-

Halmos representation of Mz-invariant subspaces of H
2
E(D).

Much later, in Aleman, Richter and Sundberg [1], it was shown that every Mz-invariant
closed subspace of the Bergman space on the unit disc D is generated by a wandering subspace.
More precisely, let S be a closed Mz-invariant subspace of the Bergman space L2

a(D). Then

S = [S ⊖ zS],

where the notation [M ] is used for the smallest closed Mz-invariant subspace containing a
given set M ⊂ L2

a(D). The above result of Aleman, Richter and Sundberg has been extended
by Shimorin (see [22] and [23]) who replaced the multiplication operator Mz on the Bergman
space by left invertible Hilbert space operators satisfying suitable operator inequalities.

In this paper we study wandering subspaces for commuting tuples of operators on Hilbert
spaces. More precisely, let T = (T1, . . . , Tn) be a commuting tuple of bounded operators on
a Hilbert space H. Suppose that W = H⊖

∑n
i=1 TiH is a generating wandering subspace for

T . We are interested in the following general question: given a closed T -invariant subspace
S ⊂ H, are there natural conditions which ensure that T |S = (T1|S , . . . , Tn|S) has a generating
wandering subspace again?

In view of the known one-variable results it seems natural to study this problem first in
the particular case where T is the tuple Mz = (Mz1 , . . . ,Mzn) consisting of the multiplication
operators with the coordinate functions on some classical reproducing kernel Hilbert spaces
such as the Hardy space, the Bergman space or the Drury-Arveson space on the unit ball Bn

of Cn.
The main purpose of this paper, however, is to parameterize the wandering subspaces

and, in particular, to extend the representation (1.1) to a large class of commuting operator
tuples. The above question concerning the existence of generating wandering subspaces, even
for classical reproducing kernel Hilbert spaces over the unit ball in Cn, seems to be more
elusive.

Our primary motivation for studying wandering subspaces comes from recent results on
Beurling-Lax-Halmos type representations of invariant subspaces of commuting tuples of op-
erators (see Theorem 4.1 below or [4] and [20]). Our study is also motivated by Hedenmalm’s
theory [11] of Bergman inner functions for shift-invariant subspaces of the Bergman space on
the unit disc D. This concept has been further generalized by Olofsson [16, 17] to obtain pa-
rameterizations of wandering subspaces of shift-invariant subspaces for the weighted Bergman
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spaces on D corresponding to the kernels

Km(z, w) = (1− zw̄)−m (m ∈ N).

Our observations heavily depend on the existence of dilations for commuting row contrac-
tions (see Section 2). For instance, let T = (T1, . . . , Tn) be a pure commuting contractive
tuple on a Hilbert space H. Let Π : H → H2

n(E) be the Arveson dilation of T , and let
Π̃ : H → H2

n(Ẽ) be an arbitrary dilation of T (see Section 2). Then our main uniqueness
result, which may be of independent interest, yields an isometry V : E → Ẽ such that the
following diagram commutes (Corollary 3.3):

H
Π̃

H2
n(Ẽ)

H2
n(E)

?�
�
�
�
��

-

Π
IH2

n
⊗ V

In the one-dimensional case n = 1, some of our observations concerning wandering sub-
spaces are closely related to results of Shimorin [22, 23], Ball and Bolotnikov [4, 5, 6] and
Olofsson [15, 16, 17].

In Section 2 we define the notion of a minimal dilation for pure commuting row contractions
T and show that the Arveson dilation is a minimal dilation of T . In Section 3 we show that
minimal dilations are uniquely determined and that each dilation of a pure commuting row
contraction factorizes through its minimal dilation. If S is a closed invariant subspace for T ,
then by dualizing the minimal dilation of the restriction T |S one obtains a representation of
S as the image of a partially isometric module map Π : H2

n(E) → H defined on a vector-
valued Drury-Arveson space. In Section 4 the uniqueness and factorization results for minimal
dilations are used to prove corresponding results for the representation Π. In Section 5
we show that any representation Π : H2

n(E) → H of a T -invariant subspace S induces a
unitary representation of the associated wandering subspace W = S ⊖

∑n
i=1 TiS. Finally,

in Section 6 we show that, in the particular case that T ∈ B(H)n is the the multiplication
tuple Mz = (Mz1 , . . . ,Mzn) on a contractive analytic functional Hilbert space H(K) on Bn,
the above representation of the wandering subspace W = S ⊖

∑n
i=1MziS is given by a

suitably defined H(K)-inner function. We show that H(K)-inner functions are contractive
multipliers and apply these results to deduce that the norm and the multiplier norm for
quasi-homogeneous polynomials on the Drury-Arveson space coincide. We conclude with an
example showing that in contrast to the one-dimensional case in dimension n > 1, even for
the nicest analytic functional Hilbert spaces on Bn such as the Hardy space, the Bergman
space or the Drury-Arveson space, there are Mz-invariant subspaces which do not possess a
generating wandering subspace.

