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RESOLUTIONS OF HILBERT MODULES AND SIMILARITY

RONALD G. DOUGLAS, CIPRIAN FOIAS, AND JAYDEB SARKAR

Abstract. Let H2

m
be the Drury-Arveson (DA) module which is the reproducing kernel

Hilbert space with the kernel function (z, w) ∈ Bm × Bm → (1 −
m∑
i=1

ziw̄i)
−1. We investigate

for which multipliers θ : Bm → L(E , E∗) with ranMθ closed, the quotient module Hθ, given
by

· · · −→ H2

m
⊗ E

Mθ−→ H2

m
⊗ E∗

πθ−→ Hθ −→ 0,

is similar to H2

m
⊗F for some Hilbert space F . Here Mθ is the corresponding multiplication

operator in L(H2

m ⊗ E , H2

m ⊗ E∗) for Hilbert spaces E and E∗ and Hθ is the quotient module
(H2

m ⊗ E∗)/Mθ(H
2

m ⊗ E), and πθ is the quotient map. We show that a necessary condition is
the existence of a multiplier ψ in M(E∗, E) such that

θψθ = θ.

Moreover, we show that the converse is equivalent to a structure theorem for complemented
submodules of H2

m ⊗ E for a Hilbert space E , which is valid for the case of m = 1. The
latter result generalizes a known theorem on similarity to the unilateral shift, but the above
statement is new. Further, we show that a finite resolution of DA-modules of arbitrary
multiplicity using partially isometric module maps must be trivial. Finally, we discuss the
analogous questions when the underlying operator m-tuple (or algebra) is not necessarily
commuting (or commutative). In this case the converse to the similarity result is always
valid.

1. Introduction

A well known result in operator theory (see [18] and [19]) states that the contraction
operator given by a canonical model is similar to a unilateral shift of some multiplicity if
and only if its characteristic function has a left inverse. Various approaches to this one-
variable result have been given (cf. [21]) but a new one is given in this paper which uses the
commutant lifting theorem (CLT). In particular, the proof does not involve, at least explicitly,
the geometry of the dilation space for the contraction.

The Drury-Arveson (DA) space H2
m (see [10], [17], [1]) has been intensively studied by many

researchers over the past few decades. In particular, the CLT has been extended to this space
with a few necessary changes. Using the CLT, we extend to the DA space one direction of the
one variable result on the similarity of quotient modules of the Hardy space on the unit disk.
We show that the converse is equivalent to the assertion that each complemented submodule
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2 DOUGLAS, FOIAS, AND SARKAR

of H2
m⊗E for a Hilbert space E is isomorphic to H2

m⊗E∗ for some Hilbert space E∗. Of course
this result follows trivially from the Beurling-Lax-Halmos theorem (BLHT) in case m = 1.
(Actually, for m = 1 the submodule is isometrically isomorphic to H2

1 ⊗ E∗ = H2(D)⊗ E∗.)
In Section 2, we recall some definitions and results in multivariable operator theory. In the

next section, we consider a characterization of those pure co-spherically contractive Hilbert
modules similar to the DA-module of some multiplicity. Using the representation of submod-
ules of the DA-module by inner multipliers [16], we are able to obtain the characterization
in terms of inner multiplier associated with a given quotient Hilbert module and the regular
inverse of that multiplier.

The quotient modules described above are the simplest case of a resolution by DA-modules
for which the connecting maps are all partial isometries or inner multipliers (see [12]). More
precisely, using the results of Arveson [1] and Muller and Vasilescu [17] and McCullough
and Trent [16], for a given pure co-spherical contractive Hilbert module one can obtain an
inner resolution. In [3], Arveson suggested that the inner resolution might not terminate as
resolutions do in the algebraic context. In this paper we show that the only isometric inner
multiplier, V : H2

m ⊗ E → H2
m ⊗ E∗ for Hilbert spaces E and E∗, is the trivial one determined

by an isometric operator V0 : 1⊗E → 1⊗E∗. As a consequence, we show that all finite inner
resolutions are trivial in a sense that will be explained in Section 4.

In Section 5, we are able to apply essentially the same proofs to the non-commutative
case to obtain an analogous result, except here we need the noncommutative analogue of the
BLHT due to Popescu ([24], [23]). More precisely, we show that a quotient of the Fock Hilbert
space, F 2

m⊗E , for some Hilbert space E , by the range of a multi-analytic map Θ is similar to
F 2
m ⊗F for some Hilbert space F if and only if Θ has a multi-analytic regular inverse.
In a concluding section we indicate that many of these results can be extended to complete

Nevanlinna-Pick kernel Hilbert spaces and to other Hilbert modules for which the CLT holds.

Acknowledgement: The authors wish to thank the referee for a careful reading of the manu-
script and useful remarks which led to an improved paper.

2. Preliminaries

We consider two cases, the first one in which the operators commute, or for which the
algebra is C[z1, . . . , zm] and hence commutative, and the second in which the operators are
not assumed to commute or the algebra is F[Z1, . . . , Zm]. We begin with the commutative
case.

Let {T1, . . . , Tm} be a commuting m-tuple of bounded linear operators on a Hilbert space
H; that is, [Ti, Tj ] = TiTj − TjTi = 0 for i, j = 1, . . . , m. A Hilbert module H over the
polynomial algebra C[z1, . . . , zm] of m commuting variables is defined so that the module
multiplication C[z1, . . . , zm]×H → H is defined by

p(z1, . . . , zm) · h = p(T1, . . . , Tm)h,
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where p(z1, . . . , zm) ∈ C[z1, . . . , zm] and h ∈ H. We denote by M1, . . . ,Mm the operators
defined to be module multiplication by the coordinate functions. More precisely,

Mih = zi · h = Tih, (h ∈ H, i = 1, . . . , m).

