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ABSTRACT. We discuss the relation between questions regarding the essen-
tial normality of finitely generated essentially spherical isometries and some
results and conjectures of Arveson and Guo–Wang on the closure of homoge-
neous ideals in the m-shift space. We establish general results for the case of
two tuples and ideals with one dimensional zero variety. Further, we show
how to reduce the analogous question for quasi-homogeneous ideals, to those
results for homogeneous ones. Finally, we show that the essential reductivity
of positive regular Hilbert modules is directly related to a generalization of
the Arveson problem.
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1. INTRODUCTION

Not all isometries on a complex Hilbert space are unitary or even essentially
unitary; that is, unitary modulo the compacts. A unilateral shift of infinite mul-
tiplicity is a counter-example. However, if the isometry V has a finite generating
set, then V is essentially unitary or, equivalently in this case, essentially normal.

What if the operator is only essentially isometric or T∗T− I is compact and
T has a finite generating set? The answer is still affirmative.

THEOREM 1.1. If T is an essentially isometric operator with a finite generating
set, then T is essentially unitary.

The assumption that I − T∗T is compact implies that the range of T∗ is
closed and has finite co-dimension. Thus T is left semi-Fredholm. Moreover,
the fact that T has a finite generating set implies that the range of T has finite
co-dimension. Therefore T is Fredholm which yields the result.

We want to consider the possible validity of analogues of this result for com-
muting m-tuples of operators on a complex Hilbert space H and their relation to
some conjectures and results of Arveson, Guo, Wang and the first author.
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An m-tuple of operators (T1, T2, . . . , Tm) onH is said to be a spherical isom-
etry if, for f inH,

m

∑
i=1

T∗i Ti = IH or ‖ f ‖2 =
m

∑
i=1
‖Ti f ‖2.

An example of such an m-tuples of operators is that defined to be the co-
ordinate multiplication operators on the Hardy space over the unit ball Bm in
Cm. On the Bergman space over Bm and the m-shift space, H2

m, the correspond-
ing m-tuples are essentially spherical isometries in the sense that the operator

IH −
m
∑

i=1
T∗i Ti is compact. If one takes an infinite direct sum of the first example

of an m-tuple, one obtains a spherical isometry that is not an essentially spherical

unitary or IH −
m
∑

i=1
TiT∗i is not compact.

Although the definition of spherical isometry does not require the opera-
tors {Ti} to commute, we will make that assumption from now on and con-
sider various questions related to Theorem 1.1 in this context. In particular, if
(T1, T2, . . . , Tm) is a commuting essentially spherical isometry on the complex

Hilbert spaceHwhich has a finite generating set, must IH −
m
∑

i=1
TiT∗i be compact?

This question has an easy negative answer which one can see by setting
Ti =

1√
m Mzi for i = 1, 2, . . . , m, where Mzi is coordinate multiplication by zi on

the Hardy space H2(Dm) on the polydisk Dm.
One source of the difficulty in proceeding from one variable to several can

be seen by considering the notion of left semi-Fredholmness for commuting m-
tuples. In particular, the m-tuple (T1, T2, . . . , Tm) on H is said to be left semi-
Fredholm if dimH/{T∗1H + T∗2H + · · · + T∗mH} < ∞. This implies that T∗1H +
T∗2H+ · · ·+ T∗mH is closed and has finite co-dimension inH.

In the one-variable case, I − T∗T compact implies not only that T is left
semi-Fredholm but that the same is true for T − λ for λ in the open unit disk
D. The analogous statement fails in the case of several variables; that is, while

IH −
m
∑

i=1
T∗i Ti compact implies (T1, T2, . . . , Tm) is left semi-Fredholm, that is not

necessarily the case for (T1− λ1, T2− λ2, . . . , Tm− λm) for λ = (λ1, λ2, . . . , λm) in
Bm. The preceding example on the polydisk provides an example of this behavior.
Hence we add that assumption to obtain:

QUESTION 1.2. If (T1, T2, . . . , Tm) is a commuting essentially spherical isom-
etry on the complex Hilbert space H which has a finite generating set and for
which (T1 − λ1, T2 − λ2, . . . , Tm − λm) is left semi-Fredholm for (λ1, λ2, . . . , λm)
in Bm, then must (T1, T2, . . . , Tm) be an essential unitary? What if one assumes, in
addition, that the operators {Ti} are hyponormal? Or, jointly hyponormal?
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These question are related to studies of Eschmeier and Putinar [14] and
Gleason, Richter and Sundberg [15]. In the first note, the authors survey some
results on spherical isometries and present an interesting example which we will
discuss in Section 7. In the latter paper, the authors discuss some examples which
demonstrate the necessity of the assumption that the m-tuple has a finite gener-
ating set.

Note that if the m-tuple is actually a spherical isometry, then both additional
assumptions on hyponormality follow by Athavale’s result [5]. Working modulo
the compacts we see that an essentially spherical isometry is essentially subnor-
mal and hence essentially jointly hyponormal.

Note that in the context of Question 1.2, IH −
m
∑

i=1
TiT∗i is compact if and only

if each of the Ti are essentially normal.
One can rephrase these questions in the language of Hilbert modules over

the algebra C[z] of polynomials in m variables with z = (z1, z2, . . . , zm). We will
use (Mz1 , Mz2 , . . . , Mzm) to denote the m-tuple of operators defined on a Hilbert
module H by module multiplication by z1, z2, . . . , zm, respectively. The Hilbert
moduleH is said to be isometric (essentially isometric or essentially unitary) if the m-
tuple (Mz1 , Mz2 , . . . , Mzm) is a commuting spherical isometry (essentially spher-
ical isometry or essentially spherical unitary). Then the above questions can be
rephrased as follows:

QUESTION 1.3. Is every finitely generated essentially isometric Hilbert mod-
ule over C[z] for which (Mz1 − λ1, Mz2 − λ2, . . . , Mzm − λm) is left semi-Fredholm
for (λ1, λ2, . . . , λm) in Bm necessarily essentially unitary? What if the operators
{Mz1 , Mz2 , . . . , Mzm} are hyponormal?

We will show in this note that an affirmative answer to Question 1.2 or 1.3
implies an affirmative answer to Arveson’s conjecture [1], [2], [3], [4] concern-
ing the closure of homogeneous ideals in the m-shift space and the Guo–Wang
conjecture [18], [19] concerning ideals which are quasi-homogeneous.

There are a couple of interesting questions in the cyclic case one can formu-
late by making additional assumptions.

The Hilbert module H over C[z] is said to be a weighted shift Hilbert mod-
ule if there is a wandering cyclic vector relative to the monomials {zα}; that
is, there is a vector f in H such that {zα f } is an orthogonal basis for H with
α = (α1, α2, . . . , αm) in Nm and zα = zα1

1 zα2
2 · · · z

αm
m . The vector f in H will be said

to be weakly wandering if {zα f } is orthogonal to zβ f if α1 + α2 + · · ·+ αm = |α| 6=
|β| = β1 + β2 + · · ·+ βm, or their degrees are distinct.