The authors are grateful to Orr Shalit for helpful discussions.
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2. Minimal Dilations

We begin with a brief introduction to the theory of dilations for commuting row contrac-
tions.

Let T = (T1, . . . , Tn) be an n-tuple of bounded linear operators on a complex Hilbert space
H. We denote by PT : B(H) → B(H) the completely positive map defined by

PT (X) =
n∑

i=1

TiXT ∗
i .

An n-tuple T is called a row contraction or simply a contractive tuple if

PT (IH) ≤ IH.

If T is a row contraction, then

IH ≥ PT (IH) ≥ P 2
T (IH) ≥ · · · ≥ Pm

T (IH) ≥ · · · ≥ 0.

Hence the limit
P∞(T ) = SOT− lim

m→∞
Pm
T (IH)

exists and satisfies the inequalities 0 ≤ P∞(T ) ≤ IH. A row contraction T is called pure (cf.
[3] or [18]) if P∞(T ) = 0.

Let λ ≥ 1 and let Kλ : Bn × Bn → C be the positive definite function defined by

Kλ(z,w) = (1−
n∑

i=1

ziw̄i)
−λ.

Then the Drury-Arveson space H2
n, the Hardy space H2(Bn), the Bergman space L2

a(Bn),
and the weighted Bergman spaces L2

a,α(Bn) with α > −1, are the reproducing kernel Hilbert
spaces with kernel Kλ where λ = 1, n, n + 1 and n + 1 + α, respectively. The tuples Mz =
(Mz1 , . . . ,Mzn) of multiplication operators with the coordinate functions on these reproducing
kernel Hilbert spaces are examples of pure commuting contractive tuples of operators.

Let K be a positive definite function on Bn holomorphic in the first and anti-holomorphic
in the second variable. Then the functional Hilbert space HK with reproducing kernel K
consists of analytic functions on Bn. For any Hilbert space E , the E-valued functional Hilbert
space with reproducing kernel

Bn × Bn → B(E), (z,w) 7→ K(z,w)IE

can canonically be identified with the tensor product Hilbert space HK ⊗ E . To simplify the
notation, we often identify H2

n ⊗ E with the E-valued Drury-Arveson space H2
n(E).

Let T be a commuting row contraction on H and let E be an arbitrary Hilbert space. An
isometry Γ : H → H2

n(E) is called a dilation of T if

M∗
zi
Γ = ΓT ∗

i (i = 1, . . . , n).

Since Mz ∈ B(H2
n(E))n is a pure row contraction and since a compression of a pure row con-

traction to a co-invariant subspace remains pure, any commuting row contraction possessing
a dilation of the above type is necessarily pure.
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Let Γ : H → H2
n(E) be a dilation of T . Since the C∗-subalgebra of B(H2

n) generated by
(Mz1 , . . . ,Mzn) has the form

C∗(Mz) = span{Mk
z M

∗l
z : k, l ∈ Nn}

(see Theorem 5.7 in [3]), the space

M = span{zkΓh : k ∈ Nn, h ∈ H}

is the smallest reducing subspace for Mz on H2
n(E) containing the image of Γ. As a reducing

subspace for Mz ∈ B(H2
n(E))n the space M has the form

M =
∨

k∈Nn

zkL = H2
n(L) with L = M ∩ E .

We call Γ a minimal dilation of T if

H2
n(E) = span{zkΓh : k ∈ Nn, h ∈ H}.

We briefly recall a canonical way to construct minimal dilations for pure commuting con-
tractive tuples (cf. [3]). Let T be a pure commuting contractive tuple on H. Define

Ec = ran(IH − PT (IH)), D = (IH − PT (IH))
1
2 .

