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Abstract. We introduce Brownian shifts on vector-valued Hardy spaces and describe
their invariant subspaces. We then consider the restriction of Brownian shifts to their
invariant subspaces and classify when they are unitarily equivalent. Additionally, we
prove an asymptotic property stating that normalized Brownian shifts belong to the
classical C00-class.
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1. Introduction

Let σ > 0 and θ ∈ [0, 2π). The Brownian shift of covariance σ and angle θ is the
bounded linear operator Bσ,eiθ : H

2(T)⊕ C → H2(T)⊕ C, defined by

Bσ,eiθ =

[
S σ(1⊗ 1)
0 eiθ

]
,

where S : H2(T) → H2(T) is the shift operator on H2(T) and H2(T) denotes the Hardy
space of complex-valued square integrable functions on the unit circle T in C. Recall that

Sf = zf,

for all f ∈ H2(T). Moreover, the operator 1⊗1 : C → H2(T) is defined by ((1⊗1)α)(z) =
α for all α ∈ C and z ∈ T. Brownian shifts were introduced by Agler and Stankus in the
context of m-isometries [1, Definition 5.5]. These operators are related to the time-shift
operators associated with Brownian motion processes.

2020 Mathematics Subject Classification. 46J15, 30H10, 30J05, 60J65, 47A08.
Key words and phrases. Invariant subspaces, Brownian shifts, model spaces, inner functions, Hardy

spaces, perturbations.
1



2 DAS, DAS, AND SARKAR

Determining the lattice of closed subspaces that are invariant under a given bounded
linear operator is always an interesting problem. When the underlying operator is sim-
ple—particularly for naturally occurring operators—the problem becomes even more in-
triguing. In the case of the Brownian shifts, Agler and Stankus resolved the invariant
subspace problem [1]. In this paper, we introduce Brownian shifts acting on vector-valued
Hardy spaces, and solve the invariant subspace problem for them. These are generaliza-
tions of the settings and results of Agler and Stankus. Furthermore, we investigate the
restrictions of Brownian shifts to their invariant subspaces in vector-valued Hardy spaces
and determine when they are unitarily similar.

Let us first introduce Brownian shifts on vector-valued Hardy spaces. Given a Hilbert
space E (all Hilbert spaces in this paper are separable and over C), denote by H2

E(T) the
E-valued Hardy space over T. By SE, we refer to the shift operator on H2

E(T). When
E = C, we simply write H2

C(T) as H2(T), and SC as S. The Brownian shift on H2
E(T)⊕E

of covariance σ and angle θ is the bounded linear operator

BE
σ,eiθ =

[
SE σiE
0 eiθIE

]
: H2

E(T)⊕ E → H2
E(T)⊕ E,

where iE : E → H2
E(T) is the inclusion map defined by (iEx)(z) = x for all x ∈ E and

z ∈ T. Clearly, in the scalar case E = C, we have BC
σ,eiθ

= Bσ,eiθ . We often refer to

Bσ,eiθ as a Brownian shift on H2(T). Throughout the paper, E will denote an arbitrary
but fixed Hilbert space, with the possibility that E = C. One motivation for studying
Brownian shifts on vector-valued Hardy spaces is that they are unitarily equivalent to the
Brownian shifts tensored with identity operators. That is,

BE
σ,eiθ on H2

E(T)⊕ E ∼= Bσ,eiθ ⊗ IE on (H2(T)⊕ C)⊗ E,

where “∼=”denotes unitary equivalence between operators. Invariant subspaces of Brow-
nian shifts can be partitioned into two distinct types:

Definition 1.1. Let M be a closed subspace of H2
E(T)⊕E that is invariant under BE

σ,eiθ
.

We say that:

(1) M is Type I if M ⊆ H2
E(T)⊕ {0}.

(2) M is Type II if M ⊈ H2
E(T)⊕ {0}.

Our first goal is to classify the invariant subspaces of Brownian shifts, which will exhibit
fundamentally different structures in the Type I and Type II cases. To proceed, we first
recall the basic and commonly used terminology: Given a Hilbert space E∗, letH

∞
B(E∗,E)(T)

denote the Banach space of B(E∗, E)-valued bounded analytic functions on the open unit
disc D, where B(E∗, E) is the space of bounded linear operators from E∗ to E (we write
H∞

B(E∗,E)(T) as H∞(T) whenever E∗ = E = C). Each Φ ∈ H∞
B(E∗,E)(T) induces a bounded

linear operator MΦ : H2
E∗(T) → H2

E(T), defined by

MΦf = Φf,

for all f ∈ H2
E∗(T). It is important to note that

MΦSE∗ = SEMΦ.

A function Φ ∈ H∞
B(E∗,E)(T) is called inner if MΦ is an isometry. This is equivalent to the

condition that Φ(z) is an isometry from E∗ to E for almost every z ∈ T. Recall that for
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an inner function Φ ∈ H∞
B(E∗,E)(T), the model space KΦ (cf. [9]) is defined by

KΦ := H2
E(T)⊖ ΦH2

E∗(T).

Fix a Brownian shift BE
σ,eiθ

. Given an inner function Φ ∈ H∞
B(E∗,E)(T), we set

GΦ =

{[
g
y

]
∈ H2

E(T)⊕ E : y ∈ E, g =
Φx− σy

z − eiθ
∈ H2

E(T) for some x ∈ E∗

}
. (1.1)

In Theorems 2.1 and 2.6, we establish the following invariant subspace theorem for Brow-
nian shifts: Let M be a nonzero closed subspace of H2

E(T)⊕ E. Then, the following are
true:

(1) M is a Type I invariant subspace of BE
σ,eiθ

if and only if

M = ΦH2
E1
(T)⊕ {0},

for some inner function Φ ∈ H∞
B(E1,E)(T) and nonzero Hilbert space E1.

(2) M is a Type II invariant subspace of BE
σ,eiθ

if and only if there exists an inner

function Φ ∈ H∞
B(E2,E)(T) for some nonzero Hilbert space E2, and a nonzero subset

G ⊆ GΦ such that

M = ⟨G⟩ ⊕
(
ΦH2

E2
(T)⊕ {0}

)
.

Given a set N in a Hilbert space H, we denote by ⟨N⟩ the closed linear span of the
elements of N .

Definition 1.2. The representations of M in (1) and (2) above are referred to as the
canonical representations of Type I and Type II invariant subspaces of BE

σ,eiθ
, respectively.

The inner function Φ in the canonical representation given in part (2) also exhibits a
certain boundary behavior, similar to the scalar case studied by Agler and Stankus. We
refer the reader to Remark 2.4 for more details. See also Section 5 for a detailed analysis
of how the full-length invariant subspace theorem of Agler and Stankus can be recovered
using the above result and Remark 2.4.

We take the above invariant subspace result to the next natural step. Specifically,
given a pair of closed subspaces M1 and M2 of H2

E(T)⊕ E that are invariant under the
Brownian shifts BE

σ1,eiθ1
and BE

σ2,eiθ2
, respectively, we consider the restriction operators

BE
σ1,eiθ1

and BE
σ2,eiθ2

on M1 and M2, respectively, and determine when they are unitarily

equivalent. In Theorem 3.1, we prove: There exists a unitary U : M1 → M2 such that

UBE
σ1,eiθ1

∣∣
M1

= BE
σ2,eiθ2

∣∣
M2
U,

if and only if any one of the following conditions is true:

(1) Both M1 and M2 are Type I, and if Mi = ΦiH
2
Ei
(T) ⊕ {0} for i = 1, 2, then

dimE1 = dimE2.
(2) Both M1 and M2 are Type II. Furthermore, θ1 = θ2, and if Mj = ⟨Gj⟩ ⊕

(ΦjH
2
Ej
(T) ⊕ {0}) is the canonical representation of Mj, j = 1, 2, then there

exist a pair of unitaries UG : ⟨G1⟩ → ⟨G2⟩ and UE : E1 → E2, such that

UEx
′
1 = x′2,
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whenever

UG

[
g1
y1

]
=

[
g2
y2

]
,

where

[
gj
yj

]
∈ ⟨Gj⟩ with

gj =
Φjx

′
j − σjyj

z − eiθj
,

for some unique x′j ∈ Ej, j = 1, 2.

