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ABSTRACT. This article intends to initiate an investigation into the structure of M-ideals in
H*> (D), where H>°(D) denotes the Banach algebra of all bounded analytic functions on the
open unit disc D in C. We introduce the notion of analytic primes and prove that M-ideals
in H*(D) are analytic primes. From Hilbert function space perspective, we additionally
prove that M-ideals in H>° (D) are dense in the Hardy space. We show that outer functions
play a key role in representing closed principal ideals in H*°(D) that are M-ideals. This
is also relevant to M-ideals in H°°(D) that are finitely generated closed ideals in H> (D).
We analyze p-sets of H*°(D) and their connection to the Silov boundary of the maximal
ideal space of H*°(ID). Some of our results apply to the polydisc. In addition to addressing
questions regarding M-ideals, the results presented in this paper offer some new perspectives
on bounded analytic functions.
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1. INTRODUCTION

The objective of this work is to integrate two classic concepts that are rich and indepen-
dent areas of study: M-ideals in Banach spaces and the Banach algebra H>(D). In 1972,
Alfsen and Effros [3] introduced the concept of M-ideals (see Definition 1.1) as a means of
extending the utility of closed two-sided ideals in C*-algebras to Banach spaces. They proved,
in particular, that a closed subspace of a real Banach space is an M-ideal if and only if the
closed subspace satisfies the 3-ball property. Beginning with this geometric implication, the
concept of M-ideals evolved into one of the most useful tools in Banach space theory (specif-
ically in the geometry of Banach spaces) and eventually became a subject in its own right.
See the monograph by Harmand, Werner, and Werner [15], and also see the series of papers
[8, 11, 13, 14, 34] and the references therein.
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The second topic of this paper, H>°(ID), is even more classical (see Bers [5] and Kakutani
[25], and the survey by Gamelin [9]). Recall that H>°(D) stands for the space of bounded
analytic functions on the open unit disc D = {z € C: |z| < 1}, that is

H>*(D) = {f € Hol(D) : sup |[f(2)] < oo}

This is a commutative Banach algebra with respect to the pointwise product and under the
supremum norm

17l =suplf()]  (f € H™(D))

H>(D) is one of the most important Banach algebras that plays a key role in the theory
of Hilbert function spaces and Banach spaces of analytic functions [21]. And because of
its analytic nature, it fits well between commutative C*-algebras and generic commutative
Banach algebras. For instance, if M(H> (D)) denote the maximal ideal space of H>°(ID), then
the Gelfand map I' : H*(D) — C(M(H>*(D)) defined by

L) =r (f e H*D)),

is an isometry: a prototype feature of commutative C*-algebras (see Section 2 for more de-
tails). However, despite being concrete and popular among commutative Banach algebras,
this space raises fundamental problems for which there are no definitive solutions. The struc-
ture of the closed ideals in H*(D), for example, is still obscure (however, see [2, 18, 27]).
On one hand, this space has undergone extensive research in the context of Banach spaces
of analytic functions (cf. [7, 23, 26]). On the other hand, as far as our knowledge extends,
H>(D) has not been investigated in any way from the standpoint of M-ideals. And in this
paper, this is exactly what we do.

Note that H*(D) is also an example of a uniform algebra, and the classification of M-ideals
in uniform algebras, which often involves maximal ideal spaces, is well known (see Theorem
2.3). Unfortunately, since the maximal ideal space and the Silov boundary of H (D) are hard
to understand, uses of the general classification (which also includes peak sets and p-sets) on
the uniform algebra H*°(ID) only give abstract results. In fact, as we proceed further, along
with M-ideals we will also study the delicate structure of p-sets of the maximal ideal space
of H*(D).

We now go over the definition of M-ideals. Hereafter, all the Banach spaces are over the
field of complex numbers. Furthermore, projections on a Banach space refer to bounded linear
operators P on that space such that

P?=P.

Definition 1.1. A closed subspace C' of a Banach space X is said to be an M-ideal in X if
there exists a projection P : X* — X* such that
ranP = C*,
and
[Pz*[| + [[( = P)x™|| = [[=7],
for all z* € X*.
The projection P above is commonly known as an L-projection. Also, we denote by C+

the annihilator of C:
Ct={r" € X*:2*c=0}.
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We now proceed directly to elucidating the main contribution of this paper. The issue
of classifying or representing M-ideals in H*°(ID) is highly intricate, and its complexity is
comparable to the hierarchy of maximum ideal spaces in H>*(D). Indeed, our first result
refers to the “size” of M-ideals in H*(D) (see Proposition 3.3): Each maximal ideal in
H>(D) that corresponds to a complex homomorphism in the Silov boundary of H*°(ID) is an
M-ideal in H* (D).

Denote by dgH>(ID) the Silov boundary of the maximal ideal space M(H>® (D)) of H>(DD).
The above result says that for each ¢ € dgH>(D), the singleton set {¢} is a p-set of H*(D),
and hence the maximal ideal corresponding to each complex homomorphism in dsH> (D) is
an M-ideal in H>(ID). Therefore, it seems overly generic to have a detailed description of
every M-ideal in H*(D).

As already hinted, there is an inextricable link between the theory of M-ideals in a uniform
algebra and the structure of p-sets within the same uniform algebra. This paper presents
new insights on p-sets of H*°(ID) and their application to M-ideals in H*(D). For instance,
Theorem 4.1 states: Let @ be a nonempty subset of M(H>(D)). If Q is a p-set of H*(D),
then

QN OosH>® (D) # 0.

It is noteworthy to mention that, in contrast to the maximal ideal spaces of H*°(D), evalu-
ation functions do not correspond to M-ideals in H>°(ID), and they play a less significant role
(see Corollary 4.2).

Next, we introduce an analytic counterpart of the algebraic notion of prime ideals in com-
mutative rings. Before getting into the specifics of this new idea, it is important to go over a
key feature of bounded analytic functions. Given a function f € H*(ID), we denote by f the
radial limit extension of f:

f(z) = lim f(rz) (z € Tae.). (1.1)
r—1-
The above limit’s existence is an intricate implementation of Fatou’s theorem [21, page 34].
Definition 1.2. A proper nontrivial closed subspace J of H*(D) is called an analytic prime
whenever it meets the following condition (see Definition 5.1): Given f and g in H>*(D), if

fgel
and
() >0 (z€T),
for some 6 > 0, then
g e J

It is now reasonable to look for examples of analytic primes in H*°(ID). In Theorem 5.2,
we prove that M-ideals in H*(D) are analytic primes in H*(D):

Theorem 1.3. Proper nontrivial M-ideals in H*(ID) are analytic primes.
We also connect M-ideals with inner functions. A function f € H>°(D) is called inner if
[F(2)] =1,

for all z € T a.e. [21, page 62]. It is clear that the space of inner functions forms a multi-
plicative set in H*(DD). In Corollary 5.3, we prove that:
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Theorem 1.4. A proper and nontrivial M -ideal in H>(D) never intersects the space of inner
functions.

We also discuss some relationships between M-ideals in H>°(ID) and the theory of Hilbert
function spaces as well as classical operator theory. The Hilbert function space here is the
Hardy space

(@)= {1 e Hol(®): 1= (swp [ 1)) < oo}

where dy denotes the normalized Lebesgue measure on T. In terms of radial limits, H?(D) is
also the Hilbert space consisting of all analytic functions on D with square summable Taylor
coefficients (see Section 5 for more details):

1

HAD) = {f = 3 anz" € Hol() : | f]| = (3 laml?)” < oo},

The integral representation of H?(D) implies that the inclusion map
i: H*(D) — H*(D),
is a contraction. In Theorem 5.5, we prove a Hilbert space property of M-ideals in H>*(D).
More specifically: If J is a nontrivial M-ideal in H*(D), then
770 = (). (1.2)
This norm density property is a notable characteristic of M-ideals in H°°(ID). This indeed
reminds us of the norm density of the ring of polynomials:

WH 2(D)

Now we turn to the principal ideals or singly generated ideals in H*°(D). Given f € H>*(D),
we denote by Iy m)(f) the closed ideal of H>(ID) generated by f. That is,

I~ (f) = (Fg g € A=)} (1.3)

We remind the reader that the classification of principal ideals in H*(D) is unknown. Our
goal here is to study the M-ideal structure of Igeom(f). Our first necessary condition for
such a property is rather operator theoretic. In fact, as a consequence of Theorem 1.2, we
have the following feature about Toeplitz operators on the Hardy space. Let ¢ € H*(D).
The Toeplitz operator with symbol ¢ is the bounded linear operator T, on H*(D) defined by

T.f=vof (f€H D).
If Ipyoomny(¢) is an M-ideal in H>°(D"), then (see Corollary 5.6)
ker T7 = {0}.

= H*(D).

It is worth noting that ker 7] = kerT;. Kernels of Toeplitz operators are recognised as
complex objects and a subject of independent interest [33]. Therefore, M-ideals in H>(D)
touch on the delicacy of the kernels of Toeplitz operators.

We continue with more Hilbert function space techniques and results. We need to recall
the inner-outer factorization of functions in H*°(D); an essential result in functional analysis,
particularly in the analysis of bounded analytic functions and Hilbert function space theory:
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Let f € H*(D) (or even f € H?*(D)) be a nonzero function. Then there exist an inner
function f; and an outer function fo such that [21, page 67]

f=Iifo, (1.4)

on D. Moreover, this factorization is unique up to a constant of modulus one. Recall that a
function f € H*(D) is outer if
H?(D)

span{z™f :m > 0} = H*(D).

We have already talked about the role of inner functions in M-ideals. The following is the
second application of (1.2), which yields a significant consequence that links M-ideals with
outer functions (see Corollary 5.8 for more details):

Theorem 1.5. Let f € H*®(D). If Igem)(f) is an M-ideal in H>(D), then f is an outer
function.