Then the operator Πc : H → H2
n(Ec) defined by

(Πch)(z) = D(IH −
n∑

i=1

ziT
∗
i )

−1h (z ∈ Bn, h ∈ H).

is a dilation of T . Let

M =
∨

k∈Nn

zkL = H2
n(L) with L = M ∩ Ec

be the smallest reducing subspace for Mz ∈ B(H2
n(Ec))n which contains the image of Πc and

let PEc be the orthogonal projection of H2
n(Ec) onto the subspace consisting of all constant

functions. Since

PEc = IH2
n(Ec) −

n∑
i=1

MziM
∗
zi
,

we obtain that

Dh = PEc(Πch) ∈ H2
n(L) ∩ Ec = L

for each h ∈ H. Hence Πc is a minimal dilation of T .
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3. uniqueness of minimal dilations

Using a refinement of an idea of Arveson [3], we obtain the following sharpened uniqueness
result for minimal dilations of pure commuting contractive tuples.

Theorem 3.1. Let T ∈ B(H)n be a pure commuting contractive tuple on a Hilbert space H
and let Πi : H → H2

n(Ei), i = 1, 2, be a pair of minimal dilations of T . Then there exists a
unitary operator U ∈ B(E1, E2) such that

Π2 = (IH2
n
⊗ U)Π1.

Proof. As an application of Theorem 8.5 in [3] one can show that there is a unitary operator
W : H2

n(E1) → H2
n(E2) which intertwines the tuples Mz on H2

n(E1) and H2
n(E2). We prefer to

give a more direct proof containing some simplifications which are possible in the pure case.
Let B = C∗(Mz) ⊂ B(H2

n) be the C∗-algebra generated by the multiplication tuple
(Mz1 , . . . ,Mzn) on the scalar-valued Drury-Arveson space H2

n. Denote by A the unital subal-
gebra of B consisting of all polynomials in (Mz1 , . . . ,Mzn).
Let Π : H → H2

n(F) be a minimal dilation of T . The map φ : B → B(H) defined by

φ(X) = Π∗(X ⊗ IF)Π

is completely positive and unital. For each polynomial p ∈ C[z1, . . . , zn] and each operator
X ∈ B, we have φ(p(Mz)) = p(T ) and, since ran(Π)⊥ is invariant for Mz, it follows that

φ(p(Mz)X) = Π∗(p(Mz)X ⊗ 1F)Π = φ(p(Mz))φ(X).

Hence φ : B → B(H) is an A-morphism in the sense of Arveson (Definition 6.1 in [3]). The
minimality of Π as a dilation of T implies that the map π : B → B(H2

n(F)) defined by

π(X) = X ⊗ IF

is a minimal Stinespring dilation of φ. Now let Πi : H → H2
n(Ei), i = 1, 2, be a pair of minimal

dilations of T and let φi : B → B(H), πi : B → B(H2
n(Ei)) be the maps induced by Πi as

explained above. Then φ1 = φ2 onA, and hence a direct application of Lemma 8.6 in [3] shows
that there is a unitary operator W : H2

n(E1) → H2
n(E2) such that W (X ⊗ IE1) = (X ⊗ IE2)W

for all X ∈ B and such that

WΠ1 = Π2.

Since W and W ∗ both intertwine the tuples Mz⊗IE1 and Mz⊗IE2 , it follows as a very special
case of the functional commutant lifting theorem for the Drury-Arveson space (see Theorem
5.1 in [7] or Theorem 3.7 in [2]) that W and W ∗ are induced by multipliers, say W = Ma and
W ∗ = Mb, where a : Bn → B(E1, E2) and b : Bn → B(E2, E1) are operator-valued multipliers.
Since

Mab = MaMb = IH2
n(E2) and Mba = MbMa = IH2

n(E1),

it follows that a(z) = b(z)−1 are invertible operators for all z ∈ Bn. Moreover, since

K(z,w)η = (MaM
∗
aK(·,w)η)(z) = a(z)K(z,w)a(w)∗η,

holds for all z,w ∈ Bn and η ∈ E2, it follows that a(z)a(w)∗ = IE2 for all z,w ∈ Bn.
Hence the operators a(z) are unitary with a(z) = a(w) for all z,w ∈ Bn. Let U = a(z)
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be the constant value of the multiplier a. Then U ∈ B(E1, E2) is a unitary operator with
W = IH2

n
⊗ U . Hence the proof is complete.

Remark 3.2. Let Πc : H → H2
n(Ec) be the Arveson dilation of a pure commuting row con-

traction T as in Section 2 and let Π : H → H2
n(E) be an arbritrary minimal dilation of T .

