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Abstract. This chapter surveys the advances of the past decade arising from the con-
tributions of Indian mathematicians in the broad areas of operator algebras and operator
theory. It brings together the work of twenty mathematicians and their collaborators,
each writing from the perspective of their respective research fields and beyond. Several
problems highlighted here are expected to shape the future development of the subject
at a global level.
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Foreword

Operator algebras and operator theory are subfields of analysis, more specifically of
functional analysis. Broadly speaking, these areas concern linear operators, as well as the
algebras, subalgebras, and vector spaces formed by such operators. The origins of the
subject lie in the study of matrices and matrix spaces. It is also important to note that
the nature of the underlying spaces, even at the level of finite-dimensional vector spaces,
plays a significant role in the broader theory. This perspective is particularly apparent in
the theory of Banach spaces.

The core of these areas touches upon nearly all major branches of mathematics, includ-
ing harmonic analysis, partial and ordinary differential equations, complex analysis (both
one and several variables), geometry, topology, and even number theory. The broader
field also connects with control theory, branches of engineering, and recent developments
in quantum computation and machine learning. The central aim of this area of linear
analysis is to investigate the structure of linear operators as well as the spaces generated
by such operators, much as one does for matrices. It has produced a number of results and
connections of broad mathematical interest. Notable examples include the Atiyah–Singer
index theorem; Brown–Douglas–Fillmore theory on the essential spectrum and index the-
ory; the solution of the Bieberbach conjecture; the algebraic and topological approaches
to the classification of C∗-algebras; the solution of the Kadison–Singer problem; Taylor’s
Koszul complex approach to the spectrum of tuples of operators; the profound theory of
the geometry of Banach spaces; wavelet theory; and the role of algebraic varieties and
complex geometry in understanding the structure of operators in several variables, among
other developments.

The theory of linear analysis, or more specifically matrix theory, was formally initiated
through the work of Grassmann and Sylvester. However, it was Stefan Banach and John
von Neumann who laid much of the foundation for the modern theory of linear operators
on Hilbert and Banach spaces. Not long after this period, the culture of linear analysis
in India also flourished and soon became a subject of great interest to many Indian
mathematicians. The subject was then led by a number of mathematicians working in
India including K.R. Parthasarathy, M.G. Nadkarni, Ashoke Kumar Roy, K.B. Sinha,
Rajendra Bhatia, V.S. Sunder, Gadadhar Misra, Subhash J. Bhatt, B. V. Limaye, and
Ameer Athavale, among others.

The baton from these senior mathematicians has been carried forward by a much larger
and still-growing community working in operator algebras and operator theory in India
today. In particular, the past decade has witnessed remarkable results from Indian math-
ematicians, including a surge of contributions from younger researchers.

It is both timely and important to report on the achievements of Indian mathematicians
in these areas in the past decade and to highlight future directions and possibilities.
This chapter consists of 19 contributions, along with a special extended section of open
problems contributed by Gadadhar Misra. Together, these contributions cover a broad
spectrum of mathematics within operator algebras, operator theory, and related topics.
All the contributors are well-established researchers who have been active in the field
for a considerable time. Collectively, their work showcases the present strength and the
emerging future leadership of Indian mathematics on the global stage.
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It is important to emphasize that our role in this chapter is primarily to bring together
all the contributors on a common platform and to organize their work in a coherent
manner. That said, the full scientific credit for the content of this chapter belongs to the
authors of the 20 individual sections. The names, affiliations, and contact details of the
contributors to each section are provided immediately after its title.

1. Some problems in operator theory and related topics

By Gadadhar Misra [gm@isibang.ac.in] from ISI Bangalore and IIT Gandhinagar.

Introduction. The development of multi-variate operator theory has paralleled that of
function theory in several complex variables except that the non-commuting co-ordinates
pose an entirely new set of challenges. The introduction of methods of commutative alge-
bra for studying problems in this area by viewing a pair (H,T ), where T := (T1, . . . , Tn)
is a commuting n-tuple of operators on the Hilbert space H, as a Hilbert module via the
multiplication (p, h) 7→ p(T )h, p ∈ C[z1, . . . , zn], h ∈ H, was the beginning of a system-
atic new development. This perspective is powerful because it allows the application of
tools from commutative algebra. On the other hand, these techniques don’t apply directly
because of the continuity assumption of the module multiplication either in just the first
variable, or in both the variables. A choice is made depending on the problem at hand.

A second ingredient has been the action of a group locally compact second countable
topological group G on the module (H,T ). Assume that X is a nonempty subset Cd

and that the action of g ∈ G is holomorphic in some open neighbourhood of X. If
T is a d- tuple and X is the Taylor joint spectrum of σ(T ), then g · T is defined by
the usual holomorphic functional calculus. The classification of imprimitivity systems(
X,G, (H,T )

)
:=

{
T : U∗

g p(T )Ug = (g·p)(T )}, defined as the set of d- tuples T satisfying
U∗gp(T )Ug = (g ·p)(T ) for all g ∈ G, p ∈ C[z]; where Ug is a unitary representation of the
group G and g ·p = p◦g−1, is an important problem. One may study such imprimitivities
by choosing a group G acting on X. This choice might vary from a transitive action to
an action, where the number of orbits of G in X are quite large. For a typical example,
consider X = Dn, the n-fold product of the unit closed disc, and the group G to be
either the bi-holomorphic automorphism group of Dn or simply the permutation group
Sn acting on Dn.

The study of these problems are greatly facilitated by the analysis of a class holomorphic
curves in the Grassmannian Gr(H, n) of rank n in some separable complex Hilbert space
H. These holomorphic curves arise from a class of operators acting on some Hilbert
space H introduced in the paper [159]. The operators in this class possess an open set
Ω ⊆ C of eigenvalues of (constant) multiplicity k and characterized by the existence of a
holomorphic map γ : Ω → H such that γ(w) := (γ1(w), . . . , γk(w)), Tγi(w) = wγi(w), 1 ≤
i ≤ k, w ∈ Ω. For k = 1, one of the main features of the operator T in this class is that
the curvature KT (w) := −∂∂̄ log ∥γT (w)∥2 of the holomorphic Hermitian line bundle ET
determined by the holomorphic map γT equipped with the Hermitian structure ∥γT (w)∥2
is a complete unitary invariant for the operator T .

A complete set of invariants, originally obtained by Cowen and Douglas for any k ≥ 1,
have been refined to provide a tractable set of invariants for large class of Cowen-Douglas
operators in Bk(Ω), Ω ⊆ C, [238, 241]. In these papers, after imposing a mild condition
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on the Cowen-Douglas bundles, it is shown that the curvature together with the second
fundamental form serves as a complete set of invariants.

Homogeneous operators. It is easy to see that if T is a contraction in the Cowen-
Douglas class of the unit disc D, then KT (w) ≤ KS∗(w), where S∗ is the backward uni-
lateral shift acting on ℓ2. Choosing a holomorphic frame γS∗ , say γS∗(w) = (1, w, w2, . . .),
it follows that

∥γS∗(w)∥2 = (1 − |w|2)−1, KS∗(w) = −(1 − |w|2)−2, w ∈ D,

with respect to the frame γ. Thus the operator S∗ is an extremal operator in the class
of all contractive Cowen-Douglas operator. R. G. Douglas asked if the curvature KT of
a contraction T achieves equality in this inequality even at just one point, then does it
follow that T must be unitarily equivalent to S∗? It is easy to see that the answer is
“no”, in general. However, if T is homogeneous, namely, U∗

φTUφ = φ(T ) for each bi-
holomorphic automorphism φ of the unit disc and some unitary Uφ, then the answer is
“yes”. Of course, it is then natural to ask what are all the homogeneous operators.

Assume there exists a projective unitary representation σ of Möb such that φ(T ) =
σ(φ)⋆Tσ(φ) for all for all Möbius transformations φ. If this is the case, the operator
T is homogeneous and we say that σ(φ) is associated with the operator T . A Möbius
equivariant version of the Sz.-Nagy–Foias model theory for completely non-unitary (cnu)
contractions is developed in [67]. As an application, we prove that if T is a cnu contraction
with associated (projective unitary) representation σ, then there is a unique projective
unitary representation σ̂, extending σ, associated with the minimal unitary dilation of T .
The representation σ̂, which extends σ, is given in terms of σ by the formula

σ̂ = (π ⊗D+
1 ) ⊕ σ ⊕ (π⋆ ⊗D−

1 ),

where D±
1 are the two Discrete series representations (one holomorphic and the other

anti-holomorphic) living on the Hardy space H2(D), and π, π⋆ are representations of Möb
living on the two defect spaces of T and defined explicitly in terms of σ and T . Moreover,
a cnu contraction T has an associated representation if and only if its Sz.-Nagy–Foias
characteristic function θT has the product form θT (z) = π⋆(φz)

∗θT (0)π(φz), z ∈ D, where
φz is the involution in Möb mapping z to 0. We obtain a concrete realization of this
product formula for a large subclass of homogeneous cnu contractions from the Cowen-
Douglas class; these are the holomorphic imprimitivity systems among the homogeneous
contractions.

Problem 1.1. Find all the homogeneous contractions using the product formula for the
Sz.-Nagy – Foias characteristic function.

Given a pair of positive real numbers α, β and a sesqui-analytic functionK on a bounded
domain Ω ⊆ Cm, we investigate the properties of the real-analytic function

K(α,β)(z, z) :=
((

∂2

∂zj∂zi
K(α+β) logK(z, z)

))
1≤i,j≤m, z ∈ Ω,

taking values in m × m matrices. The kernel K(α,β) is non-negative definite whenever
Kα and Kβ are non-negative definite. In this case, a realization of the Hilbert module
determined by the kernel K(α,β) is obtained. Let Mi, i = 1, 2, be two Hilbert modules
over the polynomial ring C[z1, . . . , zm]. The tensor product M1⊗M2 is clearly a module
over the ring C[z1, . . . , z2m]. This module multiplication restricts to C[z1, . . . , zm] via the
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diagonal map z 7→ (z, z), z ∈ Ω. Now, a natural decomposition of the tensor product
M1 ⊗ M2 very similar to the Clebsch-Gordon decomposition of the tensor product of
two irreducible unitary representations occurs relative to the multiplication restricted to
C[z1, . . . , zm]. Two of the initial pieces in this decomposition have been identified in [203].
The first of these is simply the restriction of M1 ⊗M2 to the diagonal set △ := {(z, z) :
z ∈ Ω}, while the second piece in the decomposition is the module determined by the
kernel K(α,β). Moreover, if Ω is a bounded symmetric domain, then K(α,β) is covariant
whenever K is covariant under the action of the bi-holomorphic automorphism group of
Ω.

Problem 1.2. Find all the components in the decomposition of the tensor product of
two Hilbert modules. This would be analogous to the Clebsch - Gorden decomposition
for tensor product of two unitary representations.

Holomorphic imprimitivity. Let (H,T ) be a Hilbert module over a ring R. Suppose
that a group G acts on H, that is, there exists a map U : G × H → H defined by
U(g, f) = Ugf for some unitary homomorphism Ug, g ∈ G, f ∈ H. Assume also that the
group G acts on the ring R and let us denote this action by (g, ϕ) → g · ϕ, g ∈ G and
ϕ ∈ R. The imprimitivity condition is the requirement

U∗
gmϕ(f)Ug = mg·ϕ(f), g ∈ G, h ∈ H, ϕ ∈ R.

Specializing to the case where the ring R is a commutative C∗ algebra, that is, R) = C(X)
for some locally compact Hausdroff space X, where X is a G - space gives the Mackey
imprimitivity. In this case, the module (H,T ) can be identified with L2(X, dµ) and T
is the commuting tuple of multiplication operators on L2(X, dµ), where dµ is a measure
on X quasi-invariant under the action of the group G. Thus the commuting tuple T is a
commuting tuple of normal operators. The condition of imprimitivity is the requirement
that T is homogeneous, that is,

U∗
gTUg = g · T , g ∈ G,

where the continuous action of G on X is nothing but a continuous function on X and
the g · T is defined via the usual continuous functional calculus for a commuting tuple of
normal operators. The imprimitivity has an apparent stronger form. The action of G on
X induces a ∗ - homomorphism of C(X) given by the formula ϕg : ϕ→ ϕ ◦ g, ϕ ∈ C(X).
Now, the imprivity relation can be written in the form

U∗
gϕ(T )Ug = ϕg(T ), g ∈ G, ϕ ∈ C(X).

Mackey’s imprimitivity theorem says that these imprimitivities are in one to one corre-
spondence with induced representations of the subgroup H, where H is determined by
realizing X in the form X := G/H. An imprimitivity system is called irreducible if there
is no closed subspace M ⊆ H such that M is invariant under the representation Ug of
the group G and the ∗ - representation ϕ → ϕ(T ). One of the early results of Mackey
is that irreducible represenations of the subgroup H corresponds to irreducible multiplier
representations of the group G. There is a vast literature on this subject. However, there
has been no attempt to understand the subspaces M invariant under both Ug and Mϕ,
g ∈ G and ϕ ∈ C(X). The restriction of an imprimitivity to such an invariant subspace
corresponds to homogeneous subnormal operators. In joint work with A. Korányi, we are
in the process of describing these invaraint subpaces in one of the simplest cases, namely,
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where X = D is the open unit disc and G is the Möbius group of biholomorphic auto-
morphisms of the disc D. These invariant subspaces, typically, consist of holomorphic
functions defined on X, hence we choose to call the restriction of an imprimitivity (in the
sense of Mackey) to an invariant subspace “holomorphic imprimitivity”.

Consider for example, the Hilbert space L(λ), λ ∈ R, of measurable (complex-valued)
functions on the open unit disc D, such that

∥f∥2λ =

∫
D
(1 − |z|2)λ−2|f(z)|2dAz <∞.

(dAz stands for dxdy, z = x + iy.) Let G be the simply connected covering group of

SU(1, 1); g(z) and g′(z) = ∂(g(z))
∂z

still make sense for g ∈ G. The group G acts on L(λ) via

a unitary representation Ug defined by the multiplier g′(z)−λ/2. Explicitly (it is simpler
to write down Ug−1 than Ug),

Ug−1f(z) = g′(z)λ/2f(g(z)).

Unitarity follows from the identity (1 − |z|2)|g′(z)| = 1 − |g(z)|2.
The representation induced in the sense of Mackey by the character −λ

2
of K, the

stabiilizer of 0 in G, is Ug. This follows by observing that any g ∈ K acts by a rotation

g(z) = eiθz, and then g′(z)−λ/2 = e−i
λ
2
θ. The subspace H(λ) of holomorphic functions

in L(λ) is invariant under {Ug : g ∈ G}. This subspace H(λ) is not zero if and only if
λ > 1; in this case, the restriction of {Ug : g ∈ G} to H(λ) is the holomorphic discrete
series. The subspace H(λ) is also an invariant subspace for the operator M defined by
Mf(z) = zf(z).

Problem 1.3. Is H(λ) the only subspace invariant under both {Ug : g ∈ G} and M?

The question of classifying the holomorphic imprimitivities on a bounded symmetric
domain Ω amounts to classification of commuting tuples of homogeneous of operators in
the Cowen-Douglas class of Ω. There is a one to one correspondence between these and the
holomomorphic homogeneous vector bundles on the bounded symmetric domain Ω. The
homogeneous bundles can be obtained by holomorphic induction from representations of a
certain parabolic Lie algebra on finite dimensional inner product spaces. The representa-
tions, and the induced bundles, have composition series with irreducible factors. In joint
work with A. Korányi [258, 257], our first main result is the construction of an explicit
differential operator intertwining the bundle with the direct sum of its factors. Next, we
study Hilbert spaces of sections of these bundles. We use this to get, in particular, a
full description and a similarity theorem for homogeneous n-tuples of operators in the
Cowen-Douglas class of the Euclidean unit ball in Cm. A different approach is in [303].
The initial study of these questions restricted to the case of homogeneous holomorphic
line bundles is in [107].

All these examples involve transitive action of the group G on a homogeneous G- space,
namely, Ω = G/H for some closed subgroup H ⊆ G. The study of homogeneity under the
action of a group not necessarily acting transitively is more complicated. A small class of
operators homogeneous under the action of the unitary group has been identified in [205].

Problem 1.4. Let B be the Euclidean ball in Cd and T be a commuting d- tuple of
operators in the Cowen-Douglas class Bk(B). The unitary group U(d) acts on any d-
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tuple of commuting operators as follows

u · T :=
(

(u11T1 + · · · + u1dTd), . . . , (ud1T1 + · · · + uddTd)) , u ∈ U(K).

We say that T is U(d)- homogeneous if u ·T is unitarily equivalent to T for all u ∈ U(d).
Find all the U(d)- homogeneous operators in Bk(B).

Algebraic geometry and operator theory. The very successful Sz.-Nagy – Foias
model theory for contractions has two parts. First, one identifies a Hilbert module over the
disc algebra which serves as an universal object and then obtain every contractive Hilbert
module as a quotient of this universal object. Second, for any contractive module (H, T ),
Sz.-Nagy and Foias define a characteristic operator ΘT and show that it is a complete
unitary invariant for (H, T ). The Nagy – Foias theory builds on two fundamental results,
the first is the von Neumann - Wold decomposition of an isometry and the other is the
Beurling’s characterization of the invariant subspaces of the shift operator. Here is a
special case: Any contractive Hilbert module (H, T ) in the class C·0 is a quotient of the
Hardy module H2

E(D) by a submodule S which must be of the form ΘH2
E(D) for some

inner function Θ by Beurling’s theorem. Moreover, Θ is a complete invariant for the
module (H, T ).

One proof of the Beurling’s theorem can be made up from the observation that all
the submodules of the Hardy module are isomorphic. Interestingly, the quotient modules
corresponding to these provide models for “practically” all the contractive modules. It is
easy to produce examples in submodules of H2(D2) that are not of the form one would
predict from the Beurling characterization. For example, take the submodule S0 consisting
of functions vanishing at (0, 0). Not only that the submodule S0 is not isomorphic to
H2(D2) as opposed to the case of one variable. On the other hand the submodules fail
to detect the class of the quotient module. To see this, consider the submodules S1 and
S2 of functions vanishing on the set {z1 = 0} and {z2 = 0} respectively. The quotient
modules in this case are both isomorphic to the Hardy module H2(D).

One of the main difficulties here is that the dimension of the eigenspace of a submodule,
in general (unless it is the completion of a principal ideal), is not necessarily constant.
Thus these fail to define a holomorphic vector bundle. Indeed, for the submodule S0 of
H2(D2), we have dim∩i=1,2 kerM∗

i = 2 while dim∩i=1,2 ker(Mi − wi)
∗ = 1 if (w1, w2) ̸=

(0, 0). Thus the map (w1, w2) → ∩i=1,2 ker(Mi−wi)∗ does not define a holomorphic vector
bundle on D2, however, it defines a coherent sheaf on D2 with a Hermitian structure
inherited from that of H2(D2).

In general, determining the moduli space for the isomorphism classes of sub-modules of
a Hilbert module is a difficult problem. Thanks to Beurling’s theorem, the moduli space
for submodules of the Hardy module H2(D) is a singleton; that is, all submodules are iso-
morphic. However, a rigidity phenomenon occurs in H2(Dn), namely, no two sub-modules
of H2(Dn) are isomorphic barring a very few exceptions. This rigidity phenomenon is typ-
ical in multivariable settings.

Let Ω ⊆ Cm be a bounded connected open set and H ⊆ O(Ω) be an analytic Hilbert
module, that is, the Hilbert space H possesses a reproducing kernel K, the polynomial
ring C[z] ⊆ H is dense and the point-wise multiplication induced by p ∈ C[z] is bounded
on H. We fix an ideal I ⊆ C[z] and let [I] denote its completion in H. Let X : [I] → H
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be the inclusion map. Thus we have a short exact sequence of Hilbert modules

0 → [I]
X−→ H π−→ Q → 0,

where the module multiplication in the quotient Q := [I]⊥ is given by the formula mpf =
P[I]⊥(pf), p ∈ C[z], f ∈ Q. The analytic Hilbert module H defines a subsheaf SH of the
sheaf O(Ω) of holomorphic functions defined on Ω. For any open U ⊂ Ω, it is obtained
by setting

SH(U) :=
{ n∑

i=1

(fi|U)hi : fi ∈ H, hi ∈ O(U), n ∈ N
}
.

This is locally free and naturally gives rise to a holomorphic line bundle on Ω. However,
in general, the sheaf corresponding to the sub-module [I] is not locally free but only
coherent.