All the results from Theorem 1.3 to the theorem stated above are applicable in the polydisc
setting and are consolidated in Section 5.

The above result also raises the question of the extent to which the converse is true. Ap-
parently, the answer to this problem is quite difficult. However, with the help of a result by
Izuchi and under an additional condition, namely, Jensen’s equality, Theorem 6.4 provides
the following characterization (see Section 6 for the necessary definitions):

Theorem 1.6. Let f € H*(D). Then Iyem)(f) is an M-ideal in H*(D) if and only if f is
an outer function and satisfies Jensen’s equality.

Although principal M-ideals can be characterized using Jensen’s equality, the equality itself
is defined in terms of the maximal ideal space. At present, no function-theoretic characteriza-
tion of Jensen’s equality is available in the literature. Moreover, other known characterizations
of M-ideals also rely on maximal ideal spaces. This naturally raises the question of whether
a purely function-theoretic description of principal M-ideals can be obtained. The answer to
this problem is apparently difficult. However, we introduce a large class of bounded analytic
functions defined purely in terms of their boundary behavior, for which the principal ideal
generated by these functions are M-ideals. To clarify this class, it is necessary to introduce
the notion of the essential zeros of H*(D)-functions, which may be a concept of independent
significance.

Definition 1.7. We say that z € T is an essential zero of an outer function f € H>®(D) if,
for any € > 0 and every open neighborhood N, C T of z, we have the following:

u(IfI71(0,6) N N) # 0.
We let Zr(f) denote the essential zeros of the outer function f.
Clearly, Z7(f) is closed. Moreover, if Zp(f) = (), then f is invertible. The example
presented in (6.4) serves to illustrate the computation of zero sets of outer functions. The

notion of zero sets of functions in H*°(ID) relies on the outer part as follows (see (1.4)): The
zero set of a function f € H>(D) is defined by

Z’]r(f) = {Z ceT:ze Z’]I‘(fO)}

Definition 1.8. Define Z°°(ID) as the set of all functions f in H>®(D) that have a continuous
extension to DU Zy(f).
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It is also evident that A(D) C Z*°(D), where A(ID) is the disc algebra defined by
AD) ={f € C(D): f|lp € Hol(D)}. (1.5)
On the other hand, Z°°(D) is significantly larger than A(D). Indeed, in Section 7, we assert
that
AD) & Z*=(D).
However, we do not know the measure of the set H>*°(D)\ Z>°(ID). Nevertheless, in the category

of functions in Z*°(D), outer functions represent singly generated M-ideals in H*(D) (see
Theorem 6.2):

Theorem 1.9. Let f € Z°(D). Then Igem)(f) is an M-ideal in H*(D) if and only if f is
an outer function.

Moreover, in the case of outer functions in Z*(D), the corresponding singly generated
M-ideals are explicit: If f € Z°°(D) is an outer function, then (see Corollary 7.1)

Z(f)={g € H*(D) : Zz(f) C Zr(g) and g has a continuous extension to Zr(f)}.
In Example 7.6, we present an M-ideal Iy m)(f) in H>°(D) such that f is an outer function

and

f ¢ z=D).
All the results and examples presented here suggest that the structure of M-ideals in H*(D)
is by far complicated, even at the level of principal ideals in H*>°(D).

We have also revealed the structure of M-ideals in H*(DD) that are finitely generated by
functions from Z*(D). Given {f1,..., fn} € Z°°(D), denote by Igeem)(fi, ..., fm) the closed
ideal generated by {fi,..., fm}. In Theorem 8.1, we prove: Let {fi,...,fm} C Z>°(D). If
Troom)(fi,--., fm) is an M-ideal in H*°(DD), then there exists an outer function f € Z*(ID)
such that

Treom)(fis- oy fm) = Ty (f).

The above result has some peculiarities within the framework of ideal theory. Indeed, this is
reminiscent of the ascending chain condition in a ring. More specifically, the finitely generated
ideal subjected to the M-ideal condition yields the subsequent terminating fact:

Treem)(f1) C Thoem)(f1, f2) © -+ C Taooy(f1, -+ fin) = Loy (f)-
We further recall that a ring R satisfies the ascending chain condition on ideals if and only
if every ideal of R is finitely generated. Note that rings that satisfy the ascending chain
condition on ideals are also called Noetherian.

Alongside the results mentioned above, this article covers additional results about M-ideals,
p-sets, and associated areas. Furthermore, an ample number of examples and counterexamples
have been provided. We refer the reader to [13] for some natural examples of M-ideals. Also,
see [30] for more exotic examples of M-ideals.

We shall now delineate the structure of the subsequent sections of the paper. Section 2
provides an overview of the foundational concepts, recalls definitions, and conveys known
results that will be used in the next sections. Section 3 illustrates the extensive magnitude of
M-ideals in H* (D), while Section 4 discusses p-sets from the standpoint of the space H>(D).
In Section 5, we introduce the notion of analytic primes in H°°(D) and prove that proper M-
ideals are analytic primes. A number of the results presented in this section pertain to Hilbert
function space theory, such as Toeplitz operators, outer functions, and inner functions. Each
result in this section applies to several variables. The primary emphasis of Section 6 is on
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principal ideals in H*°(ID) that are generated by functions from Z*°(D). Section 7 provides
direct applications of results from previous sections and offers examples that illustrate the
intricacy of the functions introduced earlier. Section 8 focuses on M-ideals generated by finite
number of functions in Z*(D).

2. PRELIMINARIES

We already pointed out that H>°(ID) is a uniform algebra. Here we begin with the formal
definition of uniform algebras. A wuniform algebra on a compact Hausdroff space K is a
uniformly closed subalgebra of C'(K) which contains the constant functions and separates
the points of K. Evidently, a uniform algebra is a commutative Banach algebra (under the
uniform norm). We refer to [24] for some recent progress on this subject.

Now we set up some basic structures of commutative Banach algebras. Let A be a com-
mutative Banach algebra with unit. Let us denote by M(A) the maximal ideal space of A.
Since A is unital, we know that M(A) C S+, where given a Banach space X, we define the
unit sphere of X as

Sx={re X :|z||x =1}

Hence by the Banach—Alaoglu theorem and the fact that M(A) is closed, it follows that
M(A) is a compact Hausdorff space in the weak-x topology. If we denote by C'(M(A)) the
algebra of continuous functions on M(A) with the supremum norm, then the Gelfand map

I''A— C(M(A)),
is a contractive homomorphism of Banach algebras, where

r(f) =1

and

A

fle) = ¢(f),
for all f € Aand ¢ € M(A). A subset C' C K is called a boundary for A if

sup| ()| = max] (2],
zeK z€

for all f € A. The Silov boundary for A, denoted by dgA, is the smallest closed boundary for
A, that is [20, page 173]

0sA = ﬂ{C’ C K : Cis a closed boundary for A}.

Equivalently, dsA is the smallest closed subset of M(A) on which every f € T'(A) attains its
maximum modulus. Next, we turn to the unital commutative Banach algebra H>(D) [20,
Chapter 10]. In this case

flloe =1l = sup  |F(o)l, (2.1)
peM(H>(D))
for all f € H*°(D), that is, I an isometric isomorphism from H*(D) into C'(M(H>(D))).
Evidently, T is not onto. We use the Gelfand map T' : H*(D) — C(M(H>(D))) to identify
H>(D) with H>*(D), where

—

H>(D) := T'(H*(DD)),
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Therefore, m), and hence an isometric copy of H>°(ID), is a uniformly closed subalgebra
of C(M(H*>(D))).
20].

Recall from (1.1) that for a function f € H>°(D), the radial limit extension of f is denoted
by f, where

In particular, H>(D) contains constant functions and separates points

fz) = Jim f(rz)  (z€Tae.).

This yields a natural way to identify H*°(D) with a closed subalgebra of L*(T), where
L>(T) denotes the von Neumann algebra of all essentially bounded measurable complex-

valued functions on T. If H*(T) denotes the copy of H>*(D) in L>*(T), then

H>(T) = L®(T) N H2(T),

—~——

where H2(T) C L*(T) is the Hardy space on the unit circle T (again, via radial limits as in

(1.1)). In view of the above identification, we denote by feH >(T) the function correspond-
ing to f € H*(D). In other words, we can represent H>(ID) as a uniformly closed subalgebra
of L>®(T). This point of view is useful in identifying the Silov boundary of H*(D) in the
sense that

OsH>* (D) = 7(M(L>(T))), (2.2)
where the map 7 : M(L>(T)) - M(H>(D)) defined by

() = lrem (€ M(LZ(T))),
is a homeomorphism [20, page 174]. These tools will frequently be implemented in the next

sections. In addition, we will see soon that p-sets are closely connected to the theory of
M-ideals in H*(D). We recall:

Definition 2.1. Let A be a uniform algebra on a compact Hausdorff space K. A closed subset
C C K is said to be a peak set if there exists a function f € A such that

fle =1,
and
1f(z)] <1 (x e X\ O).
We frequently say that f peaks on C'.

Clearly, if f € A peaks on C', then
If]l = 1.

It is easy to see that a countable intersection of peak sets is a peak set [12, page 208]|. In
general, we define:

Definition 2.2. Let A be a uniform algebra on a compact Hausdorff space K. A set P C K
1s called a p-set of A if P is the intersection of a family of peak sets.

Some of the well-known and general features of p-sets are as follows: (i) A p-set is a peak
set if and only if it is a Gg-set [10, Lemma 12.1]. (ii) A countable union of p-sets is a p-set
whenever the union is a closed set [10, Corollary 12.8].

