
INNER MULTIPLIERS AND RUDIN TYPE INVARIANT SUBSPACES

ARUP CHATTOPADHYAY, B. KRISHNA DAS, AND JAYDEB SARKAR

Abstract. Let E be a Hilbert space and H2
E(D) be the E-valued Hardy space over the unit

disc D in C. The well known Beurling-Lax-Halmos theorem states that every shift invariant
subspace of H2

E(D) other than {0} has the form ΘH2
E∗(D), where Θ is an operator-valued

inner multiplier in H∞B(E∗;E)(D) for some Hilbert space E∗. In this paper we identify H2(Dn)

with H2(Dn−1)-valued Hardy space H2
H2(Dn−1)(D) and classify all such inner multiplier Θ ∈

H∞B(H2(Dn−1))(D) for which ΘH2
H2(Dn−1)(D) is a Rudin type invariant subspace of H2(Dn).

Notation

E Separable Hilbert space.
N Set of all natural numbers including 0.
Nn {k = (k1, . . . , kn) : ki ∈ N, i = 1, . . . , n}.
Cn Complex n-space.
z (z1, . . . , zn) ∈ Cn.
zk zk11 · · · zknn .
Dn Open unit polydisc {z : |zi| < 1, i = 1, . . . , n}.
Tn {z : |zi| = 1, i = 1, . . . , n}- distinguished boundary of Dn.

Throughout this article, we denote by B(E∗; E) the space of all bounded linear operators
from E∗ to E and simply write B(E) when E = E∗. For a closed subspace S of a Hilbert space
H, PS denotes the orthogonal projection onto S.

1. Introduction

The E-valued Hardy space over Dn is denoted by H2
E(Dn) and defined by

H2
E(Dn) := {f(z) =

∑
k∈Nn

zkηk : ‖f‖2 :=
∑
k∈Nn

‖ηk‖2
E <∞, z ∈ Dn}.

A closed subspace S ⊆ H2
E(Dn) is said to be a shift invariant subspace, or simply an invariant

subspace, of H2
E(Dn) if S is invariant under the shift operators {Mz1 , . . . ,Mzn}, that is, if

MziS ⊆ S for all i = 1, . . . , n. Here the tuple of shift operators {Mz1 , . . . ,Mzn} on H2
E(Dn) is

defined by

(Mzif) (w) = wif(w), (f ∈ H2
E(Dn),w ∈ Dn)
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for all i = 1, . . . , n. The Banach space of all B(E∗; E)-valued bounded analytic functions
on Dn is denoted by H∞B(E∗;E)(Dn). Each Θ ∈ H∞B(E∗;E)(Dn) induces a bounded linear map

MΘ ∈ B(H2
E∗(D

n);H2
E(Dn)) defined by

(MΘf)(w) = Θ(w)f(w). (f ∈ H2
E∗(D

n),w ∈ Dn)

The elements of H∞B(E∗;E)(Dn) are called the multipliers and are determined by

Θ ∈ H∞B(E∗;E)(Dn)⇔MziMΘ = MΘMzi , ∀i = 1, . . . , n

where the shift Mzi on the left hand side and the right hand side act on H2
E(Dn) and H2

E∗(D
n)

respectively. A multiplier Θ ∈ H∞B(E∗;E)(Dn) is said to be inner if MΘ is an isometry, or

equivalently, Θ(z) ∈ B(E∗; E) is an isometry almost everywhere with respect to the Lebesgue
measure on Tn.

Inner multipliers are among the most important tools for classifying invariant subspaces of
reproducing kernel Hilbert spaces. For instance:

Theorem 1.1. (Beurling-Lax-Halmos [6]) A non-zero closed subspace S ⊆ H2
E(D) is shift

invariant if and only if there exists an inner multiplier Θ ∈ H∞B(E∗;E)(D) such that

S = ΘH2
E∗(D),

for some Hilbert space E∗.