Then there is a unitary operator U ∈ B(Ec, E) such that

Π = (IH2
n
⊗ U)Πc.

In this sense the Arveson dilation Πc is the unique minimal dilation of T . In the sequel we
call Πc the canonical dilation of T .

As a consequence of Theorem 3.1, we obtain the following factorization result (see Theorem
4.1 in [19] for the single-variable case).

Corollary 3.3. (Canonical factorizations of dilations) Let T ∈ B(H)n be a pure commuting
contractive tuple and let Π : H → H2

n(E) be a dilation of T . Then there exists an isometry
V ∈ B(Ec, E) such that

Π = (IH2
n
⊗ V )Πc.

Proof. As shown in Section 2 there is a closed subspace F ⊆ E such that

H2
n(F) = span{zkΠH : k ∈ Nn}.

Then by definition Π : H → H2
n(F) is a minimal dilation of T . By Theorem 3.1, there exists

a unitary operator U : Ec → F such that

Π = (IH2
n
⊗ U)Πc.

Clearly, U regarded as an operator with values in E , defines an isometry V with the required
properties.

4. Joint invariant subspaces

In this section we study the structure of joint invariant subspaces of pure commuting row
contractions.

We begin with the following characterization of invariant subspaces from [21] (Theorem
3.2). The proof follows as an elementary application of the above dilation results.

Theorem 4.1. Let T = (T1, . . . , Tn) be a pure commuting contractive tuple on H and let S be
a closed subspace of H. Then S is a joint T -invariant subspace of H if and only if there exists
a Hilbert space E and a partial isometry Π ∈ B(H2

n(E),H) with ΠMzi = TiΠ for i = 1, . . . , n
and

S = Π(H2
n(E)).

Proof. We indicate the main ideas. Let S ⊂ H be a closed invariant subspace for T . Since

⟨Pm
(T |S)(IS)x, x⟩ =

∑
|k|=m

|k|!
k!

∥PST
∗kx∥2 m→ 0
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for each x ∈ S, the restriction T |S is a pure commuting row contraction again. Let ΠS : S →
H2

n(E) be a dilation of T |S and let iS : S → H be the inclusion map. Then

Π = iS ◦ Π∗
S : H2

n(E) → H

is a partial isometry with the required properties. The reverse implication obviously holds.

Remark 4.2. Let S ⊂ H be a closed invariant subspace of a pure commuting row contraction
T ∈ B(H)n and let ΠS : S → H2

n(E) be a minimal dilation of the restriction T |S . Then the
map

Π : H2
n(E)

Π∗
S−→ S ↪→ H

is a partial isometry with ranΠ = S such that Π intertwines Mz on H2
n(E) and T on H

componentwise. Any map Π arising in this way will be called a canonical representation of
S. Note that in this situation Π∗|S = ΠS is a minimal dilation of T |S .

If Π : H2
n(E) → H and Π̃ : H2

n(Ẽ) → H are two canonical representations of S, then by
Theorem 3.1 there is a unitary operator U ∈ B(Ẽ , E) such that Π̃ = Π(IH2

n
⊗ U).

By dualizing Corollary 3.3 one obtains the following uniqueness result.

Theorem 4.3. Let T ∈ B(H)n be a pure commuting contractive tuple and let Π : H2
n(E) → H

be a canonical representation of a closed T -invariant subspace S ⊂ H. If Π̃ : H2
n(Ẽ) → H is

a partial isometry with S = Π̃H2
n(Ẽ) and Π̃Mzi = TiΠ̃ for i = 1, . . . , n, then there exists an

isometry V : E → Ẽ such that

Π̃ = Π(IH2
n
⊗ V ∗).

Proof. Since Π̃∗ is a partial isometry with ker Π̃∗ = (ranΠ̃)⊥ = S⊥, the map Π̃∗ : S → H2
n(Ẽ)

is an isometry. The adjoint of this isometry intertwines the tuples Mz ∈ B(H2
n(Ẽ))n and T |S .

Hence Π̃∗ : S → H2
n(Ẽ) is a dilation of T |S . Since Π∗ : S → H2

n(E) is a minimal dilation of
T |S , Corollary 3.3 implies that there is an isometry V : E → Ẽ such that

Π̃∗|S = (IH2
n
⊗ V )Π∗|S .

By taking adjoints and using the fact that ran Π = ran Π̃ = S, we obtain that

Π̃ = Π(IH2
n
⊗ V ∗).

Thus the proof is complete.