Localising the modules [I] and H at w ∈ Ω, we obtain the localization X(w) of the
module map X. The localizations are nothing but the quotient modules [I]/[I]w and
H/Hw, where [I]w and Hw are the maximal sub-modules of functions vanishing at w.
These localizations define anti-holomorphic line bundles E[I] and EH, respectively, on
Ω\V (I). However, there is a third line bundle, namely, Hom(EH, E[I]) defined by the anti-
holomorphic map X(w)∗. The curvature of a holomorphic line bundle L on Ω, computed
relative to a holomorphic frame γ is given by the formula

KL(z) =
m∑

i,j=1

∂2

∂zi∂z̄j
log ∥γ(z)∥2dzi ∧ dz̄j.

It is a complete invariant for the line bundle L. Now, consider the alternating sum

A[I],H(w) := KX(w) −K[I](w) + KH(w) = 0, w ∈ Ω \ V[I],
where KX , K[I] and KH denote the curvature (1, 1) form of the line bundles EX , E[I] and
EH, respectively, on Ω \ V[I]. Thus it is an invariant for the pair ([I],H).

Problem 1.5. The eigenspace distribution of an analytic Hilbert module (H,T ) defines
a coherent sheaf SH over Ω possessing a Hermitian structure. Find tractable unitary
invariants for analytic Hilbert modules (H,T ) from the sheaf model.

The work along these lines was initiated in [185, 118, 117, 188], however, see [119, 427,
428, 429] for the most recent work on this topic.

Flag Structure. Fix a bounded planar domain Ω. Let E be a holomorphic Hermitian
vector bundle of rank n in Ω ×H. By a well-known theorem of Grauert, every holomor-
phic vector bundle over a plane domain is trivial. So, there exists a holomorphic frame
γ1, . . . , γn : Ω → H. A Hermitian metric on E relative to this frame is given by the
formula Gγ(w) = (⟨γi(w), γj(w)⟩). The curvature of the vector bundle E is a complex
(1, 1) form which is given by the formula

KE(w) =
m∑

i,j=1

Ki,j(w) dwi ∧ dw̄j,

where

Ki,j(w) = − ∂

∂w̄j

(
G−1
γ (w)(

∂

∂wi
Gγ(w))

)
.
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It clearly depends on the choice of the frame γ except when n = 1. A complete set of
invariants is given in [159]. However, these invariants are not easy to compute. So, finding
a tractable set of invariants for a smaller class of vector bundles which is complete would
be worthwhile. For instance, in the paper [238], irreducible holomorphic Hermitian vector
bundles, possessing a flag structure have been isolated. For these, the curvature together
with the second fundamental form (relative to the flag) is a complete set of invariants.
As an application, at least for n = 2, it is shown that the homogeneous holomorphic
Hermitian vector bundles are in this class. A complete description of these is then given.
This is very similar to the case of n = 1 except that now the second fundamental form
associated with the flag has to be also considered along with the curvature. All the vector
bundles in this class and the operators corresponding to them are irreducible. The flag
structure they possess by definition is rigid which aids in the construction of a canonical
model and in finding a complete set of unitary invariants. The study of commuting tuples
of operators in the Cowen-Douglas class possessing a flag structure is under way.

The definition of the smaller class FB2(Ω) of operators in B2(Ω) below is from [238].
One may similarly define FBn(Ω), n > 1, and discuss the properties of this new class, see
[238].

Definition. We let FB2(Ω) denote the set of bounded linear operators T for which we
can find operators T0, T1 in B1(Ω) and a non-zero intertwiner S between T0 and T1, that

is, T0S = ST1 so that T =

(
T0 S
0 T1

)
.

An operator T in B2(Ω) admits a decomposition of the form
(
T0 S
0 T1

)
for some pair of

operators T0 and T1 in B1(Ω) (cf. [243, Theorem 1.49]) . Conversely, an operator T, which
admits a decomposition of this form for some choice of T0, T1 in B1(Ω) can be shown to
be in B2(Ω). In defining the new class FB2(Ω), we are merely imposing one additional
condition, namely that T0S = ST1.

An operator T is in the class FB2(Ω) if and only if there exist a frame {γ0, γ1} of the
vector bundle ET such that γ0(w) and t1(w) := ∂

∂w
γ0(w) − γ1(w) are orthogonal for all w

in Ω. This is also equivalent to the existence of a frame γ0, γ1 for the vector bundle ET
satisfying ∂

∂w
|γ0(w)|2 = ⟨γ1(w), γ0(w)⟩ for all w ∈ Ω.

Theorem [238, Theorem 2.10]. Let T =

(
T0 S
0 T1

)
, T̃ =

(
T̃0 S̃

0 T̃1

)
be two operators in

FB2(Ω). Also let t1 and t̃1 be non-zero sections of the holomorphic Hermitian vector
bundles ET1 and ET̃1 respectively. The operators T and T̃ are equivalent if and only if
KT0 = KT̃0

(or KT1 = KT̃1
) and

∥S(t1)∥2

∥t1∥2
=

∥S̃(t̃1)∥2

∥t̃1∥2
.

Cowen and Douglas point out in [159] that an operator in B1(Ω) must be irreducible.
However, determining which operators in Bn(Ω) are irreducible is a formidable task.
Operators in FB2(Ω) are always irreducible. Indeed, if we assume S is invertible, then T
is strongly irreducible.

Recall that an operator T in the Cowen-Douglas class Bn(Ω), up to unitary equiva-
lence, is the adjoint of the multiplication operator M on a Hilbert space H consisting of
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holomorphic functions on Ω∗ := {w̄ : w ∈ Ω} possessing a reproducing kernel K. What
about operators in FBn(Ω)? For n = 2, a model for these operators is described below.

For an operator T ∈ FB2(Ω), there exists a holomorphic frame γ = (γ0, γ1) with
the property γ1(w) := ∂

∂w
γ0(w) − t1(w) and that t1(w) is orthogonal to γ0(w), w ∈ Ω,

for some holomorphic map t1 : Ω → H. In what follows, we fix a holomorphic frame
with this property. Then the operator T is unitarily equivalent to the adjoint of the
multiplication operator M on a Hilbert space HΓ ⊆ Hol(Ω∗,C2) possessing a reproducing
kernel KΓ : Ω∗ × Ω∗ → M2(C). The details are in [238]. It is easy to write down the
kernel KΓ explictly: For z, w ∈ Ω∗, we have

KΓ(z, w) =

(
⟨γ0(w̄), γ0(z̄)⟩ ⟨γ1(w̄), γ0(z̄)⟩
⟨γ0(w̄), γ1(z̄)⟩ ⟨γ1(w̄), γ1(z̄)⟩

)
=

(
⟨γ0(w̄), γ0(z̄)⟩ ∂

∂w̄
⟨γ0(w̄), γ0(z̄)⟩

∂
∂z
⟨γ0(w̄), γ0(z̄)⟩ ∂2

∂z∂w̄
⟨γ0(w̄), γ0(z̄)⟩ + ⟨t1(w̄), t1(z̄)⟩

)
, w ∈ Ω.

Setting K0(z, w) = ⟨γ0(w̄), γ0(z̄)⟩ and K1(z, w) = ⟨t1(w̄), t1(z̄)⟩, we see that the reproduc-
ing kernel KΓ has the form:

KΓ(z, w) =

(
K0(z, w) ∂

∂w̄
K0(z, w)

∂
∂z
K0(z, w) ∂2

∂z∂w̄
K0(z, w) +K1(z, w)

)
.

Problem 1.6. Give an intrinsic definition of operators in the class FBn(Ω). Find a
smaller class of commuting d- tuples of operators in Bn(Ω) for a bounded domain Ω ⊂ Cd

possessing a tractable set of unitary invariants similar to the case of n = 1.

Final Remarks. This note does not address several important and interesting themes,
such as:

(1) Curvature inequalities (cf. [116, 204, 378, 299, 445, 426, 274]),
(2) Similarity problems within the Cowen-Douglas class (cf. [239, 240, 242, 231, 274]),

and
(3) Refinements of Cowen-Douglas operators exhibiting a flag structure (cf. [448, 450,

241]).

The references provided are intended to be representative, rather than exhaustive. That
said, I hope this brief account can help future work in these areas.

2. Fourier theory, angle, Pimsner-Popa bases and regularity for
inclusions of C∗-algebras

By Keshab Chandra Bakshi [keshab@iitk.ac.in] from IIT Kanpur; and Ved Prakash Gupta
[vedgupta@jnu.ac.in, vedgupta@mail.jnu.ac.in] from JNU, New Delhi.

As is evident in various categories, it is a widely accepted line of thought in mathemat-
ics that the study of subobjects of a given object (from qualitative as well as quantitative
perspectives) is one of the most effective methodologies employed to obtain a good un-
derstanding of the structure and properties of the ambient object. In fact, this approach
has led to some remarkable classification results in the categories of groups, von Neumann
algebras and C∗-algebras.

Over the last five decades or so, various tools and techniques have been developed by
various authors to study the relative positions between subalgebras of operator algebras.
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This report focuses primarily on our recent research related to (i) developing the Fourier
theory for inclusions of C∗-algebras; (ii) a new tool of angle between compatible inter-
mediate operator subalgebras of finite-index inclusions of operator algebras; (iii) some
questions of Jones and Popa regarding Pimsner-Popa bases (a heavily used tool to study
inclusions of operator algebras); and, (iv) obtaining a better understanding of the so-
called regular inclusions of operator algebras, which depended heavily on the progress
that we made under (iii).

• Angle and Fourier theory for inclusions of C∗-algebras
Very recently, (along with some other authors) we introduced the notions of interior and

exterior angles between compatible intermediate subalgebras of finite-index inclusions of
certain operator algebras (see [41, 46]). Here is a very brief report on this development.

Vaughan Jones ([245]) introduced the notions of index and basic construction for any
unital inclusion N ⊂ M of II1-factors. Later, Bisch ([111]) showed that there exists a
dictionary between intermediate subfactors of a finite-index inclusion N ⊂ M and the
so-called biprojections in the relative commutant of N in the basic construction M1.
Using this correspondence, the notions of interior and exterior angles between any two
intermediate subfactors of a finite-index inclusion N ⊂ M was introduced in [41]. As
an application, when a finite-index inclusion N ⊂ M is irreducible (i.e., N ′ ∩M = C),
employing some aspect of the (well-known) Fourier theory on the relative commutants of
the subfactor, a question of Longo ([279]) was answered positively by improving his bound
for the cardinality of the lattice of intermediate subfactors of N ⊂M . Later, some explicit
calculations of angle between intermediate subfactors of group-subgroup subfactors were
obtained in [44].

Motivated by [41], using Watatani’s theories of index and basic construction (from
[443]), the notions of interior and exterior angles between the so-called compatible inter-
mediate C∗-subalgebras (as in [233]) of a finite-index inclusionB ⊂ A of unital C∗-algebras
was introduced recently in [46] (and some calculations were done in [222]). (Following
Watatani, the underlying theory for this line of research has been the notion of Hilbert
C∗-modules.) Interestingly, when B ⊂ A are both simple, then there is a unique con-
ditional expectation E0 : A → B with minimal Watatani index. Then, like the Jones’
basics construction tower, one obtains an increasing tower of simple unital C∗-algebras
{Ak : k ≥ 1}. Motivated by the theory of subfactors, we developed a Fourier theory
on the relative commutants {B′ ∩ Ak, A

′ ∩ Ak : k ≥ 0} in terms of shift and rotation
operators, which was enhanced further in [43, 42]. As an application, in [46] itself, we
could provide a bound for the cardinality of the lattice of intermediate C∗-subalgebras
of a finite-index irreducible inclusion of simple unital C∗-algebras (whose finiteness was
already proved by Ino and Watatani ([233]); and, we could improve Longo’s bound for the
lattice of intermediate subfactors of finite-index irreducible inclusions of type III factors
as well.

• Pimsner-Popa bases and regularity for subfactors and inclusions of simple
unital C∗-algebras

Over the last four decades or so, the notion of the so-called Pimsner-Popa basis ([341])
for finite-index inclusions of II1-factors has played an indispensable role in the develop-
ment of the theory of subfactors (via Fourier theory, Popa’s λ-lattices and Jones’ planar
algebras, to name a few). Jones was particularly impressed by their utility and went on to
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ask (on more than one occasion) whether every so-called extremal inclusion of II1-factors
always admits a two-sided Pimsner-Popa basis or not. This question remains open till
date. However, in [45], we provided a partial answer to Jones’ question by proving that
a finite-index regular inclusion of II1-factors always admits a two-sided Pimsner-Popa
basis and has integer index. (An inclusion P ⊂ Q of unital C∗ or W ∗-algebras is said
to be regular if the unitary normalizers of P in Q generate Q in the C∗ or W ∗ sense.)
This was achieved by an appropriate application of the notion of path algebras developed
independently by Sunder and Ocneanu.

Recently, Popa ([346]) asked whether every integer-index irreducible inclusion of II1-
factors admits an orthonormal (Pimnser-Popa) basis or not. In [47], we gave a positive
answer to Popa’s question for finite-index regular subfactors with simple or commutative
relative commutants. These results then allowed us to deduce (from [314]) that such a
subfactor is isomorphic to a crossed-product subfactor with respect to a minimal action
of a so-called biconnected weak Kac algebra on a II1-factor.

Based on the progress made in [47] and some techniques from the world of Quantum
Information theory, Crann et al ([160]) recently showed that every finite-index regular
subfactor admits an orthonormal (Pimsner-Popa) basis and thereby answering a conjec-
ture of ours from [47]. As a result, a proof from [47] implies that every finite-index regular
subfactor has depth at most 2. In the finite-dimensional setting, for appropriate inclu-
sions of finite-dimensional C∗-algebras, Popa’s question has been further investigated in
[40] (once again) by employing some techniques from Quantum Information Theory.

Over the last 3 decades or so operator algebraists have been actively trying to find
similarities between the theory of subfactors and the theory of inclusions of simple C∗-
algebras. From the works of various authors, it is well-known that every irreducible
finite-index subfactor is isomorphic to a crossed-product subfactor with respect to an
outer action of a finite group. Motivated by this characterization, quite satisfyingly,
we have recently been able to show (in [48]) that every finite-index regular inclusion of
simple unital C∗-algebras is isomorphic to a reduced cocycle crossed-product inclusion
with respect to an “outer” action of a finite group. Moreover, we were also able to prove
that any such inclusion of simple unital C∗-algebras has integer (Watatani) index, has
depth at most 2 and the minimal conditional expectation of such an inclusion admits a
two-sided Pimsner-Popa basis.

3. Contributions in Banach space theory

By Pradipta Bandyopadhyay [pradipta@isical.ac.in] from ISI Kolkata.

On L1-predual spaces: A Banach space X is called an L1-predual space or a Lindenstrauss
space if X∗ = L1(µ), for some measure µ.

In [189], motivated by Bratteli diagrams of Approximately Finite Dimensional (AF)
C∗-algebras, the authors consider diagrammatic representations of separable L1-predual
spaces and show that, in analogy to a result in AF C∗-algebra theory, in such spaces,
every directed sub-diagram represents an M -ideal. The converse, namely, the question
whether given an M -ideal in a separable L1-predual space X, there exists a diagrammatic
representation of X such that the M -ideal is given by a directed sub-diagram, remains
open in general. We refer to this as the “main problem”. In [189], the authors give
affirmative answers to this in some special cases.
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Continuing this study, we have shown in [61] that for a compact metric space K, in
C(K)-space, our “main problem” has an affirmative answer. Similar results are true also
for the spaces C0(T ), c and c0.

In [56], we present characterizations of polyhedrality (I), (II) and (III) in a separable
L1-predual space in terms of its representing matrix. We also show that in a polyhedral
(IV ) predual of L1, our “main problem” has an affirmative answer.

In [55], we study non-separable Gurariy spaces and their almost isometric ideals. The
main result is that a (non-separable) Banach space is a Gurariy space if and only if every
separable almost isometric ideal (a.i.-ideal) in X is isometric to the separable Gurariy
space G. We also obtain a similar characterization of L1-predual spaces in term of ideals.
Along the way, we show that the family of ideals/a.i.-ideals in a Banach space is closed
under increasing limits. And hence, the family of all separable ideals/a.i.-ideals in a
Banach space is a skeleton.

Continuing in [62], we show that if a Banach space X is almost isometric to a Gurariy
space, then it is also a Gurariy space. In the separable case, this answers a question posed
by Rao [372, Remark 6] in the affirmative. We also prove an analogue of this result for the
noncommutative Gurariy space. We also show that a Banach space X is a Gurariy space
if and only if it is an a.i.-ideal in every superspace in which it embeds as a hyperplane,
thereby answering another question posed by Rao [371, Question 17] in the affirmative.

On Mazur Intersection Property and its variants: The Mazur Intersection Property (MIP)—
every closed bounded convex set is the intersection of closed balls containing it—is an
extremely well studied property in Banach space theory.

A complete characterisation of MIP was obtained in Giles, Gregory and Sims [212],
most well-known criterion stating that the w*-denting points of B(X∗) are norm dense in
S(X∗). The paper also considered w*-MIP in dual spaces.

A much less studied uniform version of MIP (UMIP) was introduced by Whitfield and
Zizler [445]. Characterisations similar to [212] were also obtained, but an analogue of
the w*-denting point criterion was missing, which perhaps is a reason for its being less
pursued. A long standing open question regarding UMIP is whether UMIP implies that
X∗ has a uniformly convex renormimg.

Chen and Lin [151] introduced the notion of w*-semidenting points and showed that
a Banach space X has MIP if and only if every f ∈ S(X∗) is a w*-semidenting point of
B(X∗).

In [57], we show that a Banach space X has UMIP if and only if every f ∈ S(X∗) is a
uniformly w*-semidenting point of B(X∗), thus filling a long felt gap. In the process, we
obtain simpler proofs of some characterisations in [445].

In [214], we introduce two moduli of w*-semidenting points and characterise MIP and
UMIP in terms of these moduli. One of the moduli was motivated by the modulus
of denting points discussed by Dutta and Lin [190]. We introduce a property called
Hyperplane UMIP (H-UMIP), which is slightly stronger than UMIP, and show that it
characterises uniform convexity of X∗. This turns out to be also equivalent to the notion
of uniform denting points of [190]. In this paper, we also analyse conditions, in terms of
these moduli, for the stability of UMIP under ℓp-sums, 1 < p < ∞. In particular, we
show that ℓp(X) has UMIP if and only if X has UMIP.

Given a family C of closed bounded convex sets in a Banach space X, we say that
X has C-MIP if every C ∈ C is the intersection of the closed balls containing it. This
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has also been studied in the literature for specific families and also in some generality.
Instead of considering just a family C, in [58], we discuss representation of sets of the

form A+ λB(X), for A ∈ C and λ ≥ 0, as intersection of closed balls. It is easy to
see that this is stronger than C-MIP. We call this strong C-MIP and show that it is a
more satisfactory generalisation of MIP inasmuch as one can obtain complete analogues
of various characterisations of MIP in [212]. We also define and characterise uniform
versions of (strong) C-MIP. Even in this case, strong C-UMIP appears to have richer
characterisations than C-UMIP.

We say that a property P of a Banach space is residual if it satisfies the following: If X
has one norm with property P , then “almost every” (residual with respect to some suitable
metric) equivalent norm on X also has property P . In [59], we prove the residuality of
UMIP, uniformly smooth and asymptotically uniformly smooth norms. Some of these
are already known to be ball separation properties. For others, we first obtain a ball
separation characterisation and then use them to obtain the residuality results.

It is well-known that Fréchet smoothness implies MIP. And since Fréchet smoothness is
hereditary, it actually implies hereditary MIP, that is, all subspaces of X also have MIP.
How about the converse? Does hereditary MIP imply Fréchet smoothness? It is easy to
see that hereditary MIP implies smoothness. In [60], we obtain some sufficient conditions
for hereditary MIP in terms of the set N of non-Fréchet smooth points of S(X). In
particular, we show that if X is smooth and N is finite, then X has hereditary MIP.

Borwein and Fabian in [126] proved an infinite dimensional WCG Asplund space X
admits an equivalent smooth norm such that N = {±x0} for some x0 ∈ S(X). Thus, the
Borwein-Fabian norm has hereditary MIP, but is not Fréchet smooth.

4. Quantum dynamical maps and quantum Gaussian states

By B V Rajarama Bhat [bhat@isibang.ac.in, bvrajaramabhat@gmail.com] from ISI, Ban-
galore.

Here is a brief account of developments in recent years, through contributions by Indian
mathematicians, in some mathematical areas that I am familiar with. This text had to
be prepared in a rather short period of time. Unfortunately this means that majority of
the papers cited here are from my collaborators and myself.

