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Abstract. Let T be a C·0-contraction on a Hilbert space H and S be a non-trivial closed
subspace of H. We prove that S is a T -invariant subspace of H if and only if there exists a
Hilbert space D and a partially isometric operator Π : H2

D(D) → H such that ΠMz = TΠ
and that S = ran Π, or equivalently,

PS = ΠΠ∗.

As an application we completely classify the shift-invariant subspaces of analytic reproducing
kernel Hilbert spaces over the unit disc. Our results also includes the case of weighted
Bergman spaces over the unit disk.

1. Introduction

One of the most famous open problems in operator theory and function theory is the so-
called invariant subspace problem: Let T be a bounded linear operator on a Hilbert space H.
Does there exist a proper non-trivial closed subspace S of H such that TS ⊆ S?

A paradigm is the well-known fact, due to Beurling, Lax and Halmos (see [3], [10], [8]
and [13]), that any shift-invariant subspace of H2

E(D) is given by an isometric, or partially
isometric, image of a vector-valued Hardy space. Moreover, the isometry, or the partial
isometry, can be realized as a multiplication by an operator-valued bounded holomorphic
function on D. More precisely, let S be a non-trivial closed subspaces of H2

E(D). Then S is
shift-invariant if and only if there exists a Hilbert space E∗ such that S is the range of an
isometric, or partially isometric operator from H2

E∗(D) to H2
E(D) which intertwine the shift

operators (see [15]). Here E is a separable Hilbert space and H2
E(D) denote the E-valued Hardy

space over the unit disc D = {z ∈ C : |z| < 1} (see [13], [15]). This result was generalized by
McCullough and Trent [12] for shift-invariant subspaces of complete Nevanlinna Pick kernel
Hilbert spaces in one and several variables.

In this paper we extend the Beurling-Lax-Halmos theorem for shift invariant subspaces of
vector-valued Hardy spaces to the context of invariant subspaces of arbitrary C·0-contractions.
Recall that a contraction T on H (that is, ∥Tf∥ ≤ ∥f∥ for all f ∈ H) is said to be a C·0-
contraction if T ∗m → 0 as m → ∞ in the strong operator topology. One of our main results,
Theorem 2.2, state that: Let S be a non-trivial closed subspace of a Hilbert space H and
T ∈ B(H) be a C·0-contraction. Then S is a T -invariant subspace of H if and only if there
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exists a Hilbert space E and a partial isometry Π : H2
E(D) → H such that ΠMz = TΠ and

that S = ΠH2
E(D). This theorem will be proven in Section 2.

In Section 3 we specialize to the case of reproducing kernel Hilbert spaces, in which T =
Mz ⊗ IE∗ and H = HK ⊗E∗. Here HK is an analytic Hilbert space (see Definition 3.1) and E∗
is a coefficient space. In Theorem 3.3 we show that a non-trivial closed subspace S of HK⊗E∗
is Mz ⊗ IE∗-invariant if and only if there exists a Hilbert space E and a partially isometric
multiplier Θ ∈ M(H2(D)⊗ E ,HK ⊗ E∗) such that

S = ΘH2
E(D).

This classification extends the results of Olofsson, Ball and Bolotnikov in [14], [4] and [5] on
the shift-invariant subspaces of vector-valued weighted Bergman spaces with integer weights
to that of vector-valued analytic Hilbert spaces.

Our approach has two main ingredients: the Sz.-Nagy and Foias dilation theory [13] and
Hilbert module approach to operator theory [6]. However, to avoid technical complications
we speak here just of operators on Hilbert spaces instead of Hilbert modules over function
algebras.

At this point we would like to emphasize that Theorem 2.2 is a consequence of the classical
dilation result (see Theorem 2.1) . With this in mind, the main contribution of this paper lies
in developing a general framework of shift invariant subspaces of analytic reproducing kernel
Hilbert spaces (see Theorem 3.3).

Finally, it is worth mentioning that in the study of invariant subspaces of bounded linear
operators on Hilbert spaces we lose no generality if we restrict our attention to the class of
C·0-contractions.
Notations: (1) All Hilbert spaces considered in this paper are separable and over C. We
denote the set of natural numbers including zero by N. (2) Let H be a Hilbert space and
S be a closed subspace of H. The orthogonal projection of H onto S is denoted by PS .
(3) Let H1,H2 and H be Hilbert spaces. We denote by B(H1,H2) the set of all bounded
linear operators from H1 to H2 and B(H) = B(H,H). (4) Two operators T1 ∈ B(H1) and
T2 ∈ B(H2) are said to be unitarily equivalent, denoted by T1

∼= T2, if there exists a unitary
operator U ∈ B(H1,H2) such that UT1 = T2U . (5) Let E be a Hilbert space. We will often
identify H2

E(D) with H2(D)⊗ E and Mz ∈ B(H2
E(D)) with Mz ⊗ IE ∈ B(H2(D)⊗ E), via the

unitary U ∈ B(H2
E(D), H2(D)⊗ E) where U(zmη) = zm ⊗ η and m ∈ N and η ∈ E .

