FOGUEL-TYPE OPERATORS SIMILAR TO CONTRACTIONS
NILANJAN DAS, SOMA DAS, AND JAYDEB SARKAR

ABSTRACT. Pisier’s celebrated counterexample to Halmos’s similarity problem was based
on 2 x 2 upper triangular block operator matrices involving three classical operators: for-
ward and backward shifts on the diagonal and Hankel operators in the off-diagonal entry.
Together with another classical object, namely Toeplitz operators, one can formulate an-
other 23 — 1 = 7 types of 2 x 2 upper triangular block operator matrices, which we refer
to as Foguel-type operators. In this paper, we give a complete characterization of all the
seven Foguel-type operators being similar to contractions.
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1. INTRODUCTION

In this paper, E will be treated as an arbitrary but fixed separable Hilbert space over
C, and B(F) will denote the space of all bounded linear operators 7" : ' — E with norm

1T} = sup{ITfI[ - I/l = 1, f € E}.
An operator T' € B(E) is said to be a contraction if |T|| < 1. Equivalently,
I -T"T >0.

This positivity property plays a crucial role in analyzing the structure of linear operators.
Evidently, not all operators enjoy such positivity properties. A natural question therefore
arises: can a non-contractive operator be made into a contractive one by using an equiv-
alent norm on K7 This question is equivalent to the celebrated similarity problem, which
specifically asks for a characterization of when a given operator is similar to a contraction.
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2 DAS, DAS, AND SARKAR

Recall that T € B(FE) is said to be similar to a contraction if there exists an invertible
operator X € B(FE) such that

X1TX,

is a contraction. This is a classical problem, with its roots in Sz.-Nagy’s 1947 paper on
the characterization of operators similar to unitary operators [15]: T' € B(FE) is similar to
a unitary operator if and only if

sup || T"|| < oc.
nez

In pointing out this result as a starting point of the similarity problem, Pisier remarked
[22] that Sz.-Nagy was “almost surely motivated by his own work with F. Riesz in ergodic
theory, where contractions play a key role.” In 1959, this result led Sz.-Nagy [16] to
consider the class of power bounded operators, that is, operators T' € B(E) such that

sup || T"|| < oo,
TLGZ+

and to the natural question:
Are all power bounded operators similar to contractions?

In the same paper [16], Sz.-Nagy gave a positive answer to this question for all compact
operators. However, in 1964, Foguel [11] answered Sz.-Nagy’s question in the negative in
the general case (also see Halmos [13]). It was further observed, in view of the von Neu-
mann inequality [24], that a natural replacement of “power boundedness” is “polynomial
boundedness”: T € B(FE) is polynomially bounded if there exists C' > 0 such that

Ip(T)]| < Csup [p(2)],

zeD

for all complex polynomials p, where D is the open unit disc in C. In his celebrated 1970
paper [14], Halmos posed the following question:

Are all polynomially bounded operators similar to contractions?

About 25 years later, the Halmos conjecture was refuted by Pisier [21]. In the meantime,
Paulsen [17] established a characterization: An operator is similar to a contraction if and
only if it is completely polynomially bounded. In this context, also see [1, 2].

Denote by Hz(D) the E-valued Hardy space over D [23]. For each X € B(H%(D)),

define the block operator matrix Mg;’f(X) acting on H%(D) & Hz(D) by

) X
where Sy denotes the shift operator on H%(D) [23]. Well before Pisier’s counterexample,
this particular class of operators (in the case of £ = C) was proposed by Foiag and
Williams [12] and Peller [19] as a potential candidate for the study of Halmos’s similarity
problem. One motivation for studying this class of operators comes from Foguel’s work
[11]. His counterexample to Sz.-Nagy’s question was an operator of the form
S* X ]

Mo =[5 %
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acting on H?*(D) & H?*(D), where H?*(D) denotes the scalar-valued Hardy space (in this
case, we omit C from all subscripts). We remark that the operator X in Foguel’s coun-
terexample is a specific orthogonal projection associated with a lacunary sequence.

