TENSOR PRODUCT OF QUOTIENT HILBERT MODULES
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ABSTRACT. In this paper, we present a unified approach to problems of tensor product of
quotient modules of Hilbert modules over C[z] and corresponding submodules of reproducing
kernel Hilbert modules over C|zy, ..., z,] and the doubly commutativity property of module
multiplication operators by the coordinate functions. More precisely, for a reproducing kernel
Hilbert module H over C|zy, ..., z,] of analytic functions on the polydisc in C™ which satisfies
certain conditions, we characterize the quotient modules Q of H such that Q is of the form
Q1®---®Q,, for some one variable quotient modules {Qy, ..., Q,}. For H the Hardy module
over polydisc, H?(D"), this reduces to some recent results by Izuchi, Nakazi and Seto and
the third author. This is used to obtain a classification of co-doubly commuting submodules
for a class of reproducing kernel Hilbert modules over the unit polydisc. These results are
applied to compute the cross commutators of co-doubly commuting submodules. Moreover,
this provides further insight into the wandering subspaces and ranks of submodules of the
Hardy module. Our results includes the case of weighted Bergman modules over the unit
polydisc in C™.

1. INTRODUCTION

The question of describing the invariant and co-invariant subspaces of shift operators on
various holomorphic functions spaces is an old subject that essentially began with the work of
A. Beurling [7]. The analogous problems for holomorphic function spaces in several variables
have been considered in the work by Ahern, Douglas, Clark, Yang, Guo, Nakazi, Izuchi, Seto
and many more (see [1], [2], [10], [9], [13], [12], [15], [22], [27]).

In this paper, we will examine certain joint invariant and co-invariant subspaces of the
multiplication operators by the coordinate functions defined on a class of reproducing kernel
Hilbert spaces on the unit polydisc D" = {(z1,...,2,) : |z:] < 1,2 =1,...,n}. More precisely,
our main interest is the class of quotient Hilbert modules of reproducing kernel Hilbert mod-
ules over C|zy, ..., 2], the ring of polynomials of n commuting variables, that admit a simple
tensor product representation of quotient modules of Hilbert modules over C[z]. A related
problem also arises in connection with the submodules and quotient modules of modules over
Clz1, . .., 2] in commutative algebra:

Let n € N be a fixed positive integer and { M}, be a family of modules over the ring of one
variable polynomials C[z]. Then the vector space tensor product M := M; Q¢ - -+ ®c M,, is
a module over C[z] ®¢ - -+ ®c C[z] = Clzy,. .., z,). Here the module action on M is given by

PM®Qpy) (iR Rf)=>D1-[1® QD+ [,
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where {p;}; € C|[z] and f; € M; (1 < i < n). Furthermore, let Q; C M; be a quotient
module of M, for each 1 < i <n. Then

(1) Ql Qe -+ Q¢ Qn7

is a quotient module of M. Now let Q be a quotient module and S be a submodule of M.
The following question arises naturally in the context of tensor product of quotient modules.
(A) when is Q of the form (1).

The next natural question is:

(B) when is M/S of the form (1).
To the best of our knowledge, this is a mostly unexplored area at the moment.

Our principal concern in this paper is to provide a complete answer to the above problems
by considering a natural class of reproducing kernel Hilbert modules over C|z] replacing the
modules in the algebraic set up. In particular, we prove that a quotient module Q of a
standard reproducing kernel Hilbert module (see Definition 4.5) over C[zy, ..., z,] is of the
form

Q=91 ® - ®Q,,
for n “one-variable” quotient modules {Q;}7 , if and only if Q is doubly commuting (see
Definition 2.1).

The study of the doubly commuting quotient modules, restricted to the Hardy module over
the bidisc H?(D?), was initiated by Douglas and Yang in [10] (also see Berger, Coburn and
Lebow [6]). Later in [15] Izuchi, Nakazi and Seto obtained the above classification result only
for quotient modules of the Hardy module H?(D?). More recently, the third author extended
this result to H*(D") for any n > 2 (see [20], [19]).

One of the difficulties in extending the above classification result from the Hardy module to
the setting of a reproducing kernel Hilbert module # is that the module maps {M,,, ..., M, }
on H, the multiplication operators by the coordinate functions, are not isometries. This paper
overcomes such a difficulty by exploiting the precise geometric and algebraic structure of tensor
product of reproducing kernel Hilbert modules. In what follows we develop methods which
link the tensor product of Hilbert modules over C[z, ..., z,] to Hilbert modules over C|[z].

We also consider the issue of essentially doubly commutativity of co-doubly commuting
submodules of analytic reproducing kernel Hilbert modules over C[z, ..., z,]. We also ob-
tain an wandering subspace theorem for some co-doubly commuting submodules of weighed
Bergman modules over C[zy, ..., z,] and compute the rank of co-doubly commuting submod-
ules of H?(D™). Our results in this paper are new even in the case of weighted Bergman spaces
over D"

We now describe the contents of the paper. After recalling the notion of reproducing
kernel Hilbert modules in Section 2, we introduce the class of standard Hilbert modules
over Clzy, ..., z,] in Section 3. Furthermore, we obtain some basic properties and an useful
classification result for the class of standard Hilbert modules. In Section 4, we obtain a
characterization of doubly commuting quotient modules of an analytic Hilbert modules over
C[z]. In Section 4, we present a characterization result for co-doubly commuting submodules
and compute the cross commutators of a co-doubly commuting submodule. In section 5, we
prove an wandering subspace theorem for co-doubly commuting submodules of the weighted
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Bergman modules over D". We also compute the rank of a co-doubly commuting submodule
of H?(D"). The final section is reserved for some concluding remarks.