Corollary 4.4. Let T ∈ B(H)n be a pure commuting contractive tuple and let S ⊂ H be a
closed T -invariant subspace. Suppose that

Πj : H
2
n(Ej) → H (j = 1, 2)

are partial isometries with range S such that Πj intertwines Mz on H2
n(Ej) and T on H for

j = 1, 2. Then there exists a partial isometry V : E1 → E2 such that

Π1 = Π2(IH2
n
⊗ V ).
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Proof. Let S = ΠH2
n(E) be a canonical representation of S. Theorem 4.3 implies that

Πj = Π(IH2
n
⊗ V ∗

j )

for some isometry Vj : E → Ej, j = 1, 2. Therefore,

Π1 = Π(IH2
n
⊗ V ∗

1 )

= (Π2(IH2
n
⊗ V2))(IH2

n
⊗ V ∗

1 )

= Π2(IH2
n
⊗ V2V

∗
1 )

= Π2(IH2
n
⊗ V ),

where V = V2V
∗
1 : E1 → E2 is a partial isometry. This completes the proof.

5. Parameterizations of Wandering Subspaces

In this section we consider parameterizations of wandering subspaces for pure commuting
row contractions T ∈ B(H)n which in the case of the one-variable shift T = Mz ∈ B(H2

E(D))
on the Hardy space of the unit disc reduce to the representation (1.1). As suggested by
Theorem 4.1 the isometric intertwiner V : H2

W(D) → H2
E(D) from the introduction is replaced

by a partial isometry Π : H2
n(E) → H intertwining Mz ∈ B(H2

n(E))n and T ∈ B(H)n.
We begin with an elementary but crucial observation concerning the uniqueness of wander-

ing subspaces for commuting tuples of operators.
Let W be a wandering subspace for a commuting tuple T ∈ B(H)n. Set

GT,W =
∨

k∈Nn

T kW .

An elementary argument shows that

GT,W ⊖
n∑

i=1

TiGT,W =
∨

k∈Nn

T kW ⊖
∨

k∈Nn\{0}

T kW = W .

It follows that

W =
n
∩
i=1

(GT,W ⊖ TiGT,W).

Consequently, we have the following result.

Proposition 5.1. Let T ∈ B(H)n be a commuting tuple of bounded operators on a Hilbert
space H and let W be a wandering subspace for T . Then

W = ∩n
i=1(GT,W ⊖ TiGT,W) = GT,W ⊖

n∑
i=1

TiGT,W .

In particular, if W is a generating wandering subspace for T , then

W = ∩n
i=1(H⊖ TiH) = H⊖

n∑
i=1

TiH.
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Starting point for our description of wandering subspaces is the following general observa-
tion.

Theorem 5.2. Let T ∈ B(H)n be a commuting tuple of bounded operators on a Hilbert space
H and let Π : H2

n(E) → H be a partial isometry with ΠMzi = TiΠ for i = 1, . . . , n. Then
S = Π(H2

n(E)) is a closed T -invariant subspace, W = S ⊖
∑n

i=1 TiS is a wandering subspace
for T |S and

W = Π((kerΠ)⊥ ∩ E).

Proof. Define F = (kerΠ)⊥ ∩ E . Obviously the range S of Π is a closed T -invariant subspace
and W = S ⊖

∑n
i=1 TiS is a wandering subspace for T |S . To prove the claimed representation

of W note first that

W = Π(H2
n(E))⊖

n∑
i=1

TiΠ(H
2
n(E)) = Π(H2

n(E))⊖
n∑

i=1

ΠMzi(H
2
n(E)).

For f ∈ F , h ∈ H2
n(E) and i = 1, . . . , n, we have

⟨Πf,Πzih⟩ = ⟨Π∗Πf, zih⟩ = ⟨f, zih⟩ = 0.

Conversely, each element in W can be written as Πf with f ∈ (kerΠ)⊥. But then, for
h ∈ H2

n(E) and i = 1, . . . , n, we obtain

⟨f, zih⟩ = ⟨Πf,Πzih⟩ = 0.

To conclude the proof it suffices to recall that H2
n(E)⊖

∑n
i=1Mzi(H

2
n(E)) = E . This identity is

well known, but also follows directly from Proposition 5.1, since E is a generating wandering
subspace for Mz ∈ B(H2

n(E))n.

If T ∈ B(H)n is a pure commuting row contraction, then by Theorem 4.1 each closed T -
invariant subspace S ⊂ H admits a representation S = Π(H2

n(E)) as in the hypothesis of the
preceding theorem.