In his counterexample to Halmos’s question, Pisier considered operators of the form
Mgg (X), where

dimFE = oo,

and X is a Hankel operator related to anti-commutation relations. His example (and
related results) suggests that the similarity of M 55 (X) to a contraction, where X is a
Hankel operator, is a rather subtle matter. In fact, a clear-cut characterization of those
Hankel operators X for which M gf (X) is similar to a contraction is still unknown.

Following the approach of Foguel and Pisier, this paper examines the similarities to
contractions for Foguel-type operators defined as
Y X }

o=y %

acting on Hz(D) ® H3(D), whenever
Y=Sp and Z=SgorSy,

or
Y =7=25},
along with
X = Toeplitz or Hankel operator,

including the case where
Y =53, Z=Sg, and X = Toeplitz operator.

We present a complete characterization of Foguel-type operators that are similar to con-
tractions. Therefore, together with Pisier’s counterexample, this completes the analysis of
the similarity problem for all seven 2 x 2 upper triangular block operator matrices whose
diagonal entries are forward and backward shift operators and whose off-diagonal entries
are either Toeplitz or Hankel operators.

Before presenting the main similarity results obtained in this paper, we introduce some
notations. By L2%(T), we denote the E-valued L*-space on T (= dD). Denote by Lg)(T)
the Banach space of all B(E)-valued essentially bounded measurable functions on T. Also,
let Hgp (D) denote the Banach space of B(E)-valued bounded analytic functions on D.

Let ® € Ly ;) (T). The multiplication operator Me € B(L%4(T)) is defined by

M@(f) = (I)f7
for all f € L%(T). The Toeplitz operator Ty € B(H%(D)) and the Hankel operator
Hg € B(H%(D)) with symbol ® € L) (T) are defined as

Ty = PH?E(]D))M‘P|H?E(D) and He = PH?E(]D))M‘PJ|H%J(ID))>

respectively, where J : L%(T) — L%(T) is the flip operator, defined by (Jf)(z) = f(2)
for all f € L%(T) and 2z € T-a.e.

Given a closed subspace L of a Hilbert space H, we denote by P the orthogonal
projection from H onto L. In this context, note that in the discussion above, we have
treated H%(D) as a closed subspace of L%(T) [23]. In what follows, and whenever it is
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clear from the context, E will be treated as a closed subspace of H% (D). For brevity, we
will frequently use the notation ® Pg to denote the operator Mg Pg, that is,

My Pp = ®Pg,
for each ® € L ;) (T). In order to conveniently state the results, we introduce the class
zHg? ) (D), which consists of ® € Ly, (T) such that

B(E)
d = i P,
n=1

where ®, € B(E) for all n > 1. Moreover, for each ® = - _,2"®, € L, (T), where
®,, € B(E) for all n € Z, we define &, d e L%O(E)(']T) by
O*(z) =Yy 2D, (1.1)
nez

and

B(z) = (2), (1.2)

for almost every z € T. Note that 5*(2) = > ez 2" ®;. The following is a summary of
the main similarity results concerning Foguel-type operators obtained in this paper:

Theorem 1.1. Let ® € Lz, (T). The following hold:
(1) ng (Tp) is similar to a contraction if and only if
@ € (1- )LD,
and N
" + " € (1 - 2°)(Hg(p) (D) + 2Hg 5 (D).
(2) ng(H@) is similar to a contraction if and only if
Hy D € B(Hg(DD)),
and there exists ¥ € Hy ) (D) such that
(HoDpSg)* Pp = W Pp,
where Dg denotes the differential operator on the space of E-valued polynomials.
(3) Mg]‘;f (Ts) is similar to a contraction if and only if & = 0.
(4) Mgg(H@) is similar to a contraction if and only if

® € (2 — 2)Ly(p)(T) + zHg ) (D).

(5) M;?EE (Ts) is similar to a contraction if and only if ® € (z — 2) L 1) (T).