Notations:

e Throughout this paper n > 2 is a fixed natural number.

e For a Hilbert space H, the set of all bounded linear operators on H is denoted by
B(H).

e We denote by ® the Hilbert space tensor product and by M®N, the von-Neumann
algebraic tensor product of von-Neumann algebras M and N.

e For a von-Neumann algebra M C B(H), we denote by M’ the commutant of M that
is the von-Neumann algebra of all operators in B(#) which commutes with all the
operators in M.

e For Hilbert space operators R, T € B(H), we write [R,T| = RT —T R, the commutator
of Rand T.

e For any set E, we denote by #F the cardinality of the set F.

e For a closed subspace S of a Hilbert space H, we denote by Ps the orthogonal projec-
tion of ‘H onto S.

e For a Hilbert space £ we shall let O(D", £) denote the space of £-valued holomorphic
functions on D".

o Clz] :=C|zy,..., 2] denotes the polynomial ring over C in n commuting variables

2. PRELIMINARIES

In this section we gather together some known results on reproducing kernel Hilbert spaces
on product domains in C". We start by recalling the notion of a Hilbert module over C|z].

Let {T},...,T,} be a set of n commuting bounded linear operators on a Hilbert space H.
Then the n-tuple (77, ...,T,) turns H into a module over C|z] in the following sense:

Clel x H—H,  (p.h) = p(T1,...., T)h,

where p € C[z] and h € H. We say that the module H is a Hilbert module over C[z] (see [11],
21]). Denote by M, : H — # the bounded linear operator

M,h=p-h=p(Ty,...,T)h, (he™H)

for p € C[z]. In particular, for p = z; € C[z] we obtain the module multiplication operators
as follows:

In what follows, we will use the notion of a Hilbert module H over C[z] in place of an n-tuple
of commuting operators {1}, ...,7,} C B(H), where the operators are determined by module

multiplication by the coordinate functions, and vice versa.
A function K : D" x D" — C is said to be positive definite kernel (cf. [5], [21]) if

k
Z Xz‘)\jK<ZZ', Zj) > O,

1,7=1
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for all {\}F, C C, {2;}f., C D" and k € N. Given a positive definite kernel K on D",
the scalar-valued reproducing kernel Hilbert space Hg is the Hilbert space completion of
span{ K (-,w) : w € D"} corresponding to the inner product

(K(,w), K(+, 2)u, = K(z,w) (z,w € D").
The kernel function K has the reproducing property:

f(w): <va('>w)>7'lK (fEHKawEDn)'

In particular, for each w € D" the evaluation operator ev,, : Hx — C defined by ewv,(f) =
(f, K(-,w))n, (f € Hi) is bounded. We say that H is the reproducing kernel Hilbert space
over D" with respect to the kernel function K.

We now assume that the function K is holomorphic in the first variable and anti-holomorphic
in the second variable. Then H is a Hilbert space of holomorphic functions on D™ (cf. [21]).
Moreover, H is said to be reproducing kernel Hilbert module over C[z] if 1 € Hx C O(D"™,C)
and the module multiplication operators { M., }I , are given by the multiplication by the co-
ordinate functions, that is

Mzzf = Zifa
and
(zif)(w) =wif(w),  (f €Hg,weD")

for i =1,...,n. It is easy to verify that
M K(-,w) =0, K(-,w), (weD")

fori=1,...,n.
Let {Hk,}7-, be a collection of reproducing kernel Hilbert modules over I corresponding
to the positive definite kernel functions K; : D xD — C, i =1,...,n. Thus

K(z,w)= HKi(zi,wi), (z,w e D")

i=1

defines a positive definite kernel on D™ (cf. [26], [5]). Observe that Hg, ® -+ ® Hg, can be
viewed as a reproducing kernel Hilbert module over C[z] in the following sense:

(C[z] X(HKl®"‘®HKH)%HK1®..'®%KW‘7 (p,f)Hp(Ml’--~7Mn>f’
where M; € B(Hgk, ® -+ ® Hg, ), and

Myi=Dy @@ M, @ ®Ly,,  (1<i<n).

i-th place
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Moreover, it also follows immediately from the definition of K that
2

:iia@j K (w;, w;) ZZ“Z%G_{ wj)l,(“’j)l))

i=1 j=1 =1 j=1

= > ady(Kil (w))1) @+ @ Kal ()),), K (w0)2) © - © Ko (w),))

2

U :span{K(-,w) : w € D"} — span{K;(-,w) ® --- @ K, (-,w,) : w € D"}
defined by
UK(,w)=Ki(,w)® Q@ K,(-,w,), (w e D")
extends to a unitary operator from Hx onto Hy, ® --- ® Hy, . We also have
M, =U"M;U (1 <i<n).

This implies that Hx = Hy, ® --- @ Hg, is a reproducing kernel Hilbert module over C[z].
In what follows we identify the Hilbert tensor product of Hilbert modules Hy, ® --- @ Hr,,
with the Hilbert module Hx over C[z]. It also enables us to identify 2% @ -+ @ 2k with 2*
for all k = (ky,--- ,k,) € N".
We now recall the definitions of submodules and quotient modules of reproducing kernel
Hilbert modules over C[z] to be used in this paper:
Let S and Q be a pair of closed subspaces of Hy. Then S is a submodule of Hy if M, S C S
for all i = 1,...,n and Q is a quotient module if Q+(= Hy/Q) is a submodule Of Hy.
The module multlphcatlon operators on the submodule & and the quotient module Q of

Hy are given by restrictions (R.,,..., R.,) and compressions (C,,,...,C,, ) of the module
multiplication operators (M.,,,..., M, ) on Hg:

(2) R, :=M,|s and C,, = o

fori=1,...,n.

Definition 2.1. A quotient module Q of Hg is doubly commuting if for 1 <i < j <mn,
C.CL =C. 0.