All submodules in this paper are assumed to be closed in the norm topology.
A Hilbert module over C[z1, . . . , zm] is said to be co-spherically contractive, or define a row

contraction, if

‖
m∑

i=1

Mihi‖
2 ≤

m∑

i=1

‖hi‖
2, (h1, . . . , hm ∈ H),

or, equivalently, if
m∑

i=1

MiM
∗
i ≤ IH.

Natural examples of co-spherically contractive Hilbert modules over C[z1, . . . , zm] are the
DA-module, the Hardy module and the Bergman module, all defined on the unit ball Bm

in C
m. These are all reproducing kernel Hilbert spaces over B

m and, among them, the DA-
module plays the key role for the class of co-spherically contractive Hilbert modules over
C[z1, . . . , zm]. In order to be more precise, we briefly recall that a scalar reproducing kernel
K on a set X is a function K : X ×X → C which satisfies

l∑

i,j=1

c̄icjK(xi, xj) > 0,

for x1, . . . , xl ∈ X , c1, . . . , cl ∈ C with not all ci zero and l ∈ N. The reproducing kernel
Hilbert space HK , corresponding to the kernel K, is the Hilbert space of functions defined on
X with the following reproducing property

f(x) = 〈f,Kx〉, f ∈ HK ,

where for each x ∈ X , Kx : X → C is the vector in HK defined by Kx(w) = K(w, x),
w ∈ X . The DA-module H2

m is the reproducing kernel Hilbert space corresponding to the
kernel K : Bm × B

m → C defined by

K(z, w) = (1−
m∑

i=1

ziw̄i)
−1, (z, w) ∈ B

m × B
m.

We identify the Hilbert tensor product H2
m ⊗ E with the E-valued H2

m space H2
m(E) or the

L(E)-valued reproducing kernel Hilbert space with the kernel (z, w) 7→ (1 −
m∑
i=1

ziw̄i)
−1IE .

Consequently,

H2
m ⊗ E = {f ∈ O(Bm, E) : f(z) =

∑

k∈Nm

akz
k, ak ∈ E , ‖f‖2 :=

∑

k∈Nm

‖ak‖2

γk
<∞},

where O(Bm, E) is the space of E-valued holomorphic functions on Bm, k = (k1, . . . , km) and

γk = (k1+···+km)!
k1!···km!

are the multinomial coefficients. A function ϕ ∈ O(Bm,L(E , E∗)) is said to
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be a multiplier if ϕf ∈ H2
m⊗E∗ = H2

m(E∗) for all f ∈ H2
m⊗E = H2

m(E). By the closed graph
theorem, such a multiplier ϕ defines a bounded module map

Mϕ : H2
m ⊗ E → H2

m ⊗ E∗, Mϕf = ϕf, f ∈ H2
m ⊗ E .

Equivalently, we can consider ϕ ∈ O(Bm,L(E , E∗)) for which Mϕ defines a bounded operator
from H2

m ⊗ E to H2
m ⊗ E∗. The set of all such bounded multipliers ϕ ∈ O(Bm,L(E , E∗)) will

be denoted by M(E , E∗). A multiplier ϕ ∈ M(E , E∗) is said to be inner if Mϕ is a partial
isometry in L(H2

m ⊗ E , H2
m ⊗ E∗).

We recall an analogue of the CLT due to Ball-Trent-Vinnikov (Theorem 5.1 in [4]) on
DA-modules which will be used to prove some of the main results of this paper.

Theorem 2.1. (Ball-Trent-Vinnikov) Let N and N∗ be quotient modules of H2
m⊗E and H2

m⊗E∗
for some Hilbert spaces E and E∗, respectively. If X : N → N∗ is a bounded module map, that
is,

XPN (Mzi ⊗ IE)|N = PN∗
(Mzi ⊗ IE∗)|N∗

X,

for i = 1, . . . , m, then there exists a multiplier ϕ ∈ M(E , E∗) such that
(i) ‖X‖ = ‖Mϕ‖ and
(ii) PN∗

Mϕ = X.
In the language of Hilbert modules, one has πN∗

Mϕ = XπN , where πN and πN∗
are the

quotient maps.

The above statement of the CLT for C[z1, . . . , zm] is due to Ball-Trent-Vinnikov as indicated.
However, Popescu pointed out that the result follows from its noncommutative analogue
established earlier by him in [22, 23]. A more recent paper on this topic is due to Davidson
and Le ([5]).

We now recall the notion of pureness for a co-spherically contractive Hilbert module H over
C[z1, . . . , zm]. Define the completely positive map

PH : L(H) → L(H)

by

PH(A) =
m∑

i=1

MiAM
∗
i , (A ∈ L(H)).

Now

IH ≥ PH(IH) ≥ P 2
H(IH) ≥ · · · ≥ P l

H(IH) ≥ · · · ≥ 0,

so that

P∞ = SOT− liml→∞P
l
H(IH)

exists and 0 ≤ P∞ ≤ IH. The Hilbert module H is said to be pure if

P∞ = 0.

A canonical example of a pure co-spherically contractive Hilbert module over C[z1, . . . , zm]
is the DA-module H2

m ⊗ F , where F is a Hilbert space. Moreover, quotients of DA-modules
characterize all pure co-spherically contractive Hilbert modules.
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Theorem 2.2. Let H be a pure co-spherically contractive Hilbert module. Then
(i)(Arveson [1], Muller-Vasilescu [17]) H is isometrically isomorphic with a quotient module

(H2
m ⊗ E∗) /S, where E is a Hilbert space and S is a submodule of H2

m ⊗ E∗.
(ii) (McCullough-Trent [16]) If S is a submodule of H2

m ⊗ E∗, then there exists a multiplier
θ ∈ M(E , E∗) for some Hilbert space E such that Mθ is inner and S =Mθ(H

2
m ⊗ E).

Therefore, H is isometrically isomorphic to (H2
m ⊗ E∗) / ranMθ for some inner multiplier

θ ∈ M(E , E∗) and Hilbert space E .