We refer to Theorem 5.2 for the scalar version of the above result.
Given such a pair of invariant subspaces M1 and M2 as above, we say that M1 and

M2 are unitarily equivalent if there exists a unitary operator U satisfying the above
intertwining relation. Similarly, one can define unitarily equivalent invariant subspaces of
the shift operator on the Hardy space, the Bergman space, the Dirichlet space, and many
more. Invariant subspaces of the shift on H2(T) are always unitarily equivalent, whereas
they are never unitarily equivalent for the Bergman or Dirichlet spaces [11]. From this
perspective, the Brownian shift exhibits a mixture of invariant subspaces—a property that
is highly distinctive compared to other classical operators (see the examples in Section 7).

Now we turn to an asymptotic property of Brownian shifts. Let T be a contraction on
a Hilbert space H. We say that T is pure, denoted by T ∈ C·0, if

SOT − lim
m→∞

T ∗m = 0.

Furthermore, we say that T satisfies the C00-property, which we simply write as T ∈ C00,
if both T and T ∗ are pure.
Operators in class C·0 or C00 are of interest. The asymptotic property is often useful in

representing these operators [9]. Examples of operators in C00 include strict contractions.
Moreover, any operator can be scaled by a scalar so that the resulting operator belongs
to C00. However, scaling an operator is not always a desirable method for revealing
its structure. In our present context, we first prove that Brownian shifts are not power-
bounded and, hence, in particular, are not even similar to contractions. Next, we highlight
a peculiar property of Brownian shifts: namely, we prove in Theorem 4.2 that for any
covariance σ > 0 and angle θ ∈ [0, 2π), the normalized operator

1

∥BE
σ,eiθ

∥
BE

σ,eiθ ∈ C00.

There are many reasons to study Brownian shifts, as also pointed out by Agler and
Stankus in their paper [1]. For instance, Brownian shifts play a crucial role in under-
standing the structure of 2-isometries, a notion introduced by Agler decades ago (cf. [7]).
We refer the reader to [1] for representations of 2-isometries and to [8] for some recent
developments. In addition, we highlight that a Brownian shift on H2(T) can be thought
of as a rank-one perturbation of an isometry. Indeed:

Bσ,eiθ = Bs +R, (1.2)

where

Bs =

[
S 0
0 1

]
,
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is an isometry, and

R =

[
0 σ(1⊗ 1)
0 eiθ − 1

]
,

is a rank one operator onH2(T)⊕C. The theory of perturbed operators and their invariant
subspaces is certainly of interest. From this perspective, the result of Agler and Stankus
on the invariant subspaces of Brownian shifts is particularly notable. Subsequently, the
present work aims to shed new light on the general theory of operators and functions for
Brownian shifts.

The remainder of the paper is organized as follows. In Section 2, we describe the
invariant subspaces of Brownian shifts and classify them into two types (following Agler-
Stankus): Type I and Type II. In the next section, Section 3, we determine when such
pairs of invariant subspaces are unitarily equivalent. In Section 4, we prove that normal-
ized Brownian shifts are always in C00. Section 5 presents the results obtained this far
in the context of the scalar-valued Hardy space. In particular, it highlights the unitary
equivalence result for Brownian shifts on H2(T). Section 6 presents the structure of re-
ducing subspaces for BE

σ,eiθ
, and points out that Brownian shifts on H2(T) are irreducible.

In the final section, Section 7, we illustrate our results with some concrete examples.

2. Invariant subspaces

This section presents a complete description of the invariant subspaces of Brownian
shifts BE

σ,eiθ
on H2

E(T)⊕E. In particular, this description recovers the invariant subspaces
obtained by Agler and Stankus in the scalar-valued Hardy space setting. Moreover, our
proof technique is new, even in the case considered by Agler and Stankus.

We begin with Type I invariant subspaces. Before proceeding, we note that M ⊆
H2

E(T)⊕{0} is a nonzero closed subspace if and only if M = M0⊕{0} for some nonzero
closed subspace M0 of H2

E(T).

Theorem 2.1. Let M be a nonzero closed subspace of H2
E(T) ⊕ E. Assume that M ⊆

H2
E(T)⊕ {0}. Then BE

σ,eiθ
(M) ⊆ M if and only if

M = ΦH2
E1
(T)⊕ {0},

for some inner function Φ ∈ H∞
B(E1,E)(T) and nonzero Hilbert space E1.

Proof. We know that M = M0 ⊕ {0} for some nonzero closed subspace M0 ⊆ H2
E(T).

Since

BE
σ,eiθ

∣∣
H2

E(T)⊕{0} =

[
SE 0
0 0

]
,

the fact that M is invariant under BE
σ,eiθ

∣∣
H2

E(T)⊕{0} is equivalent to M0 being invariant

under SE on H2
E(T). The classical Beurling-Lax-Halmos theorem (cf. [5, Theorem 2.1, p.

239]) guarantees that this is same as saying

M0 = ΦH2
E1
(T),

for some inner function Φ ∈ H∞
B(E1,E)(T) and nonzero Hilbert space E1. The converse

follows from the upper triangular representation of the Brownian shifts, and we thus
conclude the proof. □
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We now proceed to the other type of invariant subspaces. For a fixed Brownian shift
BE

σ,eiθ
and an inner function Φ ∈ H∞

B(E2,E)(T), recall the construction of GΦ from (1.1):

GΦ =

{[
g
y

]
∈ H2

E(T)⊕ E : y ∈ E, g =
Φx− σy

z − eiθ
∈ H2

E(T) for some x ∈ E2

}
.

In the following, we prove that the set GΦ is special:

Lemma 2.2. Let Φ ∈ H∞
B(E2,E)(T) be an inner function. If

[
g
y

]
∈ GΦ is a nonzero element,

then g ∈ KΦ and y ̸= 0. Moreover, GΦ is a closed subspace of H2
E(T)⊕ E.

Proof. Suppose g = Φx−σy
z−eiθ

∈ H2
E(T) for some x ∈ E2 and y ∈ E. We have zg + σy =

eiθg + Φx. Let {fj : j ≥ 1} be an orthonormal basis for E2. Then for any n ≥ 1 and
j ≥ 1, we have (note that Φ(0)∗ ∈ B(E,E2))

⟨y,Φ(znfj)⟩ = ⟨Φ(0)∗y, znfj⟩ = 0,

and similarly, we also have (note that x ∈ E2) ⟨Φx,Φ(znfj)⟩ = 0. Then

⟨zg + σy,Φ(znfj)⟩ = ⟨eiθg + Φx,Φ(znfj)⟩,
implies

⟨zg,Φ(znfj)⟩+ σ⟨y,Φ(znfj)⟩ = eiθ⟨g,Φ(znfj)⟩+ ⟨Φx,Φ(znfj)⟩,
which gives

⟨M∗
Φg, z

n−1fj⟩ = eiθ⟨M∗
Φg, z

nfj⟩. (2.1)

Let

M∗
Φg =

∞∑
j=0

xjz
j,

where xj ∈ E2 for all j ≥ 0. If any one of these xj’s is nonzero, then by (2.1) we get

∥M∗
Φg∥ = ∞,

which is not possible. This shows that M∗
Φg = 0, thereby proving the claim that g ∈ KΦ.

Next, assume that y = 0. Then zg = Φx+ eiθg, which implies

∥zg∥2 = ∥Φx∥2 + ∥g∥2,
as g ∈ KΦ. As ∥zg∥ = ∥g∥ and ∥Φx∥ = ∥x∥, we conclude that x = 0, and consequently
g = 0.
Now we turn to prove that GΦ is a closed subspace. It is easy to see that GΦ is indeed

a subspace. To show that it is closed, we pick a sequence

{[
gn
yn

]}
∈ GΦ such that[

gn
yn

]
→
[
g
y

]
∈ H2

E(T) ⊕ E. Equivalently, gn → g in H2
E(T) and yn → y in E. Now for

each gn, there is xn ∈ E2 such that

zgn + σyn = Φxn + eiθgn,

which means {Φxn} is convergent, and this implies {xn} is a Cauchy sequence in E2.
Thus xn → x ∈ E2, and hence Φxn → Φx. From the above identity, by passing over to
the limit we see that

zg + σy = Φx+ eiθg,
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that is, g = Φx−σy
z−eiθ

. This completes the proof of the lemma. □

Given a closed subspace M ⊆ H2
E(T)⊕ E, the defect space of M is defined by

DM = M⊖ (M∩ (H2
E(T)⊕ {0})).