A submodule § of Hg is doubly commuting if for 1 <1 < j < n,
R, R, =R, R,

and it is co-doubly commuting if the quotient module S+ (= H /S) is doubly commuting.
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The notion of a co-doubly commuting submodule was introduced in [20] and [19] in the
context of Hardy module over D". However, the interplay between the doubly commuting
quotient modules and the co-doubly commuting submodules has also been previously used by
Izuchi, Nakazi and Seto and Yang [16], [15], [28], [27].

We end this preliminary section by recalling a result concerning commutant of von-Neumann
algebras (cf. Theorem 5.9, Chapter-IV of [25]) which will be used in later sections.

Theorem 2.2. Let M and N be two von-Neumann algebras. Then (MQN)' = M'@N’.

3. STANDARD HILBERT MODULES

In this section we introduce the notion of a standard reproducing kernel Hilbert module
and establish some basic properties. A characterization of this class is also obtained which
we use throughout this note.

Definition 3.1. A reproducing kernel Hilbert module H C O(D, C) over C|z] is said to be
standard Hilbert module over C|[z] if there does not exist two non-zero quotient modules of
‘H which are orthogonal to each other.

It follows immediately that a standard Hilbert module H over C|z] is always irreducible, that
is, the module multiplication operator M, does not have any non-trivial reducing subspace.

One of the pleasant features of working with a standard Hilbert module over C|[z] is that
the quotient modules of this space have the following useful characterization.

Proposition 3.2. Let ‘H be a reproducing kernel Hilbert module over C[z]. Then H is a
standard Hilbert module over C[z] if and only if for any non-zero quotient module Q of H,
the smallest submodule containing Q is H, that is,

0\7 20 =%H.
1=0

Proof. Let ‘H be a standard Hilbert module over C[z]. Let Q be a quotient module of ‘H such
that

Q= li/OOZlQ #+H.
It follows that the quotient module Qt is non-trivial and QL QL. This contradicts the
assumption that H is a standard Hilbert module.

We now turn our attention to the converse part. Let Q; and Oy be two non-zero quotient
modules of H, and Q; L Q,. Forall f; € Q1 and fo € Oy and [ € N,

(' f1, f2) = (MLf1, fo) = (fr, M} f2) = 0.
This shows that -
ZL/OZZQ1J-Q2-

On the other hand, V§°,2'Q; = H implies that Q, = {0}. This is a contradiction. Therefore,
@, is not orthogonal to Qs as desired. O

Our next result shows that if K= : D x D — C is a polynomial in z and @, then Hx can
be realized as a standard Hilbert module over C|z].
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Theorem 3.3. Let Hyi be a reproducing kernel Hilbert module over C[z] with reproducing
k
kernel K : D x D — C such that K~ '(z,w) = > a;;z"w’ is a polynomial in z and w. Then
i,j=0
Hy is a standard Hilbert module over C|z].

k k
Proof. Let K~'(z,w) = 3 a;z'w’ and set K~ Y(M,, M}) := Y a;;MIM}7. For z,w € D
1,j=0 ,j=0
we notice that
k
(K™Y (M., M)K (-, w), K(-, 2)) = Z (ay; MEMPK (- w), K(-, 2))
k
Z ay MIK (- w), MIK (-, 2))

k
= Zzw”aij -7w),K(',Z)>
= K '(z,w)K(z,w)
= <P(CK(-7w),K<',Z>>,

where F¢ is the orthogonal projection of Hx onto the subspace of all constant functions.
Consequently, it follows that

K Y(M,, M) = Pe.

We now assume that Q is a non-zero quotient module of H and Q = V2,2l Q. Tt readily
follows that

Pe(Q) = K™1(M., M2)(Q) € Q.
Now if Pc(Q) = {0}, then O contains the constant function 1 and so @ = {0} contradicting
the fact that Q # {0}.

On the other hand, if Pc(Q) # {0}, then 1 € Q and hence Q = . The theorem now follows
from Proposition 3.2. O

Remark. We remark that the assumptions of the above theorem includes implicitly the ad-
ditional hypothesis that one can define a functional calculus so that %(MZ7 M?*) make sense
for the kernel function K. It was pointed out in the paper by Arazy and Englis [4] that for
many reproducing kernel Hilbert spaces, one can define such a %—calculus. In particular, ex-
amples of standard Hilbert modules over Cl[z] includes the weighted Bergman spaces L ,(ID),
«a > —1, with kernel functions

1

Ka7a(z, w) = W

(z,w e D)

We will make repeated use of the following lemma concerning commutant of C, = PgoM.,|o
in B(Q) where Q is a quotient module of a standard Hilbert module H .
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Lemma 3.4. Let H be a standard Hilbert module over C[z] and Q be a non-trivial quotient
module of H. Let P be a non-zero orthogonal projection in B(Q). Then

PC,=C.P,
if and only of P = Ig.
Proof. Let S be a non-zero closed subspace of Q such that
PsC, = C,PFs,
or equivalently, PsC? = C} Ps. Hence
PsM?|g = M:|gPs = M. Ps.

By multiplying both sides of
PsM?|g = M Ps,

to the right with Ps we get PsM}Ps = M} Ps. Hence S is a quotient module of H.
On the other hand, using PsM}Ps = PsM? Py along with the fact that Q is a quotient
module we have

Poos M} Pocs = PoM Pg — PoM} Ps — PsM} Pg + PsM Ps
= M;Pg — M Fs = M} Pocs.

Thus Q and Q@ © S are two orthogonal quotient modules of H. This contradicts the fact that
H is a standard Hilbert module over C[z]. Consequently, @ & S = {0}, that is, @ = S. This
completes the proof. O

Let Q be a quotient module of a Hilbert module H over C[z] and S be a non-trivial closed
subspace of Q. Let

PsC, = C.Ps.

