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A NOTE ON SEMI-FREDHOLM HILBERT MODULES

RONALD G. DOUGLAS AND JAYDEB SARKAR

Abstract. A classical problem in operator theory has been to determine the spec-

trum of Toeplitz-like operators on Hilbert spaces of vector-valued holomorphic func-

tions on the open unit ball in Cm. In this note we obtain necessary conditions for

k-tuples of such operators to be Fredholm in the sense of Taylor and show they are

sufficient in the case of the unit disk.

1. Introduction

A classical problem in operator theory is to determine the invertibility or the spec-

trum of Toeplitz operators on the Hardy space over the unit disk D. Where the symbol

or the defining function is continuous, the result is well known and due to Gohberg

in the scalar case (see [12]) and Gohberg-Krein in the vector-valued case (see [13]).

Generalizations of these results to other Hilbert spaces of holomorphic functions on

the disk such as the Bergman space (see [1]) or to the unit ball Bm (see [16]) or other

domains in Cm (see [2]) have been studied during the past few decades. In the several

variables context, the problem is not too interesting unless we start with a matrix-

valued symbol or a k-tuple of operators and consider the Taylor spectrum or essential

spectrum which involves the Koszul complex (see [14]).

In this note we consider two problems, neither of which is new. However, we believe

the results are more general and our methods provide a more constructive approach.

Moreover, they identify some questions in multi-variable operator theory (and algebra)
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indicating their importance in the spectral theory for k-tuples of vector-valued Toeplitz-

like operators. Finally, the results suggest lines of investigation for generalizations of

the classical Hilbert spaces of holomorphic functions.

All the Hilbert spaces in this note are separable and are over the complex field C.

For a Hilbert space H, we denote the Banach space of all bounded linear operators by

L(H).

We begin by recalling the definition of quasi-free Hilbert module over A(Ω) which

was introduced in ([7],[6]) and which generalizes classical functional Hilbert space and

is related to earlier ideas of Curto–Salinas [4]. Here A(Ω) is the uniform closure of

functions holomorphic on a neighborhood of the closure of Ω, a domain in Cm. The

Hilbert space M is said to be a bounded Hilbert module over A(Ω) if M is a unital

module over A(Ω) with module map A(Ω) ×M → M such that

‖ϕf‖M ≤ C ‖ϕ‖A(Ω)‖f‖M

for ϕ in A(Ω) and f in M and some C ≥ 1. The Hilbert module is said to be contractive

in case C = 1.

A Hilbert space R is said to be a bounded quasi-free Hilbert module of rank n over

A(Ω), 1 ≤ n ≤ ∞, if it is obtained as the completion of the algebraic tensor product

A(Ω) ⊗ ℓ2n relative to an inner product such that:

(1) evalzzz : A(Ω) ⊗ l2n → l2n is bounded for zzz in Ω and locally uniformly bounded on

Ω;

(2) ‖ϕ(
∑
θi ⊗xi)‖R = ‖

∑
ϕθi ⊗xi‖R ≤ C ‖ϕ‖A(Ω)‖

∑
θi ⊗xi‖R for ϕ, {θi} in A(Ω)

and {xi} in ℓ2n and some C ≥ 1; and

(3) For {Fi} a sequence in A(Ω)⊗ ℓ2n which is Cauchy in the R-norm, it follows that

evalzzz(Fi) → 0 for all zzz in Ω if and only if ‖Fi‖R → 0.

If Iωωω0
denotes the maximal ideal of polynomials in C[zzz] = C[z1, . . . , zm] which vanish

at ωωω0 for some ωωω0 in Ω, then the Hilbert module M is said to be semi-Fredholm at ωωω0 if

dimM/Iωωω0
· M = n is finite (cf. [10]). In particular, note that M semi-Fredholm at ωωω0

implies that Iωωω0
M is a closed submodule of M. Note that the notion of semi-Fredholm

Hilbert module has been called regular by some authors.
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One can show that ωωω → R/Iωωω ·R can be made into a rank n Hermitian holomorphic

vector bundle over Ω if R is semi-Fredholm at ωωω in Ω, dimR/Iωωω · R is constant n, and

R is quasi-free, 1 ≤ n < ∞. Actually, all we need here is that the bundle obtained is

real-analytic which is established in ([4], Theorem 2.2).

A quasi-free Hilbert module of rank n is a reproducing kernel Hilbert space with the

kernel

K(www,zzz) = evalwwweval∗zzz : Ω × Ω → L(ℓ2n).