For the Hardy space H2(Dn), n ≥ 2, Beurling-Lax-Halmos theorem and most of its corol-
laries turns out to be false in general (see Rudin [8]). In fact, it is shown in [10] that
Beurling-Lax-Halmos theorem holds for an invariant subspace of H2(Dn) if and only if it is
doubly commuting. Recall that a closed shift-invariant subspace S ⊆ H2(Dn) is said to be
doubly commuting if

RziR
∗
zj

= R∗zjRzi , (1 ≤ i 6= j ≤ n)

where
Rzi = Mzi |S . (i = 1, . . . , n)

Theorem 1.2 ([10]). Let S 6= {0} be a closed shift-invariant subspace of H2(Dn), n ≥ 2.
Then the following are equivalent.

(i) S is a doubly commuting shift-invariant subspace.
(ii) S = ϕH2(Dn) for some inner function ϕ in H2(Dn).

The analytic structure of invariant subspaces of H2(Dn), n ≥ 2, is more complicated than
that of the Hardy space H2(D) (see [1], [2], [4], [8], [13], [14], [15]).

Now let n ≥ 2 and Θ ∈ H∞B(H2(Dn−1))(D) be an inner multiplier. Then ΘH2
H2(Dn−1)(D) ⊆

H2
H2(Dn−1)(D) and hence by identifying H2

H2(Dn−1)(D) with H2(Dn), that ΘH2
H2(Dn−1)(D) is a

closed Mz1-invariant subspace of H2(Dn).
Thus, it is natural ask to what extent the structure of inner multipliers determines the struc-

ture of invariant subspaces. That is, how to determine inner multiplier Θ ∈ H∞B(H2(Dn−1))(D)

such that ΘH2
H2(Dn−1)(D) is an invariant subspace of H2(Dn)?

The purpose of this paper is to study the above problem for a special class of inner multipli-
ers (see the definition (2.1) in the next section) and to provide a general recipe for producing
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invariant subspaces of H2(Dn). More precisely, our purpose here is to deduce more detailed
structure of invariant subspaces of H2(Dn), n ≥ 2, from Beurling-Lax-Halmos inner multipli-
ers. We refer to [7] and [9] for some closely related constructions of inner multipliers.

The approach that we will take is inspired by the recent work of Y. Yang [17]. However,
our results improve and generalize many results proved for the base case n = 2 in [17].

The paper is organized as follows. In section 2 we introduce some notations and definitions.
Our main results are in Section 3. The last section of the paper, Section 4, is devoted to the
study of the unitarily equivalent invariant subspaces of H2(Dn).

2. Notations and definitions

We will often identify H2(Dn) with the n-fold Hilbert space tensor product H2(D)⊗ · · · ⊗
H2(D) via the unitary map H2(D)⊗ · · · ⊗H2(D) 3 zk1 ⊗ · · · ⊗ zkn 7→ zk ∈ H2(Dn), k ∈ Nn.
Therefore we can, and do, identify Mzi with

IH2(D) ⊗ · · · ⊗ Mz︸︷︷︸
i-th place

⊗ · · · ⊗ IH2(D). (i = 1, . . . , n)

A sequence of inner functions {ϕj}∞j=1 in H∞(Dn) is said to be increasing (respectively,

decreasing) if
ϕj+1

ϕj
(respectively,

ϕj

ϕj+1
) is a non-constant inner function for every j ≥ 1. An

inner sequence is a sequence of inner functions {ϕj}∞j=1 in H∞(Dn) which is either increasing
or decreasing.

A sequence of pairwise orthogonal projections {Pj}∞j=1 in B(H2(Dn)) is said to be a sequence
of orthogonal complementary projections if

∞∑
j=1

Pj = IH2(Dn),

in strong operator topology. The set of sequences of orthogonal complementary projections
in B(H2(Dn)) will be denoted by Pn.

From now on, we will assume that n ≥ 2.
Let {Pj}∞j=1 ∈ Pn−1 and {ϕj}∞j=1 ⊆ H∞(D) be an inner sequence. Then

(2.1) Θ(z) =
∞∑
j=1

ϕj(z)Pj, (z ∈ D)

is a B(H2(Dn−1))-valued analytic function on D.
The following lemma is an immediate consequence of the definition.

Lemma 2.1. Let Θ be as in (2.1). Then Θ ∈ H∞B(H2(Dn−1))(D) is an inner multiplier.