We conclude this introductory section by recalling the following characterizations of M-
ideals in uniform algebras in terms of p-sets and bounded approximate units. This result will
be frequently used in what follows.
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Theorem 2.3. [15, Chapter V, Theorem 4.2] Let A be a uniform algebra and let J a closed
subspace of A. Then the following conditions are equivalent:
(i) J is an M-ideal of A.
(ii) J is the annihilator of a p-set of A.
(iii) J is an ideal of A containing a bounded approzimate unit.

Recall that a bounded approximate unit in a commutative Banach algebra A is a bounded
net {z;};en C A such that
|ziz — z||a — 0 (x € A),
along the net. In our analysis, we will mostly use the equivalence of (i) and (iii) in the
preceding theorem. More specifically, we will enhance the practical relevance of this criterion
by applying it to the specific context of uniform algebra H*>(D).

3. M-IDEALS ARE COLOSSAL

The maximal ideal space of H*(D) is renowned for its vastness and complex peculiarities.
Put simply, the maximal ideal space of H*°(ID) is highly intricate and serves as a hindrance
to fully understanding the structure and characteristics of H*(ID). The objective of this brief
section is to highlight the notoriety of the space of M-ideals, just analogous to the maximal
ideal space of H>*(D). First, we recall a lemma concerning classification of p-sets [15, V,
Lemma 4.3]. Denote by e the unit of the given uniform algebra.

Lemma 3.1. Let A be an uniform algebra on a compact Hausdorff space K, and let D be a
closed subset of K. Then D is a p-set for A if and only if for each € > 0 and open set U D D,
there exists a € A such that the following three conditions hold:

(1) fle —all <1+,
(2) a|lp =0, and

3) ‘(e - a)|K\U) <e.
We also need to recall a Urysohn-type lemma for H>°(D) from [4, Lemma 2.1].

Lemma 3.2. Let U be an open subset of M(H>(D)). Then for each ¢ € (0,1) and po €
UNOosH>®(D), there exists f € H*(D) such that

W) 11l = f (po) = 1,
2) sup {|F(¢)] : ¢ € DsH=D)\U} < ¢, and
(3) 1F()| + (1= )1 = f(¢)| <1 for all p € M(H®(D)).

Now we turn to M-ideals in H*(D). Fix ¢ € dsH*(D) and ¢ > 0. Then there exists a
function f € H*°(D) such that f satisfies (1) to (3) of Lemma 3.2. If we let

g = 1— fv
then

9lgwy =0,
and

I1—gll=1,
and

(1 = 9)losa=mpwll <&
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This fulfils all requirements of Lemma 3.1, with e equaling 1 and a equaling g. Consequently,
it follows that {¢} is a p-set of H>*(D). Hence, by Theorem 2.3, ker is an M-ideal in
H>(D). Consequently, we have established the following result, which, in particular, states
that the collection of M-ideals in H>*°(D) is immense.

Proposition 3.3. Each mazimum ideal in H* (D) that corresponds to a complex homomor-
phism in 0gH> (D) is an M-ideal in H* (D).

On the contrary, it is easy to verify that each closed subset of T is a p-set for C'(T), where
C(T) denotes the space of all continuous functions on the unit circle T. As a result, M-ideals
in C(T) are ideals of functions that vanish on some closed subset of T. Observe that C(T) is
a commutative C*-algebra.

On the other hand, the disc algebra A(D) is a commutative Banach algebra that is also a
uniform algebra on D. At this point, we recall the Glicksberg peak set theorem [10, p. 58]:
Let A be a uniform algebra on a compact Hausdorff space K, and let D be a closed subset of
K. Then D is a p-set if and only if up € A+ for all measure u € A+. That is, D is a p-set if
and only if p|g is orthogonal to A for all measures p orthogonal to A.

Returning to the uniform algebra A(D), we first observe in view of the F. and M. Reisz
theorem, that any measure orthogonal to A(ID) is absolutely continuous with respect to the
Lebesgue measure. Hence the p-sets of A(D) are precisely the closed subsets of T having
Lebesgue measure zero. Therefore, a closed subspace C' C A(D) is an M-ideals in A(D) if
and only if there exits a subset D C T of Lebesgue measure 0 such that

C={feAD): f|]p =0}.
In the context of M-ideals in vector-valued disc algebras, we refer the reader to [1]. Clearly,
the structure of M-ideals in A(ID) is simple and clean. On the contrary, the above proposition

clearly suggests that the situation of representing M-ideals in H*>°(DD) is a complex problem.
Our results and methodology in this paper will also emphasise this characteristic.

4. p-SETS

According to Theorem 2.3, the investigation of M-ideals in H*(D) is comparable to the
analysis of p-sets. The theory of p-sets presents an equally challenging problem for the space
H>(D), just like M-ideals. Within this section, our objective is to pick up a few significant
characteristics of p-sets, specifically focusing on concrete examples of M-ideals in our par-
ticular scenario. Naturally, the results also hold independent significance for the scrutiny of
p-sets of H*(DD).

We start with representations of peak sets of H*°(ID). For each o € T and f € Syeom), we
define R

M) = {p e MH*D)): [(p) = a}.
It now follows from the definition itself that the peak sets of H>(ID) admit the form .#/ for
some a € T and f € Syem). If f =2 € Syeo(p), then we simply write

My = M (a €T).
Therefore, some simple examples of peak sets in H*°(D) includes
My ={p e MH*D)) : z2(p) = a} (v €T).

Now we turn to p-sets and prove that a p-set of H°°(D) must meet the Silov boundary
OsH>®(D).
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Theorem 4.1. Let Q) be a nonempty subset of M(H*(D)) \ 0sH>*(D). Then Q is not a
p-set of H*(D).

Proof. Let @ is a non-empty subset of M(H>*(D)). Let

P=QnNosH™(D).
Assume that @Q is p-set of H*(D). We claim that P # (). To this end, suppose {f;}icr C
Shee) is the family of functions corresponding to the p-set ), that is

Q= ﬂ //llfi_
iel
Since P = Q NIdgH>*(D), we have
P =4 (osH*(D).
il
Observe that M(H>(D)) is compact and .//fc * is closed for each ¢. Therefore, if the collection
{ A N OsH*(D) }ier,

has finite intersection property (FIP), then one can conclude that P # (). To prove the FIP,
for each finite collection {fi,..., fn} C Speo(n), define

that

Since ||g|| = 1 and dgH>(D) is the Silov boundary of H*(DD), there is at least one ¢ €
0sH>(D) such that
b(g) = 1.
This clearly implies that
Y € M7 NOsH™ (D),

and hence
MY N OsH®(D) = v TrrTin 0 9gH™
£, .
# 0.
Therefore, the collection {.Z]" N 0sH>* (D)}, satisfies the FIP, from which one concludes
that P # (. O

Therefore, we have the following: If @ is a p-set of H>°(D), then
QN IsH>(D) # 0.
For each a € DD, denote by ev, the evaluation functional at «, that is
eva(f) = fla)  (f € H=(D)).

The following is a consequence of Theorem 4.1:
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Corollary 4.2. Let « € D. Then {«a} is not a p-set of H*(D). In particular, the mazimal
ideal ker ev, is not an M-ideal in H* (D).

Therefore, any subset of the unit disc D is not a p-set of H*(ID). On the other hand, the
equivalence of (i) and (ii) in Theorem 2.3 says that the M-ideals in a uniform algebra A are
precisely of the form

Jp={f€A: flp=0} (4.1)

where P C K is a p-set of A. In general, we use Jp to denote the set of all functions from
the uniform algebra under consideration that vanish on a set P C K.

Typically, M-ideals in Banach spaces do not have a direct correlation (but some analogy; see
the remark in the first paragraph of Section 1) with the notion of ideals in rings. Nevertheless,
the above representations of M-ideals promptly reveals that this is not the case for uniform
algebras.

We have the following as a corollary to Theorem 2.3:

Corollary 4.3. Let A be a uniform algebra. Then M-ideals in A are ideals in the ring A.

Considering an M-ideal J in H*(ID), we will now establish a connection with two possible p-
set representations of H*°(ID) corresponding to J. Establishing such a link is inescapable from
the perspective of two representations of the uniform algebra H*°(D) over the compact sets
M(H>*(D)) and dsH*(D). To be more precise, if J is an M-ideal in H>*(D), then according
to the representation (4.1), there are two subsets P C M(H>(D)) and Q C dsH*(D) such
that

J=Jp=Jo.

In the following, we aim to establish a correlation between P and (). Part of the proof follows
the lines of Hoffman [20, page 187].

Theorem 4.4. Let J be an M-ideal in H* (D). Suppose
J = Jp,
where P C M(H>*(D)) is the corresponding p-set. Then
J = Jprosa=(D)-
Proof. Given the representing p-set P C M(H>(DD)) of the M-ideal J, we define
Q =PNosH>®(D).