Corollary 5.3. In the setting of Theorem 5.2 the identity∨
k∈Nn

T kW = ΠH2
n(F)

holds with F = (kerΠ)⊥ ∩ E.

Proof. Since W = ΠF , we have∨
k∈Nn

T kW =
∨

k∈Nn

T kΠF =
∨

k∈Nn

ΠMk
z F = Π( ∨

k∈Nn
Mk

z F) = ΠH2
n(F).

This completes the proof.
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6. Contractive analytic Hilbert spaces and inner functions

Let K : Bn × Bn → C be a positive definite function and let HK be the functional Hilbert
space with reproducing kernel K. We say that HK is a contractive analytic Hilbert space (cf.
[20], [21]) over Bn if HK consists of analytic functions on Bn and if the multiplication tuple
Mz = (Mz1 , . . . ,Mzn) is a pure row contraction on HK .
Typical and important examples of contractive analytic Hilbert spaces include the Drury-
Arveson space, the Hardy space and the weighted Bergman spaces over Bn (cf. Proposition
4.1 in [21]).

Let HK be a contractive analytic Hilbert space and let E and E∗ be arbitrary Hilbert spaces.
An operator-valued map Θ : Bn → B(E , E∗) is said to be a K-multiplier if

Θf ∈ HK ⊗ E∗ for every f ∈ H2
n ⊗ E .

The set of all K-multipliers is denoted by M(H2
n⊗E ,HK ⊗E∗). If Θ ∈ M(H2

n⊗E ,HK ⊗E∗),
then the multiplication operator MΘ : H2

n ⊗ E → HK ⊗ E∗ defined by

(MΘf)(w) = (Θf)(w) = Θ(w)f(w)

is bounded by the closed graph theorem. We shall call a multiplier Θ partially isometric or
isometric if the induced multiplication operator MΘ has the corresponding property.

The space of K-multipliers can be described in the following way (cf. Corollary 4.3 in [21]).
Let X be in B(H2

n ⊗ E ,HK ⊗ E∗). Then X = MΘ for some Θ ∈ M(H2
n ⊗ E ,HK ⊗ E∗) if and

only if

X(Mzi ⊗ IE) = (Mzi ⊗ IE∗)X for i = 1, . . . , n.

Definition 6.1. Let Θ : Bn → B(E , E∗) be an operator-valued function and let HK be a
contractive analytic Hilbert space as above. Then Θ is said to be a K-inner function if
Θx ∈ HK ⊗ E∗ with ∥Θx∥HK⊗E∗ = ∥x∥E for all x ∈ E and if

ΘE ⊥ Mk
z (ΘE) for all k ∈ Nn \ {0}.

The notion of K-inner functions for the particular case of weighted Bergman spaces on D
is due to A. Olofsson [16]. His definition of Bergman inner functions was motivated by earlier
observations [11] of H. Hedenmalm concerning invariant subspaces and wandering subspaces
of the Bergman space on D.

The following result should be compared with Theorem 6.1 in [16] or Theorem 3.3 in [12].

Theorem 6.2. Each K-inner function Θ : Bn → B(E , E∗) is a contractive K-multiplier.

Proof. Let Θ : Bn → B(E , E∗) be aK-inner function. ThenW = ΘE ⊂ HK⊗E∗ is a generating
wandering subspace for the restriction of Mz ∈ B(HK ⊗E∗)n to the closed invariant subspace

S =
∨

k∈Nn

(Mk
z W) ⊂ HK ⊗ E∗.

By Theorem 4.1 and the remarks preceding Definition 6.1, there is a partially isometric K-
multiplier Θ̂ ∈ M(H2

n ⊗ Ê ,HK ⊗ E∗) such that S is the range of the induced multiplication



12 BHATTACHARJEE, ESCHMEIER, KESHARI, AND SARKAR

operator MΘ̂. Define F = (kerMΘ̂)
⊥ ∩ Ê . A straightforward application of Proposition 5.1

and Theorem 5.2 yields that
MΘ̂ : F → W

is a unitary operator. Since also MΘ : E → W is a unitary operator, it follows that there is
a unitary operator U : E → F such that Θ(z) = Θ̂(z)U for all z ∈ Bn. For each function
f ∈ H2

n ⊗ E ⊂ O(Bn, E), it follows that

Θ(z)f(w) = Θ̂(z)Uf(w)

for all z,w ∈ Bn. Evaluating this identity for z = w, we obtain that Θf = Θ̂Uf for all
f ∈ H2

n(E). Since H2
n(E) → H2

n(Ê), f 7→ Uf , is isometric and since Θ̂ ∈ M(H2
n ⊗ Ê ,HK ⊗E∗)

is a contractive K-multiplier, it follows that also Θ is a contractive K-multiplier.
In the scalar case E = E∗ = C the preceding theorem implies that each K-inner function

