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Abstract. In a recent paper, Trent and Wick [23] establish a strong relation
between the corona problem and the Toeplitz corona problem for a family of
spaces over the ball and the polydisk. Their work is based on earlier work of
Amar [3]. In this note, several of their lemmas are reinterpreted in the language
of Hilbert modules, revealing some interesting facts and raising some questions
about quasi-free Hilbert modules. Moreover, a modest generalization of their
result is obtained.

1. Introduction

While isomorphic Banach algebras of continuous complex-valued functions with
the supremum norm can be defined on distinct topological spaces, the results of
Gelfand (cf. [12]) showed that for an algebra A ⊆ C(X), there is a canonical
choice of domain, the maximal space of the algebra. If the algebra A contains the
function 1, then its maximal ideal space, MA, is compact. Determining MA for a
concrete algebra is not always straightforward. New points can appear, even when
the original space X is compact, as the disk algebra, defined on the unit circle T ,
demonstrates. If A separates the points of X, then one can identify X as a subset
of MA with a point x0 in X corresponding to the maximal ideal of all functions in
A vanishing at x0. When X is not compact, new points must be present but there
is still the question of whether the closure of X in MA is all of MA or does there
exist a “corona” MA \X �= ∅.

The celebrated theorem of Carleson states that the algebra H∞(D) of bounded
holomorphic functions on the unit disk D has no corona. There is a corona problem
for H∞(Ω) for every domain Ω in C

m but a positive solution exists only for the
case m = 1 with Ω a finitely connected domain in C.
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One can show with little difficulty that the absence of a corona for an algebra
A means that for {ϕi}ni=1 in A, the statement that

(1)

n∑

i=1

|ϕi(x)|2 ≥ ε2 > 0 for all x in X

is equivalent to

(2) the existence of functions {ψi}ni=1 in A such that
n∑

i=1

ϕi(x)ψi(x) = 1 for x in X.

The original proof of Carleson [8] for H∞(D) has been simplified over the years
but the original ideas remain vital and important. One attempt at an alternate
approach, pioneered by Arveson [6] and Schubert [20], and extended by Agler –
McCarthy [2], Amar [3], and finally Trent –Wick [23] for the ball and polydisk,
involves an analogous question about Toeplitz operators. In particular, for {ϕi}ni=1

in H∞(Ω) for Ω = Bm or Dm, one considers the Toeplitz operator TΦ : H2(Ω)n →
H2(Ω) defined TΦf =

∑n
i=1 ϕifi for f in H2(Ω), where f = f1 ⊕ · · · ⊕ fn and

Xn = X ⊕ · · · ⊕ X for any space X . One considers the relation between the
operator inequality

(3) TΦT
∗
Φ ≥ ε2I for some ε > 0

and statement (1). One can readily show that (3) implies that one can solve (2)
where the functions {ψi}nn=1 are in H2(Ω). We will call the existence of such
functions, statement (4). The original hope was that one would be able to modify
the method or the functions obtained to achieve {ψi}ni=1 in H∞(Ω). That (1)
implies (3) follows from earlier work of Andersson –Carlsson [5] for the unit ball
and of Varopoulos [24], Li [17], Lin [18], Trent [22] and Treil –Wick [21] for the
polydisk.

In the Trent –Wick paper [23] this goal was at least partially accomplished with
the use of (3) to obtain a solution to (4) for the case m = 1 and for the case m > 1
if one assumes (3) for a family of weighted Hardy spaces. Their method was based
on that of Amar [3].

In this note we provide a modest generalization of the result of Trent –Wick in
which weighted Hardy spaces are replaced by cyclic submodules or cyclic invariant
subspaces of the Hardy space and reinterpretations are given in the language of
Hilbert modules for some of their other results. It is believed that this reformula-
tion clarifies the situation and raises several interesting questions about the corona
problem and Hilbert modules. Moreover, it shows various ways the Corona Theo-
rem could be established for the ball and polydisk algebras. However, most of our
effort is directed at analyzing the proof in [23] and identifying key hypotheses.