QUESTION 1.4. If a C[z] Hilbert module action onH is essentially isometric
and has a wandering (or weakly wandering) cyclic vector and (Mz1 − λ1, Mz2 −
λ2, . . . , Mzm −λm) is left semi-Fredholm for (λ1, λ2, . . . , λm) in Bm, must H be
essentially unitary?
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An affirmative answer to Question 1.4 assuming the existence of a weakly
wandering cyclic vector would yield affirmative answers to the Arveson and
Guo–Wang conjectures for the closure of homogeneous and quasi-homogeneous
ideals in H2

m. Moreover, the m in this question corresponds to the m in the conjec-
tures.

In Sections 2 and 3, we study these questions and their relation to the var-
ious conjectures including an introduction of a family of Hilbert modules over
C[z] sharing many properties of the Bergman, Hardy and m-shift spaces.

In Section 4 we establish affirmative answers to Question 1.4 in the m = 2
case for this family of Hilbert modules and, hence, extend solutions to the con-
jectures of Arveson and Guo–Wang beyond that for ideals in H2

2 proved by Guo
and Wang [19], [18].

In Section 5, we extend the results of Guo and Wang on submodules defined
as the closure of homogeneous ideals with a one dimensional zero variety.

In Section 6 we show that the essential reductivity of Hilbert modules over
C[z] defined by a positive regular polynomial in m variables is equivalent to that
for certain related quasi-homogeneous ideals in the (m + k)-shift space, where
m + k is the numbers of monomials in the polynomial with non-zero coefficients.
We conclude in Section 7 with some additional comments on these questions and
their possible resolution.

2. THE BASIC SETUP

Let H be a Hilbert space completion of the polynomials C[z], where z =
(z1, z2, . . . , zm) for a positive integer m, such that each operator Mp is bounded
on H, where Mp is defined to be multiplication by the polynomial p(z) in C[z].
These assumptions makeH into a Hilbert module over C[z] (cf. [12]).

Standard examples of such Hilbert modules are given by the Hardy and
Bergman spaces for the unit ball Bm in Cm, the m-shift or symmetric Fock space in
m variables, or the Bergman space for certain Reinhardt domains in Cm. Another
class of examples, based on m-commuting weighted shifts, is discussed in [10].
These examples all have property

(A) the monomials {zα} for α = (α1, α2, . . . , αm) in Nm are orthogonal.

We refer to (see [10]) a Hilbert space completion H of C[z] satisfying (A) as
a weighted shift Hilbert module. All the examples mentioned above satisfy (A).

A monomial zα is said to have degree |α| = α1 + α2 + · · · + αm and Hk
denotes the subspace in the Hilbert moduleH spanned by the monomials having
degree k for k in N.

If (A) holds for H, then H = H0 ⊕H1 ⊕ · · · . Polynomials in Hk are said to
be homogeneous of degree k. An ideal I in C[z] is said to be a homogeneous ideal if it
is generated by a set of homogeneous polynomials.
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For I a homogeneous ideal in C[z], let [I] denote the closure of I in the
Hilbert moduleH. Then

(2.1) [I] = I0 ⊕ I1 ⊕ · · · ,

where Ik = [I] ∩Hk, and

(2.2) [I]⊥ = I⊥0 ⊕ I⊥1 ⊕ · · · ,

where I⊥k = [I]⊥ ∩Hk.
Sometimes the following assumption, weaker than (A), is sufficient to prove

results:
(A*) the {Hk} are orthogonal andH = H0 ⊕H1 ⊕ · · · .
The closure of a principal homogeneous ideal yields an example of a Hilbert

module satisfying (A*) in view of (2.1). In fact, the same is true if H only satis-
fies (A*).

LEMMA 2.1. IfH is a Hilbert module satisfying (A*) and I is a principal homoge-
neous ideal, then [I] is a Hilbert module also satisfying (A*).

REMARK 2.2. If I is not principal, it is still finitely generated and [I] sat-
isfies a variant of (A*), where one now considers a Hilbert space completion of
C[z] ⊗ Cr for r equal to the number of generators. We will offer only limited
development of this idea in this paper.

Another way to characterize homogeneous polynomials in a weighted shift
Hilbert module H is in terms of a natural unitary action of T = R/2πZ on
H. For λ in R define γλ(zα) = ei|α|λzα for α in Nm or, equivalently, define
γλ(z1, z2, . . . , zm) = (eiλz1, eiλz2, . . . , eiλzm). Then Hk is the eigenspace for this
action for the eigen-character corresponding to k in Z = T̂.

A generalization of the notion of homogeneous polynomial can be defined
for an m-tuple of positive integers (n1, n2, . . . , nm) or a weight n. These polyno-
mials can also be defined using the representation of T = R/2πZ onH so that

γn
λ(z1, z2, . . . , zm) = (ein1λz1, ein2λz2, . . . , einmλzm).

The polynomials in the eigenspace Hn
l for this action are the quasi-homogeneous

polynomials of degree l for the weight n. Again, ifH satisfies (A), we have that

(2.3) H = Hn
0 ⊕Hn

1 ⊕ · · ·

REMARK 2.3. There is an obvious analogue of (A*) relevant for the consider-
ation of quasi-homogeneous ideals. Given a weight n, the Hilbert moduleH over
C[z] satisfies (A∗n) if the subspaces {Hn

l } are orthogonal andH = Hn
0 ⊕Hn

1 ⊕ · · ·
(Here we are defining the Hn

l directly using the weight n and not in terms of the
circle group action.)

Assume H satisfies (A). For a monomial zα, let Hn(α) be the smallest sub-
space of H containing zα which is invariant under Mz

ni
i

for i = 1, 2, . . . , m. We
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want to make several observations about this family of subspaces of H. First,
the subspaces Hn(α) for 0 6 α < n are pairwise orthogonal and their direct
sum is H, where 0 6 α < n means that 0 6 αi < ni for i = 1, 2, . . . , m. Sec-
ond, these subspaces are the minimal common reducing subspace of the m-tuple
{Mn1

z1 , Mn2
z2 , . . . , Mnm

zm }. Finally, we can make each Hn(α) into the Hilbert module
Ĥn(α) over C[z] by defining

(p · f )(z) = p(zn1
1 , zn2

2 , . . . , znm
m ) f (z1, z2, . . . , zm),

for f in Hn(α). We call this module action the weighted module action determined
by n. Moreover, Ĥn(α) is a Hilbert module over C[z] which satisfies (A) since H
does. We summarize this discussion in

LEMMA 2.4. IfH satisfies (A), then

(2.4) H =
⊕

06α<n
Hn(α)

and eachHn(α) is a Hilbert module Ĥn(α) over C[z] for the weighted module action and
Ĥn(α) satisfies (A).