2. An Invariant Subspace theorem

In this section we will present a generalization of the Beurling-Lax-Halmos theorem to the
class of C·0-contractions on Hilbert spaces.

Let T be a C·0-contraction on a Hilbert space H. A fundamental theorem of Sz.-Nagy and
Foias says that

T ∼= PQMz|Q,
where Q is a M∗

z -invariant subspace of H2
D(D) for some coefficient Hilbert space D. In the

following, we state and prove a variant (cf. [7]) of this fact which is adapted to our present
purposes.
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Theorem 2.1. Let T be a C·0-contraction on a Hilbert space H. Then there exists a coefficient
Hilbert space D and a co-isometry ΠT : H2

D(D) → H such that TΠT = ΠTMz.

Proof. Let D = (IH − TT ∗)
1
2 and D = ranD. Since ∥zT ∗∥B(H) = |z|∥T ∗∥B(H) < 1, the inverse

of IH − zT ∗ exists in B(H) for all z ∈ D.
Define LT : H → H2

D(D) by

(LTh)(z) := D(IH − zT ∗)−1h =
∞∑

m=0

(DT ∗mh)zm. (h ∈ H, z ∈ D)

Now we compute

∥LTh∥2 = ∥
∞∑

m=0

(DT ∗mh)zm∥2 =
∞∑

m=0

∥DT ∗mh∥2 =
∞∑

m=0

⟨TmD2T ∗mh, h⟩

=
∞∑

m=0

⟨Tm(IH − TT ∗)T ∗mh, h⟩ =
∞∑

m=0

(∥T ∗mh∥2 − ∥T ∗(m+1)h∥2)

= ∥h∥2 − lim
m→∞

∥T ∗mh∥2,

where the last equality follows from the fact that the sum is a telescoping series. This and
the fact that limm→∞ T ∗m = 0, in the strong operator topology, implies that

∥LTh∥ = ∥h∥. (h ∈ H)

Thus LT is an isometry and ΠT : H2
D(D) → H defined by ΠT = L∗

T is a co-isometry. Finally,
for all h ∈ H, η ∈ D and m ∈ N we have

⟨ΠT (z
mη), h⟩H = ⟨zmη,D(IH − zT ∗)−1h⟩H2

D(D) = ⟨zmη,
∑
l∈N

(DT ∗lh)zl⟩H2
D(D)

= ⟨η,DT ∗mh⟩H = ⟨TmDη, h⟩H,

that is,

ΠT (z
mη) = TmDη.

Therefore, for each m ∈ N and η ∈ D we have

ΠTMz(z
mη) = ΠT (z

m+1η) = Tm+1Dη = T (TmDη) = TΠT (z
mη).

Since {zmη : m ∈ N, η ∈ D} is total in H2
D(D), it follows that

ΠTMz = TΠT .

The proof is now complete.
Now we present the main theorem of this section.

Theorem 2.2. Let T ∈ B(H) be a C·0-contraction and S be a non-trivial closed subspace of
H. Then S is a T -invariant subspace of H if and only if there exists a Hilbert space D and a
partially isometric operator Π : H2

D(D) → H such that

ΠMz = TΠ,
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and that

S = ran Π.

Proof. If S is a T -invariant subspace of H then

(T |S)∗m = PST
∗m|S = PST

∗m,

shows that

∥(T |S)∗mf∥ = ∥PST
∗mf∥ ≤ ∥T ∗mf∥,

for all f ∈ S and m ∈ N. Thus T |S ∈ B(S) is a C·0-contraction. Now Theorem 2.1 implies
that there exists a Hilbert space D and a co-isometric map

ΠT |S : H2
D(D) → S,

such that

ΠT |SMz = T |SΠT |S .

Obviously the inclusion map i : S → H is an isometry and

iT |S = Ti.

Let Π be the bounded linear map from H2
D(D) to H defined by Π = iΠT |S . Then

ΠΠ∗ = (iΠT |S )(Π
∗
T |S i

∗) = ii∗ = PS .

Therefore Π is a partial isometry and ranΠ = S. Finally,
ΠMz = iΠT |SMz = iT |SΠT |S = TiΠT |S = TΠ.

This proves the necessary part.
To prove the sufficient part it is enough to note that ranΠ is a closed subspace of H and
TΠ = ΠMz implies that ranΠ is a T -invariant subspace of H. This completes the proof.