2. Hilbert modules

A Hilbert module over the algebra A(Ω), for Ω a bounded domain in Cm, is a
Hilbert space H which is a unital module over A(Ω) for which there exists C ≥ 1 so
that ‖ϕ ·f‖H ≤ C‖ϕ‖A(Ω)‖f‖H for ϕ in A(Ω) and f in H. Here A(Ω) is the closure
in the supremum norm over Ω of all functions holomorphic in a neighborhood of
the closure of Ω.
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We consider Hilbert modules with more structure which better imitate the
classical examples of the Hardy and Bergman spaces.

The Hilbert module R over A(Ω) is said to be quasi-free of multiplicity one if
it has a canonical identification as a Hilbert space closure of A(Ω) such that:

(1) Evaluation at a point z in Ω has a continuous extension to R for which
the norm is locally uniformly bounded.

(2) Multiplication by a ϕ in A(Ω) extends to a bounded operator Tϕ in L(R).
(3) For a sequence {ϕk} in A(Ω) which is Cauchy in R, ϕk(z) → 0 for all z in

Ω if and only if ‖ϕk‖R → 0.

We normalize the norm on R so that ‖1‖R = 1.
We are interested in establishing a connection between the corona problem for

M(R) and the Toeplitz corona problem on R. Here M(R) denotes the multiplier
algebra for R; that is, M (= M(R)) consists of the functions ψ on Ω for which
ψR ⊂ R. Since 1 is in R, we see that M is a subspace of R and hence consists
of holomorphic functions on Ω. Moreover, a standard argument shows that ψ is
bounded (cf. [10]) and hence M ⊂ H∞(Ω). In general, M �= H∞(Ω).

For ψ in M we let Tψ denote the analytic Toeplitz operator in L(R) defined
by module multiplication by ψ. Given functions {ϕi}ni=1 in M, the set is said to

(1) satisfy the corona condition if
∑n

i=1|ϕi(z)|2 ≥ ε2 for some ε > 0 and all z
in Ω;

(2) have a corona solution if there exist {ψi}ni=1 inM such that
∑n

i=1ϕi(z)ψi(z)
= 1 for z in Ω;

(3) satisfy the Toeplitz corona condition if
∑n

i=1 Tϕi
T ∗
ϕi

≥ ε2IR for some ε > 0;
and

(4) satisfy theR-corona problem if there exist {fi}ni=1 inR such that
∑n

i=1Tϕi
fi

= 1 or
∑n

i=1 ϕi(z)f(zi) = 1 for z in Ω with
∑n

i=1‖fi‖2 ≤ 1/ε2.

3. Basic implications

It is easy to show that (2) =⇒ (1), (4) =⇒ (3) and (2) =⇒ (4). As
mentioned in the introduction, it has been shown that (1) =⇒ (3) in case Ω is the
unit ball Bm or the polydisk D

m and (1) =⇒ (2) for Ω = D is Carleson’s Theorem.
For a class of reproducing kernel Hilbert spaces with complete Nevanlinna –Pick
kernels one knows that (2) and (3) are equivalent [7] (cf. [4, 15]). These results are
closely related to generalizations of the commutant lifting theorem [19]. Finally,
(3) =⇒ (4) results from the range inclusion theorem of the first author as follows
(cf. [11]).

Lemma 1. If {ϕi}ni=1 in M satisfy
∑n

i=1 Tϕi
T ∗
ϕi

≥ ε2IR for some ε > 0, then

there exist {fi}ni=1 in R such that
∑n

i=1 ϕi(z)fi(z) = 1 for z in Ω and
∑n

i=1‖fi‖2R ≤
1/ε2.

Proof. The assumption that
∑n

i=1 Tϕi
T ∗
ϕi

≥ ε2I implies that the operator

X : Rn → R defined by Xf =
∑n

i=1 Tϕ1
fi satisfies XX∗ =

∑n
i=1 Tϕi

T ∗
ϕi

≥ ε2IR
and hence by [11] there exists Y : R → Rn such that XY = IR with ‖Y ‖ ≤ 1

ε .