Theorem 2.3. Let M be a nonzero closed subspace of H2
E(T) ⊕ E. Assume that M ⊈

H2
E(T)⊕{0}. If BE

σ,eiθ
(M) ⊆ M, then there exists an inner function Φ ∈ H∞

B(E2,E)(T) for
some nonzero Hilbert space E2, and a set G ⊆ GΦ such that

M = DM ⊕
(
ΦH2

E2
(T)⊕ {0}

)
,

and

DM = ⟨G⟩.

Moreover, if

[
g
y

]
∈ DM, then there exists unique x ∈ E2 with ∥x∥ = σ∥y∥ such that

g = Φx−σy
z−eiθ

.

Proof. Set

M0 := M∩ (H2
E(T)⊕ {0}),

and decompose M as

M = DM ⊕M0.

SinceM ⊈ H2
E(T)⊕{0}, DM ̸= {0}. We need to show thatM0 is also a nonzero subspace

of M. If possible, let M0 = {0}. By the assumption, there exists

F =

[
f
x′

]
∈ M

such that x′ ̸= 0. Let us observe that

BE
σ,eiθ

[
f
x′

]
− eiθ

[
f
x′

]
=

[
zf + σx′

eiθx′

]
− eiθ

[
f
x′

]
=

[
(z − eiθ)f + σx′

0

]
∈ M0.

As M0 = {0}, we have (z − eiθ)f + σx′ = 0, that is,

σ

eiθ − z
x′ = f ∈ H2

E(T),

which is a contradiction, as (eiθ − z)−1 is not square integrable over T. Thus, M0 ̸= {0}.
As BE

σ,eiθ
(M) ⊆ M and M0 ⊆ H2

E(T)⊕{0}, in view of the upper triangular block matrix

representation of BE
σ,eiθ

, it follows that

BE
σ,eiθ(M0) ⊆ M0.

Theorem 2.1 ensures the existence of a nonzero Hilbert space E2 and an inner function
Φ ∈ H∞

B(E2,E)(T) such that

M0 = ΦH2
E2
(T)⊕ {0}.

We can therefore rewrite M as

M = DM ⊕
(
ΦH2

E2
(T)⊕ {0}

)
.
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Now for any nonzero

[
g
y

]
∈ DM, it is easy to check that g ∈ KΦ and y ̸= 0 in E. Moreover,

we have

BE
σ,eiθ

[
g
y

]
=

[
zg + σy
eiθy

]
= eiθ

[
g
y

]
⊕
[
(z − eiθ)g + σy

0

]
∈ M,

which, in particular, implies

(z − eiθ)g + σy ∈ ΦH2
E2
(T),

and hence, there exists a unique h ∈ H2
E2
(T) (note that Φ is an inner function) such that

zg + σy = eiθg + Φh. (2.2)

Let {fj : j ≥ 1} be an orthonormal basis for E2. Then for any n ≥ 1 and j ≥ 1, we have
(note that Φ(0)∗ ∈ B(E,E2))

⟨y,Φ(znfj)⟩ = ⟨Φ(0)∗y, znfj⟩ = 0,

and (note again that Φ is an inner function)

⟨Φh,Φ(znfj)⟩ = ⟨h, znfj⟩.
By (2.2), we now have

⟨h, znfj⟩ = ⟨Φh,Φ(znfj)⟩
= ⟨(zg + σy)− eiθg,Φ(znfj)⟩
= ⟨zg,Φ(znfj)⟩ − eiθ⟨g,Φ(znfj)⟩
= ⟨g,Φ(zn−1fj)⟩ − eiθ⟨g,Φ(znfj)⟩
= 0,

as g ∈ KΦ. In other words, h ∈ E2. Let us rename h by x. Since y ∈ E, by (2.2), we have

∥g∥2 + σ2∥y∥2 = ∥g∥2 + ∥x∥2,
and consequently ∥x∥ = σ∥y∥. Finally, again by (2.2), we have g = Φx−σy

z−eiθ
, completing

the proof of the theorem. □

We emphasize that for a Type II invariant subspace M, as described in the above
theorem, both DM and ΦH2

E2
(T) are nonzero.

The description of invariant subspaces of Brownian shifts on H2(T) by Agler and
Stankus also includes a certain boundary property of the associated inner functions. A
similar result holds in the setting of vector-valued Hardy spaces. However, to establish
this, we need to use the identification of H2

E(T) with the Hardy space H2
E(D) of E-valued

square-summable analytic functions on D [9, Chapter V].

Remark 2.4. We remain with the setting of Theorem 2.3. We have

Φx− σy = (z − eiθ)g,

where g ∈ KΦ, y ∈ E \ {0}, and x ∈ E2. We treat g as an element of H2
E(D) and write

the power series expansion g(z) =
∑∞

n=0 xnz
n on D (note that xn ∈ E for all n). Then

∥g(z)∥ ≤
∞∑
n=0

∥xn∥|z|n ≤

(
∞∑
n=0

∥xn∥2
) 1

2
(

∞∑
n=0

|z|2n
) 1

2

= ∥g∥2
1√

1− |z|2
,
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for all z ∈ D. Therefore, we have

∥Φ(z)x− σy∥ ≤ |z − eiθ| ∥g∥2√
1− |z|2

,

which after putting z = reiθ becomes

∥Φ(reiθ)x− σy∥ ≤ ∥g∥2
√

1− r

1 + r
.

Finally, letting r → 1− we get that Φ(eiθ)x := limr→1−Φ(reiθ)x exists and

Φ(eiθ)x = σy.

In particular, if E = C, then Φ(eiθ) refers to the existence of the radial limit value of Φ
at eiθ.

Before we state and prove a converse to Theorem 2.3, we recall the following observation
from the setting of Lemma 2.2:

⟨G⟩ ⊥ ΦH2
E2
(T)⊕ {0},

for all nonzero G ⊆ GΦ. Moreover, if

[
g
y

]
∈ G is nonzero, then y ̸= 0. In view of this, we

now present a converse to Theorem 2.3:

Theorem 2.5. Let Φ ∈ H∞
B(E2,E)(T) be an inner function. Then ⟨G⟩ ⊕

(
ΦH2

E2
(T)⊕ {0}

)
is a Type II invariant subspace of BE

σ,eiθ
for every nonzero subset G of GΦ.

Proof. For any f ∈ H2
E2
(T), we have

BE
σ,eiθ

[
Φf
0

]
=

[
Φzf
0

]
∈ ΦH2

E2
(T)⊕ {0},

and for

[
g
y

]
∈ G,

BE
σ,eiθ

[
g
y

]
=

[
zg + σy
eiθy

]
= eiθ

[
g
y

]
+

[
(z − eiθ)g + σy

0

]
= eiθ

[
g
y

]
+

[
Φx
0

]
,

for some x ∈ E2. Therefore,
BE

σ,eiθ(span(G)) ⊆ M.

Since BE
σ,eiθ

is a bounded linear operator, M is a closed subspace, we have BE
σ,eiθ

(⟨G⟩) ⊆
M. This proves that ⟨G⟩⊕

(
ΦH2

E2
(T)⊕ {0}

)
is a Type II invariant subspace of BE

σ,eiθ
. □

Summarizing Theorems 2.3 and 2.5, we obtain the following characterization of Type
II invariant subspaces of Brownian shifts:

Theorem 2.6. Let M ⊈ H2
E(T)⊕{0} be a nonzero closed subspace of H2

E(T)⊕E. Then
M is invariant under BE

σ,eiθ
if and only if there exists an inner function Φ ∈ H∞

B(E2,E)(T)
for some nonzero Hilbert space E2, and a nonzero subset G ⊆ GΦ such that

M = ⟨G⟩ ⊕
(
ΦH2

E2
(T)⊕ {0}

)
.

The results of this section, when specialized to the case E = C (that is, the scalar case),
recover the results of Agler and Stankus. We will elaborate on this in Section 5.
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3. Unitary equivalence

Recall that the nonzero invariant subspaces of S in H2(T) are given by φH2(T), where
φ runs over all inner functions from H∞(T) [2]. Given a pair of S-invariant subspaces
φ1H

2(T) and φ2H
2(T) for some inner functions φ1, φ2 ∈ H∞(T), we consider the restric-

tions S|φ1H2(T) and S|φ2H2(T) of S on φ1H
2(T) and φ2H

2(T), respectively. It is now easy
to see that there exists a unitary operator U : φ1H

2(T) → φ2H
2(T) such that

US|φ1H2(T) = S|φ2H2(T)U.