Quantum Gaussian states: Quantum Gaussian states on Boson Fock spaces are quantum
versions of Gaussian distributions of classical probability. The concept has been beauti-
fully explained in the essay “What is a Gaussian state?” by K. R. Parthasarathy [323].
In his late years he worked vigorously on this topic and discovered various features of
convexity and symmetry properties of finite mode quantum Gaussian states. He posed
the problem of extending the theory to the infinite mode. This was carried out in [89]. It
is seen that every quantum Gaussian state comes with a ‘covariance matrix’, which is now
a symmetric and invertible real linear operator. A complete characterization of covariance
operators of quantum Gaussian states in infinite mode has been obtained and it involves
some delicate trace conditions which are not seen in finite mode. A unitary operator in
the Boson Fock space is called a Gaussian symmetry if it preserves Gaussianity of states
under conjugation. It is shown that the symplectic spectrum is a complete invariant for
Gaussian states under conjugation by Gaussian symmetries.



A COMPENDIUM OF RESEARCH IN OPERATOR ALGEBRAS AND OPERATOR THEORY 15

The equivalence of separability and complete extendability for bipartite quantum Gauss-
ian states is seen in [93]. Some of the questions raised by K R Parthasarathy have been
answered recently in [180]. In [244] we can find a novel new parametrization for quantum
Gaussian states. It is very useful in some of the computations involving these states [322]
and perhaps its full potential hasn’t yet been exploited.

As mentioned above, while dealing with quantum gaussian states the symplectic spec-
trum plays an important role. This has triggered interest in studying approximation and
perturbation properties of symplectic eigenvalues ([95], [254]).

C∗-convexity of completely positive maps: There have been several approaches to generalize
the notion of convexity to the quantum context. One such idea is to replace positive scalars
in the interval [0, 1] as coefficients for convexity by positive, contractive and invertible
elements in a C∗- algebra. A study of the C∗-convexity structure of normalized positive
operator valued measures (POVMs) on measurable spaces has been carried out in [63].
One of the surprising results is that C∗-extreme points of normalized POVMs on countable
spaces (in particular for finite sets) are always spectral measures (normalized projection
valued measures). This does not hold if one considers usual convexity! A Krein–Milman
type theorem for POVMs has also been proved.

The set of all unital completely positive (UCP) maps on a unital C∗-algebra taking
values in the algebra of all bounded operators on a Hilbert space is known as gener-
alized state space and its convexity structure is of considerable interest. It is also a
C∗-convex set. The article [91] links C∗-extremity of this set with factorization property
of certain algebras. Here also a Krein-Milman type result can be proved. This work
brings forth an important connection between C∗-convexity theory and some classical
concepts from operator algebra theory, like nest algebras (infinite dimensional analogues
of upper triangular matrices) and logmodular algebras. A not necessarily ∗-closed sub-
algebra A of a C∗-algebra M is said to be logmodular (resp. has factorization) if the
set {a∗a : a ∈ M is invertible with a, a−1 ∈ A} is dense in (resp. equal to) the set of
all positive and invertible elements of M. One major result in [92] is that the lattice of
projections in a (separable) von Neumann algebra M whose ranges are invariant under
a logmodular algebra in M, is a commutative subspace lattice. Further, if M is a factor
then this lattice is a nest. As a special case, it follows that all reflexive logmodular subal-
gebras of type I factors are nest algebras, and this settles a question which has been open
for over a decade. As a special case a complete characterization of logmodular subalgebras
in finite-dimensional von Neumann algebras has been obtained.

Recently the concept of C∗-convexity in the context of entanglement breaking (EB)
maps has been studied in [84]. This has implications in quantum information theory.

Peripheral Poisson boundary: Unital completely positive (UCP) maps are quantum ana-
logues of stochastic maps of classical probability. Suppose A is a von Neumann algebra
and τ : A → A is a normal UCP map. The space of fixed points of τ is a vector space but
in general it is not a subalgebra of A. However, it can be given a ∗-algebra structure with
a modified product called Choi-Effros product. Taking motivation from classical probabil-
ity, M. Izumi called this as the noncommutative Poisson boundary of the UCP map. The
noncommutative Poisson boundary has been computed for some specific Markov maps on
the full Fock space in [83] and it produces some interesting von Neumann algebras.
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It was noted in [90] that Choi-Effros product can be extended to the closed linear span
of the space of peripheral eigenvectors of τ :

Eλ(τ) = {x ∈ A : τ(x) = λx}, λ ∈ C, |λ| = 1.

This way we get a C∗-algebra called the peripheral Poisson boundary of τ. Surprisingly
it may not be possible to get a von Neumann algebra. The construction used dilation
theory of completely positive maps developed earlier in [82] and related papers. This
concept is very important as the asympotic behaviour of quantum dynamical semigroups
are determined by peripheral eigenspaces.

Iterative roots of functions: Consider a self-map f on a non-empty set. A self-map g is
said to be an iterative n -th root of f if f = gn, where the power is taken with respect to
composition. A powerful and widely applicable new method has been developed in ([85]-
[87]) to prove non-existence of such roots under very general situations. For instance if
there is distinguished point x0, such that f(x0) ̸= x0, f

−2({x0}) is infinite and f−1({x})
is finite for x ̸= x0, then f has no iterative roots of any order n ≥ 2. This method can be
used to prove that continuous self-maps with no iterative n-th roots (for fixed n > 1) are
dense in the space of all continuous self-maps for various topological spaces such as the
unit cube in Rm. Existence and non-existence of iterative roots is of interest even in the
theory of stochastic maps and quantum dynamical semigroups [88].

5. On Carathéodory approximation

By Tirthankar Bhattacharyya [tirtha@iisc.ac.in] from IISc; and Poornendu Kumar [poor-
nendukumar@gmail.com] from University of Manitoba, Canada.

Approximation by polynomials or rational functions for holomorphic maps on the open
unit disc D does not, in general, ensure any nice boundary behavior. Motivated by this
limitation, Carathéodory, in 1926, proved the following remarkable theorem:

Theorem (Carathéodory, [129].) Any holomorphic function φ : D → D can be
approximated uniformly on compact subsets of D by the finite Blaschke products.

This theorem is a powerful tool in both holomorphic function theory and operator
theory. For example, it can be used to prove the von Neumann inequality [187], derive
the Herglotz integral representation [97], and establish the Halmos conjecture—or more
generally, the Berger–Stampfli theorem; see, for instance, [293, Section 12].

When seeking generalizations of this theorem, one must note that Carathéodory’s orig-
inal proof relies heavily on the power series expansion of holomorphic functions on D,
which does not extend naturally to matrix-valued or operator-valued settings, nor to
more complicated domains such as multiply connected ones. It is not difficult to observe
that the finite Blaschke products are precisely the rational inner functions. Here, an
inner function refers to a bounded holomorphic map on D whose boundary values have
modulus one almost everywhere with respect to the arc length measure on the unit circle
T. This notion extends naturally to the matrix-valued or operator-valued setting, where
the modulus-one condition is replaced by the requirement that the boundary values are
isometries almost everywhere on T.

There is a proof of Carathéodory’s approximation theorem via the Pick–Nevanlinna
interpolation theorem. This approach has the advantage of extending naturally to the
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matrix-valued case; see the discussion in the introduction of [12]. However, this depends
on the existence of inner solutions to the Pick-Nevanlinna interpolation problem, and
such results are not known on multiply connected domains. Thankfully, one can deduce
the Carathéodory approximation result on multiply connected domains from Grunsky’s
work [215], and a different version exists due to Fisher [198]. However, these approaches
do not extend to matrix-valued settings. Hence, it requires new techniques. Recently,
using the Herglotz integral representation and extreme point theory in the certain class,
see [97], this approximation theorem has been extended to the matrix-valued case. More-
over, taking into account the discussion at the beginning, we have that the Carathéodory
approximation theorem and the Herglotz integral representation are essentially equivalent.

Furthermore, for a nice class of domains, it has been shown that once a matrix-valued
Carathéodory approximation result is established [97, Theorem 4.4], it can be lifted to
the operator-valued setting. Therefore, it suffices to focus on the matrix-valued version
of the approximation theorem. As a result, operator-valued Carathéodory approximation
theorems have now been obtained for multiply connected domains.

Moving to the several-variable setting, the scalar-valued Carathéodory approximation
theorem has been established on the open unit ball independently by Aleksandrov [7] and
Rudin [382]. Moreover, Rudin extended this result to the polydisc [384]. More recently,
the theorem has been proved for tube domains [442] and quotient domains related to the
polydisc [106], domains arising from the classification of pseudoreflection groups.

However, existing techniques do not directly extend these results to matrix-valued set-
tings in several variables. That said, through the use of the Nevanlinna-Pick interpolation
theorem, it is possible to prove a matrix-valued analogue in the bidisc D2. In recent work
[12], this theorem has been proved using operator theory, more specifically, dilation theory
and realization formulas. Moreover, several applications of matrix-valued Carathéodory
approximation results have been provided. To mention a few, Carathéodory’s theorem for
matrix-valued functions and Potapov’s elegant characterization of matrix-valued rational
inner functions on D [347] have led to a generalization of Fisher’s theorem [197]—namely,
that a matrix-valued function which is holomorphic in D and continuous on D can be
uniformly approximated on D by convex combinations of matrix-valued rational inner
functions—as well as to a version of Carathéodory’s theorem for functions taking values
in the symmetrized bidisc or the tetrablock.

To include one proof in this note, we have chosen the proof of Carathéodory’s theorem
using dilation theory on the disc. The same proof works for the bidisc. Given a holomor-
phic function f : D → Md(C) with ∥f(z)∥ ≤ 1 for all z ∈ D, one may first approximate
it by rational functions. If f is rational, then it admits a finite contractive realization,
i.e., f(z) = A + zB(I − zD)−1C, where the associated colligation contraction matrix

T =

[
A B
C D

]
acts on Cd ⊕ Cm for some m. When T is unitary, the resulting function

f is rational inner. This realization is a disc-version of the Kalman–Yakubovich–Popov
lemma, see [181] for an indefinite version of it, and its analogue in D2 has been recently
proved by Knese [259, Proposition 4.2].

Let DT ∗ and DT be the defect operators (I − TT ∗)1/2 and (I − T ∗T )1/2 respectively.
For each N , consider the space KN+1 = (Cd ⊕ Cm) ⊕ · · · ⊕ (Cd ⊕ Cm), where (Cd ⊕ Cm)
occurs (N + 1) times and the N-step unitary dilation of the contraction T (first done by
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O. Nevanlinna [311] and later greatly popularized by Levy and Shalit [277]) given by

UN :=


T 0 . . . . . . DT ∗

DT 0 . . . . . . −T ∗

0 IH . . . . . . 0
...

...
. . .

...
...

0 0 . . . IH 0

 =

[
A BN

CN DN

]

acting on the space KN+1 where BN , CN and DN can be appropriately read off. Consider
the rational inner function fN(z) = A+zBN(I−zDN)−1CN . A straightforward calculation
shows that fN → f if and only if AN → A and BND

k
NCN → BDkC for each k.

The proof is complete because BND
k
NCN = BDkC for all N ≥ k + 2.

Knese [260] used the scalar-valued Carathéodory theorem on D2 to establish the ne-
cessity in the Nevanlinna–Pick interpolation problem on D2. We conclude with an open
problem.

Open Problem. Does a Carathéodory approximation theorem hold for matrix-valued
functions on the polydisc?

The first named author is supported by ANRF(JCB/2021/000041) and the second
named author is supported by a PIMS post-doctoral fellowship.

6. Operator theory on quotient domains

By Shibananda Biswas [shibananda@iiserkol.ac.in] and
Subrata Shyam Roy [ssroy@iiserkol.ac.in] from IISER Kolkata.

Models for n-tuples of operators with the polydisc and the Euclidean ball in Cn as spec-
tral sets have been studied in depth. A natural progression is to examine such models
on inhomogeneous domains [6, Corollary 4.4]. The class of Γn-contractions provided the
first instance in this pursuit. Agler and Young [4, 5] found that many of the fundamental
results (e.g substantial part of the Sz-Nagy-Foias model theory) in the theory of single con-
traction has close parallels for Γ2-contractions - commuting pair of operators with closed
symmetrized bidisc Γ2 as a spectral set. Motivated by these developments, our attention
turned to functional models on (open) symmetrized polydisc Gn [120], beginning with the
construction of a Schaffer dilations for Γ2-contractions [101] and exploring possible gener-
alization to n-tuples. A Beurling-Lax-Halmos type theorem for joint invariant subspaces
of a pure Γn-isometry is obtained by generalizing the same in [394] for n = 2 case. In
fact on Γ2, a number of questions were answered satisfactorily, for example, description
of distinguished variety [318], on realization, interpolation and extension of holomorphic
functions [102, 2, 100]. The generalization of several results in this direction beyond the
case n = 2 has been hindered by their dependence on dilation theory as positive results
towards rational dilation of Γn-contraction, for n > 2, remained elusive beyond restricted
subclasses [317]. A graph-theoretic model for a large class of n-tuple of operators that
includes Γn-contractions as a special case was considered in [209].

On the other hand, in [297], function theory on Gn was studied by introducing a Hilbert
space method to compute the Bergman kernel of Gn which was earlier obtained in [193]
appealing to Bell’s formula [75]. This work naturally led to the consideration of Hilbert
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function spaces on Gn and the study of operators acting upon them. In [120], we con-
structed functional models for Γn-contractions on weighted Bergman spaces A(λ)(Dn),
λ > 1, and on the Hardy space H2(Dn) as the limiting case λ = 1. These spaces de-
compose into orthogonal direct sum of submodules over the invariant ring C[z]Sn , each
of which corresponds to an irreducible representation of the symmetric group Sn and
hence, indexed by partitions p of n - denoted as p ⊢ n. The restrictions of (Ms1 , . . . ,Msn)
to these submodules are Γn-contractions. In [114], this framework was generalized to
Hilbert spaces with Sn-invariant reproducing kernels K, leading to reducing submodules
PpH with kernel imm(p)

(
(K(zi, wj))

)n
i,j=1

, where imm(p) is the immanant corresponding to

a partition p and the map Pp : H → H is an orthogonal projection given by the formula

Ppf =
deg p

n!

∑
σ∈Sn

χp(σ−1)(f ◦ σ−1), f ∈ H,

χp being the character of the representation corresponding to p ⊢ n. A finer decomposition
into the reducing submodules PiipH, 1 ≤ i ≤ degp, was also obtained. This naturally led to
the study of unitary equivalence, similarity, and minimality of these reducing submodules
as well as their realization on Gn.

On unitary equivalence. Each PpH is a locally free Hilbert module of rank (deg p)2.
Thus, if deg p ̸= deg q, then the submodules PpH and PqH are not unitarily equivalent.
When degp = deg q, the problem remains open in general. However, if deg p = deg q = 1
and H = A(λ)(Dn) for the reducing submodules corresponding to the trivial and sign
representations of Sn are not equivalent for λ > 0 [114]. This follows from the identi-
fication of the submodule of A(λ)(Dn) corresponding to the sign representation of Sn as
the weighted Bergman module A(λ)(Gn), and by obtaining a formula for the reproduc-
ing kernel of A(λ)(Gn) in the coordinates of Gn invoking Giambelli’s formula which is of
independent interest.

On similarity. Even when unitary equivalence fails, the possibility of similarity
remains. If p = (n) and q = (1n), then a candidate for implementing such an isomorphism
is the operator of multiplication by Vandermonde ∆, where ∆(z) =

∏
1≤i<j≤n(zi−zj), from

PpH to PqH. Multiplication by the Vandermonde is injective, therefore it remains only
to check if it is surjective to make it invertible. We rephrase the question of surjectivity
in the realm of a division problem: If for f ∈ PqH, suppose there is a g such that ∆g = f ,
then does it follow that g is in PpH? It would be really interesting to know, as the results
that are known mostly in the case of strictly pseudoconvex domains, extend to the case
of the product domain Dn, even in the degree 1 case (cf. [354] and references therein).

On minimal reducing subspaces. For each partition p ⊢ n and each index i with
1 ≤ i ≤ degp, the submodules PiipH are reducing for the n-tuple (Ms1 , . . . ,Msn). A natu-
ral question, therefore, is whether these submodules are minimal reducing. A more general
perspective considers a finite complex reflection group G with homogeneous generators
θ = (θ1, . . . , θn) of the invariant ring C[z]G. Within this framework, multiplication by θ
on a Hilbert module H with G-invariant reproducing kernel over a G-invariant domain Ω

yields reducing subspaces PϱH and PiiϱH, where ϱ ∈ Ĝ, 1 ≤ i ≤ deg ϱ and Ĝ is the equiv-
alence classes of irreducible representations of G [112]. It follows from [383, Proposition
2.2] and [422, Proposition 1, p.556] that the mapping θ = (θ1, . . . , θn) : Ω → θ(Ω), is a
proper holomorphic map. In particular, θ(Ω) is a domain, and the quotient topological



20 SARKAR

space Ω/G admits the structure of a complex analytic space biholomorphic to θ(Ω) -
justifying the nomenclature Quotient domains. In [383], it was shown that every proper
holomorphic mapping which is factored by automorphism is intimately related to a basic
polynomial map θ. Thus, generalizing from the symmetric group to finite complex reflec-
tion groups offers a new perspective on the problem of minimal reducing subspaces under
proper holomorphic mappings [186, 453] and naturally links to our works in [120, 114, 112].
Recently, this has been explored extensively in the literature; see, for instance, [207, 230].

On realizations on quotient domain. In [112], it was established that the sub-
modules PϱH admit a realization as analytic Hilbert modules of rank (deg ϱ)2 over C[z],
consisting of holomorphic functions on the quotient domain θ(Ω). This result was ob-
tained through a generalization of the Chevalley–Shephard–Todd Theorem to the setting
of algebra of holomorphic functions. It plays a crucial role to obtain a substantial im-
provement of the earlier result [114, Corollary 3.12] for the symmetric group Sn, where it
was shown that for any partition p ⊢ n, the module PpH is locally free of rank (degp)2

only on an open subset of s(Ω) \ s(Z). Here s : Cn → Cn denotes the symmetrization
map, and Z is the set of critical points of s. This provides a powerful framework for de-
veloping geometric and analytic unitary invariants [159, 161], offering an avenue towards
complete classification of the reducing submodules {PϱH}ϱ∈Ĝ up to unitary equivalence.

In recent years, attention has broadened from the symmetrized polydisc to other quo-
tient domains such as the tetrablock, monomial polyhedra, and fat Hartogs triangles. This
line of investigation typically unfolds along two directions: on the one hand, extending
results obtained for special domains to broader families of quotient domains, and on the
other, applying general structure theorems to recover more refined information in concrete
settings. For example, the Hilbert space method of [297] for computing Bergman kernels
was extended in [422] to arbitrary proper holomorphic maps, and in [206] to quotient
domains which includes monomial polyhedra and fat Hartogs triangles as special cases.
Parallel activity have taken place on Hardy spaces. In [297], a natural notion of Hardy
space on Gn was introduced and its reproducing kernel was obtained explicitly. This con-
struction was later generalized in [211] to quotients of bounded symmetric domains, where
Brown–Halmos type theorems for Toeplitz operators were also established - some of which
were studied in the context of the symmetrized polydisc in [99, 174]. Toeplitz operators
on the Bergman space were investigated in [210]. More recently, the structure theory for
pure isometries and invariant subspaces, in the spirit of the Beurling–Lax–Halmos theo-
rem, was extended from Sn to the broader family of reflection groups G(m, p, n) [115].
The study of invariant subspaces is closely tied to the theory of inner functions, rais-
ing questions analogous to those addressed for the symmetrized bidisc in [1] on quotient
domains. Along these lines, [106] examined the structure of rational inner functions on
θ(Dn) for G = G(m, p, n). Notable progress has also been made in multiple directions:
Lp-regularity of Bergman and Szego projections on quotient domains [77, 208, 232], the
Hankel operators [98], homogeneous analytic Hilbert modules under non-transitive ac-
tion of automorphism group [113], among others. Taken together, these studies highlight
the emergence of a rich and interconnected theory of Hilbert function spaces on quotient
domains - one that intricately weaves together operator theory, complex geometry, and
representation theory - thereby opening numerous avenues for further exploration.
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7. Trace formulas in operator theory

By Arup Chattopadhyay [2003arupchattopadhyay@gmail.com] and
Saikat Giri [saikatgiri90@gmail.com] from IIT, Guwahati; and
Chandan Pradhan [chandan.pradhan2108@gmail.com] from IISc.

Let H be a complex separable Hilbert space. For 1 ≤ p < ∞, the Schatten class of
order p on H is denoted by Sp(H) [408].