Note that in the statement of Theorem 2.1, Ball-Trent-Vinnikov [4] made the additional
assumption that the submodules N⊥ and N⊥

∗ are invariant under the scalar multipliers.
However, that this condition is redundant follows from part (ii) of Theorem 2.2 above due to
McCullough-Trent.

We now consider some preliminaries for the case of noncommuting operators. Let F
+
m

denote the free semigroup with the m generators g1, . . . , gm and let F 2
m be the full Fock space

of m variables, which is a Hilbert space. More precisely, if we let {e1, . . . , em} be the standard
orthonormal basis of Cm, then

F 2
m =

⊕

k≥0

(Cm)⊗k,

where (Cm)⊗0 = C. The creation, or left shift, operators S1, . . . , Sm on F 2
m are defined by

Sif = ei ⊗ f,

for all f in F 2
m and i = 1, . . . , m.

Let {T1, . . . , Tm} be m bounded linear operators on a Hilbert space K which are not nec-
essarily commuting. One can make K into a Hilbert module over the algebra of polynomials
F[Z1, . . . Zm], in m noncommuting variables, as follows:

F[Z1, . . . Zm]×K → K, p(Z1, . . . , Zm) · h 7→ p(T1, . . . , Tm)h, h ∈ K.

The module K over F[Z1, . . . , Zm] is said to be co-spherically contractive if the row operator
given by module multiplication by the coordinate functions is a contraction.

A bounded linear operator Θ ∈ L(F 2
m ⊗ E , F 2

m ⊗ E∗), for some Hilbert spaces E and E∗, is
said to be a multi-analytic operator if it is a module map; that is, if

Θ(Si ⊗ IE) = (Si ⊗ IE∗)Θ, i = 1, . . . , m.

Given a multi-analytic operator Θ as above, one can define a bounded linear operator θ : E →
F 2
m ⊗ E∗ by

θx = Θ(1⊗ x) (x ∈ E).

In this correspondence of Θ and θ, each uniquely determines the other. Moreover, one defines
the operator coefficients θα ∈ L(E , E∗) of Θ by

〈θαtx, y〉 = 〈θx, eα ⊗ y〉 = 〈Θ(1⊗ x), eα ⊗ y〉 (x ∈ E , y ∈ E∗)

for each α ∈ F+
m, where α

t = gip · · · gi1 for α = gi1 · · · gip. It was proved by Popescu (cf. [24])
that

Θ = SOT− limr→1−

∞∑

l=0

∑

|α|=l

r|α|Rα ⊗ θα,
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where Ri = U∗SiU for i = 1, . . . , m, are the right creation operators on F 2
m, R

α = Rgi1
· · ·Rgip

for α = gi1 · · · gip, and U is the unitary operator on F 2
m defined by Ueα = eαt for α ∈ F+

m.
The set of all multi-analytic operators in L(F 2

m ⊗ E , F 2
m ⊗ E∗) coincides with R∞

m ⊗̄L(E , E∗),
the WOT closed algebra generated by the spatial tensor product of R∞

m and L(E , E∗), where
R∞
m = U∗F∞

m U and F∞
m is the WOT closed algebra generated by the left creation operators,

S1, . . . , Sm, and the identity operator on F 2
m.

Notice that the definition of a pure co-spherically contractive Hilbert module can be ex-
tended to the noncommutative case; that is, with appropriate change of notation, the concept
of a pure co-spherically contractive Hilbert module K over F[Z1, . . . , Zm] can be defined in
a similar way. Popescu proved that any pure co-spherically contractive Hilbert module over
F[Z1, . . . , Zm] can be realized as a quotient module of F 2

m ⊗ E for some Hilbert space E (see
[23] and Theorem 2.10 and references in [24]).

Theorem 2.3. (Popescu) Given a pure co-spherically contractive Hilbert module K over
F[Z1, . . . , Zm], there is a multi-analytic operator Θ in L(F 2

m ⊗ E , F 2
m ⊗ E∗) for some Hilbert

spaces E and E∗, which is isometric such that K is isometrically isomorphic to the quotient
of F 2

m ⊗E∗ by the range of Θ. Moreover, the characteristic operator function Θ is a complete
unitary invariant for K.

Finally we need to extend the analogue of the BLHT to the noncommuting setting which
is due to Popescu ([23], [24]).

Theorem 2.4. (Popescu) If S is a closed subspace of F 2
m⊗F for some Hilbert space F , then

the following are equivalent:
(i) S is a submodule of F 2

m ⊗F .
(ii) There exists a Hilbert space E and an (isometric) inner multi-analytic operator Φ :

F 2
m ⊗ E → F 2

m ⊗F such that

S = Φ(F 2
m ⊗ E).

3. Hilbert modules over C[z1, . . . , zm]

Let θ ∈ M(E , E∗) be a multiplier for Hilbert spaces E and E∗ such thatMθ has closed range
and let Hθ be the quotient module defined by the sequence

· · · −→ H2
m ⊗ E

Mθ−→ H2
m ⊗ E∗

πθ−→ Hθ −→ 0,

where πθ is the quotient map of H2
m ⊗ E∗ onto the quotient of H2

m ⊗ E∗ by the range of Mθ.
There are several possible relationships between these objects:

Statement 1. The sequence splits or πθ is right invertible; that is, there exists a module map
σθ : Hθ → H2

m ⊗ E∗ such that

πθσθ = IHθ
.

Statement 2. The multiplication operator Mθ has a left inverse. Equivalently, there exists
a multiplier ψ ∈ M(E∗, E) satisfying ψ(z)θ(z) = IE for z ∈ Bm.
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Statement 3. The multiplier θ has a regular inverse. Equivalently, there exists a multiplier
ψ ∈ M(E∗, E) satisfying

θ(z)ψ(z)θ(z) = θ(z),

for z ∈ Bm.

Note that in case ker Mθ = {0}, Statements 2 and 3 are equivalent.

Statement 4. The range of Mθ is complemented in H2
m ⊗ E∗ or there exists a submodule S

of H2
m ⊗ E∗ such that

ran Mθ

.