By Theorem 4.1, we know that @ # 0. Let {fi}ier € Sue(n) be the family of functions
corresponding to the p-set P. Then (see the notation preceding Theorem 4.1)

P =4
el

Fix an ¢+ € I, and pick ¢ € ./\/l{ Denote by m,, the unique representing measure of ¢ on
0sH>*(D). We claim that m,, is supported on MIF N 9gH>(D). To see this, first we set
1+ f;

h = .
2
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For each n > 1, we observe that

/ hdm., = (k")
g H> (D)

= 1.
On the other hand, the sequence of functions {h"},>; is bounded and

pointwise, where x , s; denotes the indicator function of ./\/l{’ By the dominated convergence
1

theorem, we have

1 =lim iL”dm¢ = / )A(Mfidmw = / dmw,
n JosHe (D) dgHoo(D) L MTinag Ho (D)

and hence the measure m,, is supported on ./\/l{ N JdsH>(D), completing the proof of the
claim. Since P = ﬂiel./\/l{", it follows that each ¢ in P is supported on M N dsH>(D) for
all © € I. Hence the minimal support of v is contained in

N (Ml nosH=(D)) = PosH=(D) = Q.
i€l

Therefore, for any f € Jpnogu~m) = Jo and ¢ € P, we have

— Fdm,., —
w(f) /PﬁasHOO(]D)) f e O’

and hence Jg C Jp. Since () C P, it also follows that Jg C Jp, and consequently
Jp = Jo,
which completes the proof of the theorem. O

5. ANALYTIC PRIMES

This section will emphasise some significant features of M-ideals in H>°(D). The properties
of M-ideals that are being addressed here are also applicable to the polydisc D" in C*, n > 1.
Now, the definition of H>*(D") is comparable to that of the single variable:

H=(D") = {f € Hol(D") : || f]| := sup [f(2)] < oo}

By the same argumentation, H*°(DD") is also a uniform algebra, and so Theorem 2.3 applies
to H>(D").

We stated at the very beginning of Section 1 that the notion of M-ideals was proposed in
[3] as a generalization of two-sided ideals in Banach spaces. Our key result in this section is
yet another algebraic property of M-ideals. Recall that an ideal P in a commutative ring R
is called prime if P # R and if a and b are two elements of R such that

ab € P,

then either a € P or b € P. This motivates the following analytic definition of prime ideals
in H>*(D"):
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Definition 5.1. Let J be a proper nontrivial closed subspace of H>*(D™). We call J an
analytic prime as long as the following property holds true: If f and g are two elements of
H>(D"™) such that

fgelJ
and
f()>6 (€T,
for some 6 > 0, then
g e J

Note that, just as in the single variable case, here also a function f € H*(D") admits a
boundary value f a.e. on the n-torus T" [31]. It ought to be observed that the notion of
analytic primes has the potential to extend to a broad uniform algebra (one perhaps requires
finding a suitable replacement for T™). It is also clear that the concept of an analytic prime
is more potent than prime ideals in H>°(D") (or a uniform algebra). This also pertains to the
structure of M-ideals in H>(D"). Specifically:

Theorem 5.2. Proper nontrivial M-ideals in H*(D") are analytic primes.

Proof. Let J be a proper nontrivial M-ideal in H*>°(ID"). Since J is an M-ideal and H>(D")

is a uniform algebra, it follows that J contains a bounded approximate unit {f\}rea. Let
f,g € H>*(D"), and suppose fg € J. Suppose there is a 6 > 0 such that

f()>6  (z€T").
Fix € > 0. There exists A\, € A such that

Hfgf/\ - ng S g,
for all A > A.. Since this is the case, there exists a sequence {\,,} C A such that

IFofr — Foll < -,

for all m > 1. In view of the identification of functions via radial limits, we now observe that,
for functions in H*°(D"), the supremum on the boundary is sufficient to take into account.
Section 2 describes the identification for this n = 1 scenario, whereas the n > 1 case works
similarly. Fix an integer m > 1. For all z € T", we have

01G(2) o (2) = 3(2)] < 1F(2)1(2) o (2) = 3(2)
= 1f(2)3(2).rn(2) = F(2)g

Taking the supremum over all z € T™ gives

S| fr. — all < |[faf. — fall.

|
(2)I-

and hence
-z - 11
13fxn, — gl < Sm
for all m > 1. Since
ifh.€J  (m=1),
it follows that g € J. Thus, the proof of the theorem is concluded. O
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The analytic prime property of M-ideals in H>*(D) will be frequently used in what fol-
lows. We now present one implication from the preceding result, which is of independent
relevance in terms of the theory of bounded analytic functions and the theory of M-ideals.
Recall that a function v € H*>°(D") is said to be inner if

[0(2)] =1,

for all z € T" a.e. Now we prove that an M-ideal never intersects the multiplicative set of
inner functions.

Corollary 5.3. Let J be a nontrivial and proper M -ideal in H*(D™). Then no inner function
belongs to J.

Proof. Recall from Corollary 4.3 that J is a (two sided) ideal of H>(ID"™). Suppose that there
exists an inner function v € H*(D") such that v € J. Then, by writing

v=1Xw,
we conclude from Theorem 5.2 that 1 € J. This is contrary to the fact that J is proper. [

There is an alternate proof of the above, which is an application of Theorem 4.1 and
representations of M-ideals in uniform algebras. Recall from (4.1) that there exists P C
M(H>(D")) such that J = Jp. Now Theorem 4.1 implies that P must meet the Silov
boundary of H>(D"). However, inner functions do not vanish on the Silov boundary [20,
page 179].

Note that inner functions are extreme points of the closed unit ball of H>°(D). From this
perspective, the above corollary naturally raises the question of whether the same conclusion
also holds for all extreme points. However, this is not the case; see the example at the end of
Section 6.

Recall that singular inner functions are those inner functions that are zero-free. As a visual,
for each o € T, the function

Va(z) :=exp <z+a) (z € D),

z—

is a singular inner function in H*°(D). We illustrate the above result through the following
example:

Example 5.4. Consider the closed ideal J in H*(D), where
J={fe H*D): h_rgf(r) = 0}.

It is easy to see that vy € J. Hence, by Corollary 5.3, it follows that J is not an M-ideal in
H>(D).

Now we present another application of Theorem 5.2. This time, it will be applied to the
Hardy space H?(D"). Recall that [31]

1

HAD") = {f € Hol(D") : [[fll2:= ( sup [ [f(r2)Pdu(2))" < oo},

0<r<1 J1n

where dy denotes the normalized Lebesgue measure on T" and rz = (rzy, ..., 2,). In view of
the radial limits, we have the following isometric embedding:

H*(D") — L*(T").
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Moreover, it is well-known that
H2(]D)’IL)

Clzr, - 2] — H2(D"). (5.1)

We also need some operator theoretic concepts that are classic in nature. Given a function
© € H>*(D"), we define T}, acting on H?*(D") by

T,f=¢f  (f € H*D")).
We call T, the Toeplitz operator with the symbol ¢. To follow the convention, we choose
to abuse the notation here; that is, T, instead of T}. The symbols with the independent

variables {z1,..., z,} are known as distinguished Toeplitz operators. In this case, we have
Tsz =z f (f S HQ(]Dn))v
for all i = 1,...,n. We now show that the density assertion in (5.1) is true for each M-ideal
in H>(D").
Theorem 5.5. If J is a nontrivial M-ideal in H*(D"™), then
770D — g2 pm,

Proof. We know, by (4.1), that
J={p c H*(D): ¢|p = 0},
for some p-set of H*(D"). From here, it is easy to conclude that J is invariant under z;,

. —=H?%(D") . . . . . .
1 =1,...,n. Therefore, J ®") is also invariant under zi, i =1,...,n. It is then sufficient to

show that 1 is in 7H2(Dn). To accomplish this, we again use the bounded approximate unit of
M-ideals as we did in the proof of Theorem 5.2. Let {¢x}rea be a bounded approximate unit
in J. As in the proof of Theorem 5.2, for a fixed ¢ € J, there exists a sequence {\,,} C A
such that

1
[pPrm — Pl @n) < o (5.2)
for all m > 1. Note that {¢,,,} is a bounded sequence in H?(D"). Consequently, {,,, } has
a weak convergent subsequence, and hence, there exists f € H?*(D") such that
¢Amk i> f?

in H*(D"). Since the Toeplitz operator T, on H?(D") is bounded, we obtain

PP, — ©F,
in H?(D"). Also by (5.2), we have
PPrm, — P,

in H?(D"). Here we are using the general fact that H°(D") is contractively embedded in
H?(D"). Therefore

of = ¢,
equivalently
f—1eckerT,.

However, since ¢ is an analytic function, we know that

ker T, = {0}.
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This effortlessly implies

f=1
and completes the proof of the theorem, as weak closure and norm closure are identical for
convex sets. U

Recall that for a given f € H*(D"), we denote by Iyemn)(f) the closed principal ideal
generated by f in H*(D") (see(1.3)):
IHOO(D”)(f) = {pf ‘pE (C[Zla R ZTL]}

The following is a straight application of the above theorem, which establishes a clear link
between M-ideals and classical operators such as Toeplitz operators.

Corollary 5.6. Let ¢ € H*(D"). If Iyemn)(p) is an M-ideal in H>(D"), then

H> (D™)

ker T;; = {0}.
Proof. Note that ker T = (ranT,)". But
H?(D" —H?(D")
ranTSD ®") = _[HOO(Dn) (QO)
= H*(D").
The result now follows immediately. 0

In the first part of the proof of Theorem 5.5, we verified that an M-ideal in H>°(D") is an
invariant subspace of H%(D"). In this context, a subspace S of H*(D") is considered invariant
if

42SCS  (i=1,....n).
Corollary 5.7. Let J be a nontrivial closed ideal in H>°(D™). If there exists a proper closed
invariant subspace S of H*(D") such that
JCS,
then J is not an M-ideal in H>(D").

Proof. Since S is a proper closed subspace of H*(D"), by Theorem 5.5, it follows that J is
not an M-ideal; otherwise

(D" 2827 = 1 (D),
a contradiction. O

Given a function f € H?(D"), define

H?(D™)
]HZ(Dn)(f) = span{pf : p € Clz1, ..., 2]}

In other words, Ipzpny(f) is the smallest closed invariant subspace of H?(D") containing f.
Corollary 5.8. Let f € H*(D"). If Igeomn(f) is an M-ideal in H>(D"), then
]H2(]D)n)(f> = HQ(]Dn>

Proof. First, we observe that
H2(D™)

Trr2e) (f) = Lo om)(f)
Since Ipoopr)(f) is an M-ideal in H*°(ID"), the result directly follows from Theorem 5.5. [
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If n =1, then a function f € H>*(D) is refer to as an outer function if
Loy (f) = HA(D). (53)

Consequently, Corollary 5.8 concludes that if Ipee(p)(f) is an M-ideal, then f is an outer
function.