Therefore, with Y 1 = f1 ⊕ · · · ⊕ fn, we have
∑n

i=1 ϕi(z)fi(z) =
∑n

i=1 Tϕi
fi =

XY 1 = 1 and
∑n

i=1‖fi‖2R = ‖Y 1‖2 ≤ ‖Y ‖2‖1‖2R ≤ 1/ε2. Thus the result is
proved. �

To compare our results to those in [23], we need the following observations.
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Lemma 2. Let R be the Hilbert module L2
a(µ) over A(Ω) defined to be the

closure of A(Ω) in L2(µ) for some probability measure µ on closΩ. For f in L2
a(µ),

the Hilbert modules L2
a(|f |2 dµ) and [f ], the cyclic submodule of R generated by f ,

are isomorphic such that 1 → f .

Proof. Note that ‖ϕ · 1‖L2(|f |2 dµ) = ‖ϕf‖L2(µ) for ϕ in A(Ω) and the closure
of this map sets up the desired isomorphism. �

Lemma 3. If {fi}ni=1 are functions in L2
a(µ) and g(z) =

∑n
i=1|fi(z)|2, then

L2
a(g dµ) is isomorphic to the cyclic submodule [f1 ⊕ · · · ⊕ fn] of L

2
a(µ)

n with 1 →
f1 ⊕ · · · ⊕ fn.

Proof. The same proof as before works. �

In [23], Trent –Wick prove this result and use it to replace the L2
a spaces used

by Amar [3] by weighted Hardy spaces. However, before proceding we want to
explore the meaning of this result from the Hilbert module point of view.

Lemma 4. For R = H2(Bm) (or H2(Dm)) the cyclic submodule of Rn gener-
ated by ϕ1 ⊕ · · · ⊕ ϕn with {ϕi}ni=1 in A(Bm) (or A(Dm)) is isomorphic to a cyclic
submodule of H2(Bm) (or H2(Dm)).

Proof. Combining Lemma 3 in [23] with the observations made in Lemmas 2
and 3 above yields the result. �

There are several remarks and questions that arise at this point. First, does
this result hold for arbitrary cyclic submodules in H2(Bm)n or H2(Dm)n, which
would require an extension of Lemma 3 in [23] to arbitrary f in H2(Bm)n or
H2(Dm)n? (This equivalence follows from the fact that a converse to Lemma 2 is
valid.) It is easy to see that the lemma can be extended to an n-tuple of the form
f1h⊕ · · · ⊕ fnh, where the {fi}ni=1 are in A(Ω) and h is in R. Thus one need only
assume that the quotients {fi/fj}ni,j=1 are in A(Ω) or even only equal a.e. to some
continuous functions on ∂Ω.

Second, the argument works for cyclic submodules in H2(Bm)⊗l2 or H2(Dm)⊗
l2 as long as the generating vectors are in A(Ω) since Lemma 3 in [23] holds in this
case also.

Note that since every cyclic submodule of H2(D)⊗ l2 is isomorphic to H2(D),
the classical Hardy space has the property that all cyclic submodules for the case of
infinite multiplicity already occur, up to isomorphism, in the multiplicity one case.
Although less trivial to verify, the same is true for the bundle shift Hardy spaces
of multiplicity one over a finitely connected domain in C [1].