2. Necessary conditions

Note that if R is a bounded quasi-free Hilbert module over A(Bm) of finite mul-

tiplicity, then the module R over A(Bm) extends to a bounded Hilbert module over

H∞(Bm) (see Proposition 5.2 in [5]). Here Bm denotes the unit ball in Cm. In particu-

lar, the multiplier space of R is precisely H∞(Bm)⊗Mn(C), since R is the completion

of A(Ω) ⊗alg l
2
n, by definition.

Proposition 1. Let R be a contractive quasi-free Hilbert module over A(Bm) of finite

multiplicity n and {ϕ1, . . . , ϕk} be a subset of H∞(Bm) ⊗ Mn(C). If (Mϕ1
, . . . ,Mϕk

)

is a semi-Fredholm tuple, then there exists an ǫ > 0 and 1 > δ > 0 such that

k∑

i=1

ϕi(zzz)ϕi(zzz)
∗ ≥ ǫICn ,

for all zzz satisfying 1 > ‖zzz‖ ≥ 1 − δ > 0. In particular, if the multiplicity of R is one

then
k∑

i=1

|ϕi(zzz)|
2 ≥ ǫ,

for all zzz satisfying 1 > ‖zzz‖ ≥ 1 − δ.

Proof. Let K : Bm × Bm → Mn(C) be the kernel function for the quasi-free Hilbert

module R. By the assumption, the range of the row operator MΦ = (Mϕ1
, . . . ,Mϕk

)

in L(Rk,R) has finite co-dimension; that is,

dim[R/(Mϕ1
R + . . .+Mϕk

R)] <∞,
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and, in particular, MΦ has closed range. Consequently, there is a finite rank projection

F such that

MΦM
∗

Φ + F =
k∑

i=1

Mϕi
M∗

ϕi
+ F : R → R

is bounded below. Therefore, there exists a C > 0 such that

< FKzzz, Kzzz > + <

k∑

i=1

Mϕi
M∗

ϕi
Kzzz, Kzzz > ≥ C < Kzzz, Kzzz >,

for all zzz in Bm. Then

K∗

zzz F̂ (zzz)Kzzz +

k∑

i=1

K∗

zzzMϕi
M∗

ϕi
Kzzz ≥ CK∗

zzzKzzz,

and so

F̂ (z)ICn +

k∑

i=1

ϕi(zzz)ϕi(zzz)
∗ ≥ CICn ,

for all zzz in Bm. Here F̂ (zzz) denotes the matrix-valued Berezin transform for the oper-

ator F defined by F̂ (zzz) =< FKzzz|Kzzz|
−1, Kzzz|Kzzz|

−1 > (see [5], where the scalar case is

discussed). Using the known boundary behavior of the Berezin transform (see The-

orem 3.2 in [5]), since F is finite rank we have that ‖F̂ (zzz)‖ ≤ C
2

for all zzz such that

1 > ‖zzz‖ > 1 − δ for some 1 > δ > 0 depending on C. Hence

k∑

i=1

ϕi(zzz)ϕi(zzz)
∗ ≥

C

2
,

for all zzz such that 1 > ‖zzz‖ > 1 − δ > 0; which completes the proof.

A k-tuple of matrix-valued functions (ϕ1, . . . , ϕk) in H∞(Bm)⊗Mn(C) satisfying the

conclusion of Proposition 1 will be said to have the weak Corona property.

In Theorem 8.2.6 in [11], a version of Proposition 1 is established in case R is the

Bergman module on B
m.

The key step in this proof is the vanishing of the Berezin transform at the boundary

of Bm for a compact operator. The proof of this statement depends on the fact that

Kzzz|Kzzz|
−1 converges weakly to zero as zzz approaches the boundary which rests on the

fact that R is contractive. This relation holds for many other domains such as ellipsoids

Ω with the proof depending on the fact that the algebra A(Ω) is pointed in the sense

of [5].
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It is an important question to decide if semi-Fredholm implies Fredholm in the

context of Proposition 1. We will discuss this issue more at the end of the paper.

However, the converse of this result is known (see Theorem 8.2.4 in [11] and pages

241-242) for the Bergman space for certain domains in Cm.

A necessary condition for the converse to hold for the situation in Proposition 1 is for

the essential spectrum of the m-tuple of co-ordinate multiplication operators to have

essential spectrum equal to ∂Bm, which is not automatic, but is true for the classical

spaces.

3. Sufficient conditions

We will use the following fundamental result of Taylor (see [14], Lemma 1):

Lemma 1. Let (T1, . . . , Tk) be in the center of an algebra A contained in L(H) such

that there exists (S1, . . . , Sk) in A satisfying
∑k

i=1 TiSi = IH. Then the Koszul complex

for (T1, . . . , Tk) is exact.