Note that the outer functions on the disc are zero-free. The notion of outer functions in
higher variables is, however, different from the above (see Rudin [32, page 72]).

6. PRINCIPAL M-IDEALS

From now on, we shall limit ourselves to single variable as a result of the unavailability of
tools in several variables that are to be utilised in the subsequent computations. We begin with
the final result, Corollary 5.8, of the previous section. It raises the question of a converse
direction: Does the ideal generated by an outer function in H*>°(D) always qualify as an
M-ideal in H*(D)?

The main goal of this section is to prove that for functions in Z°°(ID), the converse is true.
Recall from Definition 1.8 that Z*°(D) is the set of all functions f in H*(D) that have a
continuous extension to D U Zr(f), where

Zn(f)={z€T:z¢€Ze(fo)y  (f € H*(D)),
and fo denotes the outer factor of the inner-outer factorization of f € H*(D). Note that

fz) = Tl_i}riai f(rz) (z€Tae.),

is the radial limit extension of f € H*(D) to the boundary T. Note that there may exist
outer functions f € H*(ID) and points z € Zg(f) such that f(z) does not exist. In view of
the above definition, the significance of considering functions in Z°°(D) is that this issue does
not arise: If f € Z°(D) and z € Zy(f), then for any sequence {z,} converging to z, we have
f(2zn) — 0. In particular, the radial limit function satisfies the following:

fz) = tim f(r2) =0.

We recall representations of outer functions, which will play a crucial role in our analysis. For
each z € D and 6 € [—m, 7], we define (in this context, also recall the Szego kernel on D)
e + 2
S(z,0) = — :
(:0) = G
It is well known that a function f € H*(D) (or f € H*(D)) is outer if and only if (see [20,
page 62]) there exists a real-valued integrable function & on [—m, 7| such that

F(2) = exp <2i / e e)k(e)de) (> € D). (6.1)

T J_x

Moreover, in this case

k(6) = log | f(e”)],
for all § € [—7, 7] a.e. In what follows, we will assume Zp(f) # 0, otherwise f is invertible
and

Tgeemy(f) = H*(D).
We need the following lemma:
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Lemma 6.1. Let f € Z*°(D) be an outer function. Then there ezists a sequence of open sets
{An}m>1 in T such that the following conditions hold:

(1) Zr(f) € A, for allm > 1.

(2) There exists an open set U,, C T such that A1 C U, C Ay, for allm > 1.
(3) 1(Am) N0 as m — oo.

()\f\<€m0nAmf0rallm21.

Proof. Consider the representation of the outer function f as in (6.1):

F(2) = exp (;ﬁ / e e)k;(e)de) (= D).

By the outer regularity of the Lebesgue measure, there exists a sequence of open sets {C,,}
in T such that
Zr(f) € G,
and
Cimi1 C O,
and
1(Crm) = pu(Ze(f)) = 0.
For all m > 1. Choose a sequence of positive real numbers {e,,},,>1 such that
Em<e ™ (m>1).
Since f is continuously extendable to Zr(f), corresponding to 1 > 0 and o € Zp(f), there
exists a 4% > 0 such that
|f(z) = fla)] <e,

for all z € DN B(a,d}), and
(a],dl ynT ;Cé C1,
where, for each zy € C and 6 > 0, we write
B(z9,0) ={2 € C: |z — z| < d}.
Since f(«) = 0, it follows that
[F(2)] < e,
for all z € DN B(a,d,). As Zp(f) is a compact set, there exist scalars {;}}L, such that

ni

{o}1L, € Zo(f) € | Blay, d3,)-

j=1

Define .
B., = U (O‘Jaél ),
j=1
and
A =TNB.,.
Now for g5 > 0 and for each o € Zp(f), there exists a 6> > 0 such that
[f(2)] < e,

for all z € DN B(a,d2), and
B(0,02) S B., B, 2) NT S A, NG, (6.2)
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Again, by compactness of Zr(f), there exist scalars {;}72, such that

{Oz]} C Zn(f) C U (O‘J:(SZ )-
j=1
Similarly, define
B., = U (O‘Jv(sg ),
j=1
and

Ay =TNB,,.
Clearly

B,NT= U B(a;,02)NT) S B, NT,

where the strict inclusion follows from the inclusions pointed out in (6.2) and the fact that
B., is open. Therefore

Ay =B,NTS B, NT=A4,.

Evidently, this process continues for m > 2. So we get a sequence {A,,},,>1 of open sets such
that:

(1) Zr(f) € Ap, m > 1, and

(2) Apy1 C U, C Ay, forallm > 1,

which yields conditions (1) and (2). Also

0< N(Am) < N(Cm) — 0,

implies (3). We now prove the remaining one, condition (4). Let m € N be fixed. Suppose
f(e) exists for some e € A,, (that is, f(e™) € C). Then there exists a € Z7(f) such that

e € B(a, ™).
Since B(a,0") is open, there exists 0 < s < 1 such that
re' € B(a,5™) ND,

for all s < r < 1. Therefore

|[f(re)] < em,
for all s < r < 1, and hence, the radial limit extension function f satisfies the following
property:

()] < em
Since e’ is arbitrary, we get
XAm f| <em<e ™,
which yields (4), and completes the proof of the lemma. O

Now we are ready to prove the main result of this section. Recall that for f € H*(D), we
denote by Igeom)(f) the closed ideal generated by f.

Theorem 6.2. Let f € Z°(D). Then Iysm)(f) is an M-ideal in H*(D) if and only if f is
an outer function.
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Proof. The necessary part is already in Corollary 5.8 (along with the identity (5.3)). For the
sufficient part, assume that f € Z°°(D) is an outer function. Set

k(0) :=log | f(e”)],

for § € [—m, ] a.e. Then k is a real-valued integrable function, and

F(2) = eap <2i /W S(z, e)k(e)de) (z € D),

T J_x

where S(z,0) = iizfi (see the discussion at the very start of this section). It is enough to
build a bounded approximate unit in /g m)(f) (see Theorem 2.3). We proceed as follows:

By Lemma 6.1, we construct a sequence of open sets { A, }m>1 in T such that
(1) Zr(f) € Ay, for all m > 1.
(2) A1 C U, C A, Uy, open for all m > 1.
(3) n(Ay) \ 0 as m — oco.
(4) |f| < e™™, or equivalently

k(0) < —m,
a.e. on A, for all m > 1.
For each m > 1, define a real-valued integrable function k&, on [—m, 7] as
km = —xac k.

For each m > 1, we claim that k,, is bounded above a.e. We prove this by contradiction. Fix
m > 1. Assume, for each N € N, we have that

w({0:kn(0) > NNAS) > 0.
But
p (1170, N AL ) = n ({6 k(B) < —N} N A7)
= ({0 km(0) > N} N A7)
> 0.
Because of the inner regularity of Lebesgue measure, there exists a compact set By such that
By CIfI7(0,¢7) N 45,

and pu(By) > 0. Since By is compact for each N, we can find zy € By and a neighbourhood
N, of zy such that u(N,,)=e " and

ZN
(N, N By) > 0.

To see this, one may consider a cover by a set of open intervals of radius e of By. Then,
because By is compact, there exists a finite subcover. Since

M(BN) > 07

there exists at least one interval, say NNV, , in the finite sub cover that intersects By with a
positive measure. Take zx to be the centre of this interval V,, . Passing onto a subsequence if
necessary we can assume that {zy} converges to z. Let ¢ > 0 and let N, be a neighbourhood
of z. Without any loss of generality, we assume that N, is centpurple at z. Then

lon = 2| < u(N2)/4,
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for all N > Ny. Take N sufficiently large so that N > Ny and
1(Nzy) < pu(N:) /4,
and e < e. Then, for each w € N, we have
|lw—z| < |w—zy|+ |zn — 2|
< (N, ) /4 + p(N:)/4
< u(N,)/2.

Therefore N,, € N,, and hence N,, N By C N,. Since |f| <
that

e N < ¢ a.e on By, it follows

p({IF1710,6) N N.Y) = u(N.y, 0 By,) > 0.

This implies that AS, has a zero of f, which is impossible because Zy(f) C A,,. This proves
the claim, and subsequently, we define outer function g,, by (recall the representations of

outer functions from (6.1))

m(2) = exp (;ﬂ / ' S(Z,e)km(e)de>

(z € D).

At this point, we recall that the real part of S(z, 6) is the Poisson kernel P(z, ) (see [21, page
30] for more details). If we write z = re®, then as r — 1, we have

1
27r

a.e. Now

|G ()] =

r—1 .

r—1

= exp (2i lim ’ P(re®, 9)(—XA7cn(ew)k(6))d9>

Tr—=1 )

= exp (—XAﬁn(elf);;(g))
= exp (kn(€)).

a.e. Since k,, is bounded, it follows that g,, € H*(D). Again, we compute

(fgm)(re’) = exp (21 / " s, e)k(e)de) X exp (21 / i

= exp( S re, ) 9) Xae, (

S (re, 0)k dH) X exp( /
= exp

S’IHS’IHS’IH

\\\

S 0)xa,. (€ )k(@)d@) ,

Re S(re, 0) |k, (0) do — ki,
N )

(&),

1 [" ,
o df
lim exp (2#/ S(re, 0)k,,(0) >‘
= lim exp ( ! / P(re®, H)km(é)dH)
2m

S(re’€, 0)kn, (e)de)

S(re®,0) —

s

X Ac, (ew)k(e)cw)
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We now claim that {fgm}m>1 is a bounded approximate unit in g m)(f). For fixed m > 1
and e € T, we have

e~

[(fgm)(€)| =

lim exp (ZL/ S(reié,e)x,qm(eie)k(ﬁ)de)‘
m

r—1 .