The primary goal of this paper is to present a complete characterization of inner multipliers,
defined above (depending on {Pj}∞j=1 ∈ Pn−1 and inner sequence {ϕj}∞j=1), for which the

corresponding closed subspaces of H2(Dn) are shift invariant. Our approach is also related to
the study of Rudin type invariant subspaces of H2(Dn).

An invariant subspace S of H2(Dn) is said to be of Rudin type if there exists an integer
1 ≤ k < n, an increasing sequence of inner functions {ϕj}∞j=1 ⊆ H∞(Dk) and a decreasing
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sequence of inner functions {ψj}∞j=1 ⊆ H∞(Dn−k) such that

S =
∞∨
j=1

ϕjH
2(Dk)⊗ ψjH2(Dn−k).

These invariant subspaces, also known as inner sequence based invariant subspaces of
H2(Dn), have been studied extensively by various authors in different contexts (see [3], [4],
[5], [8], [11], [12]).

3. Inner multipliers and invariant subspaces

In this section, we will prove the main result concerning inner multipliers based shift in-
variant subspaces of H2(Dn). To begin with, we prove a result concerning invariant subspace
corresponding to a sequence of orthogonal complementary projections in H2(Dn), which will
be used to establish our main result.

Lemma 3.1. Let {Pj}∞j=1 ∈ Pn and Sk :=
∞⊕
j=k

RanPj be an invariant subspace of H2(Dn) for

each k ≥ 1. Then the following are equivalent

(i) Sk is doubly commuting for all k ≥ 1.
(ii) For all 1 ≤ p 6= q ≤ n and j ≥ 1,

PSlMzpPjM
∗
zqPSm = 0. (l,m ≥ j + 1)

(iii) For all 1 ≤ p 6= q ≤ n and j ≥ 1,

PlMzpPjM
∗
zqPm = 0. (l,m ≥ j + 1)

Proof. It is easy to see that (ii) ⇔ (iii). Therefore, it is enough to prove that (i) ⇔ (ii).
We first prove that (i) implies (ii). Let Sk, k ≥ 1, be a doubly commuting subspace . By
Theorem 1.2, there is an increasing sequence of inner functions {ϕj}∞j=1 ⊆ H∞(Dn) such that

Sk = ϕkH
2(Dn), k ≥ 1. Then

RanPj = ϕjH
2(Dn)	 ϕj+1H

2(Dn),

and

Pj = Mϕj
M∗

ϕj
−Mϕj+1

M∗
ϕj+1

= Mϕj
(I −MξjM

∗
ξj

)M∗
ϕj
,

where ϕj+1 = ξjϕj for some inner function ξj ∈ H∞(Dn), j ≥ 1. Consequently for each j ≥ 1
and 1 ≤ p < q ≤ n, we have

PSj+1
MzpPjM

∗
zqPSj+1

= Mϕj+1
(M∗

ϕj+1
Mϕj

Mzp(I −MξjM
∗
ξj

)M∗
zqM

∗
ϕj
Mϕj+1

)M∗
ϕj+1

= Mϕj+1
(M∗

ξj
Mzp(I −MξjM

∗
ξj

)M∗
zqMξj)M

∗
ϕj+1

= Mϕj+1
M∗

ξj
(M∗

zqMzp −MξjMzpM
∗
zqM

∗
ξj

)MξjM
∗
ϕj+1

= Mϕj+1
(M∗

ξj
M∗

zqMzpMξj −MzpM
∗
zq)M

∗
ϕj+1

= 0.

Finally, by multiplying the above on the left and right by PSl and PSm (l,m > j), respectively,
we get the desired equality.
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We now prove that (ii) implies (i). Let 1 ≤ p < q ≤ n and k ≥ 1. Then

PSkM
∗
zqMzp |Sk = PSkMzpM

∗
zq |Sk = PSkMzp

(
PSk + PS⊥k

)
M∗

zq |Sk

= PSkMzpPSkM
∗
zq |Sk + PSkMzp

(
k−1∑
j=1

Pj

)
M∗

zq |Sk

= PSkMzpPSkM
∗
zq |Sk +

k−1∑
j=1

PSkMzpPjM
∗
zqPSk

= PSkMzpPSkM
∗
zq |Sk , (by (ii))

that is, (Mzq |Sk)∗(Mzp |Sk) = (Mzp |Sk)(Mzq |Sk)∗, or equivalently, Sk is doubly commuting for
all k ≥ 1. This completes the proof. �

We are now ready to state and prove our main result.

