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Abstract. Pisier’s celebrated counterexample to Halmos’s similarity problem was based
on 2×2 upper triangular block operator matrices involving three classical operators: for-
ward and backward shifts on the diagonal and Hankel operators in the off-diagonal entry.
Together with another classical object, namely Toeplitz operators, one can formulate an-
other 23 − 1 = 7 types of 2× 2 upper triangular block operator matrices, which we refer
to as Foguel-type operators. In this paper, we give a complete characterization of all the
seven Foguel-type operators being similar to contractions.
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1. Introduction

In this paper, E will be treated as an arbitrary but fixed separable Hilbert space over
C, and B(E) will denote the space of all bounded linear operators T : E → E with norm

‖T‖ := sup{‖Tf‖ : ‖f‖ = 1, f ∈ E}.
An operator T ∈ B(E) is said to be a contraction if ‖T‖ ≤ 1. Equivalently,

I − T ∗T ≥ 0.

This positivity property plays a crucial role in analyzing the structure of linear operators.
Evidently, not all operators enjoy such positivity properties. A natural question therefore
arises: can a non-contractive operator be made into a contractive one by using an equiv-
alent norm on E? This question is equivalent to the celebrated similarity problem, which
specifically asks for a characterization of when a given operator is similar to a contraction.
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Recall that T ∈ B(E) is said to be similar to a contraction if there exists an invertible
operator X ∈ B(E) such that

X−1TX,

is a contraction. This is a classical problem, with its roots in Sz.-Nagy’s 1947 paper on
the characterization of operators similar to unitary operators [15]: T ∈ B(E) is similar to
a unitary operator if and only if

sup
n∈Z
‖T n‖ <∞.

In pointing out this result as a starting point of the similarity problem, Pisier remarked
[22] that Sz.-Nagy was “almost surely motivated by his own work with F. Riesz in ergodic
theory, where contractions play a key role.” In 1959, this result led Sz.-Nagy [16] to
consider the class of power bounded operators, that is, operators T ∈ B(E) such that

sup
n∈Z+

‖T n‖ <∞,

and to the natural question:

Are all power bounded operators similar to contractions?

In the same paper [16], Sz.-Nagy gave a positive answer to this question for all compact
operators. However, in 1964, Foguel [11] answered Sz.-Nagy’s question in the negative in
the general case (also see Halmos [13]). It was further observed, in view of the von Neu-
mann inequality [24], that a natural replacement of “power boundedness” is “polynomial
boundedness”: T ∈ B(E) is polynomially bounded if there exists C > 0 such that

‖p(T )‖ ≤ C sup
z∈D
|p(z)|,

for all complex polynomials p, where D is the open unit disc in C. In his celebrated 1970
paper [14], Halmos posed the following question:

Are all polynomially bounded operators similar to contractions?

About 25 years later, the Halmos conjecture was refuted by Pisier [21]. In the meantime,
Paulsen [17] established a characterization: An operator is similar to a contraction if and
only if it is completely polynomially bounded. In this context, also see [1, 2].

Denote by H2
E(D) the E-valued Hardy space over D [23]. For each X ∈ B(H2

E(D)),

define the block operator matrix M
S∗
E

SE
(X) acting on H2

E(D)⊕H2
E(D) by

M
S∗
E

SE
(X) =

[
S∗E X
0 SE

]
,

where SE denotes the shift operator on H2
E(D) [23]. Well before Pisier’s counterexample,

this particular class of operators (in the case of E = C) was proposed by Foiaş and
Williams [12] and Peller [19] as a potential candidate for the study of Halmos’s similarity
problem. One motivation for studying this class of operators comes from Foguel’s work
[11]. His counterexample to Sz.-Nagy’s question was an operator of the form

MS∗

S (X) =

[
S∗ X
0 S

]
,
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acting on H2(D) ⊕ H2(D), where H2(D) denotes the scalar-valued Hardy space (in this
case, we omit C from all subscripts). We remark that the operator X in Foguel’s coun-
terexample is a specific orthogonal projection associated with a lacunary sequence.

In his counterexample to Halmos’s question, Pisier considered operators of the form

M
S∗
E

SE
(X), where

dimE =∞,
and X is a Hankel operator related to anti-commutation relations. His example (and

related results) suggests that the similarity of M
S∗
E

SE
(X) to a contraction, where X is a

Hankel operator, is a rather subtle matter. In fact, a clear-cut characterization of those

Hankel operators X for which M
S∗
E

SE
(X) is similar to a contraction is still unknown.

Following the approach of Foguel and Pisier, this paper examines the similarities to
contractions for Foguel-type operators defined as

MY
Z (X) =

[
Y X
0 Z

]
,

acting on H2
E(D)⊕H2

E(D), whenever

Y = SE and Z = SE or S∗E,

or
Y = Z = S∗E,

along with
X = Toeplitz or Hankel operator,

including the case where

Y = S∗E, Z = SE, and X = Toeplitz operator.

We present a complete characterization of Foguel-type operators that are similar to con-
tractions. Therefore, together with Pisier’s counterexample, this completes the analysis of
the similarity problem for all seven 2× 2 upper triangular block operator matrices whose
diagonal entries are forward and backward shift operators and whose off-diagonal entries
are either Toeplitz or Hankel operators.

Before presenting the main similarity results obtained in this paper, we introduce some
notations. By L2

E(T), we denote the E-valued L2-space on T (= ∂D). Denote by L∞B(E)(T)

the Banach space of all B(E)-valued essentially bounded measurable functions on T. Also,
let H∞B(E)(D) denote the Banach space of B(E)-valued bounded analytic functions on D.

Let Φ ∈ L∞B(E)(T). The multiplication operator MΦ ∈ B(L2
E(T)) is defined by

MΦ(f) = Φf,

for all f ∈ L2
E(T). The Toeplitz operator TΦ ∈ B(H2

E(D)) and the Hankel operator
HΦ ∈ B(H2

E(D)) with symbol Φ ∈ L∞B(E)(T) are defined as

TΦ = PH2
E(D)MΦ|H2

E(D) and HΦ = PH2
E(D)MΦJ |H2

E(D),

respectively, where J : L2
E(T) → L2

E(T) is the flip operator, defined by (Jf)(z) = f(z̄)
for all f ∈ L2

E(T) and z ∈ T-a.e.
Given a closed subspace L of a Hilbert space H, we denote by PL the orthogonal

projection from H onto L. In this context, note that in the discussion above, we have
treated H2

E(D) as a closed subspace of L2
E(T) [23]. In what follows, and whenever it is
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clear from the context, E will be treated as a closed subspace of H2
E(D). For brevity, we

will frequently use the notation ΦPE to denote the operator MΦPE, that is,

MΦPE = ΦPE,

for each Φ ∈ L∞B(E)(T). In order to conveniently state the results, we introduce the class

zH∞B(E)(D), which consists of Φ ∈ L∞B(E)(T) such that

Φ =
∞∑
n=1

z̄nΦn,

where Φn ∈ B(E) for all n ≥ 1. Moreover, for each Φ =
∑

n∈Z z
nΦn ∈ L∞B(E)(T), where

Φn ∈ B(E) for all n ∈ Z, we define Φ∗, Φ̃ ∈ L∞B(E)(T) by

Φ∗(z) =
∑
n∈Z

z̄nΦ∗n, (1.1)

and

Φ̃(z) = Φ(z̄), (1.2)

for almost every z ∈ T. Note that Φ̃∗(z) =
∑

n∈Z z
nΦ∗n. The following is a summary of

the main similarity results concerning Foguel-type operators obtained in this paper:

Theorem 1.1. Let Φ ∈ L∞B(E)(T). The following hold:

(1) MSE
S∗
E

(TΦ) is similar to a contraction if and only if

Φ ∈ (1− z̄2)L∞B(E)(T),

and

Φ∗ + Φ̃∗ ∈ (1− z2)(H∞B(E)(D) + zH∞B(E)(D)).