Trace formulas are central objects in operator theory, motivated both by physics and
mathematics. In 1953, Krein [263], building on earlier work of Lifshitz [278], established
a fundamental formula for self-adjoint operator H0 perturbed by a self-adjoint trace-class
operator V ∈ S1(H):

Tr
(
f(H0 + V ) − f(H0)

)
=

∫
R
f ′(λ) ξH0,V (λ) dλ, (7.1)

valid whenever the Fourier transform of f ′ belongs to L1(R).
The function ξH0,V , known as the spectral shift function (SSF), describes how the spec-

trum changes when the operator is perturbed. Since its introduction, the SSF has become
a cornerstone of perturbation theory, spectral flow, mathematical physics, and noncom-
mutative geometry [36, 37, 408]. In [147], Chattopadhyay–Sinha analyzed the classical
Carey–Helton–Howe–Pincus trace formula via Krein’s SSF. These advances inspired many
generalizations of trace formulas to broader operator frameworks, including noncompact
perturbations and non-normal operators.

Analogues of (7.1) for unitary operators and contractions have been extensively stud-
ied [9, 148, 192, 264, 265, 290, 291]. Unlike previous work, Chattopadhyay–Sinha [148]
established a trace formula for pairs of contractions in which the SSF is supported on the
unit disk, rather than the unit circle as in earlier results [290, 291].

Extending Krein’s trace formula beyond trace-class perturbations has been difficult. For
V ∈ S2(H), Koplienko [261] replaced the left hand side of (7.1) with a Taylor remainder.
Higher-order formulas were attempted in [145, 191, 403], but only for S2(H)-perturbations
(see also [310, 338, 352]). A full generalization was established by Potapov–Skripka–
Sukochev [348] for V ∈ Sn(H), proving

Tr
(
f(H0 + V ) −

n−1∑
k=0

1

k!

dk

dtk

∣∣∣
t=0
f(H0 + tV )

)
=

∫
R
f (n)(λ) ξn,H0,V (λ) dλ. (7.2)

The proof relies on the machinery of multiple operator integrals (MOIs) [408], a powerful
tool in modern perturbation theory. MOIs were introduced by Peller [339] and, inde-
pendently, by Azamov–Carey–Dodds–Sukochev [36], as a far-reaching generalization of
Birman–Solomyak’s classical double operator integral [110]. Since their inception, MOIs
have become a central technique in the analysis of operator perturbations, allowing for
significant extensions of trace formulas such as (7.2). For instance, they have enabled
versions of (7.2) for contractions [349], for unitary operators [351, 406]. In a related
development, Aleksandrov–Peller [8] established (7.2) for functions in Besov spaces, ex-
tending the class of functions considered in [348]. It is worth noting that recently, Coine–
Le Merdy–Sukochev [157] introduced a MOI that encompasses the largest class of scalar
functions.
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Explicit representations of SSFs are rare. To address this, Voiculescu [438], Sinha–
Mohapatra [304, 305], and Potapov–Sukochev–Zanin [353] employed finite-dimensional
approximations. Later, Chattopadhyay–Sinha, followed by Chattopadhyay–Das–Pradhan,
established second-order trace formulas for self-adjoint [144], unitary [134], and contrac-
tion operators [135]. Higher-order cases, however, remain inaccessible.

Significant progress has been made on higher-order results for broader operator classes.
Chattopadhyay–Pradhan–Skripka [143] proved trace formulas for contractions and max-
imal dissipative operators, removing earlier restrictions [141, 292, 291, 406], and showed
that for contractions the higher-order SSF can be supported on the unit disk. For
Dirac and Schrödinger operators with noncompact perturbations, formulas of type (7.2)
were obtained for relatively Schatten-class perturbations [149, 432, 433, 350, 404] and
for τ -compact resolvents [142, 407], assuming bounded perturbations. More recently,
Chattopadhyay–van Nuland–Pradhan [140] treated unbounded perturbations: for self-
adjoint H0 and symmetric, relatively H0-bounded V , they derived explicit formulas for
dn

dtn

∣∣
t=0
f(H0 + tV ), proved convergence of the noncommutative Taylor expansion, and

established higher-order SSFs under natural summability assumptions. The last result
extends the work of Yafaev [449] and Aleksandrov–Peller [10] to the higher-order case.

Another direction concerns enlarging the admissible function class for (7.2). Peller [340]
(self-adjoint case) and Aleksandrov–Peller [9] (unitary case) identified optimal classes for
Krein trace formulas, but none are known for higher-order cases. Recently, Chattopadhyay–
Coine–Giri–Pradhan [132, 133] unified differentiability results for self-adjoint, unitary,
and contractive operators, establishing second-order trace formulas for the broader scalar
function class so far. In [132], they further obtained modified higher-order trace formu-
las with optimal scalar function classes, extending earlier results of Skripka [406] and
Bhattacharyya–Chattopadhyay–Giri–Pradhan [103].

The situation is more subtle in several variables. Aleksandrov–Peller–Potapov [11]
proved that no analogue of (7.1) holds for noncommuting self-adjoint tuples, and asked
whether for commuting tuples of self-adjoint operators Hn = (H1, . . . , Hn), Hn(1) =
(H1 + V1, . . . , Hn + Vn) with Vi ∈ S1(H), there exist measures µj such that

Tr
(
f(Hn(1)) − f(Hn)

)
=

n∑
j=1

∫
Rn

∂f

∂λj
dµj. (7.3)

This is resolved assuming Hn(t) := (H1 + tV1, . . . , Hn + tVn) commutes for all t ∈ [0, 1]:
first for bounded operators by Skripka [405], then for unbounded ones by Chattopadhyay–
Giri–Pradhan–Usachev [137]. Moreover, [137] shows that if Vi lie in the Lorentz ideal
and Tr is replaced by a bounded singular trace τ [283], then (7.3) holds without this
additional commutativity assumption. Higher-order cases were studied in [136], but the
general multivariable problem remains open. Notably, Chattopadhyay–Sinha [146] studied
a different type of trace formula (a Stokes-like formula) in the multivariable setting.

Thus, the theory of trace formulas–ranging from Krein’s original result to modern
higher-order and multivariable extensions–continues to evolve, revealing deep connections
between perturbation theory, noncommutative analysis, and spectral theory.

Research on trace formulas and spectral shift functions is longstanding and active.
Since providing a complete list of contributions is beyond the scope of this survey note,
the authors may unfortunately omit some important references; however, further sources
can be found in the works we cite.
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8. Dilation of operators and algebraic varieties

By B. Krishna Das [bata436@gmail.com] from IIT Bombay.

Dilation theory forms a cornerstone of operator theory, providing a framework to un-
derstand commuting contractions on Hilbert spaces via their extensions or dilations to
isometries or unitaries. The foundational results by Sz.-Nagy and Foias ([417]), and its
extensions by Ando ([15]), provide dilation theorems for single and pairs of commuting
contractions, respectively. However, beyond two variables, the existence of such dilations
generally fails. The limitations of these classical results motivate further study of dilation
theory and add the need to understand operator tuples that fall outside these known
theorems. The following summary synthesizes advances made in several papers, jointly
with my collaborations, on isometric dilations of tuples of commuting contractions and
its connection to algebraic varieites.

The classical von Neumann inequality ([439]) provides a bound on the norm of a poly-
nomial evaluated at a contraction via its supremum over the unit disc. While Ando’s
theorem extends this result to pairs of commuting contractions, the resulting inequality
is often not sharp. In pursuit of sharper estimates, Agler and McCarthy ([3]) showed that
for a pair of strict commuting matrices, the von Neumann inequality holds on a distin-
guished variety–an algebraic subset of the bidisc defined as an algebraic curve intersecting
only the distinguished part of the boundary of the bidisc. Motivated by this, we investi-
gated whether there is a more precise dilation result for commute pairs of Hilbert space
operators, leading to a sharper form of the von Neumann inequality. For a contraction
T , we say T is pure if T ∗n → 0 in the strong operator topology, and we define the defect
operator and the defect space of T as DT := (I − TT ∗)

1
2 and DT := Ran(I − TT ∗)

1
2 ,

respectively. Our main result in this context is the following explicit Ando-type dilation
theorem and sharp von Neumann inequality.

Theorem 8.1 ([170]). Let (T1, T2) be a pair of commuting contractions such that T1 is
pure and the defect spaces of T1 and T2 are finite-dimensional. Then:

(a) There exists a B(DT1)-valued rational inner function Ψ such that the pair (Mz,MΨ)
of multiplication operators on DT1-valued Hardy space dilates (T1, T2).

(b) If T2 is also pure then there exists a distinguished variety V ⊂ D2
such that

∥p(T1, T2)∥ ≤ sup
(z1,z2)∈V

|p(z1, z2)|, for all p ∈ C[z1, z2].

The inner function Ψ that appears in this result can be explicitly realized through
transfer function models, and the associated distinguished variety V admits a determi-
nantal representation in terms of Ψ. This result extends and significantly strengthens the
work of Agler and McCarthy by moving from matrices to Hilbert space contractions and
offers a new, concise proof of their result. Moreover, the dilation result in part (a) of the
theorem is optimal in the following sense: if a pair of commuting contractions (T1, T2)
dilates to (Mz,MΨ) on an E-valued Hardy space, where E is finite-dimensional and Ψ is
a B(E)-valued rational inner function, then T1 must be pure and the defect spaces of T1
and T2 must be finite-dimensional (see [172]). The above result also illustrate that identi-
fying operator tuples that dilate to specific classes of isometries can yield finer structural
information about those tuples. This principle is further demonstrated by our dilation
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result in the context of BCL pairs of isometries, as described below. The celebrated re-
sult of Berger, Coburn, and Lebow (BCL) ([81]) characterizes all possible ways in which
the Hardy shift Mz can be factorized as a product of commuting isometries. Identifying
classes of pairs of commuting contractions that dilate to a pair of BCL isometries leads
to the following factorization theorem for a contraction.

Theorem 8.2 ([171]). Let T be a pure contraction and let T ∼= PQMz|Q be the Sz.-Nagy
and Foias representation of T . Then:

(a) A pair of commuting contractions (T1, T2) with T1T2 is pure dilates to a BCL pair
of isometries on some vector-valued Hardy space.

(b) If T = T1T2 for some pair of commuting contractions (T1, T2), then there exist
B(DT )-valued polynomials φ and ψ of degree one such that

(T1, T2) ∼= (PQMφ|Q, PQMψ|Q).

The dilation result in part (a) has been applied to derive several other dilation theorems.
For example, it yields an alternative proof of Ando’s theorem ([104]) and has been used
to construct dilations for various classes of n-tuples (n ≥ 3) of commuting contractions
defined by certain positivity conditions (see [68, 69, 70, 105]).

A polynomial in two variables whose zero set in the closed bidisc is a distinguished
variety is called a toral polynomial. A pair of commuting contractions is called a toral pair
if it is annihilated by a toral polynomial. A consequence of Theorem 8.1 is that if (T1, T2)
is a pair of commuting contractions such that both T1 and T2 are pure contractions with
finite defect, then (T1, T2) is toral and admits an isometric lift that is also toral. This
naturally leads to the following constrained Ando dilation problem, which is closely related
to the rational dilation problem on a distinguished variety of the bidisc: Does a toral pair
of commuting contractions admit a toral isometric lift? In general, the answer is negative.
However, we have the following positive result.

Theorem 8.3 ([173]). Any toral pair of commuting contractions with finite defect spaces
admits a toral isometric lift.

This theorem implies that if a pair of commuting contractions with finite defect spaces
has a distinguished variety of the bidisc as its spectral set, then there exists (possibly a
different) distinguished variety that serves as a complete spectral set. It is now well known
that the rational dilation problem on a distinguished variety does not hold in general; the
Neil parabola is one such example where rational dilation fails. One of the questions we
aim to address is the following:

Question: Under what conditions does rational dilation hold on a distinguished variety
of the bidisc?

In conclusion, these works significantly advance the understanding of operators through
dilation theory and sharp von Neumann inequalities on distinguished varieties. A key
feature in each of these works has been the construction of explicit dilation. Looking
ahead, these advances also point toward several challenging open problems, most notably
the rational dilation problem on distinguished varieties of the bidisc.

9. The Weighted Discrete Semigroup Algebra ℓ1(S, ω)

By H. V. Dedania [hvdedania@gmail.com] from Sardar Patel Univeristy.
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A Banach algebra is an associative algebra A together with a norm ∥ · ∥ such that
(A, ∥ · ∥) is a Banach space and ∥ab∥ ≤ ∥a∥∥b∥ (a, b ∈ A). The classical examples of
Banach algebras are C0(Ω), BL(X), and L1(G); where Ω is a locally compact, Hausdorff
space, X is a Banach space, and G is a locally compact, Hausdorff topological group.
Many important algebras in analysis and in other branches of mathematics are Banach
algebras. There is a strong bonding between the algebraic structure and the topological
structure in Banach algebras. The algebraic structure of A determines various properties
of its topological structure. For example, each multiplicative linear functional on A is
continuous [163, Theorem 2.1.29].

Let A be a Banach algebra and A∗ be its Banach space dual. Let S(A) = {x ∈ A :
∥x∥ = 1}, DA(x) = {φ ∈ A∗ : ∥φ∥ = 1 = φ(x)}, and VA(a;x) = {φ(ax) : φ ∈ DA(x)} for
a ∈ A and x ∈ S(A). Then the set VA(a) = ∪{VA(a;x) : x ∈ S(A)} is called the spatial
numerical range (SNR) of a in A with respect to ∥ · ∥. The SNR VA(a) highly depends on
both the algebra A and the norm ∥ · ∥. It is proved in [176, Theorem 2.1] that VA(a;x) is
always convex. So the following is a natural question: Is the SNR VA(a) always convex?
We do not know its answer. If A has an identity e with ∥e∥ = 1, then VA(a) = VA(a; e) is
convex [176, Corollary 2.1]. It is convex in many non-unital Banach algebras [177, 324].
On the other hand, Bonsall and Duncan defined the SNR for any bounded linear operator
T ∈ BL(X), which is slightly different from our definition. They constructed an operator
T on C2 whose SNR VBL(X)(T ) is not convex [124, Page-98]. Unfortunately, this operator
T does not help us to find an element a in A such that VA(a) is not convex.

One of the most important Banach algebra is the weighted discrete semigroup algebra
ℓ1(S, ω), where S is a semigroup and ω is a weight on S, i.e., 0 < ω(s) and ω(st) ≤ ω(s)ω(t)
for all s, t ∈ S [163, Page-159]. The Banach algebra norm on it is denoted by ∥ · ∥ω. The
Banach algebra ℓ1(S, ω) is mostly used as a counter example. However, it is studied
independently also. Its Banach algebra structure is highly influenced by S and ω. For
example, it is commutative iff S is abelian; and it is semisimple iff S is separating and
ω is semisimple [175, Theorem 2.3]. Here we present some results on ℓ1(S, ω), which are
proved by us.

If A is a semisimple Banach algebra, then we get another norm on A; namely, the
operator norm ∥ · ∥op, which is defined as ∥a∥op = sup{∥ax∥ : x ∈ A, ∥x∥ ≤ 1} (a ∈ A).
In general, ∥ · ∥op ≤ ∥ · ∥ on A. The norm ∥ · ∥ is regular if ∥ · ∥op = ∥ · ∥ on A. For
example, every C∗-norm is a regular norm. A natural question is the following: When is
the weighted norm ∥ · ∥ω regular?, i.e., ∥ · ∥ωop = ∥ · ∥ω on ℓ1(S, ω)? We have proved the
following.
Theorem-(A): [178] Let S be a right cancellative semigroup and ω be a weight on S.

Let k ∈ N and ω̃0 = ω. Define ω̃k(s) = sup{ ω̃k−1(st)

ω̃k−1(t)
: t ∈ S} (s ∈ S). Then

(1) Each ω̃k is a weight on S.
(2) ω̃k+1 ≤ ω̃k on S for each k.
(3) ℓ1(S, ω) ⊆ ℓ1(S, ω̃k−1) ⊆ ℓ1(S, ω̃k).
(4) (ℓ1(S, ω̃k), ∥ · ∥ω̃k

) is a Banach algebra.

(5) lim
n→∞

ω̃k(s
n)

1
n = lim

n→∞
ω̃k+1(s

n)
1
n (s ∈ S).

(6) ∥δt∥ω̃kop = ∥δt∥ω̃k+1
(t ∈ S).

(7) ∥f∥ω̃kop ≤ ∥f∥ω̃k+1
(f ∈ ℓ1(S, ω)).
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(8) ω̃k−1 has F-property (i.e., for each finite set {t1, . . . , tn} ⊂ S and r < 1, there is

s ∈ S such that ω̃k−1(tis)

ω̃k−1(s)
≥ rω̃k(ti) (1 ≤ i ≤ n)) iff ∥ · ∥ω̃kop = ∥ · ∥ω̃k+1

on ℓ1(S, ω).

(9) The 1-norm ∥ · ∥1 is regular on ℓ1(S).

On the other hand, for 1 ≤ p < ∞, the p-norm ∥ · ∥p is never regular on the sequence
algebra ℓp with pointwise multiplication [178, Theorem 2.8].

An element a in a commutative Banach algebra A is said to be compact if the linear
operator La : A −→ A; x 7−→ ax is a compact operator in the norm topology. Let
K(A) denote the set of all compact elements in A. Then K(A) is a closed ideal in A.
If A has finite dimension, then clearly K(A) = A. On the other hand, if the Gel’fand
space △(A) of a semisimple, commutative Banach algebra A has no isolated point, then
K(A) = {0}. Thus, the concept of compact elements is interesting mainly in infinite
dimensional, radical, commutative Banach algebras; the convolution algebras L1(R+, ω)
and l1(S, ω) are such Banach algebras.

The set of all compact elements of L1(R+, ω) has been studied by Bade and Dales
and for l1(S, ω) by Grønbæk. Some more results on compact elements in l1(S, ω) have
been studied by the author. We recently proved some weighted discrete analogues of the
results proved for L1(R+, ω) about compact elements [53]. We also set the record right by
correcting some statements claimed by Grønbæk. Let K(S, ω) be the set of all compact
elements in ℓ1(S, ω). Our main results are the following two.
Theorem-(B): [53] Let ω be a weight on an abelian semigroup S and f ∈ ℓ1(S, ω).
Consider the following three statements:

(a)
∑

{|f(s)|ω0(s) : s ∈ S} = 0; (b) lim
s→[∞]

δ̃s ∗ f = 0; (c) f ∈ K(S, ω).

Then

(1) (a) =⇒ (b) =⇒ (c).
(2) If S is weakly cancellative, then (c) =⇒ (b).
(3) If S is cancellative, then (b) =⇒ (a).

Theorem-(C): [53] Let S be cancellative and abelian, and ω be a weight on S. Then
there is a semigroup ideal T in S such that K(S, ω) = {f ∈ ℓ1(S, ω) : suppf ⊆ T}.

Open Problems: Following are some open problems in this area.

(1) Let S be an infinite semigroup. Is there always an unbounded weight on S?
(2) Let G be a discrete group. Is ℓ1(G,ω) always semisimple?
(3) Is there a Banach algebra A such that VA(a) is not convex for some a ∈ A?
(4) Is there an algebra A, which has finitely many (but more than one) non-equivalent

Banach algebra norms?
(5) When does the converse of Theorem-(C) hold true?, i.e., If T is a semigroup ideal

in S, then does there exist a weight ω on S such that K(S, ω) = ℓ1T (S, ω)?

10. Cartan isometries and Cartan contractions

By Surjit Kumar [surjit@iitm.ac.in] from IIT Madras; and Paramita Pramanick [parami-
tapramanick@gmail.com] from ISI Kolkata.

Let H be a complex separable Hilbert space. An operator T on H is an isometry if
T ∗T = I. A canonical example of isometry is the unilateral shift on ℓ2(N). By a commuting
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d-tuple T , we mean a tuple of operators T1, · · · , Td in B(H) that commutes pairwise.
A spherical isometry is a commuting d-tuple T which satisfies the condition T ∗

1 T1 +
· · · + T ∗

dTd = I. A remarkable result of Athavale shows that every spherical isometry is
subnormal with normal spectrum contained in the unit sphere ∂B (see [31]). Consequently,
one obtains a natural functional calculus for the ball algebra. Thus, a spherical isometry
may be regarded as a multi-variable analogue of an isometry associated with the unit ball.
This note explores isometries arising from classical Cartan domains, referred as Cartan
isometries and associated contractions.