The following corollary is a useful variation of the invariant subspace theorem:

Corollary 2.3. Let T ∈ B(H) be a C·0-contraction and S be a non-trivial closed subspace
of H. Then S is a T -invariant subspace of H if and only if there exists a Hilbert space D and
a bounded linear operator Π : H2

D(D) → H such that ΠMz = TΠ and

PS = ΠΠ∗.

3. Analytic Hilbert spaces

Let H be a reproducing kernel Hilbert space of E-valued holomorphic functions on D such
that the multiplication operator by the coordinate function, denoted by Mz, is bounded on H
(cf. [2]). A closed subspace S of H is said to be shift-invariant provided the product zf ∈ S
whenever f ∈ S.

The most general result on shift invariant subspaces has recently been obtained by Olofsson,
Ball and Bolotnikov in [14], [4] and [5]. Namely, for a given Hilbert space E∗, a closed
subspace S of the weighted Bergman space L2

a,m(D)⊗E∗ (m ≥ 2 and m ∈ N) is shift-invariant
if and only if there exists a Hilbert space E and a function Θ : D → B(E , E∗) such that
MΘ : H2(D) ⊗ E → L2

a,m(D) ⊗ E∗ is a multiplier (see definition below) and S = ΘH2
E(D).
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Recall that the weighted Bergman space L2
a,α(D), with α > 1, is a reproducing kernel Hilbert

space corresponding to the kernel

kα(z, w) =
1

(1− zw̄)α
. (z, w ∈ D)

The purpose of this section is to extend the results of Olofsson, Ball and Bolotnikov to a
large class of reproducing kernel Hilbert spaces. Our setting is very general and, as particular
cases, we obtain new and simple proof of the invariant subspace theorem for vector-valued
weighted Bergman spaces of Ball and Bolotnikov.

Let K : D×D → C be a positive definite function which is holomorphic in the first variable,
and anti-holomorphic in the second variable. We denote byHK the reproducing kernel Hilbert
space corresponding to the kernel K. For each w ∈ D, we denote K(·, w) the kernel function

K(·, w)(z) = K(z, w),

for all z ∈ D.

Definition 3.1. Let HK be a reproducing kernel Hilbert space with K as above. We say that
HK is an analytic Hilbert space if Mz on HK, defined by Mzf = zf for all f ∈ HK, is a
contraction.

It is important to note that the shift operator Mz on an analytic Hilbert space HK is a
C·0-contraction. To see this observe that

M∗
zK(·, w) = w̄K(·, w),

for all w ∈ D. Thus for each fixed w ∈ D, we see that

∥M∗m
z K(·, w)∥ = ∥w̄mK(·, w)∥ = |w|m∥K(·, w)∥. (m ∈ N)

As a result,
∥M∗m

z K(·, w)∥ → 0,

as m → ∞. The claim now follows from the fact that {K(·, w) : w ∈ D} is a total set in HK .
Let HK1 and HK2 be two analytic Hilbert spaces and E1 and E2 be two Hilbert spaces. A

map Θ : D → B(E1, E2) is said to be a multiplier from HK1 ⊗ E1 to HK2 ⊗ E2 if

Θf ∈ HK2 ⊗ E2. (f ∈ HK1 ⊗ E1)
We denote the set of all multipliers from HK1 ⊗ E1 to HK2 ⊗ E2 by M(HK1 ⊗ E1,HK2 ⊗ E2).
The following lemma, on a characterization of intertwining operators between a vector-

valued Hardy space and an analytic Hilbert space, is well-known, which we prove for the sake
of completeness.
We will denote by S the Szego kernel on D, that is,

S(z, w) =
1

(1− zw̄)
. (z, w ∈ D)

Lemma 3.2. Let E1 and E2 be two Hilbert spaces and HK be an analytic Hilbert space. Let
X ∈ B(H2(D)⊗ E1,HK ⊗ E2). Then

X(Mz ⊗ IE1) = (Mz ⊗ IE2)X,
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if and only if X = MΘ for some Θ ∈ M(H2(D)⊗ E1,HK ⊗ E2).

Proof. Let X ∈ B(H2(D) ⊗ E1,HK ⊗ E2) and X(Mz ⊗ IE1) = (Mz ⊗ IE2)X. If ζ ∈ E2 and
w ∈ D then

(Mz ⊗ IE1)
∗[X∗(K(·, w)⊗ ζ)] = X∗(Mz ⊗ IE2)

∗(K(·, w)⊗ ζ) = w̄[X∗(K(·, w)⊗ ζ)],

that is,

X∗(K(·, w)⊗ ζ) ∈ ker(Mz ⊗ IE1 − wIH2(D)⊗E1)
∗.