(2) MSE
S∗
E

(HΦ) is similar to a contraction if and only if

HΦDE ∈ B(H2
E(D)),

and there exists Ψ ∈ H∞B(E)(D) such that

(HΦDESE)∗PE = ΨPE,

where DE denotes the differential operator on the space of E-valued polynomials.
(3) MSE

SE
(TΦ) is similar to a contraction if and only if Φ = 0.

(4) MSE
SE

(HΦ) is similar to a contraction if and only if

Φ ∈ (z − z̄)L∞B(E)(T) + zH∞B(E)(D).

(5) M
S∗
E

SE
(TΦ) is similar to a contraction if and only if Φ ∈ (z̄ − z)L∞B(E)(T).

These results are new, even for E = C. However, we do not know how to apply the

present methodology to the similarity problem for M
S∗
E

SE
(HΦ), as considered by Pisier.

Consequently, this case is not included in the above list nor in the list of the definitions of

Foguel-type operators. The remaining two cases, namely, M
S∗
E

S∗
E

(TΦ) and M
S∗
E

S∗
E

(HΦ), follow

from the above results and have been outlined in Section 5.
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We remark that, as will become evident in the proofs to follow, except for the cases of
MSE

S∗
E

(HΦ) and MSE
SE

(TΦ), all of the aforementioned results reveal a somewhat unexpected

connection to the theory of Toeplitz + Hankel operators. This is an emerging area of
independent interest and has been studied by several mathematicians (cf. [6, 9, 10]). It
is reasonable to suggest that the present article marks a step forward in supporting the
applicability of Toeplitz + Hankel operators.

In the context of the problem of similarity of M
S∗
E

SE
(HΦ) to contractions, we note that

Aleksandrov and Peller [1] resolved the case E = C, while the work of Davidson and
Paulsen [8] addresses the case when dim(E) < ∞. We refer readers to the excellent
survey articles [7, 22] for a more comprehensive overview of the similarity problem.

We apply some of our results to the case E = C. For instance, we prove that MS
S∗(Hψ)

is never similar to a contraction, where Hψ denotes the Hilbert-Hankel operator. Recall
that the matrix representation of the Hilbert-Hankel operator Hψ is given by:

Hψ =

[
1

i+ j + 1

]
i,j≥0

.

It should be noted that there are already generic results in literature, which, in partic-
ular, also classify Foguel-type operators in terms of their similarity to contractions. For
instance, [4, Corollary 4.2] asserts that

MSE
S∗
E

(X) is similar to contraction if and only if it is power bounded. (1.3)

Also, we have the following general result, known as Foiaş-Williams criterion ([12],
also see [3] and see [18, Corollary 5.15] for a homological proof): Let E and E∗ be
Hilbert spaces, and let Y ∈ B(E) and Z ∈ B(E∗). Assume that Y and Z are similar to
contractions, and either Y is a coisometry or Z is an isometry. Then[

Y X
0 Z

]
on E ⊕ E∗,

for some X : E∗ → E, is similar to a contraction if and only if there exists bounded linear
operator A : E∗ → E such that

Y A− AZ = X. (1.4)

A key step in proving Theorem 1.1 (in particular, part (1) and part (2)) is an improve-
ment of (1.4) in the context of (1.3), which we also identify as one of our main results of
this paper (see Theorem 2.2): Given X ∈ B(H2

E(D)), the following are equivalent:

(1) MSE
S∗
E

(X) is similar to a contraction.

(2) There exist A ∈ B(H2
E(D)) and Ψ ∈ H∞B(E)(D) such that

A∗PE = ΨPE and X = A− S∗EAS∗E.
(3) There exist A ∈ B(H2

E(D)) and Ψ ∈ H∞B(E)(D) such that

APE = XPE, A
∗PE = ΨPE, and XSE = ASE − S∗EA.

This result has been proved in the following section, which in fact generalizes Proposi-
tion 5.5 and Remark 5.6 from [4], through a substantially different approach.

The remainder of the paper is organized as follows. In Section 3, we present charac-
terizations of Foguel-type operators associated with Toeplitz operators that are similar
to contractions, while in Section 4, we do the same for Hankel operators. In Section 5,
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we complete the similarity problem in our context by considering all remaining cases of
Foguel-type operators. The final section provides examples and some general remarks.

2. A general criterion

The purpose of this section is to give a general characterization of operators of the form

MSE
S∗
E

(X) =

[
SE X
0 S∗E

]
: H2

E(D)⊕H2
E(D)→ H2

E(D)⊕H2
E(D),

for some X ∈ B(H2
E(D)) that are similar to contractions. It is known, in view of (1.3),

that such an operator MSE
S∗
E

(X) is similar to a contraction if and only if it is power

bounded. However, the answer in terms of power boundedness doesn’t seem to give a
satisfactory solution to the similarity problem. Our solution to the similarity problem is
more concrete, and, equivalently, it provides concrete characterizations of operators that
are power bounded. We need a lemma.

Given the operator MSE
S∗
E

(X) as above, we set

Xn = Sn−1
E X + Sn−2

E XS∗E + Sn−3
E XS∗

2

E + · · ·+XS∗
n−1

E (2.1)

for each n ≥ 1. The idea of this notion comes from the following computation:(
MSE

S∗
E

(X)
)n

=

[
SnE Xn

0 S∗
n

E

]
, (2.2)

for all n ≥ 1. It is mentioned in [5] that the power boundedness of MSE
S∗
E

(X) is equivalent

to the boundedness of the sequence {‖Xn‖}n. Since no proof is readily available, we
provide one below to prove the equivalence of (2) and (3) for the sake of completeness.
The equivalence of (1) and (2) follows from (1.3).

Lemma 2.1. Let X ∈ B(H2
E(D)). The following are equivalent:

(1) MSE
S∗
E

(X) is similar to contraction.

(2) MSE
S∗
E

(X) is power bounded.

(3) supn ‖Xn‖ <∞.

Proof. We need to prove that (2) and (3) are equivalent. Let MSE
S∗
E

(X) be power bounded.

Then there exists M > 0 such that

sup
n

∥∥∥(MSE
S∗
E

(X)
)n∥∥∥ ≤M.