Theorem 3.2. Let {Pj}∞j=1 ∈ Pn−1 and {ψj}∞j=1 ⊆ H∞(D) be a decreasing inner sequence.

Set Θ =
∞∑
j=1

ψjPj, S = ΘH2
H2(Dn−1)(D) and Sj :=

∞⊕
k=j

RanPk, j ≥ 1.

(a) S is an invariant subspace of H2(Dn) if and only if Sj is an invariant subspace of H2(Dn−1)
for all j ≥ 1.
(b) The following are equivalent

(i) There exists an increasing inner sequence {ϕj}∞j=1 ⊆ H∞(Dn−1) such that

S =
∞∨
j=1

ψjH
2(D)⊗ ϕjH2(Dn−1).

(ii) Sj is a doubly commuting invariant subspace of H2(Dn−1) for all j ≥ 1.
(iii) For each j ≥ 1, Sj is an invariant subspace of H2(Dn−1) and

PSlMzpPjM
∗
zqPSm = 0. (l,m > j, 1 ≤ p < q ≤ n− 1)

(iv) For each j ≥ 1, Sj is an invariant subspace of H2(Dn−1) and

PlMzpPjM
∗
zqPm = 0. (l,m > j, 1 ≤ p < q ≤ n− 1)

Proof. Set ψ0 := 0. First note that S =
∞⊕
j=1

ψjH
2(D) ⊗ RanPj. Since the inner sequence

{ψj}∞j=1 is decreasing, we have ψjH
2(D) ⊂ ψj+1H

2(D) for all j ≥ 1, and

∞⊕
j=1

(
(ψjH

2(D)	 ψj−1H
2(D))⊗ Sj

)
=

∞⊕
j=1

(
(ψjH

2(D)	 ψj−1H
2(D))⊗

( ∞⊕
k=j

RanPk
))

=
∞⊕
j=1

( j⊕
k=1

(ψkH
2(D)	 ψk−1H

2(D))⊗ RanPj

)
=

∞⊕
j=1

(
ψjH

2(D)⊗ RanPj

)
,
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where for the last equality we use
j⊕

k=1

(ψkH
2(D)	 ψk−1H

2(D)) = ψjH
2(D) (j ≥ 1). Thus

(3.1) S =
∞⊕
j=1

(
(ψjH

2(D)	 ψj−1H
2(D))⊗ Sj

)
.

Proof of part (a): Let S be an invariant subspace of H2(Dn) and j ≥ 1 be a fixed integer.
Let f ∈ ψjH2(D)	 ψj−1H

2(D), g ∈ Sj and 2 ≤ i ≤ n. Since

zi(f ⊗ g) = f ⊗ zig ∈ S =
∞⊕
k=1

(
ψkH

2(D)	 ψk−1H
2(D)

)
⊗ Sk,

and f ⊗ zig ⊥ (ψkH
2(D) 	 ψk−1H

2(D)) ⊗ Sk for all k 6= j, we have f ⊗ zig ∈ (ψjH
2(D) 	

ψj−1H
2(D))⊗ Sj and hence zig ∈ Sj.

Conversely, let Sj be an invariant subspace of H2(Dn−1) for all j ≥ 1. Then by (3.1) it follows
that S is joint {Mz2 , · · · ,Mzn}-invariant. Finally, since S = ΘH2

H2(Dn−1)(D), it follows that S
is Mz1-invariant.
Proof of part (b): (ii)⇔ (iii) ⇔ (iv) follows from Lemma 3.1. Now assume that (i) is true.
Then

S =
∞∨
j=1

ψjH
2(D)⊗ ϕjH2(Dn−1) =

∞⊕
j=1

(
ψjH

2(D)	 ψj−1H
2(D)

)
⊗ ϕjH2(Dn−1).