Therefore, as far as operators are concerned, restrictions of S on its invariant subspaces
do not yield anything new. This prompts the question of distinguishing the restrictions
of Brownian shifts on their invariant subspaces. We remind the reader that the invariant
subspaces of Brownian shifts are also described by inner functions. In view of this, we
now investigate the unitary equivalence of the invariant subspaces. At this point, it is
convenient to recall the definition of the canonical representations of invariant subspaces
of BE

σ,eiθ
, as given in Definition 1.2.

Theorem 3.1. Fix angles θ1, θ2 ∈ [0, 2π) and covariances σ1, σ2 > 0. Let M1 and M2 be
nonzero closed invariant subspaces of the Brownian shifts BE

σ1,eiθ1
and BE

σ2,eiθ2
, respectively.

Then

BE
σ1,eiθ1

∣∣
M1

∼= BE
σ2,eiθ2

∣∣
M2
,

if and only if any one of the following conditions is true:

(1) Both M1 and M2 are Type I, and if Mi = ΦiH
2
Ei
(T) ⊕ {0} for i = 1, 2, then

dimE1 = dimE2.
(2) Both M1 and M2 are Type II. Furthermore, θ1 = θ2, and if Mj = ⟨Gj⟩ ⊕

(ΦjH
2
Ej
(T) ⊕ {0}) is the canonical representation of Mj, j = 1, 2, then there

exist a pair of unitaries UG : ⟨G1⟩ → ⟨G2⟩ and UE : E1 → E2, such that

UEx
′
1 = x′2,

whenever

UG

[
g1
y1

]
=

[
g2
y2

]
,

where

[
gj
yj

]
∈ ⟨Gj⟩ with

gj =
Φjx

′
j − σjyj

z − eiθj
,

for some unique x′j ∈ Ej, j = 1, 2.

Proof. Let us start with the proof of the “if” part. Provided that condition (1) holds, we
assume Mi = ΦiH

2
Ei
(T) ⊕ {0} for some inner functions Φi ∈ H∞

B(Ei,E)(T), i = 1, 2, with

dimE1 = dimE2. Then there exists a unitary operator Û between E1 and E2. Consider
the operator U : M1 → M2, defined by

U

[
Φ1h
0

]
=

[
Φ2Ũh
0

]
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for all h ∈ H2
E1
(T), where Ũ : H2

E1
(T) → H2

E2
(T) is the unitary operator induced by Û ,

acting on h as follows:

Ũ h̃ =
∞∑
n=0

znÛ x̃n, (3.1)

for all h̃ =
∑∞

n=0 x̃nz
n ∈ H2

E1
(T). Note that

zkŨh = Ũzkh,

for all k ≥ 0. It is clear from the construction that U is a surjective isometry between
M1 and M2 and therefore, is unitary. Moreover,

BE
σ2,eiθ2

U

[
Φ1h
0

]
=

[
zΦ2Ũh

0

]
=

[
Φ2Ũ(zh)

0

]
= U

[
Φ1zh
0

]
= UBE

σ1,eiθ1

[
Φ1h
0

]
,

which implies BE
σ1,eiθ1

∣∣
M1

∼= BE
σ2,eiθ2

∣∣
M2

. Next, we assume that (2) is true. Set

θ = θ1 = θ2.

Define a linear operator U : M1 → M2 by

U

([
Φ1h
0

]
+

[
g1
y1

])
=

[
Φ2ŨEh

0

]
+ UG

[
g1
y1

]
,

for h ∈ H2
E1
(T) and

[
g1
y1

]
∈ ⟨G1⟩, where ŨE is the unitary operator fromH2

E1
(T) toH2

E2
(T),

induced by UE in the same way as in (3.1). It is evident from the construction that U is

surjective. In addition, since UG

[
g1
y1

]
∈ ⟨G2⟩, we have

∥∥∥∥[Φ2ŨEh
0

]
+ UG

[
g1
y1

]∥∥∥∥2 = ∥h∥2 + ∥g1∥2 + ∥y1∥2 =
∥∥∥∥[Φ1h

0

]
+

[
g1
y1

]∥∥∥∥2 .
This implies that U is an isometry, and therefore, is a unitary operator as well. For
notational simplicity, set

F =

[
Φ1h
0

]
+

[
g1
y1

]
.

Assuming UG

[
g1
y1

]
=

[
g2
y2

]
, we observe that

BE
σ2,eiθ

UF = BE
σ2,eiθ

([
Φ2ŨEh

0

]
+

[
g2
y2

])
=

[
zΦ2ŨEh

0

]
+

[
zg2 + σ2y2
eiθy2

]
.

At this point, we recall that gj(z) =
Φjx

′
j−σjyj

z−eiθj
for a unique x′j ∈ Ej, j = 1, 2. This yields

zgj + σjyj = eiθgj + Φjx
′
j,
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for j = 1, 2. Therefore, recalling that ŨEx
′
1 = UEx

′
1 = x′2 whenever UG

[
g1
y1

]
=

[
g2
y2

]
, and

that zkŨEh = ŨEz
kh for any k ≥ 0, we have

BE
σ2,eiθ

UF =

[
zΦ2ŨEh

0

]
+

[
zg2 + σ2y2
eiθy2

]
= U

([
Φ1zh
0

]
+ eiθ

[
g1
y1

])
+

[
Φ2ŨEx

′
1

0

]
= U

([
Φ1zh
0

]
+ eiθ

[
g1
y1

]
+

[
Φ1x

′
1

0

])
= U

([
zΦ1h
0

]
+

[
zg1 + σ1y1
eiθy1

])
= UBE

σ1,eiθ

([
Φ1h
0

]
+

[
g1
y1

])
,

that is,

BE
σ2,eiθ

UF = UBE
σ1,eiθ

F,

which again ensures that BE
σ1,eiθ1

∣∣
M1

∼= BE
σ2,eiθ2

∣∣
M2

. We now turn to the converse. For

simplicity, we divide the proof into three parts:
Step 1: We claim that if we assume, without loss of generality, thatM1 = ΦH2

E′(T)⊕{0}
is of Type I, and M2 = ⟨G⟩ ⊕ (ΨH2

E′′(T)⊕ {0}) is of Type II, for certain inner functions
Φ and Ψ, then BE

σ1,eiθ1

∣∣
M1

and BE
σ2,eiθ2

∣∣
M2

are not unitarily equivalent. Indeed, if it is not

true, then, in particular, we will have the norm identity∥∥∥BE
σ1,eiθ1

∣∣
M1

∥∥∥ =
∥∥∥BE

σ2,eiθ2

∣∣
M2

∥∥∥ .
However, for any h ∈ H2

E′(T), we have∥∥∥∥BE
σ1,eiθ1

[
Φh
0

]∥∥∥∥ =

∥∥∥∥[zΦh0
]∥∥∥∥ =

∥∥∥∥[Φh0
]∥∥∥∥ ,

that is,
∥∥∥BE

σ1,eiθ1

∣∣
M1

∥∥∥ = 1. On the other hand, we have∥∥∥∥BE
σ2,eiθ2

[
g
y

]∥∥∥∥2 = ∥∥∥∥[zg + σ2y
eiθ2y

]∥∥∥∥2 = ∥y∥2 + ∥g∥2 + σ2
2∥y∥2 =

∥∥∥∥[gy
]∥∥∥∥2 + σ2

2∥y∥2 >
∥∥∥∥[gy

]∥∥∥∥2 ,
for any nonzero

[
g
y

]
∈ ⟨G⟩ (recall that y ̸= 0 in this case), and hence∥∥∥BE

σ2,eiθ2

∣∣
M2

∥∥∥ > 1,

which leads to a contradiction. Therefore, M1 and M2 must be of same type.
Step 2: Suppose both of them are Type I with the canonical decomposition

Mi = ΦiH
2
Ei
(T)⊕ {0},

for some inner function Φi ∈ H∞
B(Ei,E)(T), i = 1, 2. Now according to our hypothesis, there

exists a unitary operator U : M1 → M2 such that UBE
σ1,eiθ1

∣∣
M1

= BE
σ2,eiθ2

∣∣
M2
U . First,
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let us observe that for h1 ∈ H2
E1
(T), if