Fix f ∈ H2
E(D) and n ≥ 1. We know, by (2.2), that(

MSE
S∗
E

(X)
)n

=

[
SnE Xn

0 S∗
n

E

]
,
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for all n ≥ 1. Then

‖Xnf‖2 ≤ ‖Xnf‖2 + ‖S∗Ef‖2

=

∥∥∥∥(MSE
S∗
E

(X)
)n [0

f

]∥∥∥∥2

≤
∥∥∥(MSE

S∗
E

(X)
)n∥∥∥2

∥∥∥∥[0
f

]∥∥∥∥2

≤M2‖f‖2,

that is, ‖Xn‖ ≤ M . This proves that {‖Xn‖}n is bounded. Conversely, assume that
supn ‖Xn‖ ≤M for some M > 0. Set

M1 = max{1,M}.

Then for any f1 and f2 in H2
E(D), we have∥∥∥∥(MSE

S∗
E

(X)
)n [f1

f2

]∥∥∥∥2

=

∥∥∥∥[SnEf1 +Xnf2

S∗
n

E f2

]∥∥∥∥2

= ‖SnEf1 +Xnf2‖2 + ‖S∗nE f2‖2

≤ (‖SnEf1‖+ ‖Xnf2‖)2 + ‖S∗nE f2‖2

≤ (‖f1‖+M‖f2‖)2 + ‖f2‖2

≤M2
1 (‖f1‖+ ‖f2‖)2 +M2

1 (‖f1‖2 + ‖f2‖2)

≤ 2M2
1

(
‖f1‖2 + ‖f2‖2

)
+M2

1 (‖f1‖2 + ‖f2‖2)

= 3M2
1

∥∥∥∥[f1

f2

]∥∥∥∥2

.

Consequently, ∥∥∥(MSE
S∗
E

(X)
)n∥∥∥ ≤ √3M1,

and hence MSE
S∗
E

(X) is power bounded. This completes the proof of the lemma. �

With the above lemma in hand, we are now ready to state and prove the main theorem
of this section, which gives Foiaş-Williams type criteria for operator MSE

S∗
E

(X) being similar

to a contraction.

Theorem 2.2. Let X ∈ B(H2
E(D)). Then the following are equivalent:

(1) MSE
S∗
E

(X) is similar to a contraction.

(2) There exist A ∈ B(H2
E(D)) and Ψ ∈ H∞B(E)(D) such that

A∗PE = ΨPE,

and

X = A− S∗EAS∗E.
(3) There exist A ∈ B(H2

E(D)) and Ψ ∈ H∞B(E)(D) such that

APE = XPE and A∗PE = ΨPE,
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and

XSE = ASE − S∗EA.

Proof. We first prove that (2) and (3) are equivalent. Assuming (2) is true, there exist
A ∈ B(H2

E(D)) and Ψ ∈ H∞B(E)(D), such that A∗PE = ΨPE, and

X = A− S∗EAS∗E.
The above condition immediately implies that

XSE = ASE − S∗EA.
Again, X = A− S∗EAS∗E gives

XPE = (A− S∗EAS∗E)PE = APE − S∗EAS∗EPE = APE,

as S∗EPE = 0. Therefore, we have XPE = APE. Conversely, if (3) is true, then there exist
A ∈ B(H2

E(D)) and Ψ ∈ H∞B(E)(D) such that APE = XPE, A∗PE = ΨPE, and

XSE = ASE − S∗EA.
In view of I = PE + SES

∗
E, we compute

X = X(PE + SES
∗
E)

= APE + (ASE − S∗EA)S∗E

= A(PE + SES
∗
E)− S∗EAS∗E

= A− S∗EAS∗E.

This finishes the proof of the equivalence of (2) and (3). We now proceed to establish
the equivalence between (1) and (2), which requires more involved computations. First,
assume that (1) is true. In particular, MSE

S∗
E

(X) is power bounded, and hence by Lemma

2.1, we have supn ‖Xn‖ <∞, where Xn, n ≥ 1, is given as in (2.1):

Xn = Sn−1
E X + Sn−2

E XS∗E + Sn−3
E XS∗

2

E + · · ·+XS∗
n−1

E .

For time being, fix a natural number n. Note that

SEXn = SnEX + Sn−1
E XS∗E + Sn−2

E XS∗
2

E + · · ·+ SEXS
∗n−1

E ,

and

XnS
∗
E = Sn−1

E XS∗E + Sn−2
E XS∗

2

E + Sn−3
E XS∗

3

E + · · ·+XS∗
n

E .

By taking the difference of the above quantities, we have

SEXn −XnS
∗
E = SnEX −XS∗

n

E .

Multiplying by S∗nE , this yields

S∗
n−1

E Xn − S∗
n

E XnS
∗
E = X − S∗nE XS∗

n

E ,

that is,

S∗
n−1

E Xn − S∗E
(
S∗

n−1

E Xn

)
S∗E = X − S∗nE XS∗

n

E .

We want to apply a limiting argument to the above, or, more specifically, for a subse-
quence. We proceed as follows. Since {‖Xn‖}n is bounded, it follows that the sequence

{‖S∗n−1

E Xn‖}n is also bounded (note that ‖S∗mE ‖ = 1 for all m ∈ Z+). Furthermore, by



SIMILARITY TO CONTRACTIONS 9

the Banach–Alaoglu theorem, the closed unit ball of B(H2
E(D)) is compact in the weak op-

erator topology. Therefore, there exists a subsequence, which we denote by {S∗nj−1
E Xnj

},
that converges in the weak operator topology. Let

WOT − lim
n
S∗

nj−1

E Xnj
= A ∈ B(H2

E(D)).

This, together with the fact that S∗E
n → 0 as n → ∞ in the strong operator topology,

finally yields the desired limiting property:

A− S∗EAS∗E = X. (2.3)

Substituting the above in the expression of Xn, we get

Xn = Sn−1
E (A− S∗EAS∗E) + Sn−2

E (A− S∗EAS∗E)S∗E + · · ·+ (A− S∗EAS∗E)S∗
n−1

E .

As SES
∗
E = I − PE, we have

Xn = Sn−1
E A−Sn−2

E (I−PE)AS∗E+Sn−2
E AS∗E−Sn−3

E (I−PE)AS∗
2

E + · · ·+AS∗n−1

E −S∗EAS∗
n

E .

We write this as
Xn = Sn−1

E A− S∗EAS∗
n

E − Sn−1
E PEA+Qn,

where
Qn := Sn−1

E PEA+ Sn−2
E PEAS

∗
E + Sn−3

E PEAS
∗2
E + · · ·+ PEAS

∗n−1

E .

Since
‖Sn−1

E A− S∗EAS∗
n

E − Sn−1
E PEA‖ ≤ 3‖A‖,

boundedness of {‖Xn‖}n ensures that {‖Qn‖}n is also bounded. Consequently, the se-
quence {‖Q∗n‖}n is bounded as well. Note that

Q∗n = A∗PES
∗n−1

E + SEA
∗PES

∗n−2

E + S2
EA
∗PES

∗n−3

E + · · ·+ Sn−1
E A∗PE. (2.4)

Suppose now ‖Q∗n‖ ≤ C, for some constant C > 0. Fix n ∈ N and e ∈ E. By using the
property of the backward shift S∗E, we have

Q∗n(zke) =

{
zn−k−1A∗e if 0 ≤ k ≤ n− 1

0 if k ≥ n.