The above proof shows that both & and Q@ & § are quotient modules of H. One can show
that the converse is also true. Hence this is an equivalent condition.

It is of interest to know whether an irreducible reproducing kernel Hilbert module over C|[z]
is necessarily standard Hilbert module over C[z]. However, this question is not relevant in
the context of the present paper.

4. DOUBLY COMMUTING QUOTIENT MODULE

In this section we introduce the notion of a standard Hilbert module in several variables.
We present a characterization result for quotient modules of standard Hilbert modules over
C|z], which are doubly commuting as well as satisfy an additional natural condition. We
also obtain a characterization result for doubly commuting quotient modules of the weighted
Bergman modules over D™.

We begin by defining the notion of a standard Hilbert module over C[z].
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Definition 4.1. A reproducing kernel Hilbert module H C O(D", C) over C|z] is said to be
a standard Hilbert module over Clz] if

H=H,® - @H,,
for some standard Hilbert modules {#;}!; over C[z].

Here, as well as in the rest of this paper we specialize to the class of standard Hilbert
modules over C|z].

The following illuminating example makes clear the connection between the tensor product
of quotient modules of standard Hilbert modules over C[z] and doubly commuting quotient
modules of standard Hilbert modules over C[z]:

Let H = H1®---®@H, be a standard Hilbert module over C[z], and let Q; C H; be a quotient
module for each 7 =1,...,n. Then

Q=01® - ®Q,,

is a doubly commuting quotient module of H; ® --- ® H,, with the module multiplication
operators
Ig, ®---®@Po,M,|o,® - ®Ig, (i=1,...,n).
i-th

The purpose of this section is to prove that under a rather natural condition a doubly
commuting quotient module of a standard Hilbert module over C|z]| is always represented in
the above form.

The key ingredient in our approach will be the following propositions concerning reducing
subspaces of standard Hilbert modules.

Proposition 4.2. Let H=H, ® --- ® H, be a standard Hilbert module over C[z|. Let Q be
a closed subspace of H and let k € {1,...,n}. Then Q is M, -reducing fori =k,k+1,...,n,
if and only if

OQ=CQH,® - QH,,
for some closed subspace £ C Hy ® -+ @ Hp_1.
Proof. For k < i < n, let N; be the von-Neumann algebra generated by {Iy;,, M.}, where M,

is the module multiplication operator on H,;. It follows immediately that the von-Neumann
algebra generated by

{l, M, :i=k,k+1,....n} CBH1® - @H,),
is given by
Chuesm, ,ENGD - BN,
By virtue of Lemma 3.4 we have
N =Cly, (k <i<mn).
On account of Theorem 2.2 we have then

(CIH1®~~®H1¢71 QNK® -+ ®Nn)/ =B(H1® - @ Hy1)Cly, 0. 0m,,
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and hence Q is M, -reducing subspace for all : = k,k 4+ 1,...,n, if and only if
Pg € (Clyyggm, ,@Nw® - @N,) = B(H1 @ - @ Hi—1)@Cliy -, -

On the other hand, since Pg is a projection in B(H; ® - - - @ Hy—1)RCly, o.-on,, there exists
a closed subspace £ of H1 ® - -+ ® Hj_1 such that

PQ — Pg ® IHk@"‘®Hn‘

Hence it follows that
Q=EQH,® - ® Hy.
This completes the proof. 0]

Proposition 4.3. Let H = H; ® --- @ H,, be a standard Hilbert module over Clz] and let
Q; be a quotient module of Hyi. Then a closed subspace M of Q := Q1 @ Ha @ -+ @ H,, is
PoM,,|g-reducing if and only if there exists a closed subspace € of Ho & - -+ ® H,, such that

M=9,®¢.

Proof. Suppose Q; is a quotient module of H;. We observe that

PoM,|o = (Po,M:|o, ® Iiys--em,) -
We also note that a closed subspace M of Q is PgM,,|o-reducing if and only if

Py € N®De-om,)
where N' C B(Q;) is the von-Neumann algebra generated by {Ig,, Po, M.|g, }. Now
N® Lo anm,) =N'@BH2 @ -+ @H,).
By Lemma 3.4 we have N/ = Clg, and hence
(N@Iy,e.on,) = Clog, @B(H, @ --- @ H,).
Therefore, Py € (N®Ii,e..0n, ) if and only if
Py =1, ® P,

that is, M = 9Q; ® &£, for some closed subspace € of Hy ® --- ® H,. This completes the
proof. O

Let Q be a quotient module of a standard Hilbert module over C[z]. For 1 < k < n, let
(9] 241,20 denote the smallest joint (M, , ..., M., )-invariant subspace containing Q. That
is,

) ! ! In
(3) [Q]Zk12k+1 ----- Zn T \/ Mzz ’ Mz:ii e Man
(ool 15 esln ) EN(P—RFD)

We are now ready to prove the characterization result concerning tensor product of quotient
modules of standard Hilbert modules over C|z].
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Theorem 4.4. Let Q be a quotient module of a standard Hilbert module H = H,1 ® - @ H,,
over C[z]. Then

Q=0:® - ®Q,,

for some quotient module Q; of H;, i =1,...,n, if and only if
(i) Q is doubly commuting, and
(1) [Qlapsprsyzm @8 @ joint (M., M., .., ..., M., )-reducing subspace of Hi ® --- @ H, for

-----

k=1,...,n.