An ideal J in C[z] is said to be quasi-homogeneous for the weight n if it is gen-
erated by a set of quasi-homogeneous polynomials all for the weight n; that is,

the generators are in
∞⋃

l=0
Hn

l for some fixed weight n. We call n the weight of the

ideal.
The analogue of Lemma 2.1 holds in that the closure of a principal quasi-

homogeneous ideal J of weight n will satisfy (A∗n).
Let J be a quasi-homogeneous ideal of weight n with generators q1, q2, . . . , qr

in C[z]. For each j = 1, 2, . . . , r, we have 〈qj〉 =
⋃

06β6n−α
〈zβqj〉n, where 〈·〉 denotes

the ideal in C[z] generated by the set in brackets and 〈·〉n denotes the ideal in C[z]
with the weighted module action for weight n generated by the set in brackets.
Moreover, we have

J = 〈q1, q2, . . . , qr〉 =
r∨

j=1

〈qj〉 =
r∨

j=1

⋃
06β6n−α

〈zβqj〉n.

This identity represents J as the finite direct sum of ideals Jα = J ∩ Hn(α)
in Hn(α), where the ideal structure is relative to the weighted module action for
weight n.

A consequence of this decomposition is that some problems concerning
quasi-homogeneous ideals can be reduced to the corresponding problems about
homogeneous ideals. However, the results about the homogeneous case must be
robust enough to cover the Hilbert modules obtained in the decomposition.
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3. ESSENTIALLY REDUCTIVE HILBERT MODULES

We are mainly interested in essentially reductive (or essentially normal)
Hilbert modules; that is,

(B) a Hilbert module H over C[z] such that the commutator [M f , M∗g ] =
M f M∗g −M∗g M f is compact for f , g in C[z].

A strengthening of this condition is

(Bp) a Hilbert module H over C[z] such that the commutator [M f , M∗g ] is
in Lp for some fixed p, 1 6 p 6 ∞, and Lp denotes the Schatten–von Neumann
class.

Note that (B∞) = (B) and (Bp) implies (B). One knows that the Hardy,
Bergman and m-shift Hilbert modules satisfy (Bp) for p > m. Arveson raised the
question of whether the closure [I] of a homogeneous ideal I in H2

m, satisfies (Bp),
for p > m. Guo and Wang extended the question to include the closure of quasi-
homogeneous ideals. We show that the second question can be reduced to the
first one if the affirmative solution for the homogeneous case is robust enough.

We next want to place more restrictions on H so that it resembles more
closely the Hardy, Bergman and m-shift Hilbert modules and relates directly to
the questions raised in the introduction.

Assume that (B) holds so that H is essentially reductive. Then the C∗-
algebra T (H) generated by the operators {Mp : p(z) ∈ C[z]} is a C∗-extension
of the subalgebra K(H) of compact operators on H by C(X). Here X is some
compact metrizable space which can be identified as a subset of Cm; that is,
T (H)/K(H) ∼= C(X) (see [7]). Note that T (H) contains a non-zero compact
operator since [Mzi , M∗zi

] is compact and non-zero. Hence, K(H) is contained in
T (H) sinceH is irreducible (cf. [9]).

We make the further assumption that

(C*) H satisfies (B) and (Mz1 , Mz2 , . . . , Mzm) identifies X as a subset of the
unit sphere ∂Bm, where Mzi denotes the image of Mzi in the quotient algebra
T (H)/K(H).

One can also assume

(C**) IH −
m
∑

i=1
M∗zi

Mzi is compact or (Mz1 , Mz2 , . . . , Mzm) is an essential

spherical isometry.

In the presence of (B), (C∗) is equivalent to (C∗∗). We also consider the fol-
lowing apparent strengthening of (C∗).

(C) H is a Hilbert module satisfying (B) such that T (H)/K(H) ∼= C(∂Bm).

Although we will make little use of the following notion in this paper, we
include it for completeness:
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(Cp) H satisfies (Bp) and IH −
m
∑

i=1
M∗zi

Mzi is in Lp for 1 6 p 6 ∞.

We show that for a weighted shift Hilbert module (C∗) implies (C) after
establishing the following lemma.

LEMMA 3.1. IfH is a Hilbert module satisfying (A*) and (B), so that the m-tuple
(Mz1 , Mz2 , . . . , Mzm) is Fredholm, then the index of the corresponding Koszul complex
is −1. Moreover, ifH also satisfies (C∗), then it satisfies (C).

Proof. Using the orthogonal direct sum decompositionH = H0⊕H1⊕ · · · ,
the Koszul complex for (Mz1 , Mz2 , . . . , Mzm) can be reduced to the direct sum
of the corresponding Koszul complexes for the action of (z1, z2, . . . , zm) on C[z]
which has index −1. The key to this reduction depends on the Fredholmness
assumption of the complex which implies that all the maps in the Koszul com-
plex for H have closed range. Hence, the existence of approximate solutions
implies that there exists a solution. Since the Fredholm index of the m-tuple
(Mz1 , Mz2 , . . . , Mzm) is not zero, the C∗-extension of K(H) defined by T (H) is
nontrivial. Hence X can not be a proper subset of ∂Bm, since the map from K1(X)
to K1(∂Bm) is the zero map for such X.

Note that a related result appears in [15] but with a different argument.
SupposeH is a Hilbert module over C[z] such that the coordinate multiplier

m-tuple (Mz1 , Mz2 , . . . , Mzm) yields an essentially spherical isometry. The ques-
tion of whether or not this m-tuple is an essentially spherical unitary is equivalent
to the question of whetherH satisfies (B) in view of the fact that

(3.1) I −
m

∑
i=1

Mzi M
∗
zi
=

m

∑
i=1

M∗zi
Mzi −

m

∑
i=1

Mzi M
∗
zi
=

m

∑
i=1

[M∗zi
, Mzi ],

where Mzi denotes the operator Mzi modulo the compacts. Here we are using the
fact that the operators {Mz1 , Mz2 , . . . , Mzm} are essentially hyponormal.

To relate the results for quasi-homogeneous ideals to those for homoge-
neous ideals, we need to relate condition (C) for the action of C[z] on H to the
corresponding condition for the weighted module action of C[z] on the Hn(α)
for weight n and α in Nm.

LEMMA 3.2. A Hilbert module satisfying (Bp) satisfies (Cp) if and only if
(Dp) (Mz1 , Mz2 , . . . , Mzm) is an essentially spherical isometry and M∗z1

Mz1 +
M∗z2

Mz2 + · · ·+ M∗zm Mzm − IH is in Lp where 1 6 p 6 ∞.

Proof. In T (H)/K(H) the image of M∗z1
Mz1 + M∗z2

Mz2 + · · ·+ M∗zm Mzm −

IH is
m
∑

i=1
|zi|2 − 1, which vanishes on ∂Bm. Identity (3.1) completes the proof.

Not all Hilbert modules satisfying (A) and (B) also satisfy (C). Consider the
Hilbert modules based on Reinhardt domains which, in general, do not satisfy
(C). In particular, the maximal ideal spaces in these cases are not always ∂Bm.
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We will discuss later how the relationship between (Bp) and (Dp) relates to the
conjecture of Arveson and the refinement of it by the first author. Now we want to
continue developing the relation between quasi-homogeneous ideals and related
homogeneous ones which we began in Lemma 2.4.

LEMMA 3.3. SupposeH satisfies (A), where n is a weight, and

H =
⊕

06α<n
Hn(α)

is the decomposition in (2.4). ThenH satisfies (Bp) or (Cp), if and only if all the Ĥn(α),
for 0 6 α < n, satisfy (Bp) and (Cp), where 1 6 p 6 ∞.