Given an E-valued polynomial

p = e0 + ze1 + z2e2 + · · ·+ zn−1en−1 ∈ H2
E(D),

with ei ∈ E for all i = 0, 1, . . . , n− 1, define

p̃ = en−1 + zen−2 + +z2en−3 + · · ·+ zn−1e0.

Therefore, we have

Q∗n(p̃) = Q∗n(en−1) +Q∗n(zen−2) +Q∗n(z2en−3) + · · ·+Q∗n(zn−1e0)

= zn−1A∗en−1 + zn−2A∗en−2 + zn−3A∗en−3 + · · ·+ A∗e0.

Define

R(p) :=
n−1∑
i=0

ziA∗ei,

for E-valued polynomial p as above. It is now evident that

‖R(p)‖ = ‖Q∗n(p̃)‖ ≤ C‖p̃‖ = C‖p‖. (2.5)
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This means R is a well-defined bounded linear operator from the space of E-valued poly-
nomials to H2

E(D). Since E-valued polynomials form a dense subspace of H2
E(D), the

operator R admits a unique bounded linear extension to an element of B(H2
E(D)), which

we also call R. Furthermore, it is easy to see that

SER(p) = RSE(p),

for each E-valued polynomial p ∈ H2
E(D). Now pick f ∈ H2

E(D). Choose a sequence of
E-valued polynomials {qn} ⊆ H2

E(D) such that

lim
n

qn = f,

in H2
E(D). By a standard limiting argument, we have

SER(f) = SE lim
n→∞

R(qn) = lim
n→∞

SER(qn) = lim
n→∞

RSE(qn) = RSE(f),

that is, SER = RSE. Therefore, R is an analytic Toeplitz operator, that is, there exists
an analytic symbol Ψ ∈ H∞B(E)(D) such that (cf. [23, Corollary 3.20])

R = TΨ.

From the definition of R, we see that

A∗e = Re = TΨe = Ψe,

for all e ∈ E. This fact combined with (2.3) ascertains the validity of (2). On the other
hand, suppose (2) is true. Then there exist A ∈ B(H2

E(D)) and Ψ ∈ H∞B(E)(D) such that

X = A− S∗EAS∗E,
and A∗PE = TΨPE. To show that (1) is true under this assumption, it is enough to show
that

sup
n
‖Xn‖ <∞,

where Xn’s are given as in (2.1) (see Lemma 2.1). Using the equality X = A − S∗EAS∗E,
we can now perform exactly the same lines of computation succeeding (2.3), to obtain an
expression for Xn as

Xn = Sn−1
E A− S∗EAS∗

n

E − Sn−1
E PEA+Qn.

As a consequence, showing that {‖Xn‖}n is bounded amounts to showing {‖Q∗n‖}n (as
already pointed out earlier, where Q∗n is defined in (2.4)) is bounded. Fix f =

∑∞
i=0 z

iei ∈
H2
E(D), and observe that

‖Q∗n(f)‖ =

∥∥∥∥∥
n−1∑
i=0

Q∗n(ziei) +
∞∑
i=n

Q∗n(ziei)

∥∥∥∥∥
= ‖zn−1A∗e0 + zn−2A∗e1 + · · ·+ A∗en−1‖
= ‖zn−1Ψe0 + zn−2Ψe1 + · · ·+ Ψen−1‖
= ‖TΨ(zn−1e0 + zn−2e1 + · · ·+ en−1)‖
≤ ‖TΨ‖‖zn−1e0 + zn−2e1 + · · ·+ en−1‖
≤ ‖Ψ‖∞‖f‖,

which completes the proof. �



SIMILARITY TO CONTRACTIONS 11

The above theorem provides a somewhat satisfactory answer to the question of the
similarity of MSE

S∗
E

(X) to contractions in general. However, a more concrete answer is

expected for Foguel-type operators. This subject will be the theme of the following three
sections.

3. Toeplitz operators

The purpose of this section is to present a concrete characterization of symbols Φ ∈
L∞B(E)(T) such that MSE

S∗
E

(TΦ) is similar to a contraction. On this occasion, we will examine

the usefulness of the equivalence of the conditions in Theorem 2.2 in the context of Toeplitz
operators.

We need to recall some results concerning Toeplitz + Hankel operators. Let T,H ∈
B(H2

E(D)). Then T is a Toeplitz operator if and only if

S∗ETSE = T.

And, H is a Hankel operator if and only if

S∗EH = HSE.

An operator X ∈ B(H2
E(D)) is said to be Toeplitz + Hankel operator if there exist symbols

Φ,Ω ∈ L∞B(E)(T) such that

X = TΦ +HΩ.

In this case, we simply say that X is a Toeplitz + Hankel operator. In what follows, we
will use the following characterization of Toeplitz + Hankel operators established in [6,
Theorem 2.2]:

Theorem 3.1. Let A ∈ B(H2
E(D)). The following conditions are equivalent:

(1) A is a Toeplitz + Hankel operator.
(2) ASE − S∗EA is a Toeplitz operator.
(3) S∗EASE − A is a Hankel operator.
(4) ASE + S∗2E ASE = S∗EA+ S∗EAS

2
E.

Recall that

zH∞B(E)(D) = {Φ ∈ L∞B(E)(T) : Φ =
∞∑
n=1

z̄nΦn,Φn ∈ B(E), n ≥ 1}.

Also, recall the definitions of Φ∗ and Φ̃ as provided in (1.1) and (1.2). Moreover, by the
definition of Toeplitz operators, we have the following relation:

TΦPE = PH2
E(D)MΦ|H2

E(D)PE = PH2
E(D)MΦPE,

which, according to our convention, is written more concisely as

TΦPE = PH2
E(D)ΦPE.

In other words, for each e ∈ E, we have

(TΦPE)(e) = (PH2
E(D)ΦPE)(e) = PH2

E(D)(Φe).

With this in hand, we now proceed to the main similarity result of this section.
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Theorem 3.2. Let Φ ∈ L∞B(E)(T). Then MSE
S∗
E

(TΦ) is similar to a contraction if and only

if
Φ ∈ (1− z̄2)L∞B(E)(T),

and
Φ∗ + Φ̃∗ ∈ (1− z2)(H∞B(E)(D) + zH∞B(E)(D)).

Proof. To start with, let us assume MSE
S∗
E

(TΦ) to be similar to a contraction. By part (3)

of Theorem 2.2, there exist A ∈ B(H2
E(D)) and Ψ ∈ H∞B(E)(D) such that

TΦSE = ASE − S∗EA,
with APE = TΦPE and A∗PE = ΨPE. Since SE = Tz ∈ B(H2

E(D)) and z is analytic, we
have TΦSE = TzΦ, and hence, the first identity yields

TzΦ = ASE − S∗EA.
By virtue of Theorem 3.1, A is a Toeplitz + Hankel operator, that is, there exist symbols
Θ,Ω ∈ L∞B(E)(T) such that

A = TΘ +HΩ.

Substituting this value of A into the identity TzΦ = ASE−S∗EA and then using the Hankel
property S∗EHΩ = HΩSE, we obtain:

TzΦ = (TΘ +HΩ)SE − S∗E(TΘ +HΩ)

= TΘSE − S∗ETΘ

= T(z−z̄)Θ.