Proof. Let Q be a doubly commuting quotient module of H and [Q)]
(M., M

Zh410 * "

2k Zk—415--3%n be a -]Olnt

oy Mzn)—reducing subspace for £ =1,...,n. In particular for k = 2,

Q = [Q]zz,23,...,zn>

is a joint (M,,, M., ..., M, )-reducing subspace of H,®- - -®@H,,. By virtue of Proposition 4.2
we have

Q=01 @H: @+ ®Hy,
for some closed subspace Q7 of H;. Also since Q is a quotient module and M 7 commutes
with M., for i # j, it follows that Qis a M -invariant subspace. Hence Q) is a quotient
module of H;. Now we claim that Q is a Pz, |5-reducing subspace of Q. To this end, since
Q C Q, it is enough to show that

PoM; |5 = M |o.

1

Using the fact that Q is doubly commuting it follows that
C;Cii = CiiC’*

z1)

for [ > 0 and 2 <7 < n, and hence
Cr* Cl2 Cln — Clg "'ClnC*
for Iy, 13,...,1, > 0. Therefore
M: PoMP2 .- MinPg = PoM2 - MI"M: Po  (lo,15,...,1, > 0).
This implies that
M, Po(M2 --- M2 Po) = PoM; (M2 --- M. Po),

for Iy, 13,...,1, > 0. This proves the claim.
Now applying Proposition 4.3, we obtain a closed subspace & of Hy ® - -+ ® H,, such that

Q=091 ®&.

Finally note that since Q is doubly commuting, & is also doubly commuting quotient module
of Ho®---®H, and it satisfies the condition (ii) in the statement of this theorem. Repeating
the argument above for &, we conclude that

&1 =9y ® &,
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for some quotient module Qs of Hs and doubly commuting quotient module & of H3®- - -QH,,.
Continuing in this way we obtain quotient modules Q; C H;, for « = 1,...,n, such that

Q=00 ® X 9,.

This proves the sufficient part.
To prove the necessary part, let Q = Q; ® Qy ® - - - ® Q,, be a quotient module of H. Clearly
(o, ®Ig, ® -+ ® Po,M:|o, @ ®Ig,)iLy,
i—th pl
1—th place

is a doubly commuting tuple, that is, Q is doubly commuting. Finally, using the fact that H;
is a standard Hilbert module over C[z] for all i = 1,...,n, we have

[Q]zk ,,,,, Zn Q1®®Qk—l® [Qk]z®®[gn]z
=010 Q1 OHL® - Q@ Hp,
for 1 < k <n. Now the result follows from Proposition 4.2. O

Remark. Let H; be a Hilbert module over C[z] with module multiplication operator T}, i =
1,...,n. Moreover, assume that H; is a standard Hilbert module over C[z], that is, there
does not exists a pair of non-zero quotient modules @; and Q5 such that Q; L Q,. In this
case, the above theorem still remains true for the Hilbert module H = H; ® --- ® H,, over
C[z] with module multiplication operators

{IH1®"'®IH¢_1 ®E®Iﬂz+1®®lﬂn ?:1'

Let H; be a reproducing kernel Hilbert module over C[2] with kernel K; such that K; ! is a
polynomial for all © = 1, ..., n. Then by Theorem 3.3 we know that H;’s are standard Hilbert
modules over C|z] (see also the remark following Theorem 3.3). Thus H = H; ® --- @ H,, is
a standard Hilbert module over C[z]. This subclass of standard Hilbert modules over C[z]
plays the central role in the rest of this paper. So we make the following definition to refer
this subclass.

Definition 4.5. A standard Hilbert module H = Hg, ® --- ® Hg, over C|z] is said to be
analytic Hilbert module if KZ—_1 is a polynomial in two variables z and w for alli =1,... n.

The notion of analytic Hilbert module is closely related to the %—calculus introduced by
Arazy and Englis [4]. Our result is true in the generality of Arazy-Englis. However, to avoid
technical complications we restrict our attention to the analytic Hilbert modules.

Let H be a standard Hilbert module over C[z]. Then H is an analytic Hilbert module if
and only if K~ !(z,w) is a polynomial in 2y, ..., z,, 0y, . . ., W,.

We show now that the condition (ii) in Theorem 4.4 holds for any quotient module of
an analytic Hilbert module over C[z]. After the proof of the proposition we will give some
examples in order.

Proposition 4.6. Let Q be a non-zero quotient module of an analytic Hilbert module H =
Hi® - @ Hy, over Clz]. Then [Ql.,. .., is (M., M., ,,...,M,,)-reducing subspace for
k=1,...,n.
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Proof. Let 1 < k <n be fixed. Set

n

HK;l(zi,wi) = Z a2 0™,

i=k I,meN(n—Fk+1)
where 2! = 2l .. 2l and @™ = @ - @™ and U= (I, ..., 1,) and m = (my, ..., m,) are
in N0 Likewise, if 1 = (I, ...,l,) € N™*U then define M} = M ... M!. Notice
first that

n

(4) ‘[H1®"‘®Hk—l ® Pg(n_k+1) - H Ki_l(MZm M;) = Z al’mM"}'M;m'

i=k I, meN((n—Fk+1)

In the last equality we used the fact that A, M 5 =M M., for ¢ # j. This implies

By a similar argument as the in the proof of Theorem 3.3, we have

<[H1®~~-®'Hk_1 & Pc®(n—k+1)) (Q) 7& {O}
Setting
(I’H1®---®’H;€,1 ® P(C@(nfkjtl)) (Q) = Ql ® (C@(nfk+1)7

for some closed subspace Q; of H; ® - -+ ® Hyp_1, we obtain
Q1®Hk®®Hrzg[Q]zk ..... Zn*

To see [Q),,..., € Q1 @ Hy ® -+ ® H,, it is enough to prove that Q C Q1 @ Hy @ - - @ H,y,
or equivalently,

O @H,®--- @M, C QL
Since @+ is a submodule the last containment will follow if we show that f® 1®@---® 1 € O+
—_——
(n—k+1)—times
for any f € Qf. Now for f € Qf and g € Q, we have
(fele 19 = (lue ey, @ Prenrm)(fR1® - ®1),9)
=(f®1® - ®1, (e en; @ Pesm-i+1)g)
=0,

where the last equality follows from the fact that (I3, e, , ® Peam-t+1))g € Q1 @CEr—k+D),
Therefore for any 1 < k < n,

0= QOHE® - @ Hay,

-----

for some closed subspace Q1 of H1 ®---® Hi_1. The result now follows from Proposition 4.2.
O

Combining above proposition, Theorems 3.3 and 4.4 we have the following result.
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Theorem 4.7. Let Q be a quotient module of an analytic Hilbert module H = H1® - @ H,
over Clz]. Then the following conditions are equivalent:

(i) Q is doubly commuting.