Proof. Since each of theHn(α) reduces the m-tuple (Mn1
z1 , Mn2

z2 , . . . , Mnm
zm ), we

can express the commutators as an orthogonal direct sum,

(3.2) [Mz
ni
i

, M∗
z

nj
j

] =
⊕

06α<n
[M̂zi , M̂∗zj

],

where M̂zi is defined by the weighted module action of zi on Ĥn(α). Similarly,
we have

(3.3)
m

∑
i=1

M∗
z

ni
i

Mz
ni
i
=

⊕
06α<n

{ m

∑
i=1

M̂zi

∗
M̂zi

}
.

Thus, from (3.2) and (3.3), we see that H satisfies (Bp) or (C∗p) if and only if all
the Ĥn(α) do for 0 6 α < n. Thus the Koszul complex for the m-tuple is exact,
or Fredholm, if and only if the same is true for each of the Koszul complexes for
the direct summands. Thus H satisfying (Cp) implies that each Ĥn(α) satisfies
(C∗p). But Lemma 3.1 implies that each Ĥn(α) satisfies (C), which concludes the
proof.

REMARK 3.4. If H satisfies (A∗n), then the Ĥn(α) will satisfy (A*) and the
ideals Jn(α) = J ∩ Ĥn(α) are homogeneous in Ĥn(α) relative to the weighted
module action.

We need a lemma concerning hyponormal operators to complete the reduc-
tion of questions concerning quasi-homogeneous ideals to the analogous ques-
tions about homogeneous ones.

LEMMA 3.5. If T is an essentially hyponormal operator for which Tk is essentially
normal for some k > 1, then T is essentially normal.

Proof. Working modulo the compacts in the Calkin algebra, the question

reduces to showing that a hyponormal operator T for which Tk is normal must

itself be normal. To that end, consider the spectral representation for Tk so that

Tk
=

∫
σ(Tk

)

z dEz,
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for a spectral measure {Ez} on σ(Tk
). Since T commutes with Tk, there exists

a measurable operator-valued function X(z) so that T =
∫

σ(Tk
)

X(z) dEz. But T

is hyponormal if and only if X(z) is hyponormal a.e. and X(z)k = zI a.e. This
implies that X(z) is a normal operator a.e. with spectrum contained in the set of
k-th roots of z, which implies that T =

∫
σ(Tk

)

X(z) dEz is normal.

Collecting the lemmas, we have the following reduction.

THEOREM 3.6. Assume thatH is a Hilbert module satisfying (A), that each Mzi , i
= 1, 2, . . . , m is essentially hyponormal and that J is a quasi-homogeneous ideal for
weight n. Consider the decomposition

H =
⊕

06α<n
Hn(α)

and set Jn(α) = J ∩Hn(α) for 0 6 α < n. Then [J] =
⊕

06α<n
[Jn(α)] with each [Jn(α)]

being a homogeneous ideal for C[z] with the weighted module action. Then [J] satisfies
(Bp) or (Bp) and (Cp) if and only if each [Jn(α)] does for 0 6 α < n, with 1 6 p 6 ∞.

Proof. The earlier lemmas yield the first decomposition and now for J as
well because of the relation between cross-commutators [Mz

ni
i

, M∗
z

nj
j

] on each

[Jn(α)] and [Mz
ni
i

, M∗
z

nj
j

] on J. Therefore, one sees that the restriction of the op-

erators {Mz
ni
i
} to [J] have Lp commutators. Now the fact that each Mzi is essen-

tially hyponormal implies that Mzi |[J] is essentially hyponormal and the previous
lemma completes the proof.

COROLLARY 3.7. If H is an isometric Hilbert module over C[z] satisfying (A∗n)
and J is a quasi-homogeneous ideal for weight n, then [J] satisfies (Bp) or (Bp) and (Cp)
if and only if each [Jn(α)] does for 0 6 α < n and 1 6 p 6 ∞.

Proof. In case H is actually isometric, then it is subnormal by [5] and hence
the Mzi are hyponormal for i = 1, 2, . . . , m. Thus the theorem applies.

One is tempted to conclude that this result allows one to apply the recent re-
sults of Guo and Wang [19] on homogeneous ideals to quasi-homogeneous ones.
However, those results are particular to the m-shift space. Unfortunately, the
Hilbert modules in the decomposition given in Lemma 2.4 do not have the uni-
tary symmetry necessary to allow one to apply these techniques.

In this section we have considered the case of multiplicity one; that is, Hilbert
module, obtained as the completion of C[z]. It would be natural to consider com-
pletions of C[z]⊗Ck for k in N as mentioned in Section 1. We will return to this
issue in Section 5 in order to state stronger theorems.
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4. THE CASE m = 2

Our goal in this section is to prove the following theorem for the case of
m = 2 and multiplicity one.

THEOREM 4.1. Let H be a Hilbert module completion of C[z1, z2] which satisfies
(A*), (B) and (C) and I be a homogeneous ideal in C[z1, z2]. Then [I] and H/[I] are
essentially reductive or, equivalently, [I] satisfies (D).

In case H is H2
2 , this result was proved by Guo in [16]. Moreover, the result

is known to hold forH = H2
2 ⊗Cr and closely related Hilbert modules. This was

established by Guo and Wang (see [19]). However, the techniques in those papers
do not seem to extend to yield the result for Hilbert modules as general as those
considered here..

THEOREM 4.2. Let H be a Hilbert module completion of C[z1, z2] which satisfies
(A), (B) and (C) and J be a quasi-homogeneous ideal in C[z1, z2] having weight n =
(n1, n2). Then [J] andH/[J] are essentially reductive and satisfy (D).

Proof. The result follows from Theorem 4.1 in view of Theorem 3.6 and
Lemma 3.3.

This result was obtained by Guo and Wang in [19] in the case H = H2
2 . To

prove Theorem 4.1, we adopt the outline of their proof but the necessary lemmas
are established by different means.

LEMMA 4.3. If H is a Hilbert module completion of C[z1, z2] satisfying (B) and
(C) then [z1H] satisfies (B) and (C).

Proof. Note that [z1H]⊥ = kerM∗z1
. If we decompose M∗z1

relative to H =

kerM∗z1
⊕ [z1H], then we obtain the matrix

(
0 A
0 B

)
.

Since M∗z1
is essentially normal, it follows that A is compact and B is es-

sentially normal. If we write M∗z2
as
(

C D
0 E

)
, then the fact that IH −M∗z1

Mz1 −

M∗z2
Mz2 is compact implies that I − BB∗ − EE∗ is compact. Moreover, the fact

that [M∗z1
, M∗z2

] = 0 implies that BE = EB and the fact that B is essentially normal
implies that B∗E = EB∗. In conclusion we have that E and E∗ commute modulo
the compacts with I − BB∗ = EE∗ which implies via a polar form argument that
E is essentially normal. This completes the proof.