Third, one can ask if there are other Hilbert modules R that possess the prop-
erty that every cyclic submodule of R⊗Cn or R⊗ l2 is isomorphic to a submodule
of R? The Bergman module L2

a(D) does not have this property since the cyclic
submodule of L2

a(D)⊕ L2
a(D) generated by 1⊕ z is not isomorphic to a submodule

of L2
a(D). If it were, we could write the function 1 + |z|2 = |f(z)|2 for some f in

L2
a(D) which a simple calculation using a Fourier expansion in terms of {znz̄m}

shows is not possible.
We now abstract some other properties of the Hardy modules over the ball and

polydisk.
We say that the Hilbert module R over A(Ω) has the modulus approximation

property (MAP) if for vectors {fi}Ni=1 in M ⊆ R, there is a vector k in R such that
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‖θk‖2R =
∑N

j=1‖θfj‖2 for θ in M. The map θk → θfi ⊕ · · · ⊕ θfN thus extends to

a module isomorphism of [k] ⊂ R and [f1 ⊕ · · · ⊕ fN ] ⊂ RN .
For z0 in Ω, let Iz0 denote the maximal ideal in A(Ω) of all functions that

vanish at z0. The quasi-free Hilbert module R over A(Ω) of multiplicity one is said
to satisfy the weak modulus approximation property (WMAP) if

(1) A nonzero vector kz0 in R � Iz0 · R can be written in the form kz0 · 1,
where kz0 is in M, and Tkz0

has closed range acting on R. In this case R
is said to have a good kernel function.

(2) Property MAP holds for fi = λikzi , i = 1, . . . , N with 0 ≤ λi ≤ 1 and∑N
i=1 λ

2
i = 1.

4. Main result

Our main result relating properties (2) and (3) is the following one which
generalizes Theorem 1 of [23].

Theorem. Let R be a WMAP quasi-free Hilbert module over A(Ω) of multi-
plicity one and {ϕi}ni=1 be functions in M. Then the following are equivalent :

(a) There exist functions {ψi}ni=1 in H∞(Ω) such that
∑n

i=1 ϕi(z)ψi(z) = 1
and

∑
|ψi(z)| ≤ 1/ε2 for some ε > 0 and all z in Ω, and

(b) there exists ε>0 such that for every cyclic submodule S of R,
∑n

i=1 T
S
ϕi
TS∗

ϕi

≥ ε2IS , where TS
ϕ = Tϕ|S for ϕ in M.

Proof. We follow the proof in [23] making a few changes. Fix a dense set
{zi}∞i=2 of Ω.

First, we define for each positive integer N , the set CN to be the convex hull of
the functions {|kzi |2/‖kzi‖2}Ni=2 and the function 1 for i = 1 with abuse of notation.
Since R being WMAP implies that it has a good kernel function, CN consists of
nonnegative continuous functions on Ω. For a function g in the convex hull of the
set {|kzi |2/‖kzi‖2}Ni=1, the vector λ1kz1/‖kz1‖2⊕· · ·⊕λNkzN /‖kzN ‖2 is in RN . By
definition there exists G in R such that [G] ∼= [λ1kz1/‖kz1‖ ⊕ · · · ⊕ λNkzN /‖kzN ‖]
by extending the map θG → λ1θkz1/‖kz1‖ ⊕ · · · ⊕ λNθkzN /‖kzN ‖ for θ in M.

Second, let {ϕ1, . . . , ϕn} be inM and let TΦ denote the column operator defined
from Rn to R by TΦ(f1 ⊕ · · · ⊕ fn) =

∑n
i=1 Tϕi

fi for f = (f1 ⊕ · · · ⊕ fn) in Rn and
set K = kerTΦ ⊂ Rn. Fix f in Rn. Define the function

FN : CN ×K → [0,∞)

by

FN (g,h) =

N∑

i=1

λ2
i

∥∥∥∥
kzi
‖kzi‖

(f − h)

∥∥∥∥
2

for h = h1 ⊕ · · · ⊕ hn in Rn,

where g =
∑n

i=1 λ
2
i |kzi |2/‖kzi‖2 and

∑n
i=1 λ

2
i = 1. We are using the fact that the

kzi are in M to realize kzi(f − h) in Rn.
Except for the fact we are restricting the domain of FN to CN × K instead of

CN ×Rn, this definition agrees with that of [23]. Again, as in [23], this function is
linear in g for fixed h and convex in h for fixed g. (Here one uses the triangular
inequality and the fact that the square function is convex.)