U

[
Φ1h1
0

]
=

[
Φ2h2
0

]
,

for some h2 ∈ H2
E2
(T), then

U

[
znΦ1h1

0

]
= U

(
BE

σ1,eiθ1

)n [Φ1h1
0

]
=
(
BE

σ2,eiθ2

)n
U

[
Φ1h1
0

]
=
(
BE

σ2,eiθ2

)n [Φ2h2
0

]
,

that is,

U

[
znΦ1h1

0

]
=

[
znΦ2h2

0

]
,

for all n ≥ 0. Now, we take any x′′1 ∈ E1, and assume that

U

[
Φ1x

′′
1

0

]
=

[
Φ2h

′

0

]
,

for some h′(z) =
∑∞

n=0 z
nx̃′n ∈ H2

E2
(T). Suppose x̃′k ̸= 0 for some k ≥ 1, and also suppose

U

[
Φ1gk
0

]
=

[
Φ2x̃

′
k

0

]
for some gk ∈ H2

E1
(T). Therefore, ∥x̃′k∥2 = ⟨Φ2h

′,Φ2z
kx̃′k⟩ implies

∥x̃′k∥2 =
〈[

Φ2h
′

0

]
,

[
zkΦ2x̃

′
k

0

]〉
=

〈
U

[
Φ1x

′′
1

0

]
, U

[
zkΦ1gk

0

]〉
=

〈[
Φ1x

′′
1

0

]
,

[
Φ1z

kgk
0

]〉
,

and hence ∥x̃′k∥2 = ⟨x′′1, zkgk⟩ = 0 for any k ≥ 1, which ensures that h′ ∈ E2. On the
other hand, given x′′2 ∈ E2, there exists h(z) =

∑∞
n=0 z

nx̃n ∈ H2
E1
(T) such that

U

[
Φ1h
0

]
=

[
Φ2x

′′
2

0

]
.

If x̃k ̸= 0 for some k ≥ 1, and if U

[
Φ1x̃k
0

]
=

[
Φ2h

′′

0

]
for some h′′ ∈ H2

E2
(T), then

∥x̃k∥2 = ⟨Φ1h,Φ1z
kx̃k⟩ implies

∥x̃k∥2 =
〈
U

[
Φ1h
0

]
, U

[
zkΦ1x̃k

0

]〉
=

〈[
Φ2x

′′
2

0

]
,

[
zkΦ2h

′′

0

]〉
= ⟨x′′2, zkh′′⟩ = 0,

thereby implying h ∈ E1. The above information allows us to define U1 : E1 → E2 by

U1x1 = x2,

whenever

U

[
Φ1x1
0

]
=

[
Φ2x2
0

]
.

It is easy to check that U1 is a well-defined, surjective as well as isometric linear map
between E1 and E2, and therefore, is unitary. Thus, dimE1 = dimE2.
Step 3: Let us now assume that both M1 and M2 are Type II, with the canonical

representations Mj = ⟨Gj⟩ ⊕ (ΦjH
2
Ej
(T) ⊕ {0}), j = 1, 2, as described in the statement

of this theorem, and, like in the previous part of the proof, U : M1 → M2 is the unitary
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operator satisfying the intertwining relation UBE
σ1,eiθ1

∣∣
M1

= BE
σ2,eiθ2

∣∣
M2
U . Suppose now

for a given h1 ∈ H2
E1
(T),

U

[
Φ1h1
0

]
=

[
Φ2h2
0

]
+

[
g′2
y′2

]
for some h2 ∈ H2

E2
(T) and

[
g′2
y′2

]
∈ ⟨G2⟩. In particular, we have

∥h1∥2 = ∥h2∥2 + ∥g′2∥2 + ∥y′2∥2.
At the same time, we have

U

[
zΦ1h1

0

]
= UBE

σ1,eiθ1

[
Φ1h1
0

]
= BE

σ2,eiθ2
U

[
Φ1h1
0

]
=

[
zΦ2h2

0

]
+

[
zg′2 + σ2y

′
2

eiθ2y′2

]
,

and consequently,
∥h1∥2 = ∥h2∥2 + ∥g′2∥2 + ∥y′2∥2 + σ2

2∥y′2∥2.
Therefore, y′2 = 0, and then[

g′2
y′2

]
∈ M2 ∩ (H2

E2
(T)⊕ {0}) = Φ2H

2
E2
(T)⊕ {0},

forcing g′2 = 0 as well. Therefore,

U(Φ1H
2
E1
(T)⊕ {0}) ⊆ Φ2H

2
E2
(T)⊕ {0}.

Using exactly similar lines of argument for U∗, we get

U∗(Φ2H
2
E2
(T)⊕ {0}) ⊆ Φ1H

2
E1
(T)⊕ {0},

and hence U is a unitary mapping between Φ1H
2
E1
(T) ⊕ {0} and Φ2H

2
E2
(T) ⊕ {0}, such

that
UBE

σ1,eiθ1

∣∣
Φ1H2

E1
(T)⊕{0} = BE

σ2,eiθ2

∣∣
Φ2H2

E2
(T)⊕{0}U.

Looking at the Step 2, where M1 and M2 both are taken to be Type I, it readily follows

that for any x1 ∈ E1, U

[
Φ1x1
0

]
=

[
Φ2x2
0

]
for some x2 ∈ E2, and conversely, for any

x2 ∈ E2 there exists x1 ∈ E1 such that the above equality holds. This now guarantees
the existence of a unitary map UE : E1 → E2, defined as follows:

UE(x1) = x2,

whenever

U

[
Φ1x1
0

]
=

[
Φ2x2
0

]
,

for x1 ∈ E1, x2 ∈ E2. For a given

[
g
y

]
∈ ⟨G1⟩, suppose now

U

[
g
y

]
=

[
Φ2h

′

0

]
+

[
g′

y′

]
,

for some h′ ∈ H2
E2
(T) and

[
g′

y′

]
∈ ⟨G2⟩. This implies

∥g∥2 + ∥y∥2 = ∥h′∥2 + ∥g′∥2 + ∥y′∥2. (3.2)
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Now there exists h ∈ H2
E1
(T) such that U

[
Φ1h
0

]
=

[
Φ2h

′

0

]
. As a result,

U

[
g
y

]
= U

[
Φ1h
0

]
+

[
g′

y′

]
,

that is,

U

[
g − Φ1h

y

]
=

[
g′

y′

]
.

Consequently,

∥g∥2 + ∥h∥2 + ∥y∥2 =
∥∥∥∥U [g − Φ1h

y

]∥∥∥∥2 = ∥∥∥∥[g′y′
]∥∥∥∥2 = ∥g′∥2 + ∥y′∥2,

which, combined with (3.2) yields h = h′ = 0. In other words, U(⟨G1⟩) ⊆ ⟨G2⟩. Imitating
this argument line by line with U replaced by U∗, it immediately follows that U∗(⟨G2⟩) ⊆
⟨G1⟩. We therefore conclude that there exists a unitary map UG = U

∣∣
⟨G1⟩

between ⟨G1⟩

and ⟨G2⟩. Now consider any

[
gj
yj

]
∈ ⟨Gj⟩, j = 1, 2, such that U

[
g1
y1

]
=

[
g2
y2

]
, and recall

that
zgj + σjyj = eiθjgj + Φjx

′
j, (3.3)

for a unique x′j ∈ Ej. Then〈
BE

σ1,eiθ1

[
g1
y1

]
, U∗

[
g2
y2

]〉
=

〈
BE

σ2,eiθ2
U

[
g1
y1

]
,

[
g2
y2

]〉
.

The above identity implies〈[
zg1 + σ1y1
eiθ1y1

]
,

[
g1
y1

]〉
=

〈[
zg2 + σ2y2
eiθ2y2

]
,

[
g2
y2

]〉
,

or, equivalently,〈
eiθ1
[
g1
y1

]
+

[
Φ1x

′
1

0

]
,

[
g1
y1

]〉
=

〈
eiθ2
[
g2
y2

]
+

[
Φ2x

′
2

0

]
,

[
g2
y2

]〉
,

and so

eiθ1
∥∥∥∥[g1y1

]∥∥∥∥2 = eiθ1
∥∥∥∥U [g1y1

]∥∥∥∥2 = eiθ2
∥∥∥∥[g2y2

]∥∥∥∥2 .
It follows that eiθ1 = eiθ2 . Since θ1, θ2 ∈ [0, 2π), we conclude that θ1 = θ2. Let us set
again θ = θ1 = θ2. Using this information and (3.3), we finally observe that

U

[
Φ1x

′
1

0

]
+ eiθU

[
g1
y1

]
= U

[
zg1 + σ1y1
eiθy1

]
= UBE

σ1,eiθ

[
g1
y1

]
= BE

σ2,eiθ

[
g2
y2

]
.