These results are new, even for £ = C. However, we do not know how to apply the

present methodology to the similarity problem for M gf(ﬂq)), as considered by Pisier.
Consequently, this case is not included in the above list nor in the list of the definitions of
Foguel-type operators. The remaining two cases, namely, M 55 (Te) and M 55 (Hg), follow

from the above results and have been outlined in Section 5.



SIMILARITY TO CONTRACTIONS 5

We remark that, as will become evident in the proofs to follow, except for the cases of
M SS];E (Hg) and M gg (Ts), all of the aforementioned results reveal a somewhat unexpected
connection to the theory of Toeplitz + Hankel operators. This is an emerging area of
independent interest and has been studied by several mathematicians (cf. [6, 9, 10]). It
is reasonable to suggest that the present article marks a step forward in supporting the
applicability of Toeplitz + Hankel operators. )

In the context of the problem of similarity of M 5§(H¢,) to contractions, we note that
Aleksandrov and Peller [1] resolved the case £ = C, while the work of Davidson and
Paulsen [8] addresses the case when dim(E) < oo. We refer readers to the excellent
survey articles [7, 22| for a more comprehensive overview of the similarity problem.

We apply some of our results to the case £ = C. For instance, we prove that M3.(H,)
is never similar to a contraction, where H, denotes the Hilbert-Hankel operator. Recall
that the matrix representation of the Hilbert-Hankel operator H,, is given by:

1
H, - {—} .
i+ + 1150
It should be noted that there are already generic results in literature, which, in partic-

ular, also classify Foguel-type operators in terms of their similarity to contractions. For
instance, [4, Corollary 4.2] asserts that

M “595 (X)is similar to contraction if and only if it is power bounded. (1.3)

Also, we have the following general result, known as Foiag-Williams criterion ([12],
also see [3] and see [18, Corollary 5.15] for a homological proof): Let E and E, be
Hilbert spaces, and let Y € B(F) and Z € B(FE,). Assume that Y and Z are similar to
contractions, and either Y is a coisometry or Z is an isometry. Then

Y X

0 Z
for some X : E, — F, is similar to a contraction if and only if there exists bounded linear
operator A : E, — FE such that

} on £ @ E,,

YA—AZ = X. (1.4)

A key step in proving Theorem 1.1 (in particular, part (1) and part (2)) is an improve-

ment of (1.4) in the context of (1.3), which we also identify as one of our main results of
this paper (see Theorem 2.2): Given X € B(H7(D)), the following are equivalent:

(1) Mgg (X) is similar to a contraction.

(2) There exist A € B(H%(D)) and ¥ € Hp(py(D) such that
A*Pp =VPg and X = A — S, AS}.

(3) There exist A € B(Hp(D)) and ¥ € Hyp) (D) such that

This result has been proved in the following section, which in fact generalizes Proposi-
tion 5.5 and Remark 5.6 from [4], through a substantially different approach.

The remainder of the paper is organized as follows. In Section 3, we present charac-
terizations of Foguel-type operators associated with Toeplitz operators that are similar
to contractions, while in Section 4, we do the same for Hankel operators. In Section 5,
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we complete the similarity problem in our context by considering all remaining cases of
Foguel-type operators. The final section provides examples and some general remarks.

2. A GENERAL CRITERION

The purpose of this section is to give a general characterization of operators of the form

Sg X

w0 =T g

| #3(0) 0 13(D) - 1Y) 0 (D),
for some X € B(H%(D)) that are similar to contractions. It is known, in view of (1.3),
that such an operator ng (X) is similar to a contraction if and only if it is power

bounded. However, the answer in terms of power boundedness doesn’t seem to give a
satisfactory solution to the similarity problem. Our solution to the similarity problem is
more concrete, and, equivalently, it provides concrete characterizations of operators that
are power bounded. We need a lemma.

Given the operator M gs (X) as above, we set

*n—l

X, =S X + 802X S+ SE3XSE 4+ + XS (2.1)
for each n > 1. The idea of this notion comes from the following computation:

Sk Xn] , (2.2)

(Mg 0) = [0 S

for all n > 1. It is mentioned in [5] that the power boundedness of M gg (X) is equivalent

to the boundedness of the sequence {||X,|}.. Since no proof is readily available, we
provide one below to prove the equivalence of (2) and (3) for the sake of completeness.
The equivalence of (1) and (2) follows from (1.3).