This and the fact that ker(Mz − wIH2(D))
∗ =< S(·, w) > readily implies that

X∗(K(·, w)⊗ ζ) = S(·, w)⊗X(w)ζ, (w ∈ D, ζ ∈ E2)

for some linear map X(w) : E2 → E1. Moreover,

∥X(w)ζ∥E1 =
1

∥S(·, w)∥H2(D)
∥X∗(K(·, w)⊗ ζ)∥H2(D)⊗E1 ≤

∥K(·, w)∥HK

∥S(·, w)∥H2(D)
∥X∥∥ζ∥E2 ,

for all w ∈ D and ζ ∈ E2. Therefore X(w) is bounded and Θ(w) := X(w)∗ ∈ B(E1, E2) for
each w ∈ D. Thus

X∗(K(·, w)⊗ ζ) = S(·, w)⊗Θ(w)∗ζ. (w ∈ D, ζ ∈ E2)

In order to prove that Θ(w) is holomorphic we compute

⟨Θ(w)η, ζ⟩E2 = ⟨η,Θ(w)∗ζ⟩E1 = ⟨S(·, 0)⊗ η,S(·, w)⊗Θ(w)∗ζ⟩H2(D)⊗E1

= ⟨X(S(·, 0)⊗ η), K(·, w)⊗ ζ⟩HK⊗E2 . (η ∈ E1, ζ ∈ E2)

Since w 7→ K(·, w) is anti-holomorphic, we conclude that w 7→ Θ(w) is holomorphic. Hence
Θ ∈ M(H2(D)⊗ E1,HK ⊗ E2) and X = MΘ.
Conversely, let Θ ∈ M(H2(D) ⊗ E1,HK ⊗ E2). For f ∈ H2(D) ⊗ E1 and w ∈ D this implies
that

(zΘf)(w) = wΘ(w)f(w) = Θ(w)wf(w) = (Θzf)(w).

So MΘ intertwines the multiplication operators which completes the proof.
Now we are ready for the main theorem of this section.

Theorem 3.3. Let HK be an analytic Hilbert space and E∗ be a Hilbert space. Let S be a
non-trivial closed subspace of HK ⊗E∗. Then S is (Mz⊗IE∗)-invariant subspace of HK ⊗E∗ if
and only if there exists a Hilbert space E and a partially isometric multiplier Θ ∈ M(H2(D)⊗
E ,HK ⊗ E∗) such that

S = Θ(H2(D)⊗ E).

Proof. By Theorem 2.2, there exists a partial isometry Π : H2(D)⊗ E → HK ⊗ E∗ such that
Π(Mz ⊗ IE) = (Mz ⊗ IE∗)Π. Consequently, by Lemma 3.2 we have that Π = MΘ for some
Θ ∈ M(H2(D)⊗ E1,HK2 ⊗ E2).
The converse part is trivial. This completes the proof.

In the present context, we restate Corollary 2.3 as follows:
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Corollary 3.4. Let HK be an analytic Hilbert space and S be a non-trivial closed subspace
of HK ⊗ E∗ for some coefficient Hilbert space E∗. Then S is (Mz ⊗ IE∗)-invariant subspace
of HK ⊗ E∗ if and only if there exists a Hilbert space E and a multiplier Θ ∈ M(H2(D) ⊗
E ,HK ⊗ E∗) such that

PS = MΘM
∗
Θ.

For each α > 1, the weighted Bergman space L2
a,α(D) satisfies the conditions of Theorem

3.3. In particular, Theorem 3.3 includes the result by Ball and Bolotnikov [4] for weighted
Bergman spaces with integer weights as special cases.

4. Concluding remarks

A bounded linear operator T on a Hilbert space H is said to have the wandering subspace
property if H is generated by the subspace WT := H⊖ TH, that is,

H = [WT ] = span{TmWT : m ∈ N}.
In that case we say that WT is a wandering subspace for T .
An important consequence of the Beurling theorem [3] states that: given a non-trivial closed
shift invariant subspace S of H2(D), the subspace WMz |S = S⊖zS is a wandering subspace for
Mz|S . The same conclusion holds for the Bergman space [1] and the weighted Bergman space
with weight α = 3 [16] but for α > 3, the issue is more subtle (see [9], [11]). In particular,
partially isometric representations of Mz-invariant subspaces of analytic Hilbert spaces seems
to be a natural generalization of the Beurling theorem concerning the shift invariant subspaces
of the Hardy space H2(D).

Finally, it is worth stressing that the main results of this paper are closely related to the issue
of factorizations of reproducing kernels. As future work we plan to extend our approach to
several variables and address issues such as factorizations of kernel functions and containment
of shift-invariant subspaces of analytic Hilbert spaces over general domains in Cn.
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