As

BE
σ2,eiθ

[
g2
y2

]
=

[
zg2 + σ2y2
eiθy2

]
=

[
Φ2x

′
2

0

]
+ eiθ

[
g2
y2

]
,

it follows that U

[
Φ1x

′
1

0

]
=

[
Φ2x

′
2

0

]
. As a consequence, UEx

′
1 = x′2. This completes the

proof. □
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This result becomes more concrete in the scalar case, which we will explain in Section
5.

4. 1√
1+σ2B

E
σ,eiθ

∈ C00

The aim of this section is to prove that Brownian shifts, when scaled by their reciprocal
norms, belong to C00. Scaling an operator by its reciprocal norm does turn it into a
contraction, but does not necessarily place it in the class C00 (nor even C·0). Simply
consider a unitary operator or the shift operator. This is where Brownian shifts exhibit
different behavior.

We first prove that Brownian shifts are not even similar to contractions, and we establish
this by showing that they are not power bounded. Recall that a bounded linear operator
A acting on a Hilbert space H is said to be power bounded if the sequence of real numbers

{∥An∥}∞n=1,

is bounded. It is evident that any bounded linear operator similar to a contraction is
power bounded; however, the converse is far from being true. Let us fix a Brownian shift
BE

σ,eiθ
on H2

E(T)⊕ E. Observe that for any nonzero y ∈ E with ∥y∥ = 1:

BE
σ,eiθ

[
0
y

]
=

[
SE σiE
0 eiθIE

] [
0
y

]
=

[
σy
eiθy

]
.

In general, by the principle of mathematical induction, we conclude that(
BE

σ,eiθ

)m [0
y

]
=

[
σ
∑m−1

k=0 e
ikθzm−k−1y

eimθy

]
, (4.1)

for all m ≥ 1. Using the norm of functions in H2
E(T), we conclude that∥∥∥∥[σ∑m−1

k=0 e
ikθzm−k−1y

eimθy

]∥∥∥∥2 = 1 +mσ2.

As

∥∥∥∥[0y
]∥∥∥∥ = 1, it follows that

∥∥(BE
σ,eiθ

)m∥∥2 ≥ ∥∥∥∥(BE
σ,eiθ

)m [0
y

]∥∥∥∥2 = 1 +mσ2 → ∞,

as m→ ∞. This proves the following:

Proposition 4.1. BE
σ,eiθ

on H2
E(T) ⊕ E is not power bounded for all covariance σ > 0

and angle θ ∈ [0, 2π).

This in particular shows that BE
σ,eiθ

is not similar to contractions. However, the following
is true:

Theorem 4.2. 1∥∥∥BE
σ,eiθ

∥∥∥BE
σ,eiθ

∈ C00 for all covariance σ > 0 and angle θ ∈ [0, 2π).

Proof. For simplicity of notation, we set B = BE
σ,eiθ

. Let us begin by computing the norm

of B. For any

[
f
y

]
∈ H2

E(T)⊕E with unit norm ∥f∥2 + ∥y∥2 = 1, we have, in particular,
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that ∥y∥ ≤ 1. Moreover,∥∥∥∥B [fy
]∥∥∥∥2 = ∥∥∥∥[zf + σy

eiθy

]∥∥∥∥2 = ∥zf + σy∥2 + ∥y∥2 = 1 + σ2∥y∥2 ≤ 1 + σ2,

and equality occurs for f = 0 and any y ∈ E with ∥y∥ = 1. Therefore,

∥B∥ =
√
1 + σ2,

and consequently, the operator

B̃ :=
1√

1 + σ2
B,

becomes a contraction on H2
E(T)⊕ E. Pick u ∈ H2

E(T)⊕ E and write

u =

[
0
x0

]
+

∞∑
k=0

[
zkxk+1

0

]
∈ H2

E(T)⊕ E,

for some xk ∈ E for k ≥ 0. Making use of (4.1), a little computation reveals, for each
n ≥ 1, that ∥∥∥B̃nu

∥∥∥2 = 1

(1 + σ2)n

∥∥∥∥∥Bn

[
0
x0

]
+

∞∑
k=0

Bn

[
zkxk+1

0

]∥∥∥∥∥
2

=
1

(1 + σ2)n

∥∥∥∥∥
[
σ
∑n−1

k=0 e
ikθzn−k−1x0

einθx0

]
+

∞∑
k=0

[
zn+kxk+1

0

]∥∥∥∥∥
2

=
1

(1 + σ2)n

(
(1 + nσ2)∥x0∥2 +

∞∑
k=0

∥xk+1∥2
)
,

and hence ∥∥∥B̃nu
∥∥∥2 = ∥u∥2 + n∥x0∥2σ2

(1 + σ2)n
≤ 2

σ4

(
∥u∥2

n(n− 1)
+
σ2∥x0∥2

n− 1

)
−→ 0,

as n→ ∞. This implies that B̃∗ ∈ C.0. On the other hand, we know that

B∗ =

[
S∗
E 0

σi∗E e−iθIE

]
,

on H2
E(T)⊕ E. Therefore, we have

B̃∗n
[
0
x0

]
=

1

(1 + σ2)
n
2

B∗n
[
0
x0

]
=

e−inθ

(1 + σ2)
n
2

[
0
x0

]
,

for all n ≥ 1. Moreover, if 0 ≤ k < n, then

B̃∗n
[
zkxk+1

0

]
=

1

(1 + σ2)
n
2

B∗n
[
zkxk+1

0

]
=

1

(1 + σ2)
n
2

B∗n−k

[
xk+1

0

]
=

σ

(1 + σ2)
n
2

B∗n−k−1

[
0

xk+1

]
,
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that is,

B̃∗n
[
zkxk+1

0

]
=
σe−i(n−k−1)θ

(1 + σ2)
n
2

[
0

xk+1

]
.

Finally, for k ≥ n, we have

B̃∗n
[
zkxk+1

0

]
=

1

(1 + σ2)
n
2

B∗n
[
zkxk+1

0

]
=

1

(1 + σ2)
n
2

[
zk−nxk+1

0

]
.

Therefore, we have

∥∥∥B̃∗nu
∥∥∥2 = ∥∥∥∥∥B̃∗n

[
0
x0

]
+

n−1∑
k=0

B̃∗n
[
zkxk+1

0

]
+

∞∑
k=n

B̃∗n
[
zkxk+1

0

]∥∥∥∥∥
2

=
1

(1 + σ2)n

∥∥∥∥∥e−inθ

[
0
x0

]
+ σ

n−1∑
k=0

e−i(n−k−1)θ

[
0

xk+1

]
+

∞∑
k=n

[
zk−nxk+1

0

]∥∥∥∥∥
2

=
1

(1 + σ2)n

∥∥∥∥∥e−inθx0 + σ
n−1∑
k=0

e−i(n−k−1)θxk+1

∥∥∥∥∥
2

+
∞∑
k=n

∥xk+1∥2


≤ 1

(1 + σ2)n

(∥x0∥+ σ
n−1∑
k=0

∥xk+1∥

)2

+
∞∑
k=n

∥xk+1∥2


≤ 1

(1 + σ2)n

(
(1 + nσ2)

(
n∑

k=0

∥xk∥2
)

+
∞∑
k=n

∥xk+1∥2
)

≤ ∥u∥2 2 + nσ2

(1 + σ2)n

≤ 2∥u∥2

σ4

(
2

n(n− 1)
+

σ2

n− 1

)
.

But

2

n(n− 1)
+

σ2

n− 1
−→ 0,

as n→ ∞. As a result, B̃ ∈ C.0, which completes the proof of the theorem. □

As we have proved in the theorem above that
∥∥∥BE

σ,eiθ

∥∥∥ =
√
1 + σ2, it follows that

1√
1+σ2B

E
σ,eiθ

∈ C00. In particular, if M is an invariant subspace of BE
σ,eiθ

, then the com-

pression operator

1√
1 + σ2

PM⊥BE
σ,eiθ |M⊥ ∈ C·0.