Let Ω be a classical Cartan domain of rank r in Cd of type (r, a, b). Let SΩ be the
Shilov boundary of the domain Ω. Let G be the connected component of the identity in
Aut(Ω), the biholomorphic automorphism group of Ω. Let K = {g ∈ G : g(0) = 0} be a
maximal compact subgroup of G. Note that K is a subgroup of linear automorphism in
G. The group K acts on the space of analytic polynomials P by composition. Under this
action, P decomposes into irreducible, mutually K-inequivalent subspaces Ps such that
P =

∑
Ps, where the sum runs over all signatures, s = (s1, . . . , sr) ∈ Zr+, s1 ≥ . . . ≥

sr ≥ 0. Let {ψsα(z)}dsα=1 be an orthonormal basis of Ps with respect to the Fischer-Fock
inner product, where ds is the dimension of Ps. The reproducing kernel Ks is given by

Ks(z, w) =
∑ds

α=1 ψ
s
α(z)ψsα(w).

A Cartan isometry is a commuting subnormal d-tuple T with normal spectrum σn(T )
contained in SΩ (see [34]). A well-known example of a Cartan isometry is the Szegö
shift on the Hardy space H2(SΩ). In fact, a d-tuple T ∈ AK(Ω) is a Cartan isometry
if and only if T is unitarily equivalent to the Szegö shift. For more details on AK(Ω),
a certain class of K-homogeneous operator tuples, we refer to [202]. In [34], Athavale
provided a characterization of Cartan isometries addressing each classical Cartan domain
individually. Recently, in [273], we have characterized Cartan isometries for all types of
classical Cartan domains, unifying them under a single framework.

Theorem 10.1. A commuting d-tuple T is a Cartan isometry if and only if

∆(ℓ)(z, w)(T ,T ∗) =

(
r

ℓ

)
IH for all 1 ≤ ℓ ≤ r, (10.1)

where (ℓ) := (1, . . . , 1, 0, . . . , 0) denotes the signature with first ℓ many ones and

∆(ℓ)(z, w) =
ℓ∏

j=1

(1 +
a

2
(j − 1))K(ℓ)(z, w). (10.2)

Consequently, we have the following results:

Corollary 10.2. Let T be a Cartan isometry. The following holds true:

(i) The Taylor spectrum σ(T ) is contained in Ω.
(ii) For every g ∈ G, g(T ) is a Cartan isometry.

(iii) Every Cartan isometry is reflexive.

The Wold–von Neumann decomposition [158, pp. 14] asserts that every isometry on
a Hilbert space is unitarily equivalent to the direct sum of a unilateral shift (of pos-
sibly countable multiplicity) and a unitary operator. This result plays a central role
in Beurling’s characterization of z-invariant subspaces of the Hardy space over the unit
disc [158, pp.23 ]. Using the model theory of row d-hypercontractions, Athavale showed
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that a spherical isometry T admits a Wold-type decomposition exactly when T ∗ is a
d-hypercontraction [33, Theorem 2.1]. This naturally leads to the study of a Wold-type
decomposition for Cartan isometries.

Recall that a commuting d-tuple T is a spherical contraction if T ∗
1 T1 + · · · + T ∗

dTd ≤ I.
Equivalently, the operator DT : H → H(d) given by DTh = (T1h, . . . , Tdh) is a contraction.
Analogously, we define a notion of contraction for classical Cartan domains. For m ≥
n ≥ 1, let Ωn,m = {z ∈ Mn×m : ∥z∥ < 1} be the Cartan domain of type-I. Let T =
(T11, . . . , T1m, T21, . . . , T2m, . . . , Tn1, . . . , Tnm) be a commuting mn-tuple of operators on
H. Consider DT : H(n) → H(m) given by DT (h1, . . . , hn) = (

∑n
i=1 Ti1hi, . . . ,

∑n
i=1 Timhi)

for all hi ∈ H and i = 1, . . . , n. The mn-tuple T is said to be a Cartan contraction of type-I
if DT is a contraction. A routine verification shows that T is a Cartan isometry if and only
if DT is an isometry. In a similar fashion, one can define Cartan contractions for Cartan
domains of type-II and type-III. A realization formula for Schur-Agler class associated
with such (strict) contraction appeared in the work of [54]. If T is a Cartan contraction
of type-I, then by [13, Lemma 1], σ(T ) ⊆ Ωn,m. Also, g(T ) is a Cartan contraction of
type-I for all g ∈ G.

Consider the mn-tuple M (ν) of multiplication operators given by Mij(f)(z) = zijf(z)
on the weighted Bergman space H(ν) of holomorphic function defined on Ωn,m. Then, for
any ν ∈ {m, . . . ,m+n−1}∪(m+n−1,∞), M (ν) is a subnormal d-tuple, and therefore, is
a Cartan contraction of type-I. Furthermore, for ν < m, M (ν) is not a Cartan contraction
of type-I.

A fundamental result due to von Neumann [440] states that if T is a contraction on
a Hilbert space H, then ∥p(T )∥ ≤ ∥p∥∞,D := sup{|p(z)| : |z| < 1} for every polynomial
p. In other words, the induced homomorphism ρT (p) = p(T ) is contractive whenever T
is a contraction. Sz.-Nagy’s dilation theorem [416] shows that ρT is not only contractive
but completely contractive, that is, T admits a unitary (power) dilation. Equivalently,
∥P (T )∥ ≤ ∥P∥∞,D for every n × n matrix valued polynomials P (z) = (pi,j(z)). Ando’s
dilation theorem [15] extends the result to pairs of commuting contractions. Parrott [321]
constructed an example of three commuting contractions that satisfies von Neumann’s
inequality but fails to admit a commuting unitary dilation. We say that a commuting
d-tuple T admits a spherical dilation (normal ∂B-dilation in Arveson’s terminology) if
there exist a Hilbert space K ⊃ H and a spherical isometry S = (S1, . . . , Sd) in B(K)
such that T α = PHS

α|H for all α ∈ Zd+, where PH denotes the orthogonal projection
of K onto H. Due to a deep result of Arveson [24], it follows that T admits a normal
∂B-dilation if and only if the induced homomorphism ρT is completely contractive.

In [32], Athavale established that every d-hypercontraction admits a spherical dilation
(see also [307]). Identifying an appropriate analogue of a d-hypercontraction in the setting
of Cartan domains, which could potentially yield a Cartan isometric dilation, appears to
be a challenging problem. On the other hand, for any spherical contractive d-tuple M
of multiplication operators by the coordinate functions on a reproducing kernel Hilbert
space with a U(d)-invariant kernel, the induced homomorphism ρM is contractive, that is,
∥P (M )∥ ≤ ∥P∥∞,B (cf. [272, Proposition 2.5]). In fact, by employing slice representation
techniques (see [150, Theorem 1.10]), one can obtain a spherical dilation for such operator
tuples. Looking ahead, it is natural to expect that the techniques of “slice representation”
for K-invariant kernels may eventually lead to a Cartan isometric dilation for Cartan
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contractive multiplication tuples. Equivalently, this would establish that for any Cartan
contractive d-tuple in AK(Ω), the induced homomorphism is completely contractive.

11. Norms on operator space tensor products and C∗-envelopes of
operator systems

By Ajay Kumar [ak7028581@gmail.com] from University of Delhi; and Preeti Luthra
[preeti@ms.du.ac.in] from Mata Sundri College for Women, University of Delhi.

Von Neumann in collaboration with Murray began a mathematical quantization pro-
gram. The key idea being to replace function spaces by ∗-algebra of bounded operators
on Hilbert spaces. An operator space is a Banach space X with an extra matricial norm
structure. We have norms on Mn(X) of n× n matrices with entries from X, where these
norms must satisfy certain consistency requirements. The systematic study of operator
spaces has been done mainly by Effros and Ruan [194, 195], Blecher and Paulsen [121],
Blecher and Smith [122] and Haagerup and Musat [224].

Grothendeick, in his celebrated paper [216], considered 14 natural norms defined on
tensor product of two normed spaces. The foundation for a systematic study of tensor
products of subspaces of C∗-algebras was done in [194, 121]. They defined various oper-
ator space tensor norms, namely, the Haagerup norm, the operator space projective and
injective norms.

The Haagerup norm ∥·∥h and Banach space projective norm ∥·∥γ are equivalent on the
algebraic tensor product A⊗ B of two C∗-algebras A and B if and only if either A or B
is finite dimensional or A and B are infinite dimensional and subhomogeneous. The same
conclusion holds if the Banach space projective norm is replaced by the operator space
projective norm. The equivalence of the Banach space projective norm and operator space
projective norm ∥·∥∧ holds if and only if A or B are subhomogeneous [268]. The Haagerup
and Banach space projective norm may be equivalent for an infinite-dimensional ternary
ring of operator and an infinite dimensional C∗-algebra which are not subhomogeneous.
No clear criterion is available for arbitrary operator spaces. Moreover, equivalence of
Schur norm ∥ · ∥s and ∥ · ∥∧ is still not known even for C∗-algebras [360, 269]. Basic tools
involved are Grothendieck inequality [223, 224, 345], lifting maps to second duals and to
tensor product of second duals.

If A and B are C∗-algebras and ∥ · ∥α and ∥ · ∥β are tensor norms on A⊗ B such that
∥ · ∥α ≤ ∥ · ∥β, the identity map i : A⊗β B → A⊗α B which maps elementary tensor into
itself is continuous, and so can be extended uniquely to i : A⊗β B → A⊗αB. Injectivity
when β = γ and α = λ (the Banach space injective tensor norm) and β = ∧ and α = λ
were proved in [223, 236]. We still do not know the injectivity in case β = s or when A and
B are operator spaces [360]. The Haagerup tensor product M⊗hB, where M is a ternary
ring of operators (TRO) and B a C∗-algebra has been investigated. In contrast to the
C∗-algebra, a counterexample can be obtained showing that the Haagerup and maximal
tensor norms can be equivalent even when both M and B are infinite dimensional using
inductive limits [16, 250]. We also established an isometric embedding of M∗∗ ⊗h B∗∗

into (M ⊗h B)∗∗. Although M ⊗h B does not admit a natural C∗-algebra or ternary ring
structure, in fact we proved that A ⊗h B is a C∗-tring if and only if A = C or B = C,
thereby clarifying the boundary of when such structure survives even for C∗-algebras.
Nevertheless, we developed an ideal-theoretic framework, classifying maximal, prime, and
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primitive ideals directly in terms of the ideal of M and B. These results illustrate that the
ideal structure of M ⊗h B retains much of the algebraic clarity seen in the C∗-algebraic
context [250, 251].

Beside C∗-algebras and operator spaces, operator systems have attracted considerable
attention of operator algebraists in recent years. Operator systems are self-adjoint unital
subspaces of B(H) for a complex Hilbert spaceH [330]. Naturally, they are matrix ordered
and matrix normed spaces just as C∗-algebras. Arveson in [23] remarked that one can
generate non-∗-isomorphic C∗-algebras from an operator system S depending upon the
representation, these are called as C∗-covers of S. The existence of minimal amongst all
these C∗-covers for an operator system S, referred to as the C∗-envelope of S and denoted
by C∗

e (S), was shown by Hamana [225].
In 2011, a new approach to the study operator system tensor products was introduced

and a lattice structure of 6 operator system tensor products was provided in [252]. ess
tensor product related to C∗-envelopes was later introduced in [196], via the embedding
S ⊗ess T ⊂ C∗

e (S) ⊗max C
∗
e (T ). The whole theory of tensor products, even the very

recent one, revolves around the work of Lance [275]. It is well known that the operator
space minimal (injective) tensor product and maximal (projective) tensor product do not
coincide even for finite dimensional matrix algebras, e.g., ∥E1j ⊗ Ejj∥∨ = 1 ̸=

√
n =

∥E1j ⊗ Ejj∥∧ (see [268]), so the term nuclearity can not be extended to operator spaces.
But due to the introduction of several tensor products in the category of operator systems,
the notion of nuclearity was generalized to operator systems from C∗-algebras in [252].

The relationship of nuclearity of an operator system with the nuclearity of its C∗-
envelope was considered in [221]. It was shown that nuclearity of the C∗-envelope of an
operator system is equivalent to (min, ess)-nuclearity of operator system. Moreover, a
unital C∗-algebra is (min, ess)-nuclear as an operator system if and only if it is nuclear as
a C∗-algebra [221]. Associated to the the group C∗-algebra are finitely generated operator
systems called group operator systems [196]. The exhaustive list of nuclear group operator
systems associated to minimal generating sets of finitely generated groups was provided
in [221]. Unlike C∗-algebras, separable exact operator systems need not embed into the
Cuntz algebra O2 [255, 284]. It is the exactness of the C∗-envelope, rather than that
of the operator system that makes an operator system embeddable into O2 [285]. For a
separable operator system S, the C∗-envelope C∗

e (S) is exact if and only if there exist a
unital complete order embedding of S into O2. The commutativity of inductive limits
and C∗-envelopes was studied in [270].

The study on the quantitative theory of polynomials in operator spaces was initiated in
[179]. The λ-theory, based on the tensor norms obtained from homogeneous polynomial,
was extended to matrix ordered spaces and Banach ∗-algebras in [286].

Dosiev in [183] proposed a concrete structure of local operator systems using the multi-
normed C∗-algebra C∗

E(D). Tensor product structure in the category of local operator
systems was introduced in [78] and nuclearity in this category was discussed in [80]. Fur-
ther Arveson’s notion of hyperrigidity of operator systems was extended to local operator
systems in [79].

As a final remark, it is important to highlight that some recent studies e.g. [156, 256, 253]
have integrated the theoretical framework of operator algebras with practical explorations
in quantum information theory, thereby emphasizing the significance of their deep and
far-reaching interconnections.
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12. Bohr’s Inequality and the Gleason–Kahane–Żelazko Theorem

By Sneh Lata [sneh.lata@snu.edu.in] from Shiv Nadar Institution of Eminence; and Di-
nesh Singh [dineshsingh1@gmail.com] from O. P. Jindal Global university.

Sneh Lata and Dinesh Singh, along with their collaborators, have made contribu-
tions–deemed significant by many–to the fields of complex analysis and functional analy-
sis, particularly in two notable areas: Bohr’s inequality and the Gleason–Kahane–Żelazko
(GKZ) theorem. Their work extends important classical results that have strong impli-
cations for modern analysis to more general settings, including non-commutative spaces
and new classes of function spaces.

Bohr’s Inequality

The classical Bohr’s inequality, established by Harald Bohr [123] in number theory,
states that for f(z) =

∑∞
k=0 akz

k ∈ H∞(D), the inequality
∞∑
k=0

|ak|rk ≤ ∥f∥∞, 0 ≤ r ≤ 1
3
,

holds. The bound r0 = 1/3 is optimal, meaning the inequality fails for some functions
when r > 1/3. Bohr proved it initially for r ≤ 1/6, and later Riesz [182], Schur [182],
Sidon [402], Wiener [123], and Tomic [420] extended it to r = 1/3. More recently, Lata and
Singh established analogues in non-commutative Hardy spaces associated with semifinite
von Neumann algebras, yielding versions for von Neumann-Schatten class operators C1 and
finite matrices. Earlier, Singh with Paulsen [334] obtained a general form for Hardy spaces
associated with uniform algebras, showing the inequality’s independence from Fourier
coefficients and its validity for more general coefficients. See also [332, 333]. Lata and
Singh [276] later extended this analogue to non-commutative Hardy spaces associated
with a von Neumann algebra M equipped with a normal semifinite faithful trace τ .

Theorem 12.1. [276, Theorem 4.7](Bohr’s Inequality for Non-Commutative Hardy Spaces)
Let x ∈ H1(M) such that τ(x) ≥ 0 and Re(x) ≤ y for some self-adjoint y ∈ H1(M) with
finite trace. For a sequence {xm}∞m=1 in H∞

0 (M) with ||xm||∞ ≤ 1, let α0 = τ(x) and
αm = τ(xx∗m) for m ≥ 1. Then:

∞∑
m=0

|αm|rm ≤ τ(y) (12.1)

whenever 0 ≤ r ≤ 1
3
.

This generalized theorem yields the classical Bohr’s inequality when M = L∞(T).
The theorem also provides specific optimal bounds for r depending on the von Neumann
algebra M. When M = Mn(C), the optimal bound for r is at most n

3n−2
for any general

n, 1/2 for n = 2, and
√

2 − 1 for n = 3. When M = B(H) for an infinite dimensional
Hilbert space H or a commutative von Neumann algebra, the optimal bound is 1/3.

Lata and Singh’s work also provides versions of Bohr’s inequality under more relaxed
hypotheses. For the class C1, they proved that an inequality similar to (12.1) can be
obtained for a larger collection of operators. Additionally, for finite matrices in Mn(C),
they showed that the optimal bound for r is 1/3 for all n ≥ 2, unlike the specific bounds
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given by Theorem 12.1, as mentioned above. This was achieved by constructing specific
non-trivial matrices that cause the inequality to fail for r > 1/3.

The Gleason–Kahane–Żelazko (GKZ) Theorem

The GKZ theorem [213, 249, 447] characterizes multiplicative linear functionals on
Banach algebras. Lata and Singh, along with Jaikishan, developed new analogues for
function spaces in a vein similar to that pursued by Mashreghi and Ransford [294], but
employing new methods in different directions. In [234], they established a general GKZ
theorem on the vector space of complex polynomials, showing that multiplicative linear
functionals–those with F (1) = 1 and F ((z − α)n) ̸= 0 for all n and α outside a fixed
open disc–are precisely point evaluations. Mathematical Reviews described this as a far-
reaching generalization. Their work further extends to vector spaces with topologies not
tied to algebraic structure.

Theorem 12.2. [234, Theorem B] Let X ⊂ F(r,C) be a complex vector space equipped
with a topology that satisfies the following properties:

(1) for each w ∈ D(0, r), the map f 7→ f(w) is continuous;
(2) X contains the set of complex polynomials as a dense subset.

Let Y = {(z − λ)n : n ≥ 0, λ ∈ C, |λ| ≥ r}. If F : X → C is a continuous linear
functional such that F (1) = 1 and F (g) ̸= 0 for all g ∈ Y, then there exists w ∈ D(0, r)
such that

F (f) = f(w)

for all f ∈ X .

The authors observe that while their theorem parallels Mashreghi and Ransford’s re-
sults, it relies only on a narrow class of outer functions–powers of linear outer polynomi-
als–and, unlike their proofs, does not use the GKZ theorem.

Lata and Singh, with Jaikishan, extended the Kowalski–S lodkowski (KS) theorem [262],
a generalization of the GKZ theorem, to broader topological spaces in [235]. They showed
that non-zero continuous functions with values in a Banach algebra satisfying KS-type
conditions can be expressed as a composition of a point evaluation and a multiplicative
linear functional. Their analogue of the KS theorem stands apart from related works
of Sampat [393] and Sebastian–Daniel [397]. Their result provides a several-variables
analogue of the KS theorem for vector-valued functions, while Sampat’s yields a GKZ
version and Sebastian–Daniel’s is confined to Hardy spaces on the unit disc. The proofs
given in [235] are elementary, in contrast to the function-theoretic approach of [393] and
the Hardy space approach of [397]. They assume the map is non-zero only on certain
polynomials, introduce an essential continuity condition, and extend the result beyond
analytic function spaces.

The main thrust of our plans for the future shall centre around–in addition to de-
veloping new applications and generalizations of Bohr’s inequality as well as the GKZ
theorem–investigations of invariant subspaces of operators on the spaces BMO and VMO
and on abstract function spaces associated with compact Abelian groups and group alge-
bras.
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13. von Neumann Algebras

By Kunal Krishna Mukherjee [kunal@iitm.ac.in] from IIT Madras.

In India, the community of researchers working in von Neumann algebras is led by
the author alongside P. Bikram, I. Patri, K. Bakshi, V. Gupta, V. Kodiyalam, S. Ghosh,
and their students and postdoctoral collaborators. Broadly speaking, the first three–
Mukherjee, Bikram, and Patri—have advanced the analytical, algebraic, and dynamical
aspects of von Neumann algebras, while the latter group–Bakshi, Gupta, Kodiyalam, and
Ghosh–have primarily concentrated on II1 factors and subfactor theory. It is important
to emphasize that the development of von Neumann algebras in India reflects a clear gen-
erational leap: the field has evolved from an early focus almost exclusively on II1 factors
and subfactor theory to a much broader engagement with factors of all types. This shift
marks a significant success story in the Indian operator algebra community, positioning
it to contribute meaningfully to global research trends. This article, in particular, con-
centrates on the analytical, algebraic, and dynamical aspects of von Neumann algebras,
without restricting attention to any specific type of factor, thereby reflecting this broader
and more mature research landscape. Here, we highlight several of the major results ob-
tained over the past decade, which together illustrate both the depth and the breadth of
these investigations.