+ S = H2
m ⊗ E∗.

Statement 5. The quotient Hilbert module Hθ is similar to H2
m ⊗F for some Hilbert space

F .

Statement 6. Suppose H2
m ⊗ E∗ is a skew direct sum S1

.

+ S2, where E∗ is a Hilbert space
and S1 and S2 are submodules such that S1 is isomorphic to H2

m ⊗ E for some Hilbert space
E . Then S2 is isomorphic to H2

m ⊗ F for some Hilbert space F .

Note that Statements 4 and 6 imply Statement 5 and would be the converse to Corollary
3.5.

Statement 7. If S is a complemented submodule of H2
m⊗E∗ for some Hilbert space E∗, then

S is isomorphic to H2
m ⊗ F for some Hilbert space F?

One can reformulate Statement 7 in the following equivalent form.

Statement 8. Every complemented submodule S of H2
m⊗E , for some Hilbert space E , is the

range of Mψ for a multiplier ψ ∈ M(E ,F) with kerMψ = {0} for some Hilbert space F .

Note that one could view an affirmation of this statement as a weak form of the BLHT for
DA-modules.

Statement 7 raises an important issue for Hilbert modules: are the complemented submod-
ules S 6= {0} of R⊗Cn always isomorphic to R⊗Ck for some 0 < k ≤ n. This is certainly not
true for a general Hilbert module R. However, what if R belongs to the class of “locally-free”
Hilbert modules of multiplicity one which is the case for the DA-module H2

m? For m = 1, an
affirmation follows trivially from the BLHT. A less obvious argument shows that the result
holds for more general “locally-free” Hilbert modules over the unit disk such as the Bergman
module. (Although the language is different, this result was proved by J. S. Fang, C. L. Jiang,
X. Z. Guo, K. Ti and H. He. The study of the relationship between the eight statements in
the one-variable case is close to the theme of the book by C. L. Jiang and F. Wang [15], where
details can be found.) Further, one can establish an affirmation to Statement 6 if one assumes
that the multiplier θ ∈ M(E , E∗) is holomorphic on a neighborhood of the closure of Bm, at
least if E and E∗ are finite dimensional. However, what happens in general for “locally-free”
Hilbert modules over Bm, such as the DA-module, is not clear at this point.

Moreover, a necessary condition for S1 and S2 with H2
m ⊗ C

n = S1

.

+ S2 to be isomorphic
to H2

m ⊗ Ck and H2
m ⊗ Cn−k, respectively, is the existence of a generating set {f1, . . . , fn}

for H2
m ⊗ Cn with {f1, . . . , fk} in S1 and {fk+1, . . . , fn} in S2. Note one can view each
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fi ∈ O(Bm,Cn) for i = 1, . . . , n. If one assumes in addition that the vectors {fi} are in
M(Cn,Cm), then that is also sufficient.

Note that given a complemented submodule S of H2
m ⊗ E , that is, for some submodule S̃

one has S
.

+ S̃ = H2
m ⊗ E , there are many choices ˜̃S so that the skew direct sum S

.

+ ˜̃S
is isomorphic to H2

m ⊗ E∗ for some Hilbert space E∗. (Here we allow a different space E∗.)

It is not clear, but seems unlikely that there exists a canonical choice of E∗ and ˜̃S, in some
sense, or what the “simplest” choice might be. Such ideas are related to the K-theory group
introduced in [15].

In commutative algebra one shows that a short exact sequence of modules

0 −→ A
ϕ1
−→ B

ϕ2
−→ C −→ 0,

splits, or ϕ2 has a right inverse, if and only if ϕ1 has a left inverse. Using the closed graph
theorem, we can extend this result to Hilbert modules. Moreover, with the CLT we can
extend the result to the case where ϕ1 has a kernel. We begin with the simpler result.

Theorem 3.1. Let θ ∈ M(E , E∗) be a multiplier for Hilbert spaces E and E∗ such that ranMθ

is closed. Then ranMθ is complemented in H2
m ⊗ E∗ if and only if there exists a module map

σθ : Hθ → H2
m ⊗ E∗ which is a right inverse for πθ.

Proof. If H2
m ⊗ E∗ = ranMθ

·
+ S for a (closed) submodule S, then Y = πθ|S is one-to-one

and onto. Hence Y −1 : (H2
m ⊗ E∗) / ranMθ → S is bounded by the closed graph theorem and

σθ = i Y −1 is a right inverse for πθ, where i : S → H2
m ⊗ E∗ is the inclusion map.

Conversely, if there exists a right inverse σθ : Hθ → H2
m⊗E∗ for πθ, then σθπθ is an idempotent

on H2
m ⊗ E∗ such that S = ranσθπθ is a complementary submodule for the closed submodule

ranMθ in H
2
m ⊗ E∗.

For a multiplier θ ∈ M(E , E∗) one could consider the quotient of H2
m⊗E∗ by the closure of

ran Mθ. Examples in the case m = 1 show that the existence of a right inverse for πθ does not
imply that ranMθ is closed. Theorem 3.1 shows that the Statements 1 and 4 are equivalent
but the preceding comment implies the necessity of the assumption that ran Mθ is closed.
However, we do have the following folklore result which helps clarify matters.

Remark 3.2. If θ ∈ M(E , E∗) for Hilbert spaces E and E∗ and ranMθ is complemented in
H2
m ⊗ E∗, then ranMθ is closed.

As one knows, by considering the m = 1 case, there is more than one multiplier θ ∈
M(E , E∗) for Hilbert spaces E and E∗ with the same range and thus yielding the same quotient.
While things are even more complicated for m > 1, the following result using the CLT
introduces some order.