(i) Q=01 ®---® Q, for some quotient module Q; of H;, i=1,...,n

Now we pass to discuss some examples of analytic Hilbert modules and applications of
Theorem 4.7. First consider the case of the Hardy module H*(D") over the unit polydisc D".
The kernel function of H%(ID) is given by

1
1—zw

S(z,w) =

(z,w € D).

In particular, S™!(z,w) is a polynomial. On account of the Hilbert module isomorphism

H*(D") = H*(D)® - @ H*(D),
n-t;;lies

we recover the following result of [19] (Theorem 3.2) and [16].

Theorem 4.8. Let Q be a quotient module of H*(D™). Then Q is doubly commuting if and
only if Q= Q1 ® - ® Q, for some quotient modules Qy, ..., Q, of H*(D).

Next we consider the case of weighted Bergman spaces over D". The weighted Bergman
space over the unit disc is denoted by L2 o), with @ > —1, and is defined by

L2a(D)i= {7 € O®): [ 17()F dAuz) < o0}

where dA,(z) = (a+1)(1—|2|?)*dA(z) and dA refers the normalized area measure on ID. The
weighted Bergman modules are reproducing kernel Hilbert modules with kernel functions
1

K.(z,w) = W

(z,w € D).

It is evident that K! is a polynomial if « € N. Let a € Z" with oy > —1 fori =1,...,n.
The weighted Bergman space L7 ,(ID") over D" with weight « is a standard Hilbert module
over C[z| with kernel function

n

]‘_[}'(OéZ Z“U)Z _HW (Z’LUG]D”)

=1
Thus we have the following theorem.
Theorem 4.9. Let o = (ay,...,qp) € Z" with o; > —1 fori =1,...,n. Then a quotient

module Q of Lia(D”) is doubly commuting if and only if @ = Q1 ®---® Q,, for some quotient
modules Q; of L7 , (D), i=1,...,n.

Note that by the remark after Theorem 3.3 the above characterization result also holds for
a=(a,...,q,) ER" withay; >—-1,i=1,...,n
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5. CO-DOUBLY COMMUTING SUBMODULES

The purpose of this section is twofold. First, we explicitly compute the cross commutators
of a co-doubly commuting submodule (see Definition 2.1) of analytic Hilbert modules over
C|z]. Second, we investigate a variety of issues related to essential doubly commutativity of
co-doubly commuting submodules. In particular, we completely classify the class of co-doubly
commuting submodules which are essentially doubly commuting for n > 3.

We start with a well known result (cf. [19]) concerning sum of a family of commuting
orthogonal projections on Hilbert spaces.

Lemma 5.1. Let {P;}!, be a collection of commuting orthogonal projections on a Hilbert
space H. Then L := " ranP; is closed and the orthogonal projection of H onto L is given

by

n

Pr=1Iy—[[(In - P).

=1

Now we are ready to present a characterization of co-doubly commuting submodules of an
analytic Hilbert module C[z]|. Recall that a submodule S of an analytic Hilbert module H
over C[z] is co-doubly commuting if @ = S+(= H/S) is doubly commuting.

Theorem 5.2. Let H =H, ® --- ® H,, be an analytic Hilbert module over C[z] and S be a
submodule of H. Then S is co-doubly commuting if and only if

S=(Q® - 0Q) =) o M 10 OH 1@ OH,,
=1

for some quotient module Q; of H; and i =1,... n.

Proof. Let § be a co-doubly commuting submodule of H. Applying Theorem 4.7 to & we
have

S=(Q1® 29,7,

for some quotient module Q; of H; and 7 = 1,...,n. Now let P; be the orthogonal projection
of Honto Hi ® -+ @H; 1 @ QFf @ Hip1 @ -++ @ H,. Then { P}, satisfies the hypothesis
of Lemma 5.1. Also note that Q; ® --- ® Q,, is the range of the orthogonal projection of
[1-,(Ix — P;), that is,

n

Po,g.v0, = | [(In — P).

=1

From this and Lemma 5.1 we readily obtain
S:Z?{l@”'@%i*l@Q#®Hi+1®”'®%n~
i=1

This completes the proof. ([l
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In the sequel we will make use of the following notation.
Let Q@ = 91 ® -+ ® Q, be a doubly commuting quotient module of an analytic Hilbert
module H = H, ® - -- ®H,, over C[z] , where Q; is a quotient module of H;, i =1,...,n. Let
A ={\1,..., A} be a non-empty subset of {1,...,n}. The subspace Qx of H is defined by

(5) Qi—;:Q1®...®Qi—l®...®gi-k®...®gn.
A1-th Ag-th

Notice that
Qi\_ J— Qi_/y
for each non-empty A, X’ C {1,...,n} and XA # N. This implies that

(Ql@"‘@gn)L: @ Qi‘
0#XC{L,...,n}

The following theorem provides us with an easy way to calculate the cross commutators of
co-doubly commuting submodules of analytic Hilbert modules over C|z].