The recent paper [64] studied the relationship between the dynamics of the action α
of a discrete group G on a von Neumann algebra M , and structural properties of the
associated crossed product inclusion L(G) ⊆ M ⋊α G, and its intermediate subalgebras.
The underlying group is only assumed to be discrete, regardless of its cardinality, and the
ambient von Neumann algebra is just assumed to be σ-finite. A key tool in the setting
of a noncommutative dynamical system is the set of quasinormalizers for an inclusion of
von Neumann algebras. It was shown that the von Neumann algebra generated by the
quasinormalizers captures analytical properties of the inclusion L(G) ⊆ M ⋊α G, such
as the Haagerup Approximation Property, and is essential to capturing almost periodic
behaviour in the dynamical system. This yields a new description of the Furstenberg-
Zimmer distal tower for an ergodic action on a probability space. New versions of the
Furstenberg-Zimmer structure theorem for general, tracial W ∗-dynamical systems were
obtained. This work builds upon more than eighty years of profound developments in the
theory of operator algebras, with Dixmier’s seminal contributions in the 1950s (notably
Dixmier, 1954) marking the starting point of systematic investigations into the structure
of von Neumann algebras. The study of quasinormalizers, in particular, has revealed a
remarkably rich and intricate structure that continues to pose challenging open questions.
We believe that, despite the substantial progress achieved to date, there remains a long
trajectory ahead before a comprehensive understanding of these objects is reached.

A long paper [DM] (in a series of five) takes up a comprehensive study of uniformly
left bounded (resp. left-right bounded) orthonormal bases in GNS spaces of infinite-
dimensional von Neumann algebras in the framework of both faithful normal states and
f.n.s. weights. Necessary and sufficient conditions on a closed subspace of a GNS space
were provided to guarantee the existence of an orthonormal basis of uniformly left bounded
(resp. left-right bounded) vectors. In the context of states, while a basis of the first kind
exists for all GNS spaces, B(ℓ2) (and purely atomic algebras in general) is excluded for a
basis of the latter kind. However, in the context of weights, there are no such aforesaid
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obstructions. In the context of weights, the GNS space of every infinite-dimensional von
Neumann algebra admits a uniformly left and right bounded orthonormal basis such that
the aforesaid bound is arbitrarily small.

If M is an infinite-dimensional factor and φ is a faithful normal state on M , then given
ϵ > 0, the associated GNS space admits a uniformly left bounded orthonormal basis O
such that supξ∈O ∥Lξ∥ ⩽ (1 +

√
2) + ϵ. Similar statements were obtained for left-right

bounded bases when M is either of type II or IIIλ with λ ∈ [0, 1). As an outcome, it
follows that the GNS space of any type II1 factor with respect to its tracial state admits
an orthonormal basis consisting of images of self-adjoint operators from the ball of radius
(1+

√
2)+ ϵ, for every ϵ > 0. Related questions regarding orthounitary bases remain open

and untouched since the Baton-Rouge conference ’67.
The factoriality of q-deformed Araki-Woods algebras (algebras associated with de-

formed harmonic oscillator) which was open since 2001 after repeated abortive attempts
by stellar researchers in the field was settled except for one case in [107] and [108]. This
led to stimulus for others because recently the last case has been settled by others. The
constructions of such algebras were first dreamt of in 1974 to create field theories that al-
low ‘small violations’ of Pauli’s exclusion principle. Since such algebras are of type III and
the generators generate abelian algebras which usually lack appropriate conditional ex-
pectation, there is little to perform calculations. This difficulty was bypassed by choosing
an appropriate generator that generates a maximal abelian subalgebra with conditional
expectation and that which interacts with the other generators so as to allow calculation
of associated bimodules. This was the first calculation of masa-bimodules in the type III
setting, the S-invariant of Connes was calculated successfully and it was shown that in
the case the factor turns out to be type III1, they saisfy the bicentralizer conjecture of
Connes. Several subsequent papers, both in India and internationally, have pursued the
study of deformed Araki–Woods von Neumann algebras. However, this represents a note-
worthy instance where the direction of inquiry was not one of following existing trends
but, rather, one in which our work set the precedent and was later followed by others.

A systematic and comprehensive study of joinings of non-commutative dynamical sys-
tems was carried out in a series of 3 papers [65, 67, 66]. The study of actions of non-
commutative groups on von Neumann algebras was extended to a significant height,
strengthening a well-known result of Hoegh-Khron, Landstad and Størmer on actions
of compact groups on von Neumann algebras that appeared in Ann. Math. in ’82. The
result is as follows: If a locally compact group G acts ergodically on von Neumann algebra
M with separable predual preserving a faithful normal state φ, then any finite-dimensional
invariant subspace of the associated Koopman representation in the GNS Hilbert space
is contained inside the image of the centralizer Mφ. Consequently, if Mφ = C1 i.e., M
is a III1 factor, then any such ergodic action is weak mixing. It basically means non-
commutative dynamics are chaotic on large regions of the phase space.

A comprehensive study of compact bicrossed products, a construction in the theory of
Quantum Groups, was carried out in [FMP] and an infinite family of discrete quantum
groups with property (T) (of Khazdan and Margulis) were exhibited, a single example of
which was unknown then.

The paper in [MP] initiated the study of non-commutative dynamical systems of the
form (G,Γ), where a discrete group acts on a compact quantum group (CQG) by quantum
automorphisms. Combinatorial conditions for such dynamical systems to be ergodic,
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mixing, compact, etc., were obtained, and a wide variety of examples to illustrate these
conditions were provided. A well-known theorem of Halmos to demonstrate ‘reversal of
arrows’ in the ergodic hierarchy relevant to the context was generalized. Also, a study of
spectral measures for actions of (non-commutative) groups was made. An investigation
of the structure of such dynamical systems was made, and under certain restrictions,
the existence and uniqueness of the maximal ergodic invariant normal subgroup of such
systems was established. As an application, the size of normalizing algebras of masas
arising from groups in von Neumann algebraic CQGs was studied, and it was shown
that the normalizing algebra of such masas is the von Neumann algebra generated by
co-commutative CQGs.

14. Applications of Birkhoff-James orthogonality in studying the
geometry of operators between Banach spaces

By Kallol Paul [kalloldada@gmail.com] from Jadavpur University; and Debmalya Sain
[saindebmalya@gmail.com] from IIIT Raichur, Karnataka

Birkhoff-James orthogonality is arguably the most natural and well-studied concept of
orthogonality in the setting of Banach spaces. Introduced by Birkhoff [109] and later
developed by James [237], it provides key insights on the structure of Banach spaces
and perhaps more importantly, bounded linear operators between them. For elements
x, y in a Banach space X, x is Birkhoff-James orthogonal to y (denoted as x ⊥B y) if
∥x + λy∥ ≥ ∥x∥, for all scalars λ. A significant part of our research in the last two
decades is dedicated to exploring bounded linear operators by employing orthogonality
techniques. Letters X,Y denote Banach spaces and H a Hilbert space. The dual space of
X is denoted by X∗. BX and SX stand for the unit ball and the unit sphere of X, respec-
tively. Let L(X,Y) (resp. K(X,Y)) be the space of all bounded (resp. compact) linear
operators between X and Y. The space of all bounded (resp. compact) linear operators
on X is denoted by L(X) (resp. K(X)). Given T ∈ L(X,Y), the norm attainment set of
T, denoted by MT , is defined as MT = {x ∈ SX : ∥Tx∥ = ∥T∥}. A useful characterization
of Birkhoff-James orthogonality in L(H), where H is an Euclidean space, was obtained in
[96, 327]. It is worth mentioning that the following conjecture in [96] was one of the key
motivators for our study in this direction:

“If T,A ∈ L(X), where X is a finite-dimensional Banach space, are such that T ⊥B A
then there exists x ∈MT such that Tx ⊥B Ax.”

In this context, our main contribution in [387] is to illustrate the importance of the
norm attainment set MT in the whole scheme of things. More precisely, we show that
for real Banach spaces, the above conjecture is true whenever MT = ±D, where D is a
connected set. On the other hand, easy counter-examples to the above conjecture can be
constructed by considering MT to be not of this form. This insight also allowed us to char-
acterize Euclidean spaces: “A finite-dimensional real Banach space X is a Hilbert space if
and only if for any T ∈ L(X), MT is the unit sphere of some subspace of X.” Furthermore,
in [388], we extended the characterization to compact operators T ∈ K(X,Y), where X is a
reflexive Banach space. In the most general setting of L(X,Y), where norm attainment is
not a priori guaranteed, complete characterizations of Birkhoff-James orthogonality have



36 SARKAR

been obtained in [289] and [388], with important applications to the study of Gateaux
differentiability (also called smoothness in the language of geometry) in operator spaces.

Let us recall that an element x ∈ X is said to be smooth if {f ∈ SX∗ : f(x) = ∥x∥}
is a singleton. Smoothness of an element is fundamentally related to orthogonality in
the following way: A non-zero vector x ∈ X is smooth if and only if Birkhoff-James
orthogonality at x is right additive, i.e., x ⊥B y and x ⊥B z =⇒ x ⊥B (y + z).
By using the previously mentioned characterizations of Birkhoff-James orthogonality, we
studied the smoothness of bounded linear operators. In [328], complete characteriza-
tions of smooth operators in L(H) and in K(X) have been obtained, for a reflexive real
Banach space X. These results were further generalized in [389], where the smooth op-
erators in L(X,Y) have been characterized. We have also explored a generalized notion
of smoothness, namely, the k-smoothness. An element x ∈ SX is said to be k-smooth if
dim span{f ∈ SX∗ : f(x) = ∥x∥} = k. A complete identification of k-smooth operators
in L(H) has been obtained in [287]. Some related results have also been presented for
operators on ℓn1 and ℓn∞. We have further extended this study in [392], where we have
solved the k-smoothness problem for operators between polyhedral Banach spaces.

We have also explored another fundamental geometric notion in the space of bounded
linear operators, namely, the extreme contractions. We recall that extreme contractions
are simply the extreme points of the unit ball of the space of all bounded linear opera-
tors. Although the extreme contractions in L(H) have been characterized nearly seven
decades ago, a tractable solution in a general Banach space setting remains elusive, even
in the finite-dimensional case. In [386], we completely characterized these special points
in L(X,Y), where X,Y are two-dimensional strictly convex and smooth Banach spaces.
We further study this problem for finite-dimensional polyhedral spaces in [390], where it
was shown that if X is an n-dimensional polyhedral Banach space and T ∈ L(X,Y) is
an extreme contraction, then MT contains n linearly independent extreme points of BX.
Throughout these studies, Birkhoff-James orthogonality has played a central role.

More recently, we have applied our work on Birkhoff-James orthogonality to the the-
ory optimization in Banach spaces, focusing on classical best approximation and best
coapproximation problems. In [385], best approximations to compact operators between
Banach spaces and Hilbert spaces have been studied from the view point of Birkhoff-James
orthogonality. As an application, some distance formulae have been presented in the space
of compact operators. Later this work has been further extended and generalized in [288],
where we have obtained several distance formulae for a compact operator to a subspace.
The best coapproximation problem, a much less explored but equally natural counterpart
of the classical best approximation problem, was studied in [391]. We have completely
characterized best coapproximation points from an n×n matrix to a subspace of diagonal
matrices and moreover, identified the coproximinal and the co-Chebyshev subspaces in
this setting, which are important for many practical purposes.

In a nutshell, our research on Birkhoff-James orthogonality and its various applications
in the isometric theory of Banach spaces illustrate the importance of orthogonality in
understanding the analytic as well as the geometric properties of Banach spaces and



A COMPENDIUM OF RESEARCH IN OPERATOR ALGEBRAS AND OPERATOR THEORY 37

of bounded linear operators between them. In the last decade, several groups of Banach
space theorists have become interested in applying orthogonality techniques in the setting
of operator spaces. We strongly expect this trend to continue for good reasons and it is our
intention to further explore orthogonality related topics in the more general framework of
topological vector spaces.

15. Commutators and Lie algebras of compact operators

By Sasmita Patnaik [sasmita@iitk.ac.in] from IIT Kanpur.
[Dedicated to the memory of Gary Weiss]

This article centers around two long-standing open questions spanning over four decades:
the Pearcy–Topping’s compact commutator problem [337, Section 2, Problem 1] and the
Wojtyński’s Lie algebra simplicity problem [446, Question 3]. We briefly summarize the
progress made with emphasis on the approach to these problems.

Commutators are operators of the form AB−BA, where A andB are bounded operators
on a complex Hilbert space. When the Hilbert space is finite dimensional, then a matrix
is a commutator if and only if its trace is zero [409]. The situation changes in the infinite-
dimensional Hilbert space setting. In 1965, Brown–Pearcy characterized all commutators
of bounded operators: a bounded operator is a commutator if and only if it is not a
nonzero scalar perturbation of a compact operator [127, Theorem 3]. Later, Pearcy–
Topping initiated the study of commutators of compact operators by asking four seminal
questions on its structure. Among them, the following remains unresolved [337, Section
2, Problem 1] (1971): is every compact operator a commutator of compact operators? In
this direction, Anderson constructed infinite block matrices whose commutator is a rank-
one projection operator (infinite kernel) [14, Theorem 1], thereby affirmatively answering
the key test question posed by Pearcy–Topping in [337]. This was a groundbreaking work
of Anderson and the starting point of our research in the subject. By making a modest
modification of Anderson’s matrix model, we (joint with Gary Weiss) answered a 35-year-
old test question posed by Gary Weiss [76, Theorem 3.1]: there is a rich class of strictly
positive (zero kernel) compact operators with repeating eigenvalues that are commutators
of compact operators.

The work mentioned in this paragraph is a joint work with Jireh Loreaux, John Petro-
vic, and Gary Weiss. In continuation of our earlier work on commutators, by making
a controlled perturbation of Anderson’s matrices and extending the techniques of An-
derson’s matrix model, we further enlarged the known class by constructing a family of
strictly positive compact operators with distinct eigenvalues [280, Theorem 2.10]. After
the successful implementation of certain variations of Anderson matrix model, we encoun-
tered obstacles in the use of Anderson’s matrix model that had to do with the arithmetic
growth size of its block matrices [280, Theorem 3.4, Corollary 3.5]. A deeper analysis of
Anderson’s matrix model opened a new vein in our study of commutators - sparsification
of matrices in universal block tridiagonal matrix forms [326, Theorem 20.4, Theorems
20.7-20.8], which is a joint work with John Petrovic and Gary Weiss. We note for the
reader that any progress that has been made so far on this problem involved alterations
in the Anderson’s matrix model - a very matricial approach. After getting soaked in the
matrix constructions for a while, we next viewed this problem from a different angle inde-
pendent of matrix representations. We gave a fresh new perspective to the Pearcy-Topping
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problem by presenting more general constraints on the solutions of the commutator equa-
tion CZ − ZC = T in question. They are of two different types; quantitative in terms
of s-numbers [280, Proposition 4.1] and qualitative in terms of principal ideals generated
by the operators T,C, and Z [280, Corollary 4.8]. Several questions popped up in this
direction which one could take up to explore in [280, Section 4].

Our work over a decade on commutators of compact operators has led to various off-
shoots that adds perspective in several directions. For instance, Jireh Loreaux and Gary
Weiss found connecting threads between our study of single commutators of compact op-
erators with the concept of generalized traces (beyond spectral traces) on operator ideals
[281, Paragraph following Theorem 9]; and with the splitting of infinite matrix represen-
tations of compact operators and the membership of its parts in operator ideals [281,
Paragraph 6]. Our universal block tridiagonal matrix form associated with a compact
operator allowed us to reformulate an equivalent Pearcy–Topping question as follows: a
compact operator is a commutator of compact operators if and only if one can solve a
certain infinite system of finite matrix equations. Solving an infinite system of finite ma-
trices with varying sizes has its own challenges, but this equivalence broadly links the
study of elementary operators with the study of finite matrix theory.

The commutator operation AB −BA on the space of bounded linear operators gives a
non-associative structure to it, which is called a Lie algebra [325, Definition 2.5]. A concept
in Lie algebra that inherits both an algebraic and topological property is the topological
simplicity of Lie algebras (i.e., if it has no nontrivial closed Lie ideals). The Lie algebra
of bounded operators is not topologically simple because the closed Lie ideal of compact
operators is a nontrivial Lie ideal. In 1976, Wojtyński proved that if the Banach-Lie
algebra of compact quasinilpotent operators contains a nonzero finite-rank operator, then
the Lie algebra is not topologically simple [446, Theorem 6]. And in that spirit, he raised
the question [446, Question 3]: Does every Banach-Lie algebra of compact quasinilpotent
operators on a Banach space contain a nontrivial closed Lie ideal? Some partial results
centered around this question were obtained by Brešar, Shulman, and Turovskii in [128].
To the best of our knowledge, in any of the developments made so far on this problem, the
consideration of the adjoint representation of Lie algebras in the study of the simplicity
of Lie algebras seemed inevitable.

In 2022, the author of this article offered a new and direct hands-on approach to the
study of simplicity of Lie algebras of compact operators acting on an infinite-dimensional
separable complex Hilbert space that avoids the adjoint representation technique. We
achieved this goal by first focussing on the study of the algebraic simplicity of Lie al-
gebras of compact operators by addressing the question [325, Section 1, Paragraph 2]:
Which infinite-dimensional Lie algebras of compact operators on a Hilbert space are alge-
braically simple? By employing the notion of soft-edged ideals in the theory of operator
ideals, we obtained a sufficient condition that guarantees the non-simplicity of Lie alge-
bras of compact operators [325, Theorem 3.5 and Corollary 3.8]. Soft-edged ideals were
first introduced by Kaftal and Weiss and these ideals have played a significant role in
various aspects of operator ideal theory, see [247]-[248] and the references therein. This
approach establishes a bridge connecting a purely algebraic problem (simplicity) with an
analytic behaviour of certain operator ideals (ideal-softness). We also emphasized that
the investigation of simplicity of Lie algebras of finite-rank operators requires a separate
treatment [325, Question]. Ultimately, we intend to address the Wojtyński question in the
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Hilbert space framework hoping that the operator ideal techniques might shed some light
on the problem unlike the intractability of the problem in more general Banach spaces.

16. On subclasses of norm attaining operators on Hilbert spaces

By G. Ramesh [rameshg@math.iith.ac.in] from IIT Hyderabad

Norm attaining operators on Banach spaces have been studied extensively for several
decades. When considered on Hilbert spaces, these operators exhibit richer structural
and geometric properties. In recent years, significant attention has been devoted to both
norm attaining operators and their subclasses, as well as to minimum attaining operators
and their subclasses. In particular, both classes form dense subsets of B(H), the Banach
space of all bounded linear operators on a Hilbert space H, equipped with the operator
norm.

In this note, we focus on two central themes in operator theory: the norm attaining
property and the invariant subspace property for certain subclasses of norm attaining and
minimum attaining operators. We describe these details in the following.

Recall that a closed subspace M of H is said to be an invariant subspace for T
or invariant under T if T (M) ⊆ M ; that is, Tx ∈ M , whenever x ∈ M . Moreover,
M is said to be reducing for T if both M and its orthogonal complement M⊥ in H are
invariant under T . If M is invariant for every S ∈ B(H) that commutes with T , then M is
said to be hyperinvariant under T . The invariant subspace (respectively, hyperinvariant
subspace) problem can be stated as follows:

Problem 16.1. Let H be a separable, infinite-dimensional Hilbert space. Does every
T ∈ B(H) \ CI admit a nontrivial invariant (respectively, hyperinvariant) subspace?

Absolutely Norm attaining Operators: We say T ∈ B(H) is norm attaining if there exists
x ∈ H with ∥x∥ = 1 such that ∥Tx∥ = ∥T∥ and is absolutely norm attaining (or AN -
operator, for short) if for every non-zero closed subspace M of H, the restriction operator
T |M : M → H is norm attaining. We denote the set of all absolutely norm attaining
operators on H by AN (H).

The class of absolutely norm attaining operators was introduced in [130] based on the
properties of compact operators and isometries, with the motivation of studying the invari-
ant subspace problem. It includes compact operators, isometries, and partial isometries
with finite-dimensional kernels.

Several characterizations of positive AN -operators are provided in [319, 369, 366, 436],
while characterizations for normal AN -operators appeared in [50, 369, 436]. The self-
adjoint case is treated in [50, 436].

A central motivation for studying this class is its connection to the invariant subspace
problem, which can be approached via various representations of such operators. For
instance, the spectral decomposition of absolutely norm attaining normal operators is
discussed in [50, 369], and the hyponormal case is considered in [50]. A key question here
is: When does a hyponormal operator become normal? It is well known that compact
hyponormal operators are normal. In [50], it is shown that a hyponormal AN -operator
whose Weyl spectrum coincides with its essential spectrum must be normal. This result
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has been generalized to the operator norm closure of AN -operators in [362]. For devel-
opments on the functional calculus of AN -operators, we refer to [364], and for results on
the stability of AN -operators under the induced Aluthge transform, we refer to [363].