Theorem 3.3. Let θ ∈ M(E , E∗) be an inner multiplier for Hilbert spaces E and E∗ and
ϕ ∈ M(F , E∗) for some Hilbert space F . Then there exists a multiplier ψ ∈ M(F , E) such
that ϕ = θψ if and only if

ran Mϕ ⊆ ran Mθ.
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Proof. If ψ ∈ M(F , E) such that ϕ = θψ, then Mϕ =MθMψ and hence

ran Mϕ = ran MθMψ ⊆ ran Mθ.

Suppose ran Mϕ ⊆ ran Mθ and θ ∈ M(E , E∗) is an inner multiplier. This implies that
ranMθ is closed. Consider the module map

M̂θ : (H
2
m ⊗ E) / ker Mθ −→ ran Mθ

defined by

M̂θγθ =Mθ,

which is invertible since ran Mθ is closed. Let γθ : H2
m ⊗ E −→ (H2

m ⊗ E)/ ker Mθ be the

quotient module map. Set X̂ = M̂θ

−1
. Then X̂ : ran Mθ → (H2

m ⊗ E)/ ker Mθ is bounded

by the closed graph theorem and so is X̂Mϕ : H2
m ⊗ F → (H2

m ⊗ E) / ker Mθ. Appealing to
the CLT yields a multiplier ψ ∈ M(F , E) so that

γθMψ = X̂Mϕ,

and hence

MθMψ = (M̂θγθ)Mψ = M̂θ(X̂Mϕ) =Mϕ,

or ϕ = θψ which completes the proof.
Note that the result holds for a multiplier θ ∈ M(E , E∗) for Hilbert spaces E and E∗ so long

as ran Mθ is closed since that is all that the proof uses.
We now consider our principal result on multipliers and regular inverses.

Theorem 3.4. Let θ ∈ M(E , E∗) be a multiplier for Hilbert spaces E and E∗. Then there
exists ψ ∈ M(E∗, E) such that

MθMψMθ =Mθ

if and only if ranMθ is complemented in H2
m ⊗ E∗, or

H2
m ⊗ E∗ = ranMθ

·
+ S,

for some submodule S of H2
m ⊗ E∗.

Proof. If H2
m ⊗ E∗ = ranMθ

·
+ S for some (closed) submodule S, then ran Mθ is closed by

Remark 3.2. Consider the module map

M̂θ : (H
2
m ⊗ E) / kerMθ −→ (H2

m ⊗ E∗) /S,

defined by

M̂θγθ = πSMθ,

where γθ : H
2
m⊗E → (H2

m⊗E) / kerMθ and πS : H2
m⊗E∗ → (H2

m⊗E∗) /S are quotient maps.

This map is one-to-one and onto and thus has a bounded inverse X̂ = M̂θ

−1
: (H2

m⊗E∗) /S →
(H2

m⊗E) / ker Mθ by the closed graph theorem. Since X̂ satisfies the hypotheses of the CLT,
there exists ψ ∈ M(E∗, E) such that

γθMψ = X̂πS .
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Further, M̂θγθ = πSMθ yields

πSMθMψ = M̂θγθMψ = M̂θX̂πS = πS ,

and therefore
πS(MθMψMθ −Mθ) = 0.

Since πS is one-to-one on ranMθ, it follows that MθMψMθ =Mθ.
Now suppose there exists ψ ∈ M(E∗, E) such that MθMψMθ =Mθ. This implies that

(MθMψ)
2 =MθMψ,

and hence MθMψ is an idempotent. From the equality MθMψMθ = Mθ we obtain both that
ranMθMψ contains ranMθ and that ranMθMψ is contained in ranMθ. Therefore,

ranMθMψ = ranMθ,

and
S = ran (I −MθMψ),

is a complementary submodule of ran Mθ in H
2
m ⊗ E∗.

Note that Theorem 3.4 implies that Statements 3 and 4 are equivalent.

Corollary 3.5. Assume θ ∈ M(E , E∗) for Hilbert spaces E and E∗ such that ranMθ is closed
and Hθ is defined by

H2
m ⊗ E

Mθ−→ H2
m ⊗ E∗ −→ Hθ −→ 0.

If Hθ is similar to H2
m ⊗F for some Hilbert space F , then the sequence splits.

Proof. First, assume that there exists an invertible module map X : H2
m ⊗ F → Hθ, and

let ϕ ∈ M(F , E∗) be defined by the CLT so that πθMϕ = X , where πθ : H2
m ⊗ E∗ →

(H2
m ⊗ E∗) / ran Mθ is the quotient map. Since X is invertible we have

H2
m ⊗ E∗ = ran Mϕ

.

+ ranMθ.

Thus ran Mθ is complemented and hence it follows from the previous corollary that the
sequence splits.

Corollary 3.5 shows that Statement 6 implies Statement 1. If Statement 6 is valid, then the
converse to Corollary 3.5 holds. Moreover, we see that Statement 8 implies that Hθ is similar
to H2

m ⊗ F for some Hilbert space F or that Statement 4 is valid. Finally, the following
weaker converse to Corollary 3.5 always holds.

Corollary 3.6. Let θ ∈ M(E , E∗) for Hilbert spaces E and E∗, and set Hθ = (H2
m ⊗

E∗)/ clos [ran Mθ]. Then the following statements are equivalent:
(i) there exists ψ ∈ M(E∗, E) such that ψ(x)θ(z) = IE for z ∈ Bm, and
(ii) ran Mθ is closed, ker Mθ = {0} and Hθ is similar to a complemented submodule S of
H2
m ⊗ E∗.

Proof. If (i) holds, then ran Mθ is closed and ker Mθ = {0}. Further,MθMψ is an idempotent
on H2

m ⊗ E∗ such that ran MθMψ = ran Mθ and Hθ is isomorphic to S = ran (I −MθMψ) ⊆

H2
m ⊗ E∗ and H2

m ⊗ E∗ = ran Mθ

.