In the above, we have used the relations TΘSE = TzΘ and S∗ETΘ = Tz̄Θ (recall again
that SE = Tz). Therefore, by the uniqueness of the symbols for Toeplitz operators, we
conclude that

zΦ = (z − z̄)Θ,

which implies that Φ = (1− z̄2)Θ ∈ (1− z̄2)L∞B(E)(T), and hence

Θ =
Φ

1− z̄2
.

Since APE = TΦPE, we further obtain that

PH2
E(D)ΦPE = PH2

E(D)MΦPE

= TΦPE

= APE

= (TΘ +HΩ)PE

= PH2
E(D)ΘPE + PH2

E(D)ΩPE

= PH2
E(D)

(
Φ

1− z̄2
PE

)
+ PH2

E(D) (ΩPE) .

Here we have used the fact that HΩPE = PH2
E(D)MΩJPE = PH2

E(D)MΩPE. From the above,
we have

PH2
E(D)

((
Φ− 1

1− z̄2
Φ

)
PE

)
= PH2

E(D) (ΩPE) ,
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and hence

PH2
E(D)

(
z̄2

z̄2 − 1
ΦPE

)
= PH2

E(D) (ΩPE) .

Set

Υ := Ω− z̄2

z̄2 − 1
Φ ∈ L∞B(E)(T).

Then we have that PH2
E(D) (ΥPE) = 0. This implies

Υ ∈ zH∞B(E)(D).

Note that H∗Ω = HΩ̃∗ , and

M∗
Θ = M Φ∗

1−z2
.

Also, rewrite Ω as

Ω = Υ +
z̄2

z̄2 − 1
Φ.

Then from the condition ΨPE = A∗PE, we get

ΨPE = (T ∗Θ +H∗Ω)PE

= PH2
E(D) (M∗

ΘPE) + PH2
E(D)

(
MΩ̃∗PE

)
= PH2

E(D)

(
1

1− z2
Φ∗PE

)
+ PH2

E(D)

(
Υ̃∗PE +

z̄2

z̄2 − 1
Φ̃∗PE

)
= PH2

E(D)

(
1

1− z2
Φ∗PE

)
+ PH2

E(D)

(
z̄2

z̄2 − 1
Φ̃∗PE

)
.

If we set

Λ =
1

1− z2
Φ∗ +

z̄2

z̄2 − 1
Φ̃∗ −Ψ ∈ L∞B(E)(T),

then the above identity converts to

PH2
E(D) (ΛPE) = 0,

which implies Λ ∈ zH∞B(E)(D), and consequently

1

1− z2
Φ∗ +

1

1− z2
Φ̃∗ = Λ + Ψ.

This gives us the desired condition that

Φ∗ + Φ̃∗ ∈ (1− z2)(H∞B(E)(D) + zH∞B(E)(D)).

Conversely, assume that Φ ∈ (1− z̄2)L∞B(E)(T) and

Φ∗ + Φ̃∗ ∈ (1− z2)(H∞B(E)(D) + zH∞B(E)(D)).

There exist Θ ∈ L∞B(E)(T), Ψ ∈ H∞B(E)(D), and Υ ∈ zH∞B(E)(D) such that

Φ = (1− z̄2)Θ,

and

Φ∗ + Φ̃∗ = (1− z2)(Ψ + Υ).
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Since Φ = (1− z̄2)Θ, it follows that Ω ∈ L∞B(E)(T), where

Ω :=
z̄2

z̄2 − 1
Φ ∈ L∞B(E)(T).

Note that Θ + Ω = Φ. Set
A = TΘ +HΩ.

Using again the property of Hankel operators HΩSE = S∗EHΩ, we have

ASE − S∗EA = (TΘ +HΩ)SE − S∗E(TΘ +HΩ)

= TΘSE − S∗ETΘ

= T(z−z̄)Θ

= TzΦ = TΦSE.

Furthermore,

APE = (TΘ +HΩ)PE = PH2
E(D) ((Θ + Ω)PE) = PH2

E(D) (ΦPE) = TΦPE,

that is, APE = TΦPE. Finally, since

A∗PE = (TΘ +HΩ)∗PE

= PH2
E(D)

(
(Θ∗ + Ω̃∗)PE

)
= PH2

E(D)

(
1

1− z2
(Φ∗ + Φ̃∗)PE

)
= PH2

E(D) ((Ψ + Υ)PE)

= PH2
E(D)ΨPE

= ΨPE,

by Theorem 2.2, we conclude that MSE
S∗
E

(TΦ) is similar to a contraction. �

In a later section, we will see an application of the E = C case of this result.

4. Hankel operators

In this section, we will characterize symbols Φ that make the Foguel-type operator
MSE

S∗
E

(HΦ) similar to a contraction. The goal is, of course, to verify the applicability

of Theorem 2.2, as we did for Toeplitz operators in the previous section. We need the
concept of differential operators.

For each n ∈ Z+ and e ∈ E, define

DE(zne) =

{
nzn−1e if n ≥ 1

0 if n = 0.

The differential operator DE on the space of E-valued polynomials extends the action of
DE as defined on E-valued monomials. Therefore, for all p =

∑M
n=0 z

nen ∈ H2
E(D), we

have
DE(p) = p′,

where p′ =
∑M

n=1 nz
n−1en. It is worth clarifying that, by A ∈ B(H2

E(D)), where A is
originally defined on polynomials, we mean that A admits a unique extension to a bounded
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linear operator on the entire space H2
E(D). With all these preparations, we are ready for

characterizations of Foguel-type operators MSE
S∗
E

(HΦ) that are similar to contractions:

Theorem 4.1. Let Φ ∈ L∞B(E)(T). Then MSE
S∗
E

(HΦ) is similar to a contraction if and only

if

HΦDE ∈ B(H2
E(D)),

and there exists Ψ ∈ H∞B(E)(D) such that

(HΦDESE)∗PE = ΨPE.

Proof. Assume that MSE
S∗
E

(HΦ) is similar to a contraction. Then by Theorem 2.2, there

exist A ∈ B(H2
E(D)) and Ψ ∈ H∞B(E)(D) such that

HΦSE = ASE − S∗EA,
with APE = HΦPE and A∗PE = ΨPE. As DESEPE = PE, it follows that

APE = HΦPE = HΦDESEPE.

To apply mathematical induction, let us fix a natural number m and suppose that

A(zme) = HΦDESE(zme),

for all e ∈ E. Fix e ∈ E. Again the condition HΦSE = ASE − S∗EA gives

HΦ(zm+1e) = HΦSE(zme)

= (ASE − S∗EA)(zme)

= A(zm+1e)− S∗EA(zme)

= A(zm+1e)− S∗EHΦDESE(zme),

as A(zme) = HΦDESE(zme). Using the property of Hankel operators, namely HΦSE =
S∗EHΦ, it follows that

HΦ(zm+1e) = A(zm+1e)−HΦSEDE(zm+1e) = A(zm+1e)− (m+ 1)HΦ(zm+1e),

and hence

A(zm+1e) = (m+ 2)HΦ(zm+1e) = HΦDESE(zm+1e).