Another noteworthy subclass is the set of bounded operators attaining their norm on
every non-zero reducing subspace. This class does not contain the operator norm closure
of the AN -class, nor does it contained the operator norm closure of AN (H). However, it
is dense in B(H) with respect to the operator norm. In particular, every bounded operator
can be approximated by an operator in this class with a nontrivial invariant subspace (see
[361] for details).

Absolutely Minimum attaining Operators: A natural counterpart to the class of AN -
operators is the class of absolutely minimum attaining operators. Recall that T ∈ B(H)
is minimum attaining if there exists x ∈ H with ∥x∥ = 1 such that ∥Tx∥ = m(T ), the
minimum modulus of T , where

m(T ) = inf{∥Tx∥ : x ∈ H, ∥x∥ = 1}.

It has been shown that the set of minimum attaining operators is dense in B(H) with
respect to the operator norm [266], and moreover, a Bishop–Phelps–Bollobás type theorem
holds for this class [51]. We say T ∈ B(H) to be absolutely minimum attaining (or
AM, for short) if for every non-zero closed subspace M of H, the restriction operator
T |M : M → H is minimum attaining. The collection of all such operators is denoted by
AM(H), a class first introduced in [131].

The behaviour of AM-operators contrasts sharply with that of AN -operators. For
instance, every AM-operator has closed range, whereas an infinite-rank compact operator
can be AN without having closed range. Characterizations and properties of positive
AM-operators are given in [200], and several spectral characterizations appear in [49].

The existence of hyperinvariant subspaces for Toeplitz and Hankel operators in both
AN and AM classes has been studied in [367, 365]. Interestingly, the operator norm
closures of AN (H) and AM(H) coincide. Specifically,

AN (H) = AM(H)

= {K + αV : K compact, V partial isometry with , dim(ker(V )) <∞, α ≥ 0}.

For further details, see [366]. This class includes compact perturbations of unitaries, an
important class of operators in operator theory. The existence of invariant (hyperinvari-
ant) subspaces for this class remains an open problem. In this direction, recent progress
[52] shows that if T ∈ B(H) satisfies σess(T

∗T ) = {α} for some α ≥ 0 and the sequence
(α − λn) ∈ ℓp(N) for some 1 < p < ∞, where λn ∈ σd(T

∗T ), then T has a nontrivial hy-
perinvariant subspace. Here, σess(A) and σd(A) denote the essential and discrete spectra,
respectively, of a self-adjoint operator A ∈ B(H). As a consequence we can easily recover
a well known result: If T ∈ B(H) with I − T ∗T ∈ Kp(H) ( the Schatten-p class) for some
1 < p <∞, then T admits a non-trivial hyperinvariant subspace.

For a comprehensive survey on the spectral theory of unbounded absolutely minimum-
attaining operators, we refer the reader to [267].

The first step towards generalizing AN -operators to Banach space operators is to obtain
a representation of compact operators on Banach spaces, as established in [370].



A COMPENDIUM OF RESEARCH IN OPERATOR ALGEBRAS AND OPERATOR THEORY 41

17. Generalized Parrott homomorphisms and Banach space geometry

By Samya Kumar Ray [samyaray7777@gmail.com] from The Institute of Mathematical
Sciences (HBNI), Chennai; Rajeev Gupta [rajeev@iitgoa.ac.in] from IIT Goa; and Arpita
Mal [arpitamalju@gmail.com] from Dhirubhai Ambani University.

For n ∈ N, let Cn be the set of n-tuples of commuting contractions and Ck[z] be the set
of polynomials of degree at most k. Define

Ck(n) := sup
{
∥p(T )∥ : ∥p∥∞,Dn ⩽ 1, p ∈ Ck[z], T ∈ Cn

}
, C(n) := lim

k→∞
Ck(n).

We have C(1) = C(2) = 1 by dilation theorem of Sz.-Nagy [418] and Andö [15] respec-
tively. For n ⩾ 3, C(n) grows faster than any power of n [199], but it is unknown whether
C(3) (or any C(n), n ⩾ 3) is finite [343]. Varopoulos–Kaijser’s [434] construction shows
C2(3) > 1, raising the problem of whether (C2(n))n∈N is bounded. Varopoulos [435] proved
that KC

G ⩽ limn→∞ C2(n) ⩽ 2KC
G, where KC

G is the complex Grothendieck constant. Since
KC
G > 1, this Varopoulos inequality shows the eventual failure of von Neumann’s inequal-

ity in high dimensions. He asked whether the limit equals KC
G? In [219] this question

was answered in the negative by proving limn→∞ C2(n) ⩾ 1.118KC
G. Arveson [30] pro-

vided a remarkable equivalent criterion for ∂D3-normal dilation in terms of contractivity
vs. complete contractivity. Parrott’s example [321] showed that a unital contractive ho-
momorphism on O(D3) need not admit a ∂D3-normal dilation, revealing that complete
contractivity can fail in higher dimensions. Here, O(Dn) is the closure in C(Dn) of all com-
plex polynomials in n variables. Misra and his coauthors [300, 301, 298, 38, 295] further
studied these examples in detail and extended this to Euclidean balls in Cn for all n ⩾ 2.
Based on these examples, it is natural to study the Generalized Parrott homomorphisms
described below.

Fix ℓ,m ∈ N. We denote (X)1, as the open unit ball of a d-dimensional complex
Banach space X. Let Jℓ denote the standard Jordan block of size ℓ ∈ N. and C(ℓ,m)
denote the set of all d-tuples of square matrices of size m(ℓ + 1) of the form TV :=
(V1⊗ Jℓ+1, . . . , (Vd⊗ Jℓ+1), where V := (V1, . . . , Vd) is a d-tuple of commuting matrices of
size m. Let us consider the algebra homomorphism : Φℓ,V : f 7→ f(TV ) from O((X)1) to
Mm(l+1). Define

α(ℓ,X) := sup{∥Φℓ,V∥cb : ∥Φℓ,V∥ ≤ 1,V ∈ C(ℓ,m),m ∈ N}. (17.1)

Question 17.1. For a fixed ℓ ≥ 2, when is α(ℓ,X) = 1?

Note that α(1, X) is nothing but the constant α(X) studied earlier by Paulsen [331].

He observed that if every contractive homomorphism induced by T
(0)
V is completely con-

tractive, then α(X) = 1 and vice versa. It is known that α(ℓ∞(2)) = α(ℓ1(2)) = 1, while
α(X) > 1 whenever dim(X) ⩾ 3, see [342, 331]. Moreover, α(X) = 1 if and only if X
admits unique operator space structure [331]. These results highlight the gap between
contractivity and complete contractivity, linking dilation theory to the geometry of do-
mains and operator spaces. These connections were further revealed in [39] where the
contractivity vs. complete contractivity of a certain class of Parrott-like homomorphisms
(called little Parrott homomorphisms [218]) were shown to be equivalent to the so-called
2-summing property or Property P. Let us elaborate further. We use the natural notion
of positivity for elements of E ⊗ E, namely, an element A ∈ E ⊗ E is positive (written
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A ⩾ 0) if it is in the convex hull of the set of symmetric tensors x ⊗ x, x ∈ E. Given a
finite-dimensional complex Banach space E, let

γ(E) := sup
{
⟨A,B⟩HS : ∥A∥E→E∗ ⩽ 1, ∥B∥E∗→E ⩽ 1, A ⩾ 0, B ⩾ 0

}
,

where ⟨·, ·⟩HS denotes the Hilbert–Schmidt inner product. Then, in the terminology of
[39], E is said to possess Property P if γ(E) ⩽ 1. Real Banach spaces with the 2-summing
property have been completely characterized by [17]. In [296] the authors proved the re-
markable result that a two-dimensional subspace of (M2(C), ∥ · ∥op) has Property P if and
only if it is isometric to ℓ∞(2). Thereafter, it is natural to ask whether this kind of example
covers other familiar complex Banach spaces such as ℓp(2) for 1 ⩽ p ̸= 2 < ∞ for which
Property P has been well-studied [39]. Using unitary dilation of contractions it was shown
by Gupta and Reza [220] that ℓ1(n) does not embed into (Mk(C), ∥ · ∥op) for all n ⩾ 2.
However, Pisier (see [220]) raised the question if this result can be generalized to compact
operators and G. Misra asked whether ℓp(n) embeds isometrically into Mk(C). All these
questions were resolved in a series of papers [376], [138], [139]; along the way these papers
established noncommutative analogues of some well-known results of isometric embed-
dability between finite dimensional ℓp-spaces. Problems regarding isometric embedding of
Schatten-p classes or in general noncommutative Lp-spaces are very useful (see [228, 227],
[451]). The tools developed in [376], [138], [139] perhaps can be used to tackle some prob-
lems mentioned in [246]. Moreover, in [376] many two-dimensional Banach spaces were
produced without Property P which were outside the scope of [296] and [39]. However,
Despite all this work, it is still not known whether there is a two-dimensional complex
Banach space X having Property P but α(X) > 1. In C3, let x = (1, 0, a) and y = (0, 1, b),
with |a+ b| ∨ |a− b| < 1 but |a|+ |b| > 1, and set X = span{x, y}. It is known [17] that X
possesses the 2-summing property. It would be interesting to know whether α(X) = 1?
This would answer a long-standing open problem [342].

If a space E does not have the 2-summing property, then it is natural to find the
exact value of γ(E). Since {A ∈ E ⊗ E : ∥A∥E→E∗ ⩽ 1, A ⩾ 0} and {B ∈ E ⊗ E :
∥B∥E∗→E ⩽ 1, B ⩾ 0} are convex sets, the supremum in γ(E) is attained at the extreme
points of these sets. Using these it is proved that γ(ℓR1 (3)) = 1.125 [217]. One more
interesting observation which goes back to [39] is that sup{γ(ℓ1(n)) : n ∈ N} is nothing
but the positive Grothendieck constant. Motivated by this and some recent work as in
[35], [377] and in [218] we introduced the Grothendieck constant for a pair of Banach
spaces. We prove that for a Banach space F and a sequence of Banach spaces (Em)m∈N
with dimEn = n, if there is a C > 0 such that

∥A⊗ idF ∥Em⊗̌F→E∗
n⊗̂F ⩽ C∥A∥Em→E∗

n
(∗)

for all m,n ∈ N, then both F and F ∗ must have finite cotype. Moreover, assuming
that F has the bounded approximation property and that the conjecture in [344] has an
affirmative answer, we show that (E∗

n)n⩾1 satisfies G.T. uniformly [218]. For contractive
little Parrott homomorphisms Φℓ,V : O(Ω) →Mn, where Ω is the dual unit ball of a finite

dimensional Banach space (E, ∥·∥), we prove the sharp estimate ∥Φℓ,V∥cb ⩽
√
γ(E). This

yields a new proof of [155, Theorem 2.1] using the lower bound K+
G(ℓ∞(4), ℓ2(2)) ⩾ 1.1658,

for the complex positive Grothendieck constant for 4 × 4 positive matrices, obtained in
the same paper. It would be interesting to classify Banach spaces satisfying (∗).
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Fix d, n ∈ N, n ⩾ 2. Next, for any row vectors x1, . . . , xd ∈ Cn, define the operators

V1 =


0 x1 0 0
0 0 Dx1 ⊗ In−2 0
0 0 0 xt1
0 0 0 0

 , . . . , Vd =


0 xd 0 0
0 0 Dxd ⊗ In−2 0
0 0 0 xtd
0 0 0 0

 , (17.2)

where for each j = 1, . . . , d, Dxj denotes the diagonal operator with diagonal xj. Note that
V := (V1, . . . , Vd) is a commuting tuple and Vj is a contraction if and only if ∥xj∥2 ≤ 1.
Let Vd,n denote the collection of all the tuples V as defined by (17.2) such that Vj is a
contraction for each j = 1, . . . , d. Let C♯(d, n) denote the smallest constant C such that

∥p(V)∥ =
∣∣∣ ∑
|α|=n

aα[xα1 , . . . , xαn ]
∣∣∣ ⩽ C∥p∥∞,Dd ,

where [xα1 , . . . , xαn ] =
∑n

j=1 x
(j)
α1 · · ·x

(j)
αn , |α| :=

∑d
j=1 αj, for all V ∈ VDd,n and any poly-

nomial p(z1, . . . , zd) =
∑

|α|=n aαz
α. The constant C♯(d, n) is closely related to the higher

dimensional Grothendieck constant (cf. [421]).

Question 17.2. What is limd,n→∞C♯(d, n)?

By [226] C♯(d, n) ≲d (log(n+ 1))d−3.

18. Large time behaviour of operator semigroups

By Sachi Srivastava [ssrivastava@maths.du.ac.in] from University of Delhi.

A strongly continuous operator semigroup or C0-semigroup on a Banach space X is a
one parameter family {Tt}t≥0 of bounded linear operators on X satisfying (i) T0 = IX ,
(ii) TtTs = Tt+s, t, s ≥ 0 (iii) t 7→ Ttx is continuous for each x ∈ X. Strongly continuous
semigroups are important for solving the abstract Cauchy problem of the form u′(t) =
Au(t), u(0) = x0 where A is a closed and densely defined linear operator on a Banach space
X. In fact, this problem is well posed in the sense that for every x0 ∈ X it admits a mild
solution (given by u(t) = Ttx0 ) if and only if A is the generator of a C0-semigroup {Tt}t≥0,

that is, D(A) = {x ∈ X : limt↓0
Tt(x)−x

t
exists in X} and Ax = limt→0

Tt(x)−x
t

, x ∈ D(A).
However, the difficulty is that in most applications, the operator A is available, but the
semigroup is not known explicitly.

Driven by applications in evolution equations, control theory and mathematical physics,
the study of asymptotic behaviour of C0-semigroups has garnered increasing attention in
the last few decades, particularly in the context of stability, non-uniform stability and
decay rates [125, 72, 73, 152, 153, 154]. A semigroup {Tt}t≥0 is uniformly exponentially
stable if ∥Tt∥ ≤ Me−wt for all t > 0 where M ≥ 1, w > 0 (that is, the semigroup
decays to zero at an exponential rate), strongly stable if ∥Ttx∥ → 0 as t → ∞ for
each x ∈ X and if {Tt}t≥0 is uniformly bounded it is said to be polynomially stable (of
order α) if there is a constant M > 0 such that ∥TtA−1∥ ≤ M

t
1
α
∀ t > 0. Building on

work done in [72], Borichev and Tomilov [125] characterised polynomial decay of the
semigroup via resolvent estimates for the Hilbert space case. These remarkable results
have far reaching ramifications, particularly in the study of rates of decay of solutions of
PDE’s, like for example, the damped wave equation. While exponential stability behaves
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as expected under perturbations of the generator of the semigroup, perturbation results
in the context of strong and polynomial stability have been few and far between except
for those appearing in Paunnonen’s work [335, 336]. Interestingly, Rastogi and Srivastava
proved the following perturbation result in [375] :

If (B,D(B)) is the generator of a polynomially stable C0-semigroup {Tt}t≥0 with order
α > 0 on a Hilbert spaceH and C is a closed linear operator onH such thatD(B) ⊂ D(C),
then (B+C,D(B)) generates a polynomially stable perturbed C0-semigroup {TB+C(t)}t≥0

with order α > 0 on the Hilbert space H provided there exists M0 ∈ [0, 1) such that (a)
supReλ≥0 ∥CR(λ,B)∥ ≤M0, and (b) supReλ≥0 ∥R(λ,B)Cy∥ ≤M0 ∥y∥ , ∀ y ∈ D(C).

Furthermore, they applied this and similar results to conduct an in-depth analysis of
strong and polynomial stability of a particular class of semigroups - the class of delay
semigroups. A delay semigroup is a C0-semigroup generated by an opertor matrix of the

form A =

(
B Φ
0 d

dσ

)
associated to an abstract differential equation of the form


u′(t) = Bu(t) + Φut, t > 0,

u(0) = x,

u0 = f,

where, Φ : W 1,p([−1, 0], X) → X is a bounded linear operator, called the delay operator
A : D(A) ⊆ X → X is the generator of a C0-semigroup {Tt}t≥0 on a Banach space X;
f ∈ Lp([−1, 0], X), 1 ≤ p < ∞ and u : [−1,∞) → X, and ut : [−1, 0] → X is defined
by ut(σ) := u(t + σ), σ ∈ [−1, 0], t ≥ 0. Such equations arise in the study of systems
where the current state depends on the past state, for example, population dynamics
and control systems. Rastogi and Srivastava also study the non-analytic growth bound
(first introduced and studied in [74]) of the delay semigroup in [374]. The delay operator
considered throughout in the above instances is linear and bounded. A comprehensive
framework to address such problems using semigroup theory, when the delay term in not
necessarily linear and nor is the underlying semigroup, has not been developed yet. This
is a part of ongoing work.

An important but basic question in the study of asymptotics of C0-semigroups is
whether or not the exponential growth bound w0(T ) of the semigroup {Tt}t≥0 coincides
with the spectral bound s(A) of the generator A. This equality is often called the Lya-
punov property. In [444] Weis proved that if X = Lp(µ), where (Ω, µ) is a measure space
and 1 < p < ∞ and Tt ≥ 0∀ t ≥ 0 then indeed w0(T ) = s(A). In [437], Vogt gave an
elementry proof of this result and along the way proved that in Weis’s result positivity
of the semigroup can be replaced by (uniform) eventual positivity. Prajapati, Sinha and
Srivastava studied this problem for C0-semigroups defined on non-commutative Lp spaces
for 1 ≤ p < ∞ in [359]. They gave direct proofs that the property holds for the case
p = 1, 2 and also for consistent families of C0-semigroups under added conditions. A
complete analog of Weis’s result for the non-commutative case remains an open problem.
Further in the context of non-commutative spaces, non-commutative versions of charac-
terisations in terms of generating forms, for domination of one C0-semigroup by another,
where both semigroups act on a classical L2 space, due to Ouhabaaz [316] and Barthélemy
[71], have been obtained by Arora, Chill and Srivastava in [22] for C0-semigroups acting
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on non-commutative L2-spaces. Yet another strand connecting asymptotics and semi-
groups defined on non-commutative spaces has been the study of stability of Quantum
Dynamical Semigroups undertaken by Bhat and Srivastava [94] (for bounded generators)
and Kumar, Sinha and Srivastava [271] for the general setting. Here, a one parameter
family T = {Tt}t≥0 is a Quantum Dynamical Semigroup or QDS on B(H) if (a) for each
t ≥ 0, Tt : B(H) → B(H) is a completely positive, sub-Markovian, normal map; (b)
T0(x) = x, Ts+t = TsTt for all s, t ≥ 0, x ∈ B(H) and (c) for each x ∈ B(H), the map
t→ Tt(x) is continuous with respect to the weak∗ topology of B(H).

Asymptotic anlaysis of positive C0 -semigroups, (that is, Tt maps the positive cone of
the underlying space into the positive cone) is by now an almost classical area in semi-
group theory. In recent years, the area has witnessed a renaissance of sorts with the
work of Daners, Gluck and Kennedy who introduced and developed an abstract theory of
eventually positive C0-semigroups on Banach lattices in a series of papers starting with
[165, 166, 167]. A C0-semigroup is said to be (uniformly) eventually positive if there ex-
ists t0 > 0 such that Tt ≥ 0 for all t ≥ t0. Related notions include individual eventual
positivity, asymptotic positivity and local eventual positivity (see [21]). In [168], Daners
and Glück studied the eventual positivity of semigroups under bounded perturbations of
the generator and concretely demonstrated that the perturbation theory for eventually
positive semigroups is quite different from that of positive semigroups. The case of un-
bounded perturbations of the generator in this context is treated by Pappu, Rastogi and
Srivastava in [320]. The authors then use their results to deduce eventual positivity of
delay semigroups under some conditions. Eventually positive C0-semigroups are a rich
and active subject of research with several open problems.

19. Recent developments in E0-semigroups and product systems

By S. Sundar [ssundar@imsc.res.in, sundarsobers@gmail.com] from The Institute of Math-
ematical Sciences (HBNI), Chennai.

Broadly speaking, E0-semigroups and product systems fall under the broad framework
of non-commutative dynamical systems. The theory of E0-semigroups which is the study
of semigroups of endomorphisms on von Neumann algebras was introduced by Powers
([356]). Arveson in his seminal papers ([25], [27], [26], [28]) gave an alternative way of
viewing them by introducing product systems. Most of the papers that appeared during
the 80’s, 90’s and the early 2000’s focussed solely (rightfully so) on the 1-parameter case.
Both the notion of E0-semigroups and product systems generalise easily to more general
semigroups, and it is worthwhile to investigate them in more generality.