REMARK 4.4. One can generalize the preceding proof to show that [〈z1, z2,
. . . , zm−1〉] is essentially reductive where the closure is taken in a Hilbert module
H over C[z1, z2, . . . , zm] satisfying (B) and (C).
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LEMMA 4.5. Let H be a Hilbert module completion of C[z1, z2] satisfying (A*),
(B) and (C). The ideal I = 〈z1 + αz2〉 generates the submodule [I] of H and quotient
moduleH/[I], both of which satisfy (A*), (B) and (C).

Proof. We observe first that the preceding lemma handles the case α = 0.
Next, we observe that (A*) holds for [I] using Lemma 2.1 and the fact that I
is principal. Once we establish (B) for [I], we will see that (C) follows. Let
(Mz1 , Mz2) denote the coordinate multiplication operators defined on the quo-
tient module H/[I]. Suppose α 6= 0. Since H satisfies (B) and (C), we have that
Mz1 M∗z1

+ Mz2 M∗z2
− IH is compact or that (M∗z1

, M∗z2
) is an essentially spherical

isometry. A simple matrix computation shows that the restriction of (M∗z1
, M∗z2

)

to Q = H/[I] = H 	 [I] is also an essentially spherical isometry or Mz1 M∗z1
+

Mz2 M∗z2
− IQ is compact. But since z1 + αz2 is in I, we see that Mz1 + αMz2 = 0 or

Mz2 = − 1
α Mz1 and therefore, Mz1 M∗z1

+ 1
|α|2 Mz2 M∗z2

− IQ is compact. Hence, (1+

|α|2)−1/2M∗z1
is an essential isometry. Similarly, we have that (1 + |α|2)−1/2Mz2

is an essential isometry. Easy calculation shows that [I]⊥k is one-dimensional and
that Mz1 on H/[I] is a weighted shift (cf. [11]). The fact that (1 + |α|2)−1/2M∗z1
is an essential isometry shows that the absolute value of the weights converge to
1. Hence M∗z1

is essentially normal which implies that [I] and H/[I] satisfy (B).
This completes the proof of the lemma.

For the proof of Theorem 4.1, we need the following lemma.

LEMMA 4.6. SupposeH is a Hilbert module completion of C[z] satisfying (B) and
(C). If I = 〈p(z)〉 is a principal ideal satisfying (B), then [I] also satisfies (C).

Proof. Observe first that one can identify

T (H)/K(H) ∼= T ([I])/K([I])⊕ T (H/[I])/K(H/[I])

since the off-diagonal entries for the matrix representation for the operators in
T (H) are compact. The union of the two maximal ideal spaces equals ∂Bm. Fur-
ther, the maximal ideal space for the quotient algebra is the intersection of ∂Bm

with the zero variety Z of p(z) (see [15]). Therefore, we see that T ([I])/K([I])
satisfies (C∗). Finally, the image of the odd K-homology element defined by the
quotient module is 0 because the maximal ideal space is a proper subset of ∂Bm.
Thus we see that [I] satisfies (C).

One advantage in working with general Hilbert modules, rather than a spe-
cific one such as the m-shift space, is that induction can be used as follows:

LEMMA 4.7. Assume for all Hilbert module completions of C[z] satisfying (A*),
(B) and (C), that the principal ideals I1 = 〈p1(z)〉 and I2 = 〈p2(z)〉 also satisfy (A*),
(B) and (C). Then the same is true for the principal ideal K = 〈p1(z)p2(z)〉.
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Proof. The proof follows once one observes that by assumption the closure
[I1] of I1 satisfies (A*), (B) and (C). Therefore, the closure of the ideal I2 in [I1] sat-
isfies (A*), (B) and (C), also by assumption (Here, we are using the weakly wan-
dering vector p1(z) in [I1] to identify [I1] as a completion of C[z].) But this closure
equals [〈p1(z)p2(z)〉] or the closure of K inH, which completes the proof.

Proof of Theorem 4.1. Recall the fact ([18]) that every homogeneous polyno-
mial in C[z1, z2] is the product of a monomial zk1

1 zk2
2 and factors of the form

(z1 + αz2) with α 6= 0. SinceH satisfies (A*), from Lemma 4.5, we see that the clo-
sure of any homogeneous principal ideal in C[z1, z2] satisfies (A*), (B) and (C).
The proof is completed by appealing to a result of Yang [24] showing that any
proper homogeneous ideal in C[z1, z2] contains a homogeneous principal ideal of
finite co-dimension.

5. QUOTIENT MODULES OF DIMENSION ONE

If I is a homogeneous ideal in C[z], then there is an intimate relation be-
tween the zero variety Z = {z ∈ Cm : p(z) = 0 for all p in I} of I and the
Hilbert–Samuel polynomial pC[z]/I for the quotient module C[z]/I. The same
is true for Hilbert modules. In particular, pC[z]/I will be linear if and only if Z
has complex dimension one. Rather than developing these ideas here, we will
use a consequence of this fact as our basic assumption since we want to consider
the case of higher multiplicity anyway. Here, the notion of zero variety is more
complex.

Let H be a Hilbert module completion of C[z]⊗Cr, for r > 1. The degree
of a monomial zα ⊗ u for u in Cr is |α|. An element of C[z] ⊗ Cr is said to be
homogeneous if all monomials in it have the same degree. A submodule S of H is
said to be homogeneous if it is generated by homogeneous elements of C[z]⊗Cr.
One knows that S ∩ C[z] ⊗ Cr is finitely generated and since its closure is S ,
hence so is S . Here one is relying on homogeneity being characterized by the
circle group action. One can extend (A) and (A*) to such modules in an obvious
fashion and again one has the orthogonal decompositions H =

⊕Hk, S =
⊕ Sk

with Sk = S ∩Hk, and S⊥ =
⊕ S⊥k with S⊥k = S⊥ ∩Hk as in the case of r = 1.

For each k in N and i = 1, 2, . . . , m, there exists an operator Ai,k : S⊥k → S
⊥
k+1,

so that

(5.1) Mzi (p0, p1, p2, . . .) = (0, Ai,0 p0, Ai,1 p1, Ai,2 p2, . . .),

where pk is in S⊥k and Mzi is the compression of Mzi to the quotient module S⊥.
We say that S⊥ has bounded dimension if dimS⊥k 6 M < ∞ for some M.

Using the existence of the Hilbert–Samuel polynomial [13], one observes that the
assumption that dimension of S⊥ is bounded implies the existence of natural
numbers M0 and K such that dimS⊥k = M0 for k > K.
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If S⊥ has bounded dimension and H satisfies (A*), then the operators Mzi

are unilateral block weighted shifts for i = 1, 2, . . . , m. In particular, for all k > K,
the operators Ai,k : S⊥k → S

⊥
k+1 map between spaces of dimension M0. Moreover,

the adjoint M∗zi
satisfies

(5.2) M∗zi

( ∞⊕
k=K

pk+1

)
=

∞⊕
k=K

A∗i,k+1 pk+1,

for
∞⊕

k=K
pk+1 in

∞⊕
k=K
S⊥k+1, where A∗i,k+1 : S⊥k+1 → S

⊥
k .

For this calculation to be valid, it is essential that the S⊥k be orthogonal. We
begin with the following lemma.