= lim exp <2i / ' P(re®, e)XAm(e”)k(e)de)
)

r—1 T J_r
1 4 ) )
— exp (2— lim [ P(re®,0)xa,, (¢)k(0)dd

T r—l1 0
= oxp (X, (€°)k(9)) ,
a.e. But, on one hand
XAm <€Z£)k(§) = 07
for all % € A¢ a.e. and, on the other hand, by property (4) above, we know
X, (€°)k(€) < —m,
for all e € A,, a.e. Therefore

m (6.3)

We want to show that fg, — 1 uniformly on A7, for each my > 1. To see this, fix mg > 1.
We know that A, & Ay, for all m > mg. Also, by property (2), there exists M > 0 such
that
e — e > M,

for all e € A,, and e € A, . Therefore, there exists M > 0 such that

|S(T€i5, G)XAm (eié)’ < M,
for all e € AS, a.e. and m > my. Since

Xa,, () [k(O)] — 0,

pointwise, and

X (V) k(0)] < [k(0)],
on T a.e. by the dominated convergence theorem, we conclude

/ Xa,, (€)|k(6)|do — 0.
Consequently, for each m > mg, we have
’/ S(Teig,H)XAm(ew)k(@d@’ < M/ Xa,,(¢”)|k(0)]d) — 0,

uniformly for all e € A¢, a.e. Since

Fam)(e) = Tmexp (5= [ Se.0)va, R(0)09),

r—1 .

we conclude that -
fgm — 17
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uniformly on A¢ ~a.e. and hence, the claim follows. Finally, we turn to compute || f 20m — f]I-
Observe that

1£29m — fII = max { es$ SUp |2 g, = f, esssup |29, = f\}-
mq m
By the fact of uniform convergence above, for sufficiently large m, it follows that
esssup |f2g,, — f| < .
C
mo

Therefore, for sufficiently large m, property (4) and (6.3) imply

esssup |£2g,,, — f1 < e (e +1),

m

and hence {f gy }m>1 is a bounded approximate unit in /zeom)(f). O

The above result provides a converse to Corollary 5.8, but only within the class of functions
in Z>°(D). However, for functions in H*>*(ID), we still can have a full converse to Corollary 5.8,
provided we assume Jensen’s equality [20, Chapter 10]: Recall that for each ¢ € M(H*(D)),
there is a probability measure p, on M(L*(T)) such that

o(f) = /M(LOO(T)) [,

for all f € H>*(D). It follows that
logle(PI < [ log]fldu
M(L>=(T))

for all f € H>(ID). This inequality is known as Jensen’s inequality. We say that f € H*(D)
satisfies Jensen’s equality if

log |io(f)] = / log | djt,.

M(L(T))
We also need to set up some notations [22]: For an ideal I in H>°(ID), define
Z(1) ={p € M(H*(D)) : p(f) = OVf € I}.
Also, for each subset K of M(H>(DD)), we set
I(K) = {f e H*D) : flx = 0}.

The following theorem due to Izuchi [22, Theorem 3.2] holds the key to the converse to
Corollary 5.8:

Theorem 6.3. Let f € H*®(D) be an outer function, and assume that f is not invertible in
H>(D). Let I = fH>(D) denote the ideal generated by f. Then

I=1(Z(1)),
if and only if [ satisfies Jensen’s equality for every point ¢ € M(H*>®(D)) with p(f) # 0.
We are now ready for a converse to Corollary 5.8:

Theorem 6.4. Let f € H*®. Then Iyem)(f) is an M-ideal in H*(D) if and only if f is an
outer function and satisfies Jensen’s equality.



M-IDEALS 25

Proof. Suppose Ig~m(f) is an M-ideal in H*(ID). By Theorem 1.5, we know that f is an
outer function. Moreover, by part (ii) of Theorem 2.3, there exists peak set K such that

Ig=m)(f) = I(K).
We have

K C Z(Ig=m(f)),
and hence

Ig=m)(f) = I(K) 2 I(Z(Ig=m)(f)))-
As [Hoo(]D))<f) C I(Z([Hoo(D)<f))), it follows that
Iy (f) = 1(Z(In>m)(f)))-

Theorem 6.3 now implies that f satisfies the Jensen’s Equality.
For the reverse direction, assume that f is an outer function satisfies Jensen’s equality. Again,
by Theorem 6.3, we conclude that e m)(f) = I(Z(Ig=m)(f))). Therefore,

Y™ € Tyoemy(f).

By using the same arguments as in Theorem 5.2, it can be shown that f/™ forms a bounded
approximate identity in Iyeom)(f). Consequently, Irem)(f) is an M-ideal in H>(DD). O

Combining the above theorem with Theorem 6.2, we get:

Corollary 6.5. If f € Z°°(T), then f satisfies Jensen’s equality.

We now proceed to compute the zero set of a particular function. This will be utilized for
additional computations in the following section. It is convenient to recall the representations
of outer functions from (6.1): Define an integrable function k on (—m, 7] as follows:

_n if@e((n+1,n] 2, o)
k(0) = % if 0 € [ — 2n,7r QL—SL]
1 otherwise .

Define the outer function corresponding to k as

£(2) —exp< /Sz@ ) (> € D), (6.4)

where S(z,0) = %+2. We claim that

ef—z
Zn(f) ={1}.
Indeed, since
()] = ",
for 0 € (—m, x| a.e. it follows that
FeN =1,

for all § ¢ (—1/2,1/2)). Clearly, for any z = ¢ such that § ¢ (—1/2,1/2)), and each
neighbourhood N, of z, we have

1f174(0,1/2) N N, = 0.

Therefore

e’ ¢ Zr(f),
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for all 6 ¢ (—1/2,1/2)). Now we consider the case
0e (—1/2,1/2))\ {0},

There exists an n > 1 such that

e (U o)

Hence
f(e) =€,

for all ¢ € ((n—li-l)’ U=, (7;11))' For z = ¢” and N, = (5, t] U [=, (n:rll))’ and € < e,
we get

|f~‘71(076) NN, = 0.
Therefore, we again conclude that e ¢ Zp(f) for all § € (=1/2,1/2)) \ {0}, and hence

¢’ ¢ Ze(f) (0 €[-mm)\{0})

Finally, for each £ > 0 and neighbourhood N of 1, we can find n > 1 such that e™ < ¢ and

((nif)? Ul ﬁ) C N;. Therefore,

(@%B%MJE%@i%>9m4“”“M’
and hence

u(If1710,6) N NY) > 0.

This completes the proof of the claim that Zy(f) = {1}.
The following example proves that the conclusion of Corollary 5.3 does not hold for arbitrary
extreme points.

Example 6.6. Consider the integrable function k defined as

—-n Zf‘g € (ﬁa %] U [_717 (n;11)>
KO =41 felr— -k o]
0 otherwise.

Let f denote the corresponding outer function, that is,
1 ’7T
f(z) =exp (—/ S(z,@)k‘(@)d@) ,
2 ) .
for all z € D. We know that
Ifl=1,

on a set B C T of positive measure. Then f is an outer function which is an extreme point.
Therefore, by Theorem 6.2, Inom(f) is an M-ideal.
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7. EXAMPLES

The objective of this section is to present some direct applications of Theorem 6.2 as well
as some nontrivial examples of elements in Z>°(ID). Additionally, we present exotic examples
of M-ideals that are principal ideals generated by functions from H*°(D)\ Z*(D). We begin
by highlighting, in the context of Theorem 6.2, that the M-ideals are more explicit. For
instance, given f € Z*(D), define

Z(f)={g9g € H*(D) : Z1(f) C Zr(g) and g has a continuous extension to Zr(f)}. (7.1)

Observe that
Tpom)(f) S Z(f).
Now we assume that f is outer. Pick g € H*(ID) such that g|z, (s is continuous, and
Zr(f) € Zx(g).

For each open set U containing Zr(f), there exists a neighborhood A C U of Zz(f) such that
the bounded approximate unit {f¢,, }m>1 constructed in the proof of Theorem 6.2 converges
uniformly to 1 on A¢ and

71,131 <&,
a.e. on A. Since
fgm — 17
uniformly on A¢, it follows that
ess sup 19(e”)(fgm)(€?) = g(e)] <,
et?c Ac

and

esssup 5(e™) (Fgm)(€?) = (™) < |3(0)[[|Fgm + ]| < 2,

for sufficiently large m. Consequently, g € I m)(f). This proves the following result:
Corollary 7.1. If f € Z°°(D) is an outer function, then

ooy (f) = Z(f)-
In view of C[z] C Z*°(D), the following is immediate from Theorem 6.2:

Corollary 7.2. Let p € C[z] be a polynomial. Then Igem(p) is an M-ideal in H>*(D) if
and only if zeros of p lies on C\ D.

We now go on to the existence of some nontrivial outer functions in Z*° (D). We provide
two classes of examples of different flavors. Recall that the disc algebra A(D) is the uniform
algebra of all continuous functions on the closed disc D that are analytic on the open disc D.
In other words (see (1.5))

A(D) = H*(D) N C(D).
It is known, as well as evident, that A(D) & H*(ID). In the following, we present an example

of an outer function in Z°°(D) that also has points of discontinuity on T. In particular, we
prove that A(D) & Z>(D).
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Example 7.3. Consider the singular inner function

5(2) = exp <Z “) (z € D),

Z—1

and the outer function
h(z)=1—=2 (z € D).