We give a brief summary of the results obtained in this regard. Most of the work was
done by the author in collaboration with mathematicians (Anbu Arjunan, S.P. Murugan,
R. Srinivasan, Piyasa Sarkar, and C.H. Namitha) who worked/are working in Chennai
(CMI/IMSc) during the last ten years.

Main results

Let P be a measurable semigroup, and let H be a separable Hilbert space. A semigroup
α = {αx}x∈P of unital, normal ∗-endomorphisms of B(H) is called an E0-semigroup
on B(H). Two E0-semigroups α and β on B(H) are said to be cocycle conjugate if
αx(.) = Uxβx(·)U∗

x for some family of unitaries {Ux}x∈P such that Uxαx(Uy) = Uxy for
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every x, y ∈ P . A product system over P is a semigroup E together with a surjective
semigroup homomorphism p : E → P such that the fibres E(x) := p−1(x) are separable
Hilbert spaces, and the map E(x) ⊗ E(y) ∋ u ⊗ v → uv is a unitary operator for every
x, y ∈ P . The measurable structures involved are ignored for this report.

Given an E0-semigroup α, we can attach a family of Hilbert spaces Eα := {E(x)}x∈P
as follows: set

E(x) := {T ∈ B(H) : αx(A)T = TA ∀A ∈ B(H)}.

Then, Eα := {E(x)}x∈P is a product system over P with the product rule given by
composition, and with the inner product on E(x) given by ⟨S|T ⟩ = S∗T .

The first question that requires settling is to answer whether every product system
arises this way which will then reduce the study of E0-semigroups to that of product
systems. We have the following to say concerning the current status of the problem.

Theorem 19.1 ([411]). Let G be a locally compact group, and let P ⊂ G be a subsemi-
group with non-empty interior. Suppose that one of the following conditions hold:

(1) G is discrete, and P is normal in G, i.e. gPg−1 = P for all g ∈ G.
(2) The group G is abelian.
(3) There exists a ∈ P such that

⋃∞
n=1 Pa

−n = G.

Then, the association α → Eα is a bijection between the class of E0-semigroups (up to
cocycle conjugacy) and the class of product systems over P (up to isomorphism).

The above result was first proved by Arveson for P = (0,∞), and by the author and
Murugan ([306]) for the case of higher dimensional cones in Rd. We will explain the
remaining results in the language of product systems. For, we can then translate them to
E0-semigroups in light of Thm. 19.1.

Let P ⊂ Rd be a closed convex cone in Rd. For an isometric representation V of P ,
let EV (x) and F V (x) be the symmetric and the antisymmetric Fock space of Ker(V ∗

x ).
Then, EV := {EV (x)}x∈P is a product system, where the product rule on the exponential
vectors is given by e(ξ) · e(η) := e(ξ + Vxη) for ξ ∈ Ker(V ∗

x ), η ∈ Ker(V ∗
y ). We can make

F V a product system by defining a product as follows:

(ξ1 ∧ ξ2 ∧ · · · ∧ ξm) ⊙ (η1 ∧ η2 ∧ · · · ∧ ηn) = Vxη1 ∧ Vxη2 ∧ · · · ∧ Vxηn ∧ ξ1 ∧ ξ2 ∧ · · · ∧ ξm.

The product systems EV and F V are the simplest examples of product systems, and they
are called CCR (canonical commutation relation) and CAR (canonical anticommutation
relation) flows respectively.

A deep classification result of Arveson ([29]), in the 1-parameter case, states that de-
composable product systems1 are precisely those of CCR flows. This is not true in the
higher dimensional case, and we have the following structure theorem.

Theorem 19.2 ([308], [412]). Let Γ : P × P → H be a weakly measurable map such
that Γ(x, y) ∈ Ker(V ∗

y ) for every x, y ∈ P . Suppose that there exists a measurable map

1This means that each fibre E(x) has enough decomposable vectors. A vector u ∈ E(x) is decomposable
if x = y + z, then there exists v ∈ E(y) and w ∈ E(z) such that u = vw.
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α : P × P → T such that for x, y, z ∈ P ,

Γ(x, y + z) + VyΓ(y, z) = Γ(x, y) + VyΓ(x+ y, z), and

α(x, y)α(x+ y, z)

α(x, y + z)α(y, z)
= eiIm⟨Γ(x,y+z)|VyΓ(y,z)⟩.

Define a new product ⊡ on EV by u⊡ v = α(x, y)W (VxΓ(x, y))(u · v), where W (·) are the
Weyl operators. Then, (EV ,⊡) is a decomposable product system, and every decomposable
product system (up to isomorphism) is of this form. If a decomposable product system has
a unit2, then it is isomorphic to the product system of a CCR flow.

In the 1-parameter case, up to isomorphism, we can take Γ = 0. This is not true in the
higher dimensional case as was shown in [308] by an explicit computation of the space of
2-cocycles Γ (modulo coboundaries) for a class of examples.

Other results, which are of equal importance as Thm. 19.2, in the multiparameter
theory are listed below; some are in total contrast to the 1-parameter case.

(1) The ‘map’ V → EV is injective ([412], [395]), and so is the ‘map’ V → F V ([309]).
(2) There are uncountably many mutually inequivalent isometric representations V of

P such that
• EV is not type one3([19], [20]),
• EV is of type one, prime and has index k for any given k ∈ N0 ∪ {∞} ([395],

[396]),
• F V is not isomorphic to EV ([18], [309], [410]), and
• the gauge group of F V does not act transitively on the set of units.

(3) The isometric representations of P with commuting range projections such that
F V is type I are precisely those that are direct sums of pullbacks of the standard
shift semigroup {St}t≥0 on L2([0,∞)). In particular, in contrast to CCR flows,
only pullbacks of the shift semigroup can give rise to type I, index one CAR flows if
we restrict attention to semigroups of isometries with commuting range projections
([309]).

Future directions

The above results indicate that the multiparameter theory is vastly different from that
of the 1-parameter case. This makes it a fertile ground for future research. The author
wishes to pose a couple of concrete questions in this regard.

(1) Is it true that the conclusion of Thm. 19.1 holds for every subsemigroup P of a
locally compact group?

(2) Is there an example of an isometric representation V of a cone P (say R2
+) such

that V is not a pullback of the shift semigroup but F V is type one and has index
one?

Power’s approach ([355], [356], [357], [358]) to E0-semigroups, and the probabilistic
approach of Tsireslon ( [423], [424], [425]) via random sets, stochastic processes, point
processes etc. to product systems remain unexplored in higher dimensions. The author
is fairly confident that the analysis of the resulting models of E0-semigroups and product
systems will result in deep and interesting mathematics.

2A unit is a non-zero cross section that is multiplicative.
3This means that EV does not have enough units.
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20. C∗-algebras, K-theory and Dynamics

By Prahlad Vaidyanathan [prahlad@iiserb.ac.in] from IISER Bhopal.

A C∗-algebra is a norm-closed self-adjoint subalgebra of the space of bounded linear
operators on a complex Hilbert space. These algebras were introduced in the 1930s by
von Neumann, Gelfand, and many others. In the 1970s, the subject received a dramatic
revitalization due to the work of Brown-Douglas-Fillmore, Elliott, Kasparov and others.
Specifically, the introduction of K-theory and related tools from algebraic topology have
brought two disparate areas closer together, and deepened our understanding of both. In
what follows, we will describe the work that we, along with our collaborators, have done
in this field in the recent past.

Nonstable K-theory: K-theory is a pair of abelian groups associated to a C∗-algebra.
These functors are powerful invariants and are central to the classification programme.
However, in constructing these groups, one necessarily loses a great deal of information.
Specifically, the K-groups are inductive limits of certain homotopy groups associated
to the C∗-algebra [419]. Nonstable K-theory is the branch of study that attempts to
understand these homotopy groups by themselves, and how they behave before one passes
to the limit.

The subject began in the 1980s, when Rieffel [379] introduced the notions of connected
and general stable rank, which control the behaviour of the maps in the inductive limit
mentioned above. Nica [312] further developed the theory of these two stable ranks, and
proved that they are homotopy invariant. In [430], we determined how these ranks behave
with respect to some natural constructions, most notably pullbacks. As a result, we were
able to compute these ranks for various classes of C∗-algebras. In [313], we estimated these
ranks for C(X)-algebras, and for a variety of group C∗-algebras and crossed products.

While computing these ranks helps us understand the behaviour of nonstable K-groups,
we do not have many tools to compute these groups explicitly. Therefore, we began
studying K-stability; a phenomenon exhibited by a number of infinite dimensional C∗-
algebras, where the nonstable K-groups naturally coincide with the stable K-groups.

In [399], we showed that a continuous C(X)-algebra with K-stable fibers must itself
be K-stable. In [398], we showed that AF-algebras are K-stable provided they have slow
dimension growth. We were also able to compute the rational homotopy groups of the
unitary groups of finite dimensional algebras. Using that, we showed that an AF-algebra
is K-stable if and only if it is rationally K-stable; a condition that is much easier to
verify. In [401], we showed that AT-algebras exhibit the same phenomenon, raising an
interesting question about AH-algebras in general. In an attempt to understand this
further, we showed in [400] that the notions of rational K-stability and K-stability are
indeed distinct in general, and that the results of [399] were also true for rational K-
stability.

At the moment, the subject has a number of open questions. We do not, as yet, have
explicit calculations of nonstable K-groups, nor do we know how these groups behave
under natural constructions. Moreover, we do not know if all simple, real rank zero
C∗-algebras are K-stable. This is a long-standing conjecture of Zhang [452].
Rokhlin Dimension: The study of group actions on C∗-algebras is an integral part of

operator algebra theory. Given a group action on a C∗-algebra, one is often interested in
the structure of the associated crossed product C∗-algebra, and an important question in
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this context is to determine when certain ‘regularity’ properties pass from the underlying
algebra to the crossed product. These include many properties that are useful from the
point of view of the classification programme such as finiteness of nuclear dimension,
simplicity, Z-stability, etc. Rokhlin dimension, introduced in [229], is a notion analogous
to covering dimension for group actions which has proved useful in this context.

This has been studied for actions of finite groups and the integers [229], compact groups
[201] and for residually finite groups [415]. In each case, it was proved that actions
with finite Rokhlin dimension allow us to deduce a number of regularity properties of
the crossed product C∗-algebra from those of the underlying algebra (particularly in the
compact case, and under the ‘commuting towers’ hypothesis).

In [431], we showed that C(X)-linear actions of compact groups on C(X)-algebras have
finite Rokhlin dimension provided the induced action on their fibers have finite Rokhlin
dimension. This allowed us to produce new classes of classifiable C∗-algebras associated
to equivariant vector bundles. In [413], we studied Rokhlin dimension for actions of
residually finite groups, building on the work of [415]. We showed a number of useful
permanence properties, and also described the ideal structure of the associated crossed
product. In [414], we studied automorphisms of AF -algebras, and showed that under
certain conditions, the corresponding crossed product is an AT-algebra.

Once again, there are a number of interesting avenues of research in this field. Even
in the well-studied case of integer actions, it is unclear what values of Rokhlin dimension
are admissible. This is primarily because we do not have a computable obstruction which
would provide us with lower bounds for the Rokhlin dimension. It would also be interesting
to look at certain natural actions on specific classes of C∗-algebras, and compute their
Rokhlin dimension. Finally, we have yet to give an appropriate definition of Rokhlin
dimension for actions of locally compact groups. These are amongst the questions that
we plan to pursue in the future.

In conclusion, the projects described above involve a synthesis of ideas from topology,
algebra and analysis, and therefore have a wide appeal. A number of new tools have been
discovered in these fields in the past decade, and this has led to renewed interest in these
problems. Nonstable K-theory is a mature field, and the open problems require genuinely
novel ideas. Rokhlin dimension, on the other hand, is relatively young and exciting. It is
hoped that many of those outstanding problems will be resolved in the coming years.
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to holomorphic function spaces, Bull. London Math. Soc. 47 (2015), 1014-1020.

[295] G. Misra, Completely contractive Hilbert modules and Parrott’s example. Acta Math. Hungar. 63
(1994), no. 3, 291-303.

[296] G. Misra, A. Pal, and C. Varughese,Contractivity and complete contractivity for finite dimensional
Banach spaces. J. Operator Theory, 82 (2019), no. 1, 23–47.

[297] G. Misra, S. Shyam Roy and G. Zhang, Reproducing kernel for a class of weighted Bergman spaces
on the symmetrized polydisc, Proc. Amer. Math. Soc. 141 (2013), no. 7, 2361–2370.



A COMPENDIUM OF RESEARCH IN OPERATOR ALGEBRAS AND OPERATOR THEORY 61

[298] G. Misra, G. and V. Pati, Contractive and completely contractive modules, matricial tangent vectors
and distance decreasing metrics. J. Operator Theory, 30 (1993), no. 2, 353-380.

[299] G. Misra and R. Md. Reza Curvature inequalities and extremal operators, Illinois J. Math. 63 (2019),
193 - 217.

[300] G. Misra, and N. N. Sastry, Bounded modules, extremal problems, and a curvature inequality. J.
Funct. Anal., 88 (1990), no. 1, 118-134.

[301] G. Misra, and N. N. Sastry, Completely bounded modules and associated extremal problems. J. Funct.
Anal., 91 (1990), no. 2, 213-220.

[302] G. Misra and H. Upmeier, Singular Hilbert modules on Jordan-Kepler varieties, Operator Theory,
Operator Algebras and Their Interactions with Geometry and Topology Ronald G. Douglas Memorial
Volume, 425 - 453, Eds. R. Curto, W. Helton, W. Lin, X. Tang, R. Yang, G. Yu, Birkhauser, 2020.

[303] G. Misra and H. Upmeier, Homogeenous vector bundles and intertwining operators for symmetric
domains, Adv. Math., 303 (2016), 1077 - 1121.

[304] A. N. Mohapatra and K. B. Sinha, Spectral shift function and trace formula. Spectral and inverse
spectral theory, Proc. Indian Acad. Sci. Math. Sci. 104 (1994), no. 4, 819–853.

[305] A. N. Mohapatra and K. B. Sinha, Spectral shift function and trace formula for unitaries—a new
proof, Integral Equations Operator Theory 24 (1996), no. 3, 285–297.

[MP] K. Mukherjee and I. Patri, Automorphisms of compact Quantum Groups, J. Lond. Math. Soc. vol.
116(2), 330–377 (2018).

[306] S. P. Murugan and S. Sundar, On the existence of E0-semigroups—the multiparameter case, Infin.
Dimens. Anal. Quantum Probab. Relat. Top. 21 (2018), no. 2, 1850007, 20.

[307] V. Müller and F. Vasilescu, Standard models for some commuting multioperators, Proc. Amer.
Math. Soc. 117 (1993), 979-989.

[308] C. H. Namitha and S. Sundar, Multiparameter decomposable product systems, Houston J. Math. 50
(2024), no. 1, 29–82.

[309] C.H. Namitha and S. Sundar, On multiparameter CAR (canonical anticommutation relation) flows,
to appear in Canad. J. Math., arxiv:2312.06433.

[310] H. Neidhardt, Spectral shift function and Hilbert-Schmidt perturbation: extensions of some work of
L. S. Koplienko, Math. Nachr. 138 (1988), 7–25.

[311] O. Nevanlinna, Matrix valued versions of a result of von Neumann with an application to time
discretization, J. Comput. Appl. Math. 12 & 13 (1985), 475-489.

[312] B. Nica, Homotopical Stable Ranks for Banach Algebras. Journal Of Functional Analysis. 261 (2011),
803-830.

[313] A. Nirbhay & P. Vaidyanathan, Homotopical stable ranks for certain C*-algebras associated to
groups. Studia Mathematica. 261 (2021), 307-328.

[314] D. Nikshych and L. Vainermann, A characterization of depth 2 subfactors of II1 factors, J. Funct.
Anal. 171 (2000), 278–307.

[315] A. Olofsson, Parts of adjoint weighted shifts, J. Operator Theory, vol. 74. No. 2 ( Fall 2015), pp.
249-280.

[316] E. M. Ouhabaz, Invariance of closed convex sets and domination criteria for semigroups, Potential
Anal., 5(6), (1996) 611–625.

[317] A. Pal, On Γn-contractions and their conditional dilations, J. Math. Anal. Appl. 510 (2022), no. 2,
Paper No. 126016, 36 pp.

[318] S. Pal and O. Shalit, Spectral sets and distinguished varieties in the symmetrized bidisc, J. Funct.
Anal. 266 (2014), no. 9, 5779–5800.

[319] S. K. Pandey and V. I. Paulsen, A spectral characterization of AN operators, J. Aust. Math. Soc.
102 (2017), no. 3, 369–391.

[320] Pappu, S. Rastogi, S. Srivastava, Eventual Positivity, Perturbations and Delay Semigroups, Posi-
tivity 29, (2025), no. 1, 12, 24 pp.

[321] S. Parrott, Unitary dilations for commuting contractions. Pacific J. Math., 34 (1970), 481-490.
[322] K. R. Parthasarathy, Computation of sandwiched relative α-entropy of two n-mode Gaussian states,

Infin. Dimens. Anal. Quantum Probab. Relat. Top. 25 (2022), no. 2, Paper No. 2250008, 10 pp.
[323] K. R. Parthasarathy, What is a Gaussian state?, Commun. Stoch. Anal. 4, 143–160 (2010).



62 SARKAR

[324] A. B. Patel, The Convexity of the Spatial Numerical Range in the Beurling Algebra L1(G,ω), Indian
J. Pure & Appl. Math., (2025), https://doi.org/10.1007/s13226-025-00843-0.

[325] S. Patnaik, On simplicity of Lie algebras of compact operators: a direct approach, J. Math. Anal.
Appl. 510, 2022.

[326] S. Patnaik, S. Petrovic, G. Weiss, Universal block tridiagonalization in B(H) and beyond, Adv.
Anal. Geom., 2, De Gruyter, Berlin, 2020.

[327] K. Paul, Translatable radii of an operator in the direction of another operator, Sci. Math., 2 (1999)
119-122.

[328] K. Paul, D. Sain and P. Ghosh, Birkhoff-James orthogonality and smoothness of bounded linear
operators, Linear Algebra Appl., 506 (2016) 551-563.

[329] K. Paul, D. Sain, A. Mal, and K. Mandal, Orthogonality of bounded linear operators on complex
Banach spaces, Adv. Oper. Theory, 3 (2018) 699-709.

[330] V. Paulsen, Completely bounded maps and operator algebras, Cambridge Studies in Advanced Math-
ematics, 78, Cambridge Univ. Press, Cambridge, 2002.

[331] V. I. Paulsen, Representations of function algebras, abstract operator spaces, and Banach space
geometry. J. Funct. Anal., 109 (1992), no. 1, 113–129.

[332] V. Paulsen, G. Popescu and D. Singh, On Bohr’s inequality, Proc. London Math. Soc. 85 (2002),
493-512.

[333] V. Paulsen and D. Singh, Extensions of Bohr’s inequality, Bull. London Math. Soc. 38 (2006),
991-999.

[334] V. Paulsen and D. Singh, Bohr’s inequality for uniform algebras, Proc. Amer. Math. Soc. 132
(2004), 3577-3579.

[335] L. Paunonen, Robustness of polynomial stability with respect to unbounded perturbations, Systems
Control Lett. 62 (2013), no. 4, 331-337.

[336] L. Paunonen, Polynomial stability of semigroups generated by operator matrices, J. Evol. Equ., 14,
(2014), no. 4-5, 885-911.

[337] Carl Pearcy and David Topping, On commutators in ideals of compact operators, Michigan Math-
ematical Journal, Vol. 18, 1971.

[338] V. V. Peller, An extension of the Koplienko-Neidhardt trace formulae, J. Funct. Anal. 221 (2005),
no. 2, 456–481.

[339] V. V. Peller, Multiple operator integrals and higher operator derivatives, J. Funct. Anal. 233 (2006),
no. 2, 515–544.

[340] V. V. Peller, The Lifshitz-Krein trace formula and operator Lipschitz functions, Proc. Amer. Math.
Soc. 144 (2016), no. 12, 5207–5215.

[341] M. Pimsner and S. Popa, Entropy and index for subfactors, Ann. Sci. Ecole Norm. Sup. 19 (1986),
no.4, 57–106.

[342] G. Pisier,Introduction to operator space theory. London Math. Soc. Lecture Note Ser. 294. Cam-
bridge University Press, Cambridge, 2003, viii+478 pp.

[343] G. Pisier,Similarity Problems and Completely Bounded Maps. Lecture Notes in Mathematics, 1618,
Springer, 2nd edition, 2001, viii+198 pp.

[344] G. Pisier, On the duality between type and cotype. In: Chao, JA., Woyczyński, W.A. (eds) Mar-
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