LEMMA 5.1. Let H be a Hilbert module completion of C[z]⊗ Cr which satisfies
(Bp) and (C∗p) for some 1 6 p 6 ∞. Then the m-tuple (M∗z1

, M∗z2
, . . . , M∗zm) is an

essentially spherical isometry and, moreover, I −
m
∑

i=1
Mzi M

∗
zi

is in Lp.

Proof. The result follows from the following identity, used in Section 3:

(5.3) I −
m

∑
i=1

Mzi M
∗
zi
= I −

m

∑
i=1

M∗zi
Mzi +

m

∑
i=1

[M∗zi
, Mzi ].

LEMMA 5.2. Let H be a Hilbert module completion of C[z]⊗ Cr which satisfies
(Bp) and (C∗p) for some 1 6 p 6 ∞, S be a homogeneous submodule of H and Mzi

be the compression of Mzi to S⊥ for i = 1, 2, . . . , m. Then (Mz1 , Mz2 , . . . , Mzm) is

an essentially spherical isometry and IS⊥ −
m
∑

i=1
Mzi M

∗
zi

is in Lp. Moreover, for i =

1, 2, . . . , m, [Mzi , M∗zi
] = Pi − Ni, where Pi and Ni are positive and Ni is Lp.

Proof. The result follows by a matrix calculation using the fact that IH −
m
∑

i=1
Mzi M

∗
zi

is in Lp and S⊥ is a joint invariant submodule for the m-tuple (M∗z1
,

M∗z2
, . . . , M∗zm). The last statement follows from the matrix calculation [Mzi , M∗zi

]
= PS⊥ [Mzi , M∗zi

]PS⊥ + (PSMzi PS⊥)
∗(PSMzi PS⊥) since [Mzi , M∗zi

] is in Lp.

THEOREM 5.3. Let H be a Hilbert module completion of C[z] ⊗ Cr satisfying
(A*), (B) and (C) and S be a homogeneous submodule of bounded dimension. Then S
and S⊥ are essentially reductive.

Proof. We begin by calculating the various operators involved using the rep-
resentations in equations (5.1) and (5.2). We consider only elements in S⊥K ⊕
S⊥K+1 ⊕ S⊥K+2 · · · , which is sufficient since S⊥0 ⊕ S⊥1 ⊕ · · · ⊕ S⊥K−1 has finite di-
mension. In particular, we have

Mzi

( ∞⊕
k=K

pk

)
=

∞⊕
k=K+1

Ai,k pk, and M∗zi

( ∞⊕
k=K

pk+1

)
=

∞⊕
k=K

A∗i,k+1 pk+1,
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where pk is in S⊥k . If we set X = I −
m
∑

i=1
Mzi M

∗
zi

, then X =
⊕

Xk, where Xk is

in L(S⊥k ). Moreover, lim
k→∞
‖Xk‖ = 0, since X is compact. Further, if we write

[Mzi , M∗zi
] = Pi − Ni as in Lemma 5.2, we have Pi =

⊕
Pi,k, and Ni =

⊕
Ni,k for

Pi,k, Ni,k in L(S⊥k ) for k in N. Therefore, we have

IS⊥ −
m

∑
i=1

M∗zi
Mzi =

⊕ (
IS⊥k
−

m

∑
i=1

A∗i,k Ai,k

)
=
⊕ (

IS⊥k
−

m

∑
i=1

Ai,k−1 A∗i,k−1

)
+
⊕ m

∑
i=1

(A∗i,k Ai,k − Ai,k−1 A∗i,k−1)

=
⊕

Xk +
⊕ m

∑
i=1

(Pi,k − Ni,k) =
⊕ (

Xk +
m

∑
i=1

Pi,k − Ni,k

)
,

or

(5.4) IS⊥k
−

m

∑
i=1

A∗i,k Ai,k =
(

IS⊥ −
m

∑
i=1

M∗zi
Mzi

)
k
= Xk +

m

∑
i=1

(Pi,k − Ni,k).

Here, the subscript k on the middle quantity refers to its restriction to S⊥k
which is a reducing subspace. Now,∣∣∣Tr
(

IS⊥k
−

m

∑
i=1

A∗i,k Ai,k

)∣∣∣=∣∣∣Tr
(

IS⊥k
−

m

∑
i=1

Ai,k A∗i,k
)∣∣∣=∣∣∣Tr

(
IS⊥−

m

∑
i=1

Mzi M
∗
zi

)
k

∣∣∣=|TrXk|.

And so, ∣∣∣Tr
(

IS⊥k
−

m

∑
i=1

A∗i,k Ai,k

)∣∣∣ = |TrXk| 6 ‖Xk‖dimS⊥k−1 = M0‖Xk‖.

Therefore,
∣∣∣Tr
(

Xk +
m
∑

i=1
(Pi,k − Ni,k)

)∣∣∣ 6 M0‖Xk‖, and hence

Tr
( m

∑
i=1

Pi,k

)
6 M0

(
2‖Xk‖+

m

∑
i=1
‖Ni,k‖

)
.

But, lim
k→∞

(
2‖Xk‖+

m
∑

i=1
‖Ni,k‖

)
= 0 since X and N are in Lp, which implies that

lim
k→∞

m
∑

i=1
TrPi,k = 0. Since Pi,k > 0 we have lim

k→∞
‖Pi,k‖ = 0. Finally, we have, in

view of equation (5.4) that (Mz1 , Mz2 , . . . , Mzm) is an essentially spherical isome-
try, which concludes the proof.

The argument is related to the proof in Section 3 of [19] for the case of the
closure of homogeneous ideals for the m-shift space for which the Hilbert–Samuel
polynomial is linear; that is, pS⊥k

(k) = M0 + M1k for k > K and natural numbers
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K, M0 and M1. Extending the above result to submodules for which the Hilbert–
Samuel polynomial has higher degree using this approach would require more
control over the Lp norms which are not “linear” as is the trace.

6. POSITIVE REGULAR HILBERT MODULES

In this section we relate the Hilbert module, HP, obtained from a given
positive regular polynomial P to the m-shift Hilbert module and a certain quasi-
homogeneous ideal JP in C[z]. We show that HP is essentially reductive if the
corresponding [JP] is essentially reductive. Here, the number of variables in the
m-shift space, H2

m, is much greater than that in P(z). By virtue of Theorem 6.5, it
will follow that an affirmative solution showing essential reductivity for homo-
geneous ideals in a Hilbert module, satisfying (A), (B) and (C) will show that all
HP are essentially reductive.

A polynomial

(6.1) P(z) =
m

∑
i=1

aizi +
m+K

∑
i=m+1

aizαi ,

is positive regular if ai > 0 for i = 1, 2, . . . , m and ai > 0 for i = m + 1, m +
2, . . . , m+K, with αi in Nm (see [6], [22] for more on positive regular polynomials).

We set

(6.2) DP =
{

z ∈ Cm :
m

∑
i=1

ai|zi|2 +
m+K

∑
i=m+1

ai|zαi |2 < 1
}

,

which is a Reinhardt domain in Cm; that is, a domain for which (z1, z2, . . . , zm)

is in DP if and only if (eiθ1 z1, eiθ2 z2, . . . , eiθm zm) is also in DP, for eiθj in T, for
j = 1, 2, . . . , m.