+ S so S is complemented.
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Now assume that (ii) holds and there exists an isomorphism X : Hθ → S ⊆ H2
m ⊗ E∗, where

S is a complemented submodule of H2
m ⊗ E∗. Then Y = Xπθ : H2

m ⊗ E∗ → H2
m ⊗ E∗ is a

module map and hence there exists a multiplier ω ∈ M(E∗, E∗) so that Y = Mω. Since X is
invertible, ran Mω = S, which is complemented by assumption, and hence by Theorem 3.4
there exists ψ ∈ M(E∗, E∗) such that Mω =MωMψMω or Mω(I −MψMω) = 0. Therefore,

ran (I −MψMω) ⊆ ker Mω = ker Y = ker πθ = ran Mθ.

Applying Theorem 3.3, we obtain ϕ ∈ M(E∗, E) so that

I −MψMω =MθMϕ.

Thus using MωMθ = 0 we see that

MθMϕMθ = (I −MψMω)Mθ =Mθ,

or
Mθ =MθMϕMθ.

Since ker Mθ = {0}, we have
MϕMθ = IH2

m⊗E ,

which completes the proof.
Combining Theorem 3.4 and Corollary 3.5 yields our main result in the commutative setting

for similarity.

Corollary 3.7. Given θ ∈ M(E , E∗) for Hilbert spaces E and E∗ such that ran Mθ is closed,
consider the quotient Hilbert module Hθ defined as above. If Hθ is similar to H2

m ⊗ F for
some Hilbert space F , then there exists a multiplier ψ ∈ M(E∗, E) satisfying

θ(z)ψ(z)θ(z) = θ(z), for z ∈ B
m.

In conclusion, Corollary 3.7 shows that Statement 5 implies Statement 3.

4. Resolutions of Hilbert modules over C[z1, . . . , zm]

Consideration of resolutions such as those in the preceding section and the ones given
in Theorem 2.2 raises the question of what kind of resolutions exist for pure co-spherically
contractive Hilbert modules over C[z1, . . . , zm]. In particular, Theorem 2.2 yields a unique
resolution of an arbitrary pure co-spherically contractive Hilbert module M over C[z1, . . . , zm]
in terms of DA-modules and inner multipliers. More specifically, consider DA-modules {H2

m⊗
Ek} for Hilbert spaces {Ek} and inner multipliers ϕk ∈ M(Ek, Ek−1), or partially isometric
module maps {Mϕk

} for k ≥ 1; set

Xk =Mϕk
: H2

m ⊗ Ek → H2
m ⊗ Ek−1, k ≥ 1;

and a co-isometric module map

X0 = πM : H2
m ⊗ E0 → M,

which is exact. That is, ran Xk+1 = ker Xk for k ≥ 1. Here k = 0, 1, . . . , N , with the
possibility of N = +∞. A basic question is whether such a resolution can have finite length
or, equivalently, whether we can take EN = {0} for some finite N . That will be the case
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if and only if some Xk is an isometry or, equivalently, if kerXk = {0}. Unfortunately, the
following result shows that this is not possible when m > 1, unless M is a DA-module and
the resolution is a trivial one.

Theorem 4.1. For m > 1, if V : H2
m⊗E → H2

m⊗E∗ is an isometric module map for Hilbert
spaces E and E∗, then there exists an isometry V0 : E → E∗ such that

V (zk ⊗ x) = z
k ⊗ V0x, for k ∈ N

m, x ∈ E∗.

Moreover, ran V is a reducing submodule of H2
m ⊗ E∗ of the form H2

m ⊗ (ranV0).

Proof. For x ∈ E , ‖x‖ = 1, we have

V (1⊗ x) = f(z) =
∑

k∈Nm

akz
k, for {ak} ⊆ E .

Then

V (z1 ⊗ x) = VMz1(1⊗ x) =Mz1V (1⊗ x) =Mz1f = z1f,

and

‖z1f‖
2 = ‖z1V (1⊗ x)‖2 = ‖z1 ⊗ x‖2 = 1 = ‖f‖2.

Therefore, we have
∑

k∈Nm

‖ak‖
2
E∗‖z

k‖2 =
∑

k∈Nm

‖ak‖
2
E∗‖z

k+e1‖2, where k + e1 = (k1 + 1, . . . , km),

or ∑

k∈Nm

‖ak‖
2
E∗{‖z

k+e1‖2 − ‖zk‖2} = 0.

If k = (k1, . . . km), then

‖zk+e1‖2 =
(k1 + 1)! · · · km!

(k1 + · · ·+ km + 1)!
=

k1! · · · km!

(k1 + · · ·+ km)!

k1 + 1

k1 + · · ·+ km + 1

<
k1! · · · km!

(k1 + · · ·+ km)!
= ‖zk‖2,

unless k2 = k3 = . . . = km = 0. Since, ak 6= 0 implies ‖zk+e1‖ = ‖zk‖ we have k2 = · · · =
km = 0. Repeating this argument using i = 2, . . . , m, we see that ak = 0 unless k = (0, . . . , 0)
and therefore, f(z) = 1 ⊗ y for some y ∈ E∗. Set V0x = y to complete the first part of the
proof.

Finally, since ran V = H2
m ⊗ (ranV0), we see that ran V is a reducing submodule, which

completes the proof.
Note that this result generalizes Corollary 3.3 of [9] and is related to an earlier result of

Guo, Hu and Xu [14].
The theorem implies that all resolutions by DA-modules with partially isometric maps are

trivial in a sense we will make precise. We start with a definition.
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Definition 4.2. An inner resolution of length N , for N = 1, 2, 3, . . . ,∞, for a pure co-
spherical contractive Hilbert module M is given by a collection of Hilbert spaces {Ek}Nk=0,
inner multipliers ϕk ∈ M(Ek, Ek−1) for k = 1, . . . , N with Xk = Mϕk

and a co-isometric
module map X0 : H

2
m ⊗ E0 → M so that

ranXk = kerXk−1,

for k = 0, 1, . . . , N . To be more precise, for N <∞ one has the finite resolution

0 −→ H2
m ⊗ EN

XN−→ H2
m ⊗ EN−1 −→ · · · −→ H2

m ⊗ E1
X1−→ H2

m ⊗ E0
X0−→ M −→ 0,

and for N = ∞, the infinite resolution

· · · −→ H2
m ⊗ EN

XN−→ H2
m ⊗ EN−1 −→ · · · −→ H2

m ⊗ E1
X1−→ H2

m ⊗ E0
X0−→ M −→ 0.