By the principle of mathematical induction, we finally conclude that

A(zne) = HΦDESE(zne),

for all n ≥ 1 and e ∈ E. Therefore,

A(p) = HΦDESE(p),

for all E-valued polynomials p ∈ H2
E(D). Since A ∈ B(H2

E(D)), the linear operator
HΦDESE between the space of E-valued polynomials and H2

E(D) is bounded. Recall that
these polynomials constitute a dense subspace of H2

E(D), and thus HΦDESE admits a
unique bounded linear extension to an element of B(H2

E(D)), which we also call

HΦDESE.

In other words,

A = HΦDESE,
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on all of H2
E(D), and hence, the condition A∗PE = ΨPE yields

(HΦDESE)∗PE = ΨPE.

We now need to show that HΦDE, defined originally on E-valued polynomials, can also
be extended uniquely to an element in B(H2

E(D)). To see this, for an E-valued polynomial
p ∈ H2

E(D), we compute

(HΦDESE)S∗E(p) = HΦDESES
∗
E(p) = HΦDE(I − PE)(p) = HΦDE(p).

Since both HΦDESE and S∗E are bounded on H2
E(D), it follows that HΦDE extends to a

bounded linear operator on H2
E(D).

Conversely, assume that HΦDE ∈ B(H2
E(D)) and there is a function Ψ ∈ H∞B(E)(D) such

that

(HΦDESE)∗PE = ΨPE.

Then we set

A := HΦDESE ∈ B(H2
E(D)).

Clearly,

A∗PE = (HΦDESE)∗PE = ΨPE.

On the other hand, since DESEe = e for all e ∈ E, it follows that

APE = HΦDESEPE = HΦPE.

Finally, for an E-valued polynomial p ∈ H2
E(D), we compute

ASE(p)− S∗EA(p) = (HΦDESE)(zp)− S∗E(HΦDESE)(p)

= HΦ(2zp + z2p′)− S∗EHΦ(p + zp′)

= HΦ(2zp + z2p′)−HΦSE(p + zp′)

= HΦ(zp)

= HΦSE(p).

Using the boundedness of A and the density of E-valued polynomials in H2
E(D), we

conclude that

ASE(f)− S∗EA(f) = HΦSE(f)

for all f ∈ H2
E(D). By Theorem 2.2, we now conclude that MSE

S∗
E

(HΦ) is similar to a

contraction. This completes our proof. �

We will later discuss the E = C case of the above result in the form of Theorem 6.1,
as well as some of its applications.

Let us also remark that differential operators in the context of the similarity problem

for operators of the form M
S∗
E

SE
(X) have appeared in [8] as well.
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5. Toeplitz and Hankel operators

In the previous two sections, we have answered the similarity problem for MSE
S∗
E

(X),

where X is a Toeplitz or Hankel operator. In the present section, we provide complete
answers for the similarity problem for MY

Z (X) when

Y = Z = SE,

or

Y = Z = S∗E,

and X is a Toeplitz or a Hankel operator. We will also completely analyze the remaining

case M
S∗
E

SE
(X), where X is a Toeplitz operator.

We begin by highlighting a reduction result for the first four classes of operators. By
the Foiaş-Williams criterion (1.4), we have the following fact:

MSE
SE

(X) =

[
SE X
0 SE

]
: H2

E(D)⊕H2
E(D)→ H2

E(D)⊕H2
E(D)

is similar to a contraction if and only if there exists A ∈ B(H2
E(D)) such that

SEA− ASE = X. (5.1)

Similarly,

M
S∗
E

S∗
E

(X) =

[
S∗E X
0 S∗E

]
: H2

E(D)⊕H2
E(D)→ H2

E(D)⊕H2
E(D)

is similar to a contraction if and only if there exists A′ ∈ B(H2
E(D)) such that

S∗EA
′ − A′S∗E = X. (5.2)

Clearly, A′ satisfies (5.2) if and only if A = −A′∗ satisfies (5.1), with X replaced by X∗.

Hence, M
S∗
E

S∗
E

(X) is similar to contraction if and only if MSE
SE

(X∗) is. Now, considering our

choices X = TΦ and HΦ, we note that both T ∗Φ and H∗Φ are again Toeplitz and Hankel
operators, respectively.

Therefore, it suffices to focus on the operator MSE
SE

(X), where X is a Toeplitz or a
Hankel operator. We show below that the first class of operators is trivial.

Theorem 5.1. Let Φ ∈ L∞B(E)(T). Then MSE
SE

(TΦ) is similar to a contraction if and only
if

Φ = 0.

Proof. If Φ = 0, then MSE
SE

(TΦ) is itself a contraction. Let us now assume that MSE
SE

(TΦ)

is similar to a contraction. By (5.1), there exists A ∈ B(H2
E(D)) such that

SEA− ASE = TΦ.

Multiplying both sides on the left by S∗E, we obtain

A− S∗EASE = Tz̄Φ.

By the property of Toeplitz operators, we know

S∗E
n−1Tz̄ΦS

n−1
E = Tz̄Φ,
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which in turn gives

S∗E
n−1ASn−1

E − S∗nE ASnE = S∗E
n−1(A− S∗EASE)Sn−1

E

= S∗E
n−1Tz̄ΦS

n−1
E

= Tz̄Φ,

for all n ≥ 1. Fix n ≥ 1 and write

A− S∗nE ASnE =
n∑
k=1

(
S∗

k−1

E ASk−1
E − S∗kE ASkE

)
.

It now follows that

A− S∗nE ASnE = nTz̄Φ,

and hence

n‖Φ‖∞ = n‖Tz̄Φ‖ = ‖A− S∗nE ASnE‖ ≤ 2‖A‖,
for all n ≥ 1. Consequently, Φ = 0. �

In view of the above result and the observation in the beginning of this section, we have

the following: Let Φ ∈ L∞B(E)(T). Then M
S∗
E

S∗
E

(TΦ) is similar to a contraction if and only if

Φ = 0.

Before proceeding, we need to establish some basic identities relating Toeplitz and
Hankel operators. For the purpose of completeness, we prefer to provide full proofs of
these identities, even though these are well known in the scalar case and probably familiar
to specialists in the general vector-valued case. Recall that, for each Φ ∈ L∞B(E)(T), we

define Φ̃ ∈ L∞B(E)(T) by

Φ̃(z) = Φ(z̄).

Lemma 5.2. Let Φ,Ψ ∈ L∞B(E)(T). The following two identities hold:

(1) TΦΨ − TΦTΨ = Hz̄ΦHz̄Ψ̃.
(2) Hz̄Φ̃Ψ̃ = Hz̄Φ̃TΨ + TΦ̃Hz̄Ψ̃.