Now we specialize to the case when m = 1 where we can obtain a necessary and

sufficient condition. Consider a contractive quasi-free Hilbert module R over A(D)

of multiplicity one, which therefore has H∞(D) as the multiplier algebra. It is well

known that H∞(D) satisfies the Corona property ; that is, a set {ϕ1, . . . , ϕk} in H∞(D)

satisfies
∑k

i=1 |ϕk(z)| ≥ ǫ for all z in D for some ǫ > 0 if and only if there exist

{ψ1, . . . , ψk} ⊂ H∞(D) such that
∑k

i=1 ϕψi = 1.

The following result is a complement to Proposition 1.

Proposition 2. Let R be a contractive quasi-free Hilbert module over A(D) of multi-

plicity one and {ϕ1, . . . , ϕk} be a subset of H∞(D). Then the Koszul complex for the

k-tuple (Mϕ1
, . . . ,Mϕk

) on R is exact if and only if {ϕ1, . . . , ϕk} satisfies the Corona

property.

Proof. If
∑k

i=1 ϕiψi = 1 for some {ψ1, . . . , ψk} ⊂ H∞(D), then the fact that MΦ

is Taylor invertible follows from Lemma 1. On the other hand, the last group of the

Koszul complex is {0} if and only if the row operator Mϕ in L(Rk,R) is bounded below
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which, as before, shows that
∑k

i=1 |ϕi(z)| is bounded below on D. This completes the

proof.

The missing step to extend the result from D to the open unit ball Bm is the fact

that it is unknown if the Corona condition for {ϕ1, . . . , ϕk} in H∞(Bm) is equivalent

to the Corona property. Other authors have considered this kind of question ([15]) for

the case of Hardy-like spaces for the polydisk and ball. See [15] for some recent results

and references.

Theorem 1. Let R be a contractive quasi-free Hilbert module over A(D) of multiplicity

one, which is semi-Fredholm at each point z in D. If {ϕ1, . . . , ϕk} is a subset of H∞(D),

then the k-tuple MΦ = (Mϕ1
, . . . ,Mϕk

) is semi-Fredholm if and only if it is Fredholm

if and only if (ϕ1, . . . , ϕk) satisfies the weak Corona condition.

Proof. If MΦ is semi-Fredholm, then by Proposition 1 there exist ǫ > 0 and 1 > δ > 0

such that
k∑

i=1

|ϕi(z)|
2 ≥ ǫ,

for all z such that 1 > |z| > 1 − δ > 0. Let Z be the set

Z = {z in D : ϕi(z) = 0 for all i = 1, . . . , k}.

Since the functions {ϕi}
k
i=1 can not all vanish for z satisfying 1 > |z| > 1− δ, it follows

that the cardinality of the set Z is finite and we assume that card(Z) = N . Let

Z = {z1, z2, . . . , zN}

and lj be the smallest order of the zero at zj for all ϕj and 1 ≤ j ≤ k. Let B(z) be

the finite Blaschke product with zero set precisely Z counting the multiplicities. If we

define ξi = ϕi

B
, then ξi is in H∞(D) for all i = 1, . . . , k. Since {ϕ1, . . . , ϕk} satisfies the

weak Corona property, we obtain

k∑

i=1

|ξi(z)|
2 ≥ ǫ
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for all z such that 1 > |z| > 1 − δ. Note that {ξ1, . . . , ξn} does not have any common

zero and so
k∑

i=1

|ξi(z)|
2 ≥ ǫ

for all z in D. Therefore, {ξ1, . . . , ξk} satisfies the Corona property and hence there

exists {η1, . . . , ηk}, a subset of H∞(D), such that
∑k

i=1 ξi(z)ηi(z) = 1 for all z in D.

Thus,
∑k

i=1 ϕi(z)ηi(z) = B for all z in D. This implies
∑k

i=1Mϕi
Mηi

= MB, and

consequently,
k∑

i=1

Mϕi
M ηi

= MB,

where Mϕi
is the image of Mϕi

in the Calkin algebra, Q(R) = L(R)/K(R). But

the assumption that Mz−w is Fredholm for all w in D yields that MB is Fredholm.

Therefore, X =
∑k

i=1Mϕi
M ηi

is invertible. Moreover, since X commutes with the set

{Mϕ1
, . . . ,Mϕk

,Mη1
, . . . ,M ηk

}, it follows that (Mϕ1
, . . . ,Mϕk

) is a Fredholm tuple,

which completes the proof.