Theorem 5.3. Let H = H1 ® --- @ H,, be an analytic Hilbert module over Clz| and S =
(Q1® - ® Q,)* be a co-doubly commuting submodule of H. Then for all 1 <i < j < n,

[R;7RZ]]:P91®®PQIM;PQlL®®PQJLMZPQJ®®PQM
h
i-t j-th

where R,, = M, |s for 1 < j <n.

Proof. Let S = (@1 ® - - ® Q,,)* be a co-doubly commuting submodule of H. By definition
R., = M,,|s and hence R} = PsM}|s for I =1,...,n. Let 1 <i < j <n. Then

:
[R;_, sz] = RZ sz B sz RZ
= PsM; M. |s — PsM., PsM |s
= PsM; M.,|s — PsM_,(I — Ps1)M |s
— PsM,,Ps. M?|s
= PSMZ],P91®...®Q”M;PS.

Combining this with (5), we have

BB = (Y Poy)MyPoseaMi( Y Poy).
0#XC{L,...,n} 0#EN C{1,...,n}

Observe that for each A # {l} and [ € {1,...,n},

Po,g.-00, M, Posr =0,
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and therefore

(R, R.,] = < > pg§>szP91®m®QnMZ< > PQ§/>
P#XC{L,...,n} 0#AXN'C{1,...,n}

PAANC{1,....n}

=Py, ® - ® (inM;pQ#) R ® (ijLMZij) ® --®Pg,.
i-th j-th
This completes the proof. 0

We still need a few more definitions about ”"small commutators” on Hilbert spaces.
Let H be a Hilbert module over C|z|. Let S and Q be submodule and quotient module of
‘H, respectively. Then § is said to be essentially doubly commuting if

[R5, R.] € K(S),

for 1 <7 < j < n. Here K(S) denotes the algebra of all compact operators on S. Moreover,
it is essentially normal if [R} , R.;] € K(S) for 1 <, j <n. Similarly Q is essentially doubly
commuting if
(€%, C5] € K(Q),

for all 1 <7 < j <n, and it is essentially normal if [C},C.,] € K(Q) for 1 <1i,j < n (see
[20]). Here R,, and C,, are as in (2).

Now we provide a characterization of essentially doubly commuting co-doubly commuting
submodules of an analytic Hilbert module over C[z].

Theorem 5.4. Let S = (Q1®---® Q,)* be a co-doubly commuting submodule of an analytic
Hilbert module H = H1®- - -Q@H,, over C[z], where Q; is a quotient module of H;, i =1,...,n.
Then:

(i) Forn =2, S is essentially doubly commuting if and only if Po, M} Pg. is compact for all
j=12.

(il) Forn > 2, S is essentially doubly commuting if and only if S is of finite co-dimension.

Proof. The proof follows from the above lemma. OJ
If the analytic Hilbert module # in the above theorem is H*(D"), then Pg M;Pg. is a
rank one operator for all quotient modules Q; of H*(D) and i =1,...,n (see Proposition 2.3

in [20]). In particular, for H = H?(D?), the submodule § = (Q; ® Q)" is always essentially
doubly commuting. This result is due to Yang [28]. For the Hardy space H?(D"), Part (ii)
was obtained by the third author in [20].

The next two results becomes a useful variant of the above theorem.

Corollary 5.5. Forn > 2, let § be a co-doubly commuting submodule of an analytic Hilbert
module H=H, @ -+ @ H, and Q = SH(2H/S). Then the following are equivalent.
(i) S is essentially doubly commuting.
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(ii) S is of finite co-dimension.
(iii) Q is essentially normal.

Corollary 5.6. Let S be an essentially normal co-doubly commuting submodule of an analytic
Hilbert module H = H1 ® --- @ H,. If S is of infinite co-dimension, then n = 2.

In the case H = H?*(D"), both the Corollaries 5.5 and 5.6 were obtained by the third author
in [20].
We end the section by the follwoing remark.

Remark. In view of Theorems 5.3 and 5.4 one is tempted to consider the issue of compact-
ness (or Hilbert-Schmidt class, trace class) of products of cross-commutators of co-doubly
commuting submodules. However, we observe as an easy consequence of Theorems 5.3 that

[RZ, sz][R* Rzm] = 07

z1?
forany 1 <i<j<nand1<l<m<n.
Nevertheless, it is interesting to observe that for a co-doubly commuting submodule § =
(Q1® - ® Q,)*, the “repeated commutator”

[Rzm [RZn—17 te [Rz3> [R* RZQ]] te H = PQ1]\/[Q<PQ1L ® PQ%‘MZPQQ @ PQ,J{MZPQW,?

z1)

is a non-zero rank-one operator. Let us verify this fact in case n = 3 (the general case follows
by induction on n): Let & = (Q; ® Qy ® Q3)* be a co-doubly commuting submodule of
H?(D?3). Then by Theorem 5.3,

[Rey, (R, R
= ]\JZ:%PS(PQl‘]w:PQIL & PQ§M2PQ2 & PQ3) - (PQlM;PQf ® PQQLMZPQ2 ® PQ3)MZ3PS
= (Pg, ® PQj— ® MZPQa)(PQ1M:PQf‘ ® PQ%'MZPQ2 ® Po,)

_(PQlM:PQf‘ ® PQ%'szgz ® PQS)(PQf- ® PQQ ® MZPQs)

= Po,M:Pg1 ® Pg; M.Po, ® Py, M.Po,.

We do not know any module theoretic interpretations of the above fact. These issues will be
addressed in a future paper.

6. WANDERING SUBSPACES AND RANKS OF SUBMODULES

In this section we investigate the existence of wandering subspace, in the sense of Halmos
[14], of a co-doubly commuting submodule of L2 ., (D"), and compute the rank of a co-doubly
commuting submodules of H%(D"). In particular, we explicitly compute the rank of a co-
doubly commuting submodule S of H%(D") and prove that the rank of S is not greater than
n.