Proof. Let us first note that

JPH2
E(D)J = Mz(I − PH2

E(D))Mz̄,

which can be easily verified on the standard orthonormal basis of L2
E(T), and hence is

true for any arbitrary element in L2
E(T). Using this, we have for any f ∈ H2

E(D):

TΦΨ(f)− TΦTΨ(f) = PH2
E(D)(ΦΨf)− PH2

E(D)(ΦPH2
E(D)(Ψf))

= PH2
E(D)

(
Φ(I − PH2

E(D))Ψf
)

= PH2
E(D)

(
ΦMz̄JPH2

E(D)JMzΨf
)

= PH2
E(D)

(
z̄ΦJPH2

E(D) (z̄Ψ(z̄)Jf)
)

= PH2
E(D)

(
z̄ΦJHz̄Ψ(z̄)(f)

)
= Hz̄ΦHz̄Ψ̃(f).
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This proves the first identity. For the second identity, we compute, for each f ∈ H2
E(D),

Hz̄Φ̃Ψ̃(f)−Hz̄Φ̃TΨ(f) = PH2
E(D)

(
z̄Φ̃Ψ̃Jf

)
− PH2

E(D)

(
z̄Φ̃JPH2

E(D)(Ψf)
)

= PH2
E(D)

(
z̄Φ̃J(Ψf)

)
− PH2

E(D)

(
z̄Φ̃JPH2

E(D)(Ψf)
)

= PH2
E(D)

(
z̄Φ̃J(I − PH2

E(D))(Ψf)
)

= PH2
E(D)

(
z̄Φ̃JMz̄JPH2

E(D)JMz(Ψf)
)

= PH2
E(D)

(
z̄Φ̃MzJ

2PH2
E(D)(z̄Ψ̃Jf)

)
= PH2

E(D)

(
Φ̃PH2

E(D)(z̄Ψ̃Jf)
)

= PH2
E(D)

(
Φ̃Hz̄Ψ̃(f)

)
= TΦ̃Hz̄Ψ̃(f).

This completes the proof of the lemma. �

With the above information in hand, we proceed to solve the similarity to contraction
problem for MSE

SE
(HΦ).

Theorem 5.3. Let Φ ∈ L∞B(E)(T). Then MSE
SE

(HΦ) is similar to a contraction if and only
if

Φ ∈ (z − z̄)L∞B(E)(T) + zH∞B(E)(D).

Proof. Let MSE
SE

(HΦ) be similar to a contraction. In view of (5.1), there exists A ∈
B(H2

E(D)) such that
SEA− ASE = HΦ, (5.3)

and hence
A− S∗EASE = S∗EHΦ = Hz̄Φ.

By Theorem 3.1, we know that A is a Toeplitz + Hankel operator, that is, there exist
symbols Θ,Ω ∈ L∞B(E)(T) such that

A = TΘ +HΩ.

Substituting this value of A in A− S∗EASE = Hz̄Φ gives

HΩ − S∗EHΩSE = Hz̄Φ.

Applying the Hankel property S∗EHΩ = HΩSE to the above, we obtain

H(1−z̄2)Ω = Hz̄Φ,

which implies

(1− z̄2)Ω = z̄Φ + Ψ̂,

for some

Ψ̂ =
∞∑
n=1

z̄nΨn−1 ∈ zH∞B(E)(D).

This yields

(z − z̄)Ω = Φ + zΨ̂,
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which can be rewritten as

(z − z̄)Ω = Φ + (z − z̄)Ψ̂ + z̄Ψ̂.

As a result,

Φ = (z − z̄)(Ω− Ψ̂)− z̄Ψ̂ ∈ (z − z̄)L∞B(E)(T) + zH∞B(E)(D).

Conversely, let Φ ∈ (z− z̄)L∞B(E)(T)+zH∞B(E)(D). In other words, there exist Ω ∈ L∞B(E)(T)

and Ψ ∈ zH∞B(E)(D) such that

Φ = (z − z̄)Ω + Ψ.

Set

Θ(z) = −z̄2Ω̃.

Clearly, Θ ∈ L∞B(E)(T). By Lemma 5.2, we have

TzΘ − TzTΘ = HIEHz̄Θ̃,

and

TzHΩ = HzΩ −HIETz̄Ω̃.

Here IE denotes the identity operator in B(E). Using the above information, and the fact
that HIE = PE, we compute

SE(TΘ +HΩ)− (TΘ +HΩ)SE = (TzTΘ − TzΘ) + (TzHΩ −HΩTz)

= −HIEHz̄Θ̃ +HzΩ −HIETz̄Ω̃ −Hz̄Ω

= −HIEHz̄Θ̃ +H(z−z̄)Ω −HIETz̄Ω̃
= PEHzΩ +HΦ − PETz̄Ω̃,

that is,

SE(TΘ +HΩ)− (TΘ +HΩ)SE = HΦ +
(
PEHzΩ − PETz̄Ω̃

)
. (5.4)

For each e ∈ E, we now have

H∗zΩ(e) = HzΩ̃∗(e) = PH2
E(D)(zΩ̃∗e),

and also

T ∗
z̄Ω̃

(e) = TzΩ(z̄)∗(e) = PH2
E(D)(zΩ̃∗e).

As a result, we have H∗zΩPE = T ∗
z̄Ω̃
PE, or, equivalently,

PEHzΩ = PETz̄Ω̃.

Hence we have from (5.4):

SE(TΘ +HΩ)− (TΘ +HΩ)SE = HΦ,

that is, A = TΘ + HΩ ∈ B(H2
E(D)) is a solution of the operator equation (5.3). By

the Foiaş-Williams criterion (see (5.1) again), we conclude that MSE
SE

(HΦ) is similar to a
contraction. This completes the proof. �
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In view of the discussion following (5.2) and Theorem 5.3, we note that M
S∗
E

S∗
E

(HΦ) is

similar to a contraction if and only if

Φ̃∗ ∈ (z − z̄)L∞B(E)(T) + zH∞B(E)(D),

or, equivalently

Φ ∈ (z − z̄)L∞B(E)(T) + zH∞B(E)(D).

In other words, MSE
SE

(HΦ) is similar to a contraction if and only if M
S∗
E

S∗
E

(HΦ) is similar to

a contraction as well.
We conclude this section by addressing the remaining case of the similarity problem,

namely, the similarity of M
S∗
E

SE
(X) to a contraction, where X is a Toeplitz operator. Note

that in this setting, the Foiaş-Williams criterion (see (1.4)) for M
S∗
E

SE
(X) to be similar to a

contraction becomes equivalent to the existence of an operator A ∈ B(H2
E(D)) such that

S∗EA− ASE = X.

Here we again use the characterization of Toeplitz + Hankel operators as we have done
earlier in several places.

Theorem 5.4. Let Φ ∈ L∞B(E)(T). Then M
S∗
E

SE
(TΦ) is similar to a contraction if and only

if

Φ ∈ (z̄ − z)L∞B(E)(T).

Proof. In the case where X = TΦ, the Foiaş-Williams criterion, as discussed above, states

that M
S∗
E

SE
(TΦ) is similar to a contraction if and only if there exists A ∈ B(H2

E(D)) such
that

S∗EA− ASE = TΦ.

Now, assume that M
S∗
E

SE
(TΦ) is similar to a contraction. The characterization of Toeplitz

+ Hankel operators, as stated in Theorem 3.1, then guarantees the existence of symbols
Θ and Ω in L∞B(E)(T) such that

A = TΘ +HΩ.