Compressions of this type, in the context of shifts on vector-valued Hardy spaces, are
fundamental in the theory of linear operators. We refer the reader to the classic reference
[9] for further details.
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5. The scalar case

The purpose of this section is to recover the representations of invariant subspaces of
Brownian shifts on H2(T), as obtained by Agler and Stankus (see [1, pp. 21-24]). More
specifically, in the particular case of E = C, by using Theorem 2.1 and combining Theo-
rems 2.3 and 2.5 with Remark 2.4, we retrieve the representations of invariant subspaces
of Agler and Stankus:

Theorem 5.1. Let M be a nonzero closed subspace of H2(T)⊕C. Then M is invariant
under Bσ,eiθ if and only if it admits one of the following representations:

M = φH2(T)⊕ {0},

for some inner function φ ∈ H∞(T), or

M = C
[
g
1

]
⊕
(
ψH2(T)⊕ {0}

)
,

where ψ ∈ H∞(T) is an inner function with the condition that ψ(eiθ) exists, and

g = σ

(
ψ(eiθ)ψ − 1

z − eiθ

)
∈ H2(T).

Proof. We start with the proof of “only if” part. Suppose M ⊆ H2(T) ⊕ {0}. If
Bσ,eiθ(M) ⊆ M, then setting E = C in Theorem 2.1, we find that E1 = C (note that
M ≠ {0}), and

M = φH2(T)⊕ {0},
for some inner function φ ∈ H∞(T). Next, assume that M ⊈ H2(T) ⊕ {0}. Under the
assumption E = C, Theorem 2.3 asserts that

M = DM ⊕ (ψH2(T)⊕ {0}),

for some inner function ψ ∈ H∞(T), where

DM = M⊖ (M∩ (H2(T)⊕ {0})) ̸= {0}.

It now remains to show that any element of DM is a scalar multiple of

[
g
1

]
, g as given in

the statement of the theorem. Making use of Theorem 2.3 and Remark 2.4, we see that

for any nonzero

[
g1
β

]
∈ DM, there exists unique α ∈ C with |α| = σ|β| > 0 such that

g1 =
ψα− σβ

z − eiθ
, (5.1)

and

lim
r→1−

ψ(reiθ)α = σβ.

Since |α| = σ|β| > 0, |ψ(eiθ)| = 1. As a result,

α = σψ(eiθ)β.
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Using this value of α in (5.1), we deduce that

g1 = βσ

(
ψ(eiθ)ψ − 1

z − eiθ

)
,

which means

[
g1
β

]
= β

[
g
1

]
. The “if” part follows trivially from Theorems 2.1 and 2.5. □

In the scalar case, the unitary equivalence of invariant subspaces established in Theorem
3.1 takes the following form:

Theorem 5.2. Fix angles θ1, θ2 ∈ [0, 2π) and covariances σ1, σ2 > 0. Let M1 and
M2 be nonzero closed invariant subspaces of the Brownian shifts Bσ1,eiθ1 and Bσ2,eiθ2 in
H2(T)⊕ C, respectively. Then

Bσ1,eiθ1

∣∣
M1

∼= Bσ2,eiθ2

∣∣
M2
,

if and only if any one of the following conditions is true:

(1) Both M1 and M2 are Type I.
(2) Both M1 and M2 are Type II, along with the facts that

θ1 = θ2,

and

σ2
2(1 + ∥g1∥2) = σ2

1(1 + ∥g2∥2),

where Mj = C
[
gj
1

]
⊕(φjH

2(T)⊕ {0}) is the canonical representation of Mj, and

gj = σj

(
φj(e

iθj )φj−1

z−eiθj

)
for j = 1, 2.

Proof. It is clear that we can now assume E1 = E2 = C and G1 = C
[
g1
1

]
, G2 = C

[
g2
1

]
in

the statement of Theorem 3.1. All we have to verify is that condition (2) of Theorem 3.1
becomes equivalent to condition (2) of this theorem for E = C. In both cases θ1 = θ2 is
common in condition (2), so we only need to concentrate on the rest. Suppose

UG

[
g1
1

]
= α

[
g2
1

]
for some α ∈ C. It is evident that 1 + ∥g1∥2 = |α|2(1 + ∥g2∥2), and at the same time,
according to condition (2) of Theorem 3.1

UE

(
σ1φ1(eiθ)

)
= ασ2φ2(eiθ),

which gives |α| = σ1/σ2. As a result,

σ2
2(1 + ∥g1∥2) = σ2

1(1 + ∥g2∥2). (5.2)

Conversely, if we start by assuming (5.2), then it is immediately seen that

UG

[
g1
1

]
=
σ1
σ2

[
g2
1

]
,
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and

UE

(
φ1(eiθ)

)
= φ2(eiθ)

define surjective isometries ⟨G1⟩ → ⟨G2⟩ and E1 → E2, respectively, and therefore, they
are unitaries. Our proof is therefore done. □

Setting φ2 = 1, g2 = 0 in the above theorem, we get that for any Type II invariant
subspace M1 of Bσ1,eiθ1 ,

Bσ1,eiθ1

∣∣
M1

∼= B σ1√
1+∥g1∥2

,eiθ1 .

This was previously observed by Agler and Stankus in [1, Proposition 5.75].
Therefore, in contrast to the shift operator on H2(T), the invariant subspaces of the

Brownian shifts have the potential to lead to different operators. In the final section of
this paper, we illustrate these results with concrete examples.

6. Reducing subspaces

Given a bounded linear operator A on a Hilbert space H, a closed subspace S ⊆ H is
said to be reducing for A (or A-reducing) if S is invariant under both A and A∗. Our goal
here is to classify all reducing subspaces of Brownian shifts.

Recall that a closed subspace M of H2
E(T) is reducing for SE if and only if there exists a

closed subspace F ⊆ E such that M = H2
F (T) (cf. [10, Theorem 3.22]). For the question

of reducing subspaces of a Brownian shift BE
σ,eiθ

on H2
E(T)⊕ E, the answer is as follows:

Theorem 6.1. Let M be a closed subspace of H2
E(T)⊕E. Then M is a reducing subspace

for BE
σ,eiθ

if and only if there exists a closed subspace G of E such that

M = H2
G(T)⊕G.

Proof. Given the adjoint operator
(
BE

σ,eiθ

)∗
=

[
S∗
E 0

σi∗E e−iθIE

]
, the sufficiency is straight-

forward. Suppose M is a reducing subspace for BE
σ,eiθ

. Let

[
f
x

]
∈ M. Then[

f
σ2x+ x

]
=
(
BE

σ,eiθ

)∗
BE

σ,eiθ

[
f
x

]
∈ M,

and hence [
0
σ2x

]
=

[
f

σ2x+ x

]
−
[
f
x

]
∈ M.

As σ > 0, this implies

[
0
x

]
∈ M. On the other hand, since BE

σ,eiθ

[
0
x

]
=

[
σx
eiθx

]
∈ M, it

follows that [
σx
eiθx

]
− eiθ

[
0
x

]
= σ

[
x
0

]
∈ M,

and hence,

[
x
0

]
∈ M, and also,

[
f
0

]
=

[
f
x

]
−
[
0
x

]
∈ M. Therefore, for each

[
f
x

]
∈ M,

we have {[
x
0

]
,

[
0
x

]
,

[
f
0

]}
⊆ M. (6.1)
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Write f =
∑∞

n=0 f̂(n)z
n, where f̂(n) ∈ E for all n ≥ 0. Then

(
BE

σ,eiθ

)∗ [f
0

]
=

[
S∗
Ef

σf̂(0)

]
∈

M, and hence (6.1) implies
{[

f̂(0)
0

]
,

[
0

f̂(0)

]
,

[
S∗
Ef
0

]}
⊆ M. Assuming that

{[
f̂(m− 1)

0

]
,

[
0

f̂(m− 1)

]
,

[
S∗
E
mf
0

]}
⊆ M

for any m ≥ 1, we observe that
(
BE

σ,eiθ

)∗ [S∗
E
mf
0

]
=

[
S∗
E
m+1f

σf̂(m)

]
∈ M, and again from

(6.1), it follows that {[
f̂(m)
0

]
,

[
0

f̂(m)

]
,

[
S∗
E
m+1f
0

]}
⊆ M.