We begin with the definition of wandering subspaces for submodules of analytic Hilbert
modules over C|z].

Let S be a submodule of an analytic Hilbert module H over C[z] and W C S be a closed
subspace. Then W is a wandering subspace of S if

W L MFw,
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for all k € N*\ {0} and
S=\/ Mw.
keNn

Let S be a submodule of H*(D), or L?(D). Then W = S & 28§ is the wandering subspace
of §. Moreover, the dimension of W is always one for # = H?(D) [7], and any value in the
range 1,2,...,00, for H = L2(D) [3]. For a general n, the existence of wandering subspaces
of doubly commuting submodules of LZ(ID") is obtained in [17] and [§].

Now let S = (Q1 ® --- ® Q,)* be a co-doubly commuting submodule of L2 ,(ID"), where
a=(o,...,a,) € N and Q; is a quotient module of Liai(ID)), 1=1,...,n. Let

Wi =(Qi ©297),

be the wandering subspace of Q3 for i = 1,...,n. Consider the set

w=\/1g- - @leW,®l---01CS.

i=1
By virtue of Theorem 5.2, it then follows easily that
S=\/ Mw.
keNn
There is, however, no guarantee that W L M*W for all k € N"\ {0}. For instance, it is not
necessarily true that
(12l L AHAIMI®I®---®1) =0,

for all f1 < Wl and f2 c WQ.

However, if we further assume that 1 € Q, for all+ = 1, ..., n, it then easily follows that W is
a wandering subspace of §. Thus we have the following result on the existence of wandering
subspaces of a class of co-doubly commuting submodules of LZ’Q(]D)”).

Theorem 6.1. Let a = (on,...,a,) € N" and Q; be a quotient module of L7, (D) and
1€Q;,i=1,...,n. Then

w=\/1e - @1eWel ol
=1

is a wandering subspace of the co-doubly commuting submodule S = (Q1 ® -+ ® Q,,)*, where
W, =(Q; ©29;),
fori=1,... ,n.
We now study the rank of a co-doubly commuting submodule of an analytic Hilbert module

over C[z]|. Recall that the rank of a Hilbert module H over C[z] is the smallest cardinality
of its generating sets [11]. More precisely,

rank(H) = EIéngl(r#) #E,
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where
GH)={ECH: \|] MFE ="}
keNn
Let S = 0H*(D) be a submodule of H?*(D) for some inner function § € H>°(D) [7]. Then

S=0H*D)=\/2"E,
m>0

where E' = {0}. Consequently, S is of rank one. This is no longer true for Hardy space over
D" and n > 2. As pointed out by Rudin [18], there exists a submodule S of H?*(D) such that
the rank of S is not finite (see also [16], [23] and [24]). We now consider the class of co-doubly
commuting submodules of H?(D").

Let S be a non-trivial proper co-doubly commuting submodule of H?(D"). Theorem 5.2
implies that there exists non-zero quotient modules Qy, ..., Q, of H?(D) such that

S=(Q®-®Q) => HD e o« H (D).
i=1
Then there exists a natural number 1 < m < n such that
Q,#HD) (j=1,...,m).
Let 6;, be the inner function corresponding to the non-zero submodule Qi, that is,
QL =0, H*D)  (j=1,....m).
Let I be the set of one variable inner functions corresponding to {6;, 7L, over D", that is,
E:={0,€5:0,=1®---®1® 0, 1®...®1,j=1,...,m}.
1;-th
j—t

Then invoking again Theorem 5.2 we conclude that

\/ MFE=S5.

keN®
Consequently,

rank(S) < m.

If, in addition, we assume that 1 € Q;, for 1 <17 < n then
O, € kerPsM:*, (1<j<m)

for any non-zero k € N". Then with a standard argument we obtain rank(S) > m and hence
rank(S) = m.
We summarize the results given above as follows.

Theorem 6.2. Let S = (Q1 ® -+ ® Q)% be a co-doubly commuting submodule of H*(D").
Then the rank of S is less than or equal to the number of quotient modules Q; which are
different from H?*(D). Moreover, equality holds if 1 € Q; for all 1 < i < n.
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7. CONCLUDING REMARKS

It is worth stressing here that the results of this paper are based on three essential assump-
tions on the Hilbert module H:

(1) H is a reproducing kernel Hilbert module over D"™. Moreover, the kernel function Ky
of H is a product of one variable kernel functions over the unit disk D. That is,

KH(Z,'lU) = HKZ(ZZ,U)Z) (Z,’U) & ]D)n)
i=1

(2) H is a standard reproducing kernel Hilbert module, that is, there does not exists a
pair of non-zero orthogonal quotient modules of Hy, C O(D,C), where Hg, is the
reproducing kernel Hilbert module corresponding to the kernel K; and i =1,...,n.

(3) Kil is a polynomial, or, that H admits a %—calculus, in the sense of Arazy and Englis.

The purpose of the following example is to show that the conclusion of Theorem 4.7 is false
if we drop the assumption that H is standard.

Let H = H,1®- - -®H, be a reproducing kernel Hilbert module over C[z] such that H; is not
a standard reproducing kernel Hilbert module over C[z]. This implies H; has two orthogonal
quotient modules Q; and Q. Now consider the following quotient module of H

Q0=(01®HRVBR-®Q,)B(Q®IARAR - ® Q,),

for two different quotient modules Qy and Q) of Hs and some quotient modules Q; of H,,
1 = 3,...,n. Then it is evident that Q is a doubly commuting quotient module of H but
it can not be represented in the form of tensor product of n one variable quotient modules.
Therefore one may ask the following general question.

Is every doubly commuting quotient module of a Hilbert module over C|z] orthogonal sum
of quotient modules each of which is Hilbert tensor product of one variable quotient modules?
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