Although, the use of a finite Blaschke product allows one to preserve norms, a

polynomial with the zeros of Z to the same multiplicity could be used. This would

allow one to extend the Theorem to all domains in C for which the Corona theorem

holds.

Our previous result extends to the case of finite multiplicity quasi-free Hilbert mod-

ules.

Theorem 2. Let R be a contractive quasi-free Hilbert module over A(D) of multiplicity

n, which is semi-Fredholm at each point z in D and let {ϕ1, . . . , ϕk} be a subset of

H∞(D)⊗Mn(C). Then the k-tuple MΦ = (Mϕ1
, . . . ,Mϕk

) is Fredholm if and only if it

is semi-Fredholm if and only if (ϕ1, . . . , ϕk) satisfies the weak Corona condition.

Proof. As before, the assumption that MΦ is semi-Fredholm implies that there exists

ǫ > 0 and 1 > δ > 0 such that

k∑

i=1

ϕi(z)ϕi(z)
∗ ≥ ǫICn ,
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for all z such that 1 > ‖z‖ > 1 − δ. After taking the determinant, this inequality

implies
k∑

i=1

|detϕi(z)|
2 ≥ ǫn.

Using the same argument as in Theorem 1, we can find η1, . . . , ηk in H∞(D) and a

finite Blaschke product B such that

k∑

i=1

ηi(z) detϕi(z) = B(z),

for all z in D. For 1 ≤ i ≤ k, let ϕ̂i(z) be the cofactor matrix function of ϕi(z) which

is used in Cramer’s Theorem. Then

ϕ̂i(z)φi(z) = φi(z)ϕ̂i(z) = detϕi(z) ICn ,

for all z in D and 1 ≤ i ≤ k. Note that this relation implies that the algebra generated

by the set {Mϕ1
, . . . ,Mϕk

,Mϕ̂1
, . . . ,Mϕ̂k

} is commutative. Thus we obtain

k∑

i=1

φi(z) ηi(z) ϕ̂i(z) = B(z)ICn ,

or
k∑

i=1

φi(z)η̂i(z) = B(z)ICn ,

where η̂i(z) = ηi(z)ϕ̂i(z) is in H∞(D)⊗Mn(C) and 1 ≤ i ≤ k. Therefore we have that

k∑

i=1

Mϕi
Mη̂i

= MB,

and consequently, the proof follows immediately from the last part of the proof of

Theorem 1.

4. Further comments

One reason we are able to obtain a converse in the one variable case is that we can

represent the zero variety of the ideal generated by the functions in terms of a single

function, the finite Blaschke product (or polynomial). This is not surprising since C[z]

is a principal ideal domain. This is, of course, not true for C[z1, . . . , zm] for m > 1 and

hence one would need (at least) a finite set of functions to determine the zero variety
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for the ideal generated by the functions. How to do that in an efficient manner and

how to relate the Fredholmness of the k-tuple to that of this generating set is not clear

but is the key to answering many such questions.

What is required involves two steps, both in the realm of algebra. The first we

have already mentioned but the second is how to relate the generators to the Koszul

complex.

Let us consider one example of what might be possible. Consider the case in which

the p1(zzz), . . . , pk(zzz) are polynomials in C[z1, z2] so that 000 is the only common zero.

Assume that there are sets of polynomials {q1(zzz), . . . , qk(zzz)} and {r1(zzz), . . . , rk(zzz)}

such that

k∑

i=1

pi(zzz)qi(zzz) = zk1

1

and

k∑

i=1

pi(zzz)ri(zzz) = zk2

2 ,

for some positive integers k1 and k2.

Two questions now arise:

(1) Does the assumption that (Mp1
, . . . ,Mpk

) is semi-Fredholm with Z = {000} imply the

existence of the subsets {r1, . . . , rk} and {q1, . . . , qk} of C[z1, z2]? What if the functions

{p1, . . . , pk} are in H∞(B2) and we seek {r1, . . . , rk} and {q1, . . . , qk} in H∞(B2)?

(2) If the functions {r1, . . . , rk} and {q1, . . . , qk} exist and we assume that (M
z

k1

1

,M
z

k2

2

)

acting on the quasi-free Hilbert module R is Fredholm, does it follow that (Mp1
, . . . ,Mpk

)

is also.

These questions can be generalized to the case where one would need more than two

polynomials to determine the zero variety, either because the dimension m is greater

than 2 or because Z contains more than one point. But answering these questions in

the simple case discussed above would be good start.

After this note was written, J. Eschmeier informed the authors that both questions

have an affirmative answer, at least when the zero variety is a single point.
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