Third, we want to identify FN (g,h) in terms of the product of Toeplitz opera-

tors (T
Sg

Φ )(T
Sg

Φ )∗, where Sg is the cyclic submodule of R generated by a vector P in
R as given in Lemma 3 such that the map P → (λ1kz1/‖kz1‖⊕ · · ·⊕λNkzN /‖kzN ‖
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extends to a module isomorphism with g =
∑N

i=1 λ
2
i |kzi |2/‖kzi‖2, 0 ≤ λ2

j ≤ 1, and
∑N

i=1 λ
2
j = 1.

Note for f in Rn, infh∈K FN (g,h) ≤ 1/ε2‖TΦf‖2 if T
Sg

Φ (T
Sg

Φ )∗ ≥ ε2ISg
. Thus,

if TS
Φ (TS

Φ )∗ ≥ ε2IS for every cyclic submodule of R, we have infh∈K FN (g,h)
≤ 1/ε2‖TΦf‖2. Thus from the von Neumann min-max theorem we obtain
infh∈K supg∈CN

FN (g,h) = supg∈CN
infh∈K FN (g,h) ≤ 1/ε2‖TΦf‖2.

From the inequality TΦT
∗
Φ ≥ ε2IR, we know that there exists f0 in Rn such

that ‖f0‖ ≤ 1/ε‖1‖ = 1/ε and TΦf0 = 1. Moreover, we can find hN in K such that
FN (g,hN ) ≤ (1/ε2+1/N)‖TΦf0‖2 = 1/ε2 +1/N for all g in CN . In particular, for

gi = |kzi |2/‖kzi‖2, we have T
Sgi

Φ (T
Sgi

Φ )∗ ≥ ε2ISgi
, where ‖kzi/‖kzi‖(f0 − hN )‖2 <

1/ε2 + 1/N .
There is one subtle point here in that 1 may not be in the range of TS

Φ . However,
if P is a vector generating the cyclic module Sg, then P is in M and TP has closed
range. To see this recall that the map

θP → λ1
θkz1
‖kz1‖

⊕ · · · ⊕ λN
θkzN
‖kzN ‖

for θ in M is an isometry. Since the functions {kzi/‖kzi‖}Ni=1 are in M by as-
sumption, it follows that the operator MP is bounded on M ⊆ R and has closed
range on R since the operators Mkzi

/‖kzi
‖ have closed range, again by assumption.

Therefore, find a vector f in Sn
g so that TΦf = P . But if f = f1 ⊕ · · · ⊕ fn, then

fi is in [P ] and hence has the form fi = P f̃i for f̃i in R. Therefore, TΦTP f̃ = P or

TΦf̃ = 1 which is what is needed since in the proof f0 − f̃ is in K.
To continue the proof we need the following lemma.

Lemma 5. If z0 is a point in Ω and h is a vector in Rn, then ‖h(z0)‖2Cn ≤
‖kz0/‖kz0‖h‖2.

Proof. Suppose h = h1 ⊕ · · · ⊕ hn with {hi}ni=1 in A(Ω). Then T ∗
hi
kz0 =

hi(z0)kz0 and hence

hi(z0)‖kz0‖2 = 〈T ∗
hi
kz0 , kz0〉 = 〈kz0 , Thi

kz0〉
since Tkz0

hi = Thi
kz0 . (We are using the fact the kz0hi = kz0hi · 1 = hikz0 · 1 =

hikz0 .) Therefore,

|hi(z0)|‖kz0‖2 = |〈kz0 , Tkz0
hi〉| ≤ ‖kz0‖2‖Tkz0/‖kz0‖hi‖,

or,

|hi(z0)| ≤ ‖Tkz0
/‖kz0

‖hi‖.
Finally,

‖h(z0)‖2Cn =

n∑

i=1

|hi(z0)|2 ≤ ‖Tkz0
/‖kz0

‖h‖2,

and since both terms of this inequality are continuous in the R-norm, we can
eliminate the assumption that h is in A(Ω)n. �

Returning to the proof of the theorem, we can apply the lemma to conclude
that ‖(f0 − h0)(z)‖2Cn ≤ ‖kzi/‖kzi‖(f0 − h0)‖2 ≤ 1/ε2 + 1/N . Therefore, we see
that the vector fN = f0 − hN in Rn satisfies

(1) TΦ(fN − hN ) = 1,
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(2) ‖fN − hN‖2R ≤ 1/ε2 + 1/N and
(3) ‖(fN − hN )(zi)‖2Cn ≤ 1/ε2 + 1/N for i = 1, . . . , N .