Comparing this with (3.1), we have Sj = ϕjH
2(Dn−1) for all j ≥ 1. Then by Theorem 1.2,

Sj is doubly commuting for all j ≥ 1.
Conversely assume (ii). Then by Theorem 1.2, there exists a sequence of increasing inner
functions {ϕj}∞j=1 ⊆ H2(Dn−1) such that Sj = ϕjH

2(Dn), j ≥ 1. Then (i) follows from (3.1).
This completes the proof. �

One can reformulate the above theorem by replacing the decreasing inner sequence by an
increasing one.

Theorem 3.3. Let {Pj}∞j=1 ∈ Pn−1 and {ϕj}∞j=1 ⊆ H∞(D) be an increasing inner sequence.

Set Θ =
∞∑
j=1

φjPj, S = ΘH2
H2(Dn−1)(D) and Sj :=

j⊕
k=1

RanPk, j ≥ 1.

(a) S is an invariant subspace of H2(Dn) if and only if Sj is an invariant subspace of H2(Dn−1)
for all j ≥ 1.
(b) There exists a decreasing inner sequence {ψj}∞j=1 ⊆ H∞(Dn−1) such that

S =
∞∨
j=1

φjH
2(D)⊗ ψjH2(Dn−1),

if and only if Sj is a doubly commuting invariant subspace of H2(Dn−1) for all j ≥ 1.

Proof. (a) We first note that, under the given assumptions, the subspace S is given by

S =
∞⊕
j=1

ϕj(z1)H2(D)⊗ RanPj =
∞⊕
j=1

(
ϕj(z1)H2(D)	 ϕj+1(z1)H2(D)

)
⊗ Sj.
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By the same argument as in part (a) of Theorem 3.2, it follows that S is an invariant subspace
of H2(Dn) if and only if Sj is an invariant subspace of H2(Dn−1) for all j ≥ 1.
(b) The proof is identical to the proof of part (b) in Theorem 3.2 except the fact that one ob-
tains a decreasing inner sequence corresponding to the increasing doubly commuting invariant
subspaces {Sj}∞j=1 of H2(Dn−1). �

Remark. A modification of our argument yields a similar characterization of invariant sub-

spaces of H2(Dn) corresponding to the inner multiplier Θ(z1, . . . , zk) =
∞∑
j=1

ϕj(z1, . . . , zk)Pj,

where {ϕj}∞j=1 is a decreasing or increasing inner sequence in H∞(Dk) and {Pj}∞j=1 ∈ Pn−k.

4. Unitarily equivalent invariant subspaces

Let S1 and S2 be two invariant subspaces of H2(Dn). Then S1 and S2 are said to be
unitarily equivalent if there exists a unitary operator U : S1 −→ S2 such that

UMzi |S1 = Mzi |S2U. for (i = 1, . . . , n)

The unitary equivalence of inner sequence based invariant subspaces and two inner sequences
based invariant subspaces of H2(D2) are completely described in [11] and [17], respectively.
Here we present a similar result for Rudin type invariant subspaces in n-variables. The proof
follows along the same lines as in Theorem 3.1 in [17].

Theorem 4.1. Let {ϕj}∞j=1, {ϕ̃j}∞j=1 ⊆ H∞(D) be two decreasing inner sequences and {ψj}∞j=1,

{ψ̃j}∞j=1 ⊆ H∞(Dn−1) be two increasing inner sequences with ψ1 = 1 = ψ̃1. Let

S =
∞∨
j=1

ϕjH
2(D)⊗ ψjH2(Dn−1), and S̃ =

∞∨
j=1

ϕ̃jH
2(D)⊗ ψ̃jH2(Dn−1).

Then S and S̃ are unitarily equivalent if and only if there exists an inner function η ∈
H∞(Dn), depending only on the first variable z1, such that S = ηS̃.

Proof. It is enough to prove the necessary part. Let S and S̃ be unitarily equivalent. Then

S = ηS̃ for some unimodular function η ∈ L∞(Tn) (see Lemma 1 in [1]). Then both ηϕ̃1(z1)
and ηϕ1(z1) are in H2(Dn), and therefore η is holomorphic and anti-holomorphic in z2, . . . , zn.
Thus η depends only on z1 variable. This completes the proof. �

For more results related to unitarily equivalent invariant subspaces of H2(Dn), n ≥ 2, we
refer the readers to [1], [9] and [16].
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