Θ : Bn → B(C) ∼= C satisfies the estimates

1 = ∥Θ∥HK
≤ ∥Θ∥M(H2

n,HK)∥1∥H2
n
≤ 1.

Hence the norm of Θ, and also of each scalar multiple of Θ, as an element in HK coincides
with its norm as a multiplier from H2

n to HK . We apply this observation to a natural class of
examples.

A polynomial p =
∑

k∈Nn akz
k is called quasi-homogeneous if there are a tuple m =

(m1, . . . ,mn) of positive integers mi and an integer ℓ ≥ 0 such that
∑n

i=1miki = ℓ for
all k ∈ Nn with ak ̸= 0. In this case p is said to be m-quasi-homogeneous of degree ℓ. Let us
denote by Rm(ℓ) the set of all m-quasi-homogeneous polynomials of degree ℓ.

Corollary 6.3. Suppose that HK is a contractive analytic Hilbert space on Bn such that
the monomials zk (k ∈ Nn) form an orthogonal basis of HK. Let p ∈ C[z1, . . . , zn] be a
quasi-homogeneous polynomial. Then

∥p∥HK
= ∥p∥M(H2

n,HK).

If ∥p∥HK
= 1, then p is a K-inner function.

Proof. Suppose that p ∈ Rm(ℓ) is m-quasi-homogeneous of degree ℓ with ∥p∥HK
= 1. Then

zkp is m-quasi-homogeneous of degree ℓ+
∑n

i=1miki for k ∈ Nn. Since by hypothesis

HK = ⊕ℓRm(ℓ),

it follows that p is a K-inner function. The remaining assertions follow from the remarks
following Theorem 6.2.

If Θ : Bn → B(E , E∗) is a K-inner function, then W = ΘE ⊂ HK ⊗ E∗ is a closed subspace
which is the generating wandering subspace for Mz restricted to S =

∨
k∈Nn Mk

z W . Hence
in the setting of Corollary 6.3 each closed Mz-invariant subspace S =

∨
k∈Nn Mk

z p ⊂ HK

generated by a quasi-homogeneous polynomial p is generated by the wandering subspace
W = Cp = S ⊖

∑n
i=1 MziS.

Corollary 6.3 applies in particular to the functional Hilbert spaces H(Kλ) (λ ≥ 1) with
reproducing kernel Kλ(z,w) = (1 −

∑n
i=1 ziwi)

−λ, since these spaces satisfy all hypotheses
for HK contained in Corollary 6.3.
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Remark 6.4. It is well known (cf. Corollary 3.3 in [24]) that the unit sphere ∂Bn is contained
in the approximate point spectrum σπ(Mz, H

2
n) of the multiplication tuple Mz ∈ B(H2

n)
n.

Since the approximate point spectrum satisfies an analytic spectral mapping theorem (see
Section 2.6 in [8] for the relevant definitions and the spectral mapping theorem), in dimension
n > 1

0 ∈ p(σπ(Mz, H
2
n)) = σπ(Mp, H

2
n)

for each homogeneous polynomial p of positive degree. Hence, for each such polynomial, the
subspace pH2

n ⊂ H2
n is non-closed. An elementary argument, using the fact that the inclusion

H2
n ⊂ H(Kλ) is continuous, shows that also pH2

n ⊂ H(Kλ) is not closed. It follows that in
dimension n > 1 there is no chance to show that Kλ-inner multipliers have the expansive
multiplier property proved in [17] for operator-valued Bergman inner functions on the unit
disc.

By combining Theorem 4.1 (or Theorem 3.2 in [21]), Theorem 4.3 and Corollary 4.4 we ob-
tain the following characterization of invariant subspaces of vector-valued contractive analytic
Hilbert spaces.