Since the sequence {fN}∞N=1 in Rn is uniformly bounded in norm, there exists
a subsequence converging in the weak∗-topology to a vector ψ in Rn. Since
weak∗-convergence implies pointwise convergence, we see that

∑n
j=1 ϕjψj = 1 and

‖ψj(zi)‖2Cn ≤ 1/ε2 for all zi. Since ψ is continuous on Ω and the set {zi} is dense
in Ω, it follows that ψ is in H∞

Cn(Ω) and ‖ψ‖ ≤ 1/ε2 which concludes the proof. �

Note that we conclude that ψ is in H∞(Ω) and not in M which would be the
hoped for result.

One can note that the argument involving the min-max theorem enables one
to show that there are vectors h in K which satisfy

‖kzi(f − h)‖2 ≤ 1

ε2
+

1

N
.

Moreover, this shows that there are vectors f̃ so that TΦf̃ = 1, ‖f̃‖2 ≤ 1/ε2+1/N ,

and ‖f̃(zi)‖2 ≤ 1/ε2 + 1/N for i = 1, . . . , N . An easy compactness argument
completes the proof since the sets of vectors for each N are convex, compact and
nested and hence have a point in common. �

5. Concluding comments

With the definitions given, the question arises of which Hilbert modules are
(MAP) or which quasi-free ones are WMAP. Lemma 4 combined with observations
in [23] show that both H2(Bm) and H2(Dm) are WMAP. Indeed any L2

a space
for a measure supported on ∂Bm or the distinguished boundary of Dm has these
properties. One could also ask for which quasi-free Hilbert modules R the kernel
functions {kz}z∈Ω are in M and whether the Toeplitz operators Tkz

are invertible
operators as they are in the cases of H2(Bm) and H2(Dm). It seems possible that
the kernel functions for all quasi-free Hilbert modules might have these properties
when Ω is strongly pseudo-convex, with smooth boundary. In many concrete cases,
the kz0 are actually holomorphic on a neighborhood of the closure of Ω for z0 in Ω,
where the neighborhood, of course, depends on z0.

Note that the formulation of the criteria in terms of a cyclic submodule S of
the quasi-free Hilbert modules makes it obvious that the condition

TS
Φ (TS

Φ )∗ ≥ ε2IS

is equivalent to

TΦT
∗
Φ ≥ ε2IR

if the generating vector for S is a cyclic vector. This is Theorem 2 of [23]. Also it is
easy to see that the assumption on the Toeplitz operators for all cyclic submodules
is equivalent to assuming it for all submodules. That is because

‖(PS ⊗ ICn)T ∗
Φf‖ ≥ ‖(P[f ] ⊗ ICn)T ∗

Φf‖
for f in the submodule S.

If for the ball or polydisk we knew that the function “representing” the modulus
of a vector-valued function could be taken to be continuous on clos(Ω) or cyclic, the
corona problem would be solved for those cases. No such result is known, however,
and it seems likely that such a result is false.
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Finally, one would also like to reach the conclusion that the function ψ is in
the multiplier algebra even if it is smaller than H∞(Ω). In the recent paper [9] of
Costea, Sawyer and Wick this goal is achieved for a family of spaces which includes
the Drury –Arveson space. It seems possible that one might be able to modify the
line of proof discussed here to involve derivatives of the {ϕi}ni=1 to accomplish this
goal in this case, but that would clearly be more difficult.
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