Theorem 4.3. If the pure, co-spherically contractive Hilbert module M possesses a finite
inner resolution, then M is isometrically isomorphic to H2

m ⊗F for some Hilbert space F .

Proof. Applying the previous theorem to MϕN
, we decompose EN−1 = E1

N−1 ⊕ E2
N−1 so

that M̃ψN−1
= MN−1|H2

m⊗E2
N−1

∈ L(H2
m ⊗ E2

N−1, H
2
m ⊗ EN−2) is an isometry onto ranMN−1.

Hence, we can apply the theorem to M̃N−1. Therefore, using induction we obtain the desired
conclusion.

The following statement proceeds directly from the theorem.

Corollary 4.4. If θ ∈ M(E , E∗) is an inner multiplier for the Hilbert spaces E and E∗ with
ker Mθ = {0}, then the quotient module Hθ = (H2

m ⊗ E∗)/ ranMθ is isometrically isomorphic
to H2

m ⊗ F for a Hilbert space F . Moreover, F can be identified with (ranV0)
⊥, where V0 is

the isometry from E to E∗ given in Theorem 4.1.

Note that in the preceding corollary, one has dim E∗ = dim E + dim F .
A resolution of M can always be made longer in a trivial way. Suppose we have the

resolution

0 −→ H2
m ⊗ EN

XN−→ H2
m ⊗ EN−1 −→ · · · −→ H2

m ⊗ E0
X0−→ M −→ 0.

If EN+1 is a nontrivial Hilbert space, then define XN+1 as the inclusion map of H2
m ⊗EN+1 ⊆

H2
m⊗ (EN ⊕EN+1). Further, set X̃N equal to XN on H2

m⊗EN ⊆ H2
m⊗ (EN+1⊕EN) and equal

to 0 on H2
m ⊗ EN+1 ⊆ H2

m ⊗ (EN ⊕ EN+1). Extending X̃N to all of H2
m ⊗ EN+1 linearly, we

obtain a longer resolution essentially equivalent to the original one

0 −→ H2
m ⊗ EN+1

XN+1

−→ H2
m ⊗ (EN+1 ⊕ EN)

X̃N−→ · · · −→ M −→ 0.

Moreover, the new resolution will be inner if the original one is.
The proof of the preceding theorem shows that any finite inner resolution by DA-modules

is equivalent to a series of such trivial extensions of the resolution

0 −→ H2
m ⊗ E

X
−→ H2

m ⊗ E −→ 0,

for some Hilbert space E and X = IH2
m⊗E . We will refer to such a resolution as a trivial inner

resolution. We use that terminology to summarize this supplement to the theorem in the
following statement.
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Corollary 4.5. All finite inner resolutions for a pure co-spherically contractive Hilbert
module M are trivial inner resolutions.

What happens when we relax the conditions on the module maps {Xk} so that ranXk =
kerXk−1 for all k but do not require them to be partial isometries? In this case, non-trivial
finite resolutions do exist, completely analogous to what happens for the case of the Hardy
or Bergman modules over C[z1, . . . , zm] for m > 1. We describe a simple example.

Consider the module C(0,0) over C[z1, z2] defined so that

p(z1, z2) · λ = p(0, 0)λ, where p ∈ C[z1, z2] and λ ∈ C,

and the resolution:

0 −→ H2
2

X2−→ H2
2 ⊕H2

2
X1−→ H2

2
X0−→ C(0,0) −→ 0,

where X0f = f(0, 0) for f ∈ H2
2 , X1(f1 ⊕ f2) = Mz1f1 + Mz2f2 for f1 ⊕ f2 ∈ H2

2 ⊕ H2
2 ,

and X2f = Mz2f ⊕ (−Mz1f) for f ∈ H2
2 . One can show that this sequence, which is closely

related to the Koszul complex, is exact and non-trivial; in particular, it does not split as
trivial resolutions do.

Another question one can ask is the relationship between the inner resolution for a pure
co-spherically contractive Hilbert module and more general, not necessarily inner, resolutions
by DA-modules. In particular, is there any relation between the minimal length of a not
necessarily inner resolution and the inner resolution. Theorem 3.3 provides some information
on this matter.

A parallel notion of resolution for Hilbert modules was studied by Arveson [3], which is
different from the one considered in this paper. For Arveson, the key issue is the behavior
of the resolution at 0 ∈ Bm or the localization of the sequence of connecting maps at 0. His
main goal, which he accomplishes and is quite non trivial, is to extend an analogue of the
Hilbert’s syzygy theorem. In particular, he exhibits a resolution of Hilbert modules in his
class which ends in finitely many steps. The resolutions considered in ([7], [6]) and this paper
are related to dilation theory although the requirement that the connecting maps are partial
isometries is sometimes relaxed.

5. Hilbert modules over F[Z1, . . . , Zm]

Although we use the following lemma only in the non-commutative case, it also holds in
the commutative case as indicated.

Lemma 5.1. If H is a co-spherically contractive Hilbert module over C[z1, . . . , zm] or F[Z1, . . . , Zm],
respectively, which is similar to H2

m ⊗ F , or F 2
m ⊗ F , respectively, for some Hilbert space F ,

then H is pure.