We define the kernel function kP on DP ×DP so that

(6.3) kP(z, w) =
(

1−
m

∑
i=1

aiziwi +
m+K

∑
i=m+1

aizαi wαi
)−1

,

for z and w inDP. LetHP be the corresponding reproducing kernel Hilbert space
for kP. Then HP is a Hilbert module over C[z], with z = (z1, z2, . . . , zm). If δα is
the coefficient for zα in the Taylor series expansion of the function

z→
(

1−
m

∑
i=1

aizi +
m+K

∑
i=m+1

aizαi
)−1

,

then one can show that

(6.4) HP =
{

f ∈ O(DP) : f (z) = ∑
β∈Nm

bβzβ, with ∑
β∈Nm

|bβ|2

δβ
< ∞

}
.

Note that, ‖zβ‖2= 1
δβ

and, the {zβ} are orthogonal and henceHP satisfies (A).
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An m-tuple of bounded operators (T1, T2, . . . , Tm) on H is said to be P-
contractive if

(6.5)
m

∑
i=1

aiTiT∗i +
m+K

∑
i=m+1

aiTαi T∗αi 6 IH,

where Tα = Tα1
1 Tα2

2 · · · T
αm
m . In case P(z) =

m
∑

i=1
zi, then a P-contractive commuting

m-tuple (T1, T2, . . . , Tm) is what is often called a row contraction or
m
∑

i=1
TiT∗i 6

I. Note that (T1, T2, . . . , Tm) is a row contraction if and only if (T∗1 , T∗2 , . . . , T∗m)
is a spherical contraction. We use both notions in this paper to conform to the
literature.

The following lemmas are essentially from [6].

LEMMA 6.1. For P a positive regular polynomial, one has

(6.6) P0 = IHP −
m

∑
i=1

ai Mzi M
∗
zi
+

m+K

∑
i=m+1

ai M
αi
z M∗αi

z ,

where P0 is the orthogonal projection onto the one-dimensional subspace of constant func-
tions and Mα

z = Mα1
z1 Mα2

z2 · · ·M
αm
zm .

LEMMA 6.2. Let P be a positive regular polynomial and (T1, T2, . . . , Tm) be a
commuting P-contractive m-tuple on a Hilbert space H such that there exists a vector
ν in H such that Tβν ⊥ ν for β 6= 0. Then the mapping XPzβ = Tβν extends to a
contractive module map XP : HP → H.

Note that if αi = 1 for i = 1, 2, . . . , m and K = 0, then HP = H2
m, which we

know is essentially reductive. We are concerned with the essential reductivity of
HP for an arbitrary positive regular polynomial P(z).

Let T = (T1, T2, . . . , Tm) be an m-tuple of operators on the Hilbert space

which is a row contraction; that is,
m
∑

i=1
TiT∗i 6 IH. We define the completely

positive map ηT : L(H)→ L(H) by ηT(X) =
m
∑

i=1
TiXT∗i , for X in L(H). Then

IH > ηT(IH) > η2
T(IH) > · · · ,

and T is called pure if AT = lim
n→∞

ηn
T(IH) = 0.

The following theorem is due to Arveson (see [1]).

THEOREM 6.3. If (T1, T2, . . . , Tm) is a pure commuting row contractive m-tuple
acting on a Hilbert space H, then there exists a Hilbert space E and a submodule S of
H2

m ⊗ E so that H ∼= H2
m ⊗ E/S as Hilbert modules over C[z] with Ti → Mzi for

i = 1, 2, . . . , m, where Mzi denotes the image of Mzi ⊗ IE in H2
m ⊗ E/S . Moreover, E

can be identified with Ran
(

IH −
m
∑

i=1
TiT∗i

)
.
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For the positive regular polynomial P(z), consider the (m + K)-tuple

MP = (
√

a1Mz1 ,
√

a2Mz2 , . . . ,
√

am Mzm ,
√

am+1Mαm+1
z , . . . ,

√
am+K Mαm+K

z )

on HP. Since the m-tuple (Mz1 , Mz2 , . . . , Mzm) is P-contraction on HP, it follows
that the (m + K)-tuple MP is a row contraction. Moreover, since Mα

z 1 ⊥ 1 for α( 6=
0) in Nm, it follows from Theorem 6.3 that HP ∼= H2

m+K/SP for some submodule
SP of H2

m+K, since in this case, by equation (6.6), the defect E is one-dimensional.
Let us be more precise. Let Z1, Z2, . . . , Zm+K be the variables in H2

m+K. Con-
sider the operator XP : H2

m+K → HP defined by XPZi =
√

aizi for i = 1, 2, . . . , m
and XPZi =

√
aizαi , for i = m + 1, m + 2, . . . , m + K. Then Lemma 6.2 implies

that XP extends to a contractive module map with null space a submodule SP of
H2

m+K, so that the following diagram

H2
m+K/SP

XP

H2
m+K HP

XP

�
�
�
�
��

-

?

is commutative; that is, the quotient map XP : H2
m+K → H2

m+K/SP is an isometric
isomorphism.

The next question concerns determining the submodule SP concretely. We
observe first that SP contains the polynomials Qi(Z) = Zi − λiZαi for i = m +

1, m+ 2, . . . , m+K, where Zαi = Zα1
1 Zα2

2 · · · Z
αm
m , and λi = a1/2

i /(aα1
1 aα2

2 · · · a
αm
m )1/2

for i = m + 1, m + 2, . . . , m + K. Let JP denote the ideal in C[Z] generated by

{Qm+1(Z), Qm+2(Z), . . . , Qm+K(Z)}.

THEOREM 6.4. Given a positive regular polynomial P(z), we have that

JP = SP ∩C[Z].

Moreover, JP is quasi-homogeneous for the weight n = (1, 1, . . . , 1, |αm+1|, |αm+2|, . . . ,
|αm+K|) in Nm+K and SP is the closure of JP.

Proof. We observe that each Qi(Z) is quasi-homogeneous with weight n
since the weighted degrees of Zi and Zαi are both |αi| for i = m+ 1, m+ 2, . . . , m+
K. Therefore, JP is quasi-homogeneous for the weight n. Now the monomials in
both H2

m+K andHP are orthogonal, so one can define the weighted action γn
λ of T

on each of them and these actions intertwine the map XP, or we have
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HP HPγn
λ

XP XP

H2
m+K H2

m+K
γn

λ

-

-

? ?

This implies that SP is quasi-homogeneous in the sense that it is invariant
under the action of {γn

λ : λ ∈ T}. Thus, the ideal J̃P = SP ∩ C[Z] is quasi-
homogeneous and SP is the closure of J̃P in H2

m+K. Moreover, we have JP ⊆ J̃P
and our goal is to show equality.

Consider the quotient module H2
m/S̃P, where S̃P denotes the closure of

J̃P in H2
m+K. We have the quotient maps X̃P : H2

m+K → H2
m+K/S̃P and YP :

H2
m+K/SP → H2

m+K/S̃P so that the diagram

H2
m+K/SP ∼= HP

YP

H2
m+K H2

m+K/S̃P
X̃P

XP

�
�
�
�
��

-

?

is commutative. However, the construction ofHP is a universal one for commut-
ing P-contractive (m + K)-tuples. Hence, there exists a contractive map ZP from
HP to H2

m+K/SP which commutes with YP. This implies that YP is one-to-one and
hence, SP = S̃P, which concludes the proof.