Since s is an inner function, 1 — s is an outer function. Therefore, being the product of two
outer functions, it follows that

f(z) =1 =s(z))h(z)  (z€D),

1s an outer function. Observe that

f<z>=<1—z>(1—exp(”?)) (- € D),

zZ—1

and hence
Since the support of § is {1}, it follows that s is analytically extendable to T\{i}. In particular,
1 — s is continuously extendable to {1, —i}. Since s is continuous on T\{i}, it follows that f

is continuous on Zy(f). Therefore f € Z>°(D). However, since s is discontinuous at i and
h does not vanish at the point i, we conclude that f is discontinuous at v, and subsequently,

f ¢ AD).

Now we turn to the second example.

Example 7.4. We consider the outer function f as constructed in (6.4):

£(2) = exp (% /W S(z, e)k(e)de) (z € D),

—Tr

where
) , 4
—-n iff e ((anl)a %] U [717 n-i-ll))
KO) =L  ifpelr—La—L—d]

(1 otherwise .
We already know that Zr(f) = {1}. Observe, for sufficiently large n, we have

R Gl

whenever 6 gets close to 0. Hence

)] = 0 = =
As a result, f is continuous at 1. Now there exist sequences {0} and {~ym} such that
1 1 1
ng|:7T——,7T————:| (m>1),

and
k(’)/m) =1 (m > 1)7

and 0, — m, and Y — . This implies that |f| is not continuous at .
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Therefore, there is no dearth of examples of functions in Z*°(D). Moreover, as we have
shown above

AD) G Z(D).
We now present an additional collection of natural yet exotic M-ideals in H*(D).
Theorem 7.5. Let f € H>®(D) such that || f|| = 1. Suppose |a| =1 and
« € ess-ran f.
Then Igsomy(ov — f) is an M-ideal in H*(D).
Proof. Without any loss of generality, we may assume that
a =1 € ess-rangef.

Fix an € > 0, and let .
A={CeT: f(¢) € B-(1)},
where B.(1) denotes the open ball of radius ¢ centepurple at 1. Note that

f(A%) €D\ Ba(1).
Now we define a function g € H*(D) by

1+ f
g = 5
For each z € A, we have
1+ f(2)| 1 €
1— S I A G20 . °
1=l = 1= =L = - pen < 5,

and hence
§(A) C B (1).

Define h € A(D) by

h::z—l—l'
2

We have by the triangle inequality that ||h|| < 1. Moreover, on the boundary T, we have
2 _ 2(1 + cos(0)) 1+ cos(0)

4 2 '
Therefore |h(e?)| = 1 only when € = 1. By continuity, there exists ¢ € (0,1) such that

sup |h(z)] < e

[A(e™)]

2€D\B:(1)
Since 5
g=nhof,
it follows that
9] <e <1,

on A¢. Observe that

Iree)(1 = f) = Iee()(1 — 9)-
Therefore, it is enough to prove that Iyem)(1 — g) is an M-ideal in H*°(ID). To this end, we
will construct one approximate identity in Iyem)(1 — g). For each n > 1, set

fn=1—9g".
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Since
l—g"=Q1-g)(l+g+--+g""),
it follows that f,, € Ig~my(1 — g). Moreover
1-g)fa—(1—9)=—-(1-9g)g"

By using the property of radial limits, we conclude

£ on A
1—g)g"| <42
I 9)9"| < {20" on A°.

By the maximum modules principle, we find that {f,},>1 is a bounded approximate identity
in Iyeomy(1 — g), and hence Iyeom)(1 — g) is an M-ideal in H>*(D).

Now we turn to the final example in this section. The class of functions given in the above
theorem has the potential for the existence of singly generated M-ideal in H* (D) that may
not belong to Z*°(D). Indeed, the following example shows an M-ideal in H*>°(DD) generated

by an outer function not belonging to the class Z°(D).

Example 7.6. Define an integrable function k on (—m, x| by

- +1) if —m<6<0
k(e)_{—e if0<60<m,

and consider the corresponding outer function

f(2) = exp (% /_1 S(z, 9)k(9)d9) (= € D).

Now, observe that
1e ess-mnge[f],
and hence there exists a € T such that
1€ Zr(a—f).
On the other hand, if 6 — 0 from the left, then
k(#) — —1,
and hence

7l — k(0) = -

Therefore, a — f is not continuous at 1 (or on Zy(a— f)) but, in view of the above theorem,

Igemy(a — f) remains an M-ideal in H>(D).

The examples and results shown in this section indicate that the structure of M-ideals in
H>(D) is intricate, even when considering M-ideals that are principal generated.
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8. FINITELY GENERATED M-IDEALS

In the preceding sections, we examined representations of principal ideals generated by
functions from Z*°(D). Specifically, we showed in Theorem 6.2 that the ideal Iyeom)(f) is
an M-ideal for some function f € Z°°(D) if and only if f is an outer function. In this
section, we consider M-ideals in H*°(DD) that are finitely generated by functions from Z> (D).
Given m functions {fi,..., fm} € H*(D), denote by Iyem)(f1,. .., fm) the ideal generated

by {fla'”?fm}‘

Recall the inner-outer factorizations of H>°(ID)-functions (see (1.4)): Given a nonzero func-
tion f € H*(D), there exist an inner function f; and an outer function fp such that

= Iifo,

on . Moreover, this factorization is unique up to a constant of modulus one.

Theorem 8.1. Let {fi,..., [} € Z%°(D). If Igecw)(fi,--., fm) is an M-ideal in H*(D),
then there exists an outer function f € Z*°(D) such that

[Hoo(]D))(fl’ ey fm> == [Hoo(D)(f)
Proof. Suppose Ieom)(fi,- .., fm) is an M-ideal in H>(D). Let

fi = f1jfoj;

is the inner-outer factorization, where f7; is the inner factor and fo ; is the outer factor of f;
forall j =1,...,m. In view of

fijfoj € In=m)(fr,-- - fm)  (G=1,...,m),
we know, by Theorem 5.2, that

foj € I~y (fr,--- fm)  (G=1,...,m),
and hence
Ty (for,-- -, fom) € Taooy(f1s- -5 fim)-
By using the inner-outer factorizations of f;’s, the other set inclusion becomes trivial. Then

Tgoomy(fors - -, fom) = Taee @) (f1, - - -, fm)-

Therefore, without any loss of generality, we may assume that f;’s are outer functions in
H>(D). Our goal is to prove that

[HOO(]D))(fla te fm) = [HOO(]D))(f)v

for some outer function f € Z*°(ID). We prove the assertion for m = 2. The complete proof
follows similarly by induction on m. Therefore, our revised goal is to prove the following fact:
Assuming that Iyem)(fi, f2) is an M-ideal in H>*(D) for some fi, fo € Z*°(D), there exists
an outer function f € Z*°(D) such that

Ty (f1, f2) = Ty (f).
To this end, first, assume that
Z(f)NZ(f2) = 0.
Since f; € Z*(ID) is outer, by Theorem 6.2, it follows that Iyeom)(f;) is an M-ideal, j = 1,2,
and hence there exist bounded approximate units, say (by an abuse of notation) {¢, }m>1 and
{Wm}m>1 In Tgeoy(f1) and Iyeem)(f2), respectively, as constructed in the proof of Theorem
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6.2. We highlight the following key properties: For any ¢ > 0, there exists a neighborhood
Uy C T of Zr(f1) such that
on Uy, and

[om| <e, (8.2)
on U; for sufficiently large m. Similarly, there exists a neighborhood Uy C T of Zp(f2) such
that |@,, — 1| < e on Uf, and |p,,| < € on U, for sufficiently large m. Since Z7(f1) and Z7(f2)
are compact, without any loss of generality, we may assume that

UynUs =0.
Therefore, for sufficiently large p,q > 1, we have
‘_@;ﬁ-% — 1‘ <&,
2
on Uy UUS =T. That is
l—e< ’<pp ¥, :
on T. But _
Pp + Uq

- — [HOO(]D))(fla f2)7

and hence, by Theorem 5.2, we conclude

Troomy(f1, f2) = Treomy(1).
Now we assume that
Zn(f1) N Ze(f2) # 0.
For each p,q > 1, define

Cpg = Pp + Vg — Ppiy.-
Then
Cp,q € IH@(D)(fl»]%) (paq > 1)-

We claim that {(4}pe>1 is a bounded approximate unit in Igeom(fi, f2). It is clear that
{Gp.q}p.q>1 1s a bounded set. It is now enough to prove that

lim Cp,qu = fj7
p,q

for all j = 1,2 (with respect to the lexicographic ordering). Fix ¢ > 0. Since {¢y}m>1 is a
bounded approximate identity in Izen)(f1), there exists py > 1 such that

Ifi —epfillo <€ (p>po)-

We compute

1¢p.aft = fill = llppfi + Yo fi — oo fi = fill
= |lopfr = f1 + Vo f1 — epoo fill
< lepfi = fill + 1gllll fr — epfall
< e(1+ [[thgll)
<e(l+ M),
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for all p > pg, where (recall that {i,},>1 is a bounded sequence)

M = sup |3 .
q

Assume, without any lose of generality, that ||¢pllc < M for all p > 1. Then, a similar
computation as above implies the existence of a number ¢y > 1 such that

[¢pafo = foll < e(1+ M),
for all ¢ > ¢qo. Hence
1Cp.afi — fill < e(1+ M),

for all j = 1,2, and p > py and ¢ > qo. Then {(,4}p¢>1 is a bounded approximate identity
in, and consequently Igeom)(fi, f2) is an M-ideal. It remains to prove that Igem)(fi, f2) =
I m)(f) for some outer function f € H>(D). First, let us define

IT={he H>*D): Zr(f1) N Zr(f2) C Zr(h) and h|z,(f,)nz.(s,) 1S continuous}.
We claim that Iyeem)(fi, f2) =Z. Let h € Z. We want to show that
lim Q;;JL = h.
p,q
Let € > 0. Since h € C(Z(f1) N Z(f2)), we can find an open set U C T such that
Z(fi)nZ(f) CU,
and
- €
Bl < =
i<,

on U. Asin (8.1) and (8.2), there exist open sets Uy, Uy C T such that Z(f;) C U;, j = 1,2,
and

UynU,CU.