Proof. We use the notation for the commutative case but the proof in both cases is the
same. Let X : H → H2

m ⊗ F be an invertible module map. Then Mi = X−1MziX for all
i = 1, . . . , m. Since {P l

H(IH)}
∞
l=0 is a decreasing sequence of positive operators, it suffices to

show that
WOT− liml→∞P

l
H(IH) = 0.
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To see that this is the case, let f1 be a vector in H and set f = X∗−1f1. Then

〈
∑

|k|=l

MkM∗kf1, f1〉 =〈
∑

|k|=l

X−1Mk

z XX
∗M∗k

z X∗−1f1, f1〉 = 〈
∑

|k|=l

Mk

z XX
∗M∗k

z f, f〉

≤ ‖X‖2
∑

|k|=l

〈Mk
zM

∗k
z f, f〉.

Letting l → ∞ in the last expression, we conclude that the required limit is zero, which
completes the proof.

Actually, the proof shows that two similar co-spherically contractive Hilbert modules over
C[z1, . . . , zm], or two similar contractive Hilbert modules over F[Z1, . . . , Zm], are either both
pure or both not pure.

Theorem 5.2. Let H be a pure co-spherically contractive Hilbert module over F[Z1, . . . , Zm].
Then H is similar to F 2

m⊗F for some Hilbert space F if and only if the characteristic operator
Θ of H in L(F 2

m ⊗ E , F 2
m ⊗ E∗), for some Hilbert spaces E and E∗, is left invertible; that is, if

and only if there exists a multi-analytic operator Ψ : F 2
m ⊗ E∗ → F 2

m ⊗ E such that

ΨΘ = IF 2
m⊗E .

Proof. First, using Theorem 2.3 we realize the pure contractive Hilbert module H as the
quotient module given by its characteristic function Θ, which is an isometric multi-analytic
map. That is,

H ∼= HΘ = (F 2
m ⊗ E∗)/Θ(F 2

m ⊗ E).

Now given a module map X : F 2
m ⊗F → HΘ, we appeal to the noncommutative analogue of

the CLT (see Theorem 6.1 in [23] or Theorem 5.1 in [24]) to obtain a multi-analytic operator
Φ : F 2

m ⊗F → F 2
m ⊗ E∗ such that

PHΘ
Φ = X.

Consider, the bounded module map

Z : (F 2
m ⊗F)⊕ (F 2

m ⊗ E) → F 2
m ⊗ E∗

defined by
Z(f ⊕ g) = Φf +Θg,

for all f ⊕ g ∈ (F 2
m ⊗F)⊕ (F 2

m ⊗ E). Then Z is invertible if and only if X is invertible. This
follows by noting that X is invertible if and only if the range of Z, which is the span of HΘ

and ranΘ is F 2
m ⊗ E∗, and X is one-to-one if and only if Z is.

To prove the necessity part of the theorem, assume that X is invertible or, equivalently,
that Z is invertible. Consequently, we can define a module idempotent Q on F 2

m ⊗ E∗ such
that

QΘ = Θ

and
ranQ = ranΘ.

Then the bounded module map Q̂ : F 2
m ⊗ E∗ → F 2

m ⊗ E defined by

Q̂(Φf +Θg) = g, Φf +Θg ∈ (F 2
m ⊗ E∗)
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satisfies

Q = ΘQ̂.

Since Q̂ is a module map, there exists a multi-analytic operator Ψ : F 2
m ⊗ E∗ → F 2

m ⊗ E such
that

Q̂ = Ψ.

Hence

Θ = QΘ = ΘQ̂Θ = ΘΨΘ.

Since Θ is an isometry, the necessity part follows; that is, Θ has a left inverse.
To prove the sufficiency part, let Ψ : F 2

m ⊗ E∗ → F 2
m ⊗ E be a multi-analytic operator such

that

ΨΘ = IF 2
m⊗E .

Then Q = ΘΨ is an idempotent on F 2
m ⊗ E∗ and any f in F 2

m ⊗ E∗ can be expressed as

f = (f −ΘΨf) + ΘΨf,

where f −ΘΨf is in ker Ψ and ΘΨf is in ranΘ. Thus,

ranQ = ranΘ, and ker Ψ = ran (I −Q).

Since kerΨ is a submodule of F 2
m ⊗ E∗, by Theorem 2.4, the noncommutative version of the

BLHT, there exists an inner multi-analytic operator Φ : F 2
m ⊗F → F 2

m⊗ E∗ for some Hilbert
space F such that

ker Ψ = ran (I −Q) = Φ(F 2
m ⊗F),

Consequently,

F 2
m ⊗ E∗ = ran Φ

.

+ ran Θ.

Then one can define the invertible module map Z as in the necessity part. Setting X = PHΘ
Φ

defines the required similarity between HΘ and F 2
m ⊗ F , which completes the proof.

As mentioned in the introduction, specializing the preceding proof to the (commutative)
m = 1 case yields a new proof of the old result on the similarity of contraction operators to
unilateral shifts.

The main difference in the above proof and that of Corollary 3.7 for the commutative case
is that here we can assume that Θ has no kernel and one of the complemented submodule is
isomorphic to a DA-module.

In the proof of Theorem 5.2, we did not use the fact that the characteristic function is
an isometry but the fact that ker Θ = {0} and ran Θ is closed. Hence we can state a more
general result in terms of a module resolution.

Theorem 5.3. Let E and E∗ be Hilbert spaces and Θ : F 2
m⊗E → F 2

m⊗E∗ be a multi-analytic
operator such that ker Θ = {0} and ran Θ is closed. Then the quotient space HΘ, given by
(F 2

m ⊗ E∗)/ ranΘ is similar to F 2
m ⊗F for some Hilbert space F if and only if ΘΨΘ = Θ for

some multi-analytic operator Ψ : F 2
m ⊗ E∗ → F 2

m ⊗ E .
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6. Concluding remarks

Observe that if H is a Hilbert module over C[z1, . . . , zm] (or A(Ω), where Ω is a bounded
connected open subset of Cm), Corollary 3.7 remains true under the assumption that the
analogue of the CLT holds for the class of Hilbert modules under consideration. In particular,
Corollary 3.7 can be generalized to any reproducing kernel Hilbert module where the kernel
is given by a complete Nevanlinna-Pick kernel.
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