As a corollary we have the reduction of essential reductivity of positive reg-
ular Hilbert modulesHP to a similar question for homogeneous modules.

THEOREM 6.5. If all homogeneous ideals in Hilbert module completions of C[z]
satisfying (A), (B) and (C) have essentially reductive closures, then every positive regu-
lar Hilbert module is essentially reductive.
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7. CONCLUDING REMARKS

As we have indicated, an affirmative answer to Questions 1.2 or 1.3 would
imply an affirmative answer to the conjecture of Arveson; that is, the module over
C[z] defined by the closure of a homogeneous module in H2

m ⊗Cr is essentially
reductive. Let us provide few more details and state this result formally.

THEOREM 7.1. If the answer to Question 1.2 for an arbitrary m-tuple is affirma-
tive, then Arveson’s conjecture is valid for H2

m⊗Cr; that is, the closure of a homogeneous
submodule S in C[z1, z2, . . . , zm]⊗Cr is essentially reductive for r in N.

Proof. Clearly the restriction of the m-tuple (Mz1 ⊗ ICr , Mz2 ⊗ ICr , . . . , Mzm ⊗
ICr ) to [S] is an essentially spherical isometry. Moreover, it follows that [S] is
finitely generated using the homogeneity of S and the circle group action. Fur-
ther, the column operator

Xλ =
(

Mz1 ⊗ ICr − λ1 · · · Mzm ⊗ ICr − λm
)t

has a finite dimensional kernel and closed range for λ = (λ1, λ2, . . . , λm) in Bm.
Therefore, the restriction of Xλ to [S] which yields the operator(

Tz1 − λ1 · · · Tzm − λm
)t ,

has closed range and finite dimensional kernel, where Ti = (Mzi ⊗ ICr )|[S] for
i = 1, 2, . . . , m. Therefore, the m-tuple (T1− λ1, T2− λ2, . . . , Tm − λm) is left semi-
Fredholm for λ in Bm. Hence, the affirmative answer to Question 1.2 yields the
desired result.

A variant of Question 1.2, which we will call Question 1.2∗, replaces the as-
sumption that (Mz1 − λ1, Mz2 − λ2, . . . , Mzm − λm) is left semi-Fredholm for λ in
Bm by the assumption that the essential Taylor spectrum of (Mz1 , Mz2 , . . . , Mzm)
is contained in ∂Bm. It is easy to see that the second assumption implies the first
one. To show that an affirmative answer to this modified question implies the

Arveson conjecture, one would need to establish that σ
Tay
e (T1, T2, . . . , Tm) ⊆ ∂Bm

for Ti = (Mzi ⊗ ICr )|[S] for i = 1, 2, . . . , m, where S is a homogeneous submodule
of H2

m ⊗Cr. This fact would be implied by the validity of the Arveson conjecture
but may be easier to prove and hence could be a “stepping stone” to that result.

There is another interesting question that arises when one studies Ques-
tion 1.2∗ by considering the image of the (T1, T2, . . . , Tm) onH in the Calkin alge-
bra. More precisely, intuition based on the one-variable case might suggest that
the Taylor spectrum of the restriction of a commuting m-tuple of normal opera-
tors to a proper invariant subspace must be larger, at least if the joint spectrum
for the normal operators is nice. However, a family of examples in [14], where the
joint spectrum is contained in ∂Bm for m > 3, shows that this hope is false. (The
examples are based on an earlier set of examples due to Izzo [20] showing the
failure of polynomial approximation on polynomially convex subsets of the unit
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sphere in Cm for m > 3. Some further results by Izzo, prompted by this topic,
appear in [21].)

For our application, the normal operators can be assumed to be circularly
symmetric which is equivalent to (A) holding for the closure of the polynomials in
the L2-space. We need the result under the assumption that implies (A*). Rather
than being that precise, for our purpose, however, we focus on circular symmetry.

QUESTION 7.2. Let N1, N2, . . . , Nm be an m-tuple of commuting circularly
symmetric normal operators for which N∗1 N1 + N∗2 N2 + · · · + N∗mNm = IH or,
equivalently, σTay(N1, N2, . . . , Nm) ⊆ ∂Bm. Let M be a subspace of H invari-
ant for the Ni for which H is the minimal reducing subspace containing M. If
σTay(T1, T2, . . . , Tm) ⊆ ∂Bm, where Ti = Ni|M for i = 1, 2, . . . , m, does it follow
thatM = H?

An affirmative answer to the question with the (A*) assumption would
show that Question 1.2∗ has an affirmative answer.

It is not clear whether the coordinate multipliers in the examples in [15] are
essentially normal. An affirmative answer to Question 1.2 would imply that but
the lack of essential normality would provide a counter example.

To consider the more refined results involving Lp commutators, one would
need to provide an affirmative answer to the analogous questions involving the
notion of a p-essential isometry.

In connection with Question 1.3, if one assumes that the Hilbert module
is spherically isometric, then one can show that the trace of the restriction of
m
∑

i=1
[T∗i , Ti] toHk satisfies

(7.1) Tr
{( m

∑
i=1

[M∗zi
, Mzi ]

)
|Hk

}
=

(
m + k− 1

k− 1

)
−
(

m + k− 2
k− 2

)
,

for k > 1. As a result, one has
m
∑

i=1
[M∗zi

, Mzi ] in Lp implies that p > m. Unfortu-

nately, these calculations are too crude to establish any positive implication. In
particular, if one considers the example in Section 1 involving the Hardy space
over the polydisk, one sees that it is impossible to establish that the sum of the
self commutators is in Lp without making some further assumption such as the
left semi-Fredholmness assumption introduced there. On the other hand, if we

assume that the eigenvalues of
m
∑

i=1
[M∗zi

, Mzi ]|Hk are all equal (which is not possi-

ble), then the sum of the commutators would be in Lp for p > m. Thus, resolving
the issue is a matter of understanding better the distribution of these eigenvalues.

An interesting question concerns the converse to the implication of an af-
firmative answer to Question 1.4 to the Arveson conjecture. In particular, if one
knows the result for the closure of homogeneous ideals in H2

m, does that imply
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a positive answer for Question 1.4 in which one assumes in addition that the m-
tuple is a spherical isometry or a spherical contraction?

For such a spherical isometry (T1, T2, . . . , Tm) we have (T∗1 , T∗2 , . . . , T∗m) is a
spherical contraction. Moreover, ifH has a wandering cyclic vector, then there is a
homogeneous submodule S of H2

m so thatH ∼= H2
m/S by [1]. Hence, Question 1.4

has an affirmative answer in this case if Arveson’s conjecture is valid. The same
would be true for the Lp-analogues.

In [10], the first author refined the conjecture of Arveson to state that the
quotient module is p-essentially reductive for p > dimZ or the degree of the
Hilbert–Samuel polynomial. The results in this paper have no implication for the
study of that question.
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