Moreover, we have the following properties:

€ lop — 1| on U
20ln) %l on Uy,

and

e |%—1| on Us
2Rl | 1l on Uy,

for sufficiently large p and ¢. Also

16l = Bl = [(Bph + Wogh — Gbgh) — R,



34 DEEPAK, SARKAR, AND SIJU

where, for sufficiently large p and ¢, we have

(4)|h]] on U; NU,
Gl — Tl + [ — Bl on Uy U
12,11~ Gl + I3k — Bl on U1 T,
lgllle = @phll + llgph — Rl on Uf N U3

|(@Bph + bgh — Gpibgh) — B <

.

€ on U1 N U2
e | e A .
< 2||R|| H}}H + 2|7 HfLH on Uy NUs
| s Wl g DRl on UEO U,
Lz 1+ g - IRl on UF N US

< e,

and hence
h € ]HOO(]D))(fth)-

On the other hand, it is clear that every function in I(fi, f2) vanishes and is continuous on
Z(f1) N Z(f2). Therefore

Ty (f1, f2) =T,

which completes the proof of the claim. Finally, since f; and f5 are continuous on Z(f1)NZ( f2)
and since Z(f1) N Z(f2) is a closed subset of T with Lebesgue measure 0, by a theorem of
Fatou, there exists an outer function f € A(D) such that Z; = Z(f1) N Z(f2). But Corollary
7.1 implies

I(f) = ](f17f2)7
which completes the proof of the result. O

It is perhaps noteworthy to mention that the proof of the above theorem remains valid even
when an infinite number of generators are adopted. However, in order to execute the proof
in its present form, one needs to have the crucial finite intersection property of compact sets.

It is customary to ask about expanding the representations of M-ideals in H*°(ID) beyond
those that are finitely generated or generated by functions from Z°°(D). However, as men-
tioned in Section 3, the set of all M-ideals in H*°(ID) is vast, and the complexity seems to be
akin to that of the maximal ideal spaces of H>*(ID). Strengthening these results is crucial for
advancing the theory of M-ideals and the theory of bounded analytic functions, as it could
potentially lead to the development of new approaches in these fields and their connected
ones.

We wrap up this paper with a more specific question. In view of Theorem 5.2, we know that
all M-ideals are analytic primes. We also note that the classification of closed prime ideals
in H°(D) is unknown (however, see [6, 16, 22, 29]). An intriguing question thus emerges
concerning the classification of analytic primes in H*°(ID) or a more general uniform algebra.

Conflict of interest: The authors have no conflicts of interest to declare.

Data availability statement: Data sharing is not applicable to this article as no datasets
were generated or analyzed during the current study.



M-IDEALS 35

Acknowledgement: The research of the second named author is supported in part by TARE
(TAR/2022/000063) by SERB, Department of Science & Technology (DST), Government
of India. The reserach of the third author was supported in part by ISI visiting scientist
fellowship and JC Bose National Fellowship of Professor Debashish Goswami (ISI Kolkata).

[1]

REFERENCES

M. Acosta, R. Aron and L. Moraes, Boundaries for spaces of holomorphic functions on M -ideals in their
biduals, Indiana Univ. Math. J. 58 (2009), 2575-2595.

C. Agrafeuil and M. Zarrabi, Closed ideals with countable hull in algebras of analytic functions smooth
up to the boundary, Publ. Mat. 52 (2008), 19-56.

E. Alfsen and E. Effros, Structure in real Banach spaces. I, IT, Ann. of Math. 96 (1972), 98-128; ibid. (2)
96 (1972), 129-173.

N. Bala, K. Dhara, J. Sarkar and A. Sensarma, A Bishop-Phelps-Bollobds theorem for bounded analytic
functions, J. Funct. Anal. 284 (2023), Paper No. 109834, pp 20.

L. Bers, On rings of analytic functions, Bull. Amer. Math. Soc. 54 (1948), 311-315.

J. Bourgain, On finitely generated closed ideals in H*° (D), Universit’e de Grenoble. Annales de I'Institut
Fourier 35 (1985), 163-174.

J. Bourgain, New Banach space properties of the disc algebra and H*, Acta Math. 152 (1984), 1-48.
C-M. Cho and W.B. Johnson, M -ideals and ideals in L(X), J. Operator Theory 16 (1986), 245-260.

T. Gamelin, The algebra of bounded analytic functions, Bull. Amer. Math. Soc. 79 (1973), 1095-1108.
T. W. Gamelin, Uniform algebras. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969.

T. W. Gamelin, D. Marshall, R. Younis, and W. Zame, Function theory and M -ideals, Ark. Mat. 23
(1985), 261-279.

J. Garnett, Bounded analytic functions, first edition, Graduate Texts in Mathematics, vol. 236, Springer,
New York, 2007.

G. Godefroy and D. Li, Some natural families of M-ideals, Math. Scand. 66 (1990), 249-263.

G. Godefroy and D. Li, Banach spaces which are M -ideals in their bidual have property (u), Ann. Inst.
Fourier (Grenoble). 39 (1989), 361-371.

P. Harmand, D. Werner and W. Werner, M -ideals in Banach spaces and Banach algebras, Lecture Notes
in Mathematics, vol. 1547, Springer-Verlag, Berlin, 1993.

A. Hartmann, X. Massaneda and A. Nicolau, Finitely generated ideals in the Nevanlinna class, Israel J.
Math. 231 (2019), no. 1, 139-179.

H. Hedenmalm, Outer functions in function algebras on the bidisc, Trans. Amer. Math. Soc. 306 (1988),
697-714.

H. Hedenmalm, Bounded analytic functions and closed ideals, J. Analyse Math. 48 (1987), 142-166.

B. Hirsberg, M-ideals in complex function spaces and algebras, Israel J. Math. 12 (1972), 133-146.

K. Hoffman, Bounded analytic functions and Gleason parts, Ann. of Math. 86 (1967), 74 - 111.

K. Hoffman, Banach spaces of analytic functions, Series in Modern Analysis, Prentice-Hall, Inc., Engle-
wood Cliffs, N.J., 1962.

K. Tzuchi, On ideals in H* whose closures are intersections of maximal ideals, Michigan Math. J. 50
(2002), 3-16.

K. Izuchi and Y. Izuchi, Gleason parts and countably generated closed ideals in H*°, Trans. Amer. Math.
Soc. 365 (2013), no. 10, 5071-5083.

A. Izzo, A sharper Swiss cheese, Trans. Amer. Math. Soc. 378 (2025), 8967-8988.

S. Kakutani, Rings of analytic functions. Lectures on functions of a complex variable, pp. 71-83, Univ.
Michigan Press, Ann Arbor, MI, 1955.

N.Kalton and D. Werner, Property (M), M-ideals and almost isometric structure of Banach spaces, J.
Reine Angew. Math. 461 (1995), 137-178.

B. Korenblum, Closed ideals in the ring A™, Funct. Anal. Appl. 6 (1972), 203-214.

A. Pelczynski, Banach spaces of analytic functions and absolutely summing operators, Expository lectures
from the CBMS Regional Conference held at Kent State University, Kent, Ohio, July 11-16, 1976.
Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 30.
American Mathematical Society, Providence, R.1., 1977. i+91 pp.



36 DEEPAK, SARKAR, AND SIJU

[29] R. Mortini, On an example of J. Bourgain on closures of finitely generated ideals, Math. Z. 224 (1997),
655-663.

[30] Karl-Mikael Perfekt, On M -ideals and 0 — O type spaces, Math. Scand. 121 (2017), 151-160.

[31] W. Rudin, Function Theory in Polydiscs, Benjamin, New York 1969.

[32] W. Rudin, The closed ideals in an algebra of analytic functions, Canadian J. Math. 9 (1957), 426-434.

[33] D. Sarason, Kernels of Toeplitz operators, Toeplitz operators and related topics (Santa Cruz, CA, 1992),
Operator Theory Advances and Applications, Birkhduser, Basel, 71 (1994), 153-164.

[34] R. Smith and J. Ward, Applications of convexity and M -ideal theory to quotient Banach algebras, Quart.
J. Math. Oxford Ser. (2) 30 (1979), 365-384.

TATA INSTITUTE OF FUNDAMENTAL RESEARCH, CENTRE FOR APPLICABLE MATHEMATICS, POST BAG
No 6503, GKVK PosT OFFICE, SHARADA NAGAR, CHIKKABOMMSANDRA, BANGALORE 560065, KAR-
NATAKA, INDIA

Email address: dpk.dkdOgmail.com

INDIAN STATISTICAL INSTITUTE, STATISTICS AND MATHEMATICS UNIT, 8TH MILE, MYSORE ROAD,
BANGALORE, 560059, INDIA
Email address: jay@isibang.ac.in, jaydeb@gmail.com

INDIAN STATISTICAL INSTITUTE, STATISTICS AND MATHEMATICS UNIT, 8TH MILE, MYSORE ROAD,
BANGALORE, 560059, INDIA
Email address: sreejithsijub@gmail.com