As S∗EHΩ = HΩSE, it follows that

TΦ = S∗E(TΘ +HΩ)− (TΘ +HΩ)SE = T(z̄−z)Θ,

which gives

Φ = (z̄ − z)Θ ∈ (z̄ − z)L∞B(E)(T).

Conversely, assume that there exists a symbol Θ ∈ L∞B(E)(T) such that Φ = (z̄ − z)Θ.
Then it is easy to see that

S∗ETΘ − TΘSE = TΦ.

Again the Foiaş-Williams criterion, as pointed out above, guarantees that M
S∗
E

SE
(TΦ) is

similar to a contraction, completing the proof of this theorem. �

We remark that, as a consequence of a general theorem, it was observed in [4, Section
5.1] that an operator of the form MSE

SE
(X) is similar to a contraction if and only if it is

similar to an isometry.
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6. Examples

In this concluding section, we present some concrete examples, focusing on the scalar
case, of the results obtained so far. We also provide some general remarks. In the case
where E = C, we will omit the subscripts in the notation for the Hardy space, bounded
analytic functions, and related objects. For instance, we will simply write

H2
C(D) = H2(D),

and also

SC = S.

We begin with a simple application of Theorem 3.2. Pick a function θ ∈ H∞(D), and set

ϕ(z) = (1− z2)θ(z),

for z ∈ T-a.e. Clearly, ϕ ∈ L∞(T). It is evident that

ϕ ∈ (1− z2)L∞(T).

Note that in the present scalar case, ϕ∗ as defined in (1.1) simply becomes the conjugate
function ϕ. For z ∈ T-a.e. we also compute

(ϕ∗ + ϕ̃∗)(z) = (1− z2)θ(z) + (1− z2)θ(z)

= (1− z2)
(
θ(z)− z2θ(z)

)
,

which implies

ϕ∗ + ϕ̃∗ ∈ (1− z2)
(
H∞(D) + zH∞(D)

)
.

Theorem 3.2 then implies that MS
S∗(Tϕ) is similar to a contraction.

6.1. BMOA functions. We will now focus on Hankel operators Hϕ ∈ B(H2(D)), ϕ ∈
L∞(T). To this end, let us first introduce the BMOA functions (cf. [20]). Denote by m
the normalized Lebesgue measure on T. Let I be a subarc of T, and let f be an absolutely
integrable function defined on T. Define

fI =
1

m(I)

∫
I

f dm.

Then f is called a function of bounded mean oscillation, if

sup
I

1

m(I)

∫
I

|f − fI | dm <∞.

The space of such functions is named as BMO. The analytic subspace of BMO of interest
is

BMOA = BMO ∩H2(D),

whose elements are known as bounded mean oscillation analytic functions. It is well
known that

BMOA = {PH2(D)(ϕ) : ϕ ∈ L∞(T)}.
Let us now pick ϕ ∈ L∞(T), and define

f := PH2(D)(ϕ).
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By virtue of the Theorem 4.4, Corollary 4.5 and 4.7 of [8], it is immediately seen that the
membership of f ′ in BMOA is equivalent to the fact that

HϕD ∈ B(H2(D)).

Consider now the Fourier expansion of f on T as

f(z) =
∑
n∈Z+

anz
n.

For each k ∈ Z+, we compute〈
(HϕDS)∗(1), zk

〉
=
〈
1, (HϕDS)(zk)

〉
=

〈
1, (k + 1)

∞∑
n=k

anz
n−k

〉
= (k + 1)ak.

This implies

(HϕDS)∗(1) =
∞∑
n=0

(n+ 1)anz
n = (zf)′.

In view of the above discussion, we immediately see that Theorem 4.1 takes the following
form for E = C:

Theorem 6.1. Let ϕ ∈ L∞(T). Then MS
S∗(Hϕ) is similar to a contraction if and only if(

PH2(D)(ϕ)
)′ ∈ BMOA,

and (
zPH2(D)(ϕ)

)′ ∈ H∞(D).

In particular, we can choose ϕ to be a complex polynomial, or, for each |α| > 1, we can
choose ϕ as

ϕ(z) =
1

α− z
,

for all z ∈ T. For such choices of symbols ϕ, we can conclude by Theorem 6.1 that
MS

S∗(Hϕ) is similar to a contraction.

6.2. Hilbert-Hankel matrix. Consider the Hilbert-Hankel matrix

H =



1 1
2

1
3
· · ·

1
2

1
3

1
4
· · ·

1
3

1
4

1
5
· · ·

· · · . . .

 .

This is a linear operator defined on l2(Z+), and its boundedness was established by Hilbert.
This classical matrix represents the Hankel operator corresponding to the symbol ψ ∈
L∞(T) defined by

ψ(eit) = ie−it(π − t),
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for all t ∈ [0, 2π). More specifically, we observe that

PH2(D)(ψ) =
∞∑
n=0

zn

n+ 1
∈ BMOA.

However, (
PH2(D)(ψ)

)′
=
∞∑
n=1

n

n+ 1
zn−1 /∈ H2(D),

As a consequence of Theorem 6.1, we have the following result:

Corollary 6.2. MS
S∗(Hψ) is not similar to a contraction.

The same conclusion holds for the operator MS∗
S (Hψ), since it follows from [1, Theorems

4.1 and 4.2] that the operator MS∗
S (Hψ) is similar to a contraction if and only if(
PH2(D)(ψ)

)′ ∈ BMOA.

However, in the present case, we have already seen that(
PH2(D)(ψ)

)′
/∈ BMOA.

6.3. General remarks. Addressing the similarity problem for Foguel-type operators is
a natural and significant question in the theory of Hilbert function spaces. Moreover, we
remark that Paulsen’s identification of the “similarity to a contraction” problem with the
notion of complete polynomial boundedness [17] highlights the inherent difficulty of char-
acterizing operators similar to contractions. Indeed, complete polynomial boundedness
requires verification at all matrix levels, as it involves the contractivity of operator-valued
polynomial matrices of arbitrary size. From all these perspectives, we feel that the results
reported here, all concrete in nature, will be relevant for different purposes as well.

Let us conclude this paper with a curious observation regarding Theorems 5.3 and 5.4:

Given Φ ∈ L∞B(E)(T), if M
S∗
E

SE
(TΦ) is similar to a contraction, then so is MSE

SE
(HΦ).
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Mat. Kutató Int. Közl. 4 (1959), 89–93.
[17] V. I. Paulsen, Every completely polynomially bounded operator is similar to a contraction, J. Funct.

Anal. 55 (1984), no. 1, 1–17.
[18] V. I. Paulsen, Relative Yoneda cohomology for operator spaces, J. Funct. Anal. 157 (1998), 358–393.
[19] V. V. Peller, Estimates of functions of power bounded operators in Hilbert spaces, J. Oper. Th. 7

(1982), 341–372.
[20] V. V. Peller, Hankel operators and their applications, Springer Monogr. Math. Springer-Verlag, New

York, (2003).
[21] G. Pisier, A polynomially bounded operator on Hilbert space which is not similar to a contraction, J.

Amer. Math. Soc. 10 (1997), no. 2, 351–369.
[22] G. Pisier, The Halmos similarity problem, Oper. Theory Adv. Appl., 207 Birkhäuser Verlag, Basel,
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