Theorem 6.5. Let HK be a contractive analytic Hilbert space over Bn and let E∗ be an
arbitrary Hilbert space. Then a closed subspace S ⊂ HK ⊗E∗ is invariant for Mz ⊗ IE∗ if and
only if there exists a Hilbert space E and a partially isometric K-multiplier Θ ∈ M(H2

n ⊗
E ,HK ⊗ E∗) with

S = ΘH2
n(E).

If S = Θ̃H2
n(Ẽ) is another representation of the same type, then there exists a partial isometry

V : E → Ẽ such that

Θ(z) = Θ̃(z)V (z ∈ Bn).

Furthermore, if S = ΘcH
2
n(Ec) is a canonical representation of S in the sense of Remark 4.2,

then

Θc(z) = Θ(z)Vc (z ∈ Bn)

for some isometry Vc : Ec → E.

The first part of the preceding theorem for the particular case HK = H2
n is the Drury-

Arveson space is a result of McCullough and Trent [13], which generalizes the classical
Beurling-Lax-Halmos theorem to the multivariable case. The last part seems to be new
even in the case of the Drury-Arveson space.

By applying Theorem 5.2 we obtain a generalization of a result of Olofsson (Theorem 4.1
in [16]) to a quite general multlivariable setting.

Theorem 6.6. Let HK be a contractive analytic Hilbert space on Bn and let E∗ be an arbitrary
Hilbert space. Let S = ΘH2

n(E) be a closed Mz-invariant subspace of HK ⊗ E∗ represented
by a partially isometric multiplier Θ ∈ M(H2

n ⊗ E ,HK ⊗ E∗) as in Theorem 6.5. Then
Θ0 : Bn → B(F , E∗),Θ0(z) = Θ(z)|F , where

F = {η ∈ E : M∗
ΘMΘη = η},
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defines a K-inner function such that the wandering subspace W = S ⊖
∑n

i=1 MziS of Mz

restricted to S is given by

W = Θ0F .

The wandering subspace W is generating for Mz|S if and only if

S = ΘH2
n(F).

Proof. Since MΘ|(kerMΘ)⊥ is an isometry and since

F = (kerMΘ)
⊥ ∩ E ,

the result follows as an application of Theorem 5.2 and Corollary5.3 with T = Mz ∈ B(HK ⊗
E∗)n.

By using once again the fact thatMΘ is a partial isometry one can reformulate the necessary
and sufficient condition for W to be a generating wandering subspace for Mz|S given in
Theorem 6.6.

Theorem 6.7. In the setting of Theorem 6.6 the space W = ΘF is a generating wandering
subspace for Mz|S if and only if

(kerMΘ)
⊥ ∩ (H2

n(F))⊥ = {0}.

Proof. For f ∈ (kerMΘ)
⊥ and h ∈ H2

n(F), the identity

⟨f, h⟩ = ⟨f, P(kerMΘ)⊥h⟩ = ⟨Θf,ΘP(kerMΘ)⊥h⟩ = ⟨Θf,Θh⟩

holds. Using this observation one easily obtains the identity

ΘH2
n(E)⊖ΘH2

n(F) = Θ[(kerMΘ)
⊥ ∩ (H2

n(F))⊥].

Since by Theorem 6.6 the space W = ΘF is a generating wandering subspace for Mz|S if and
only if the space on the left-hand side is the zero space, the assertion follows.

We conclude by giving an example which shows that in the multivariable setting, even for
the nicest analytic functional Hilbert spaces on Bn, there are Mz-invariant subspaces which
do not possess a generating wandering subspace.

Example 6.8. For a ∈ Bn, define Sa = {f ∈ H2
n : f(a) = 0}. For a ̸= 0, the wandering

subspace Wa = Sa ⊖
∑n

i=1MziSa for Mz restricted to Sa is one-dimensional (see Theorem 4.3
in [9]). Hence, if n > 1, then the common zero sets

Z(Sa) = {a} ̸= Z(Wa) = Z(
∨

k∈Nn

zkWa)

of Sa and the invariant subspace generated by Wa are different. Thus, for n > 1 and a ̸= 0,
the restriction of Mz to Sa has no generating wandering subspace. Since z1, . . . , zn ∈ S0 ⊖∑n

i=1MziS0 and since S0 =
∨
{zkzj : k ∈ Nn and j = 1, . . . , n}, we obtain that S0 possesses

the generating wandering subspace W0 = span{z1, . . . , zn}. By using Corollary 4.6 in [9] one
sees that the above observations remain true if H2

n is replaced by the Hardy space H2(Bn) or
the Bergman space L2

a(Bn).
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