The principle of mathematical induction now yields{[
f̂(n)
0

]
,

[
0

f̂(n)

]
: n ≥ 0

}
⊆ M.

Set G = ⟨G0⟩, where

G0 =

{
x, f̂(n) :

[
f
x

]
∈ M, n ≥ 0

}
.

Therefore, G is a closed subspace of E. Moreover, we let

G1 =

{[
0
x

]
,

[
0

f̂(n)

]
:

[
f
x

]
∈ M, n ≥ 0

}
,

and

G2 =

{[
x
0

]
,

[
f̂(n)
0

]
:

[
f
x

]
∈ M, n ≥ 0

}
.

Then ⟨G1⟩ = {0} ⊕G and ⟨G2⟩ = G⊕ {0}. Now ⟨G2⟩ ⊆ M implies H2
G(T)⊕ {0} ⊆ M.

This and {0} ⊕G = ⟨G1⟩ ⊆ M yields

H2
G(T)⊕G ⊆ M.

For the reverse inclusion, we pick

[
f
x

]
∈ M, and assume

[
f
x

]
⊥ (H2

G(T) ⊕ G). In

particular,

[
f
x

]
⊥ {0} ⊕ G implies x = 0. Similarly,

[
f̂(n)
0

]
⊥ G ⊕ {0} for all n ≥ 0

implies that f = 0. This proves H2
G(T)⊕G = M. □

Recall that a bounded linear operator A on H is irreducible if there is no nontrivial
closed subspace of H that reduces A. The following is now straightforward:

Corollary 6.2. Bσ,eiθ on H2(T)⊕C is irreducible for all angle θ ∈ [0, 2π) and covariance
σ > 0.
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7. Examples

The purpose of this section is to illustrate the classification results, Theorem 3.1 and
Theorem 5.2, using concrete examples. We aim to specifically show that Theorem 5.2,
which is the scalar-valued reformulation of Theorem 3.1, indeed provides examples of
unitarily as well as non-unitarily equivalent invariant subspaces of Brownian shifts.

We will present two examples, and Blaschke factors will play a role in both of them.
For each α ∈ D, the Blaschke factor bα corresponding to α is defined by

bα(z) =
z − α

1− ᾱz
,

for all z ∈ D. Blaschke factors are the simplest examples of inner functions.

Example 7.1. For {α1, α2} ⊆ (0, 1), consider inner functions φj = bαj
, j = 1, 2. Also,

for each θ1, θ2 ∈ [0, 2π) and σ1, σ2 > 0, define gj ∈ H2(T) by

gj(z) = σj
φj(z)φj(eiθj)− 1

z − eiθj
,

for j = 1, 2. It is easy to see that

∥gj∥2 = σ2
j

∥∥∥∥ 1− α2
j

(1− αjeiθj)(1− αjz)

∥∥∥∥2 = σ2
j

1− α2
j

1 + α2
j − 2αj cos θj

,

for j = 1, 2. In particular, for the choice θ1 = θ2 = 0, we have

∥gj∥2 = σ2
j

1 + αj

1− αj

,

and therefore, a little computation reveals that σ2
2(1 + ∥g1∥2) = σ2

1(1 + ∥g2∥2) is satisfied,
provided we have

1

σ2
1

− 1

σ2
2

=
2(α2 − α1)

(1− α1)(1− α2)
.

In particular, in view of Theorem 5.2, if the pairs {α1, α2} and {σ1, σ2} fail to satisfy the
above identity, then Bσ1,1

∣∣
M1

and Bσ2,1

∣∣
M2

are not unitarily equivalent, where

Mj = C
[
gj
1

]
⊕ (φjH

2(T)⊕ {0}),

for j = 1, 2.

In the following example, we bring a singular inner function with a single atom.

Example 7.2. For α ∈ (0, 1), consider the inner function φ1 = bα, and the other inner
function as

φ2(z) = exp

(
z + 1

z − 1

)
,

for all z ∈ D. As usual, for each θ1, θ2 ∈ [0, 2π) and σ1, σ2 > 0, define gj : D → C by

gj(z) = σj
φj(z)φj(eiθj)− 1

z − eiθj
(z ∈ D),
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for j = 1, 2. Clearly, g1 ∈ H2(T). Let us first assume θ1 = θ2 = π. From the calculations
of our previous example, we know that

∥g1∥2 = σ2
1

1− α2

1 + α2 − 2α cos π
= σ2

1

1− α

1 + α
.

Now, we prove that g2 ∈ H2(T). We do so by first proving that g2 is indeed in L2(T)-the
space of complex-valued Lebesgue square integrable functions on T. First, we note that

g2 = σ2
exp

(
z+1
z−1

)
− 1

z + 1
,

is analytic on D and its radial limits exist a.e. on T. A straightforward calculation gives∣∣∣∣∣∣
exp

(
eiθ+1
eiθ−1

)
− 1

eiθ + 1

∣∣∣∣∣∣
2

=
1− cos

(
sin θ

1−cos θ

)
1 + cos θ

=
sin2

(
1
2
cot θ

2

)
cos2 θ

2

.

We put ξ = 1
2
cot θ

2
, and change the variable from θ to ξ to see∫ 2π

0

∣∣∣∣∣∣
exp

(
eiθ+1
eiθ−1

)
− 1

eiθ + 1

∣∣∣∣∣∣
2

dθ =

∫ 2π

0

sin2
(
1
2
cot θ

2

)
cos2 θ

2

dθ =

∫ ∞

−∞

sin2 ξ

ξ2
dξ = π <∞.

Hence, g2 ∈ L2(T). Consider the Fourier series expansion of g2 on T as

g2 =
∞∑

n=−∞

αnz
n,

where αn, n ∈ Z, are the Fourier coefficients. Now using the fact that

(z + 1)g2 = σ2(φ2 − 1) ∈ H2(T),
we have, for any n ≥ 1, that

⟨(z + 1)g2, z̄
n⟩ = ⟨σ2(φ2 − 1), z̄n⟩ = 0,

and consequently
α−(n+1) = −α−n.

In particular, if α−m ̸= 0, for some m ≥ 1, then

α−n = (−1)n−mα−m,

for all n ≥ m. This implies that the series
∑∞

n=m |α−n|2 diverges, contradicting the fact
that g2 ∈ L2(T). Therefore, we have

α−n = 0,

for all n ≥ 1, and hence g2 ∈ H2(T). Now, we compute the norm of g2 as

∥g2∥2 = σ2
2

∥∥∥∥∥exp
(
z+1
z−1

)
− 1

z + 1

∥∥∥∥∥
2

=
σ2
2

2π

∫ 2π

0

∣∣∣∣∣∣
exp

(
eiθ+1
eiθ−1

)
− 1

eiθ + 1

∣∣∣∣∣∣
2

dθ =
σ2
2

2
.

Hence, the relation σ2
2(1 + ∥g1∥2) = σ2

1(1 + ∥g2∥2) is satisfied under the condition

1

σ2
1

− 1

σ2
2

=
3α− 1

2(1 + α)
.
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Therefore, in this case also, there is an abundance of examples of invariant subspaces of
Brownian shifts, both unitarily equivalent and non-equivalent.

The argument used to prove that g2 belongs to H2(T) in the above proof is perhaps a
standard method. In a more general context, this conclusion follows from [6, Corollary
4.28], which is a more involved result.

In closing, we remark that unitary equivalence or nonequivalence of operators arising
from natural operators defined on Hilbert spaces is a fundamental and decades-old prob-
lem (cf. [3, 4]). On one hand, it raises the question of defining new classes of operators
from invariant subspaces, and on the other, it analyzes the characteristics of these opera-
tors under consideration. For instance, as already pointed out, among known operators,
the shift on H2(T) always yields unitarily equivalent invariant subspaces. At the other
extreme, the Bergman shift and the Dirichlet shift never yield unitarily equivalent invari-
ant subspaces [11]. We have now enlarged this list by observing that the Brownian shift
sometimes yields unitarily equivalent invariant subspaces and sometimes does not. This
is particularly intriguing, as we have pointed out in (1.2) that a Brownian shift on H2(T)
is a rank-one perturbation of an isometry.
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