Lemma 2.1. Let X € B(H%(D)). The following are equivalent:
(1) ng (X) is similar to contraction.
(2) ng (X) is power bounded.
(3) sup,, || Xn| < oc.

Proof. We need to prove that (2) and (3) are equivalent. Let M gj (X) be power bounded.
Then there exists M > 0 such that

] (z00)"] <.

Fix f € H2(D) and n > 1. We know, by (2.2), that

(o) = [ 5
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for all n > 1. Then
X fI1? < IXafI1? + [|1SESIP

= |3

< J(uzzen) 1[0
< M| fI1,

that is, [|X,|| < M. This proves that {||X,|}. is bounded. Conversely, assume that
sup,, || Xn|| < M for some M > 0. Set

M; = max{1, M }.

Then for any f; and f, in H%(D), we have
o - %2

= |ISEf1+ X fol? + 1S5 2]

< (ISgAll+ 1Xnfo)? + 155 £

< (1Al + ML + 1 fll?

< ME (A + 1£ID%+ MELAIR + 11 £07)

<2M7 (LA + [1I7) + ME(ANP + [1£20%)

2

— 3M2 fl
A
Consequently,
| (vgz))|| < VB,
and hence M g]’j (X) is power bounded. This completes the proof of the lemma. O

With the above lemma in hand, we are now ready to state and prove the main theorem
of this section, which gives Foiag-Williams type criteria for operator M 53‘5 (X) being similar
to a contraction.

Theorem 2.2. Let X € B(H%(D)). Then the following are equivalent:
(1) MSSS (X) is similar to a contraction.
(2) There exist A € B(Hz(D)) and ¥ € Hg ) (D) such that

A*Py = UPp,
and
X = A— SLASE.
(3) There exist A € B(Hz(D)) and ¥ € Hgp,) (D) such that
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and
XSg = ASg — SRA.

Proof. We first prove that (2) and (3) are equivalent. Assuming (2) is true, there exist
A€ B(Hz(D)) and ¥ € Hg (D), such that A*Pp = U Pp, and

()
X =A-S,AS}.
The above condition immediately implies that
XSg = ASg — SRA.
Again, X = A — S}, AS}, gives
XPg=(A—-SpASy)Pr = APg — S ASL,Pr = APg,
as S5, Pg = 0. Therefore, we have X Py = APg. Conversely, if (3) is true, then there exist
A€ B(H:(D)) and ¥ € Hpp) (D) such that APp = X Pp, A"Pp = VPpg, and
XSg = ASg — SRA.
In view of I = Py + SgS7},, we compute
X = X(Pg + SeSg)
= APg + (ASg — SpA)Sy
= A(Pg + SgSp) — SpASE
= A - S,LAS}.
This finishes the proof of the equivalence of (2) and (3). We now proceed to establish
the equivalence between (1) and (2), which requires more involved computations. First,

assume that (1) is true. In particular, M gj (X) is power bounded, and hence by Lemma
2.1, we have sup,, || X, || < oo, where X,,, n > 1, is given as in (2.1):
n— n— * n— *2 xn—1
X, =S X + S XS5+ SE2XSy 4+ -+ XSy .
For time being, fix a natural number n. Note that
SpXn = SEX 4+ SEIXSE + 5P 2XSE 4+ SpXSh

and
X, S =Spl XS+ Sp2X Sy + SpiXSy 4+ 4+ XSy
By taking the difference of the above quantities, we have
SpX, — X, S5 =SEX — XSy .
Multiplying by S}, this yields
S5 X, — S XS5 =X — S5 XS
that is,
ST X, — S (S;;"”X,J St=X - SUXSy.

We want to apply a limiting argument to the above, or, more specifically, for a subse-
quence. We proceed as follows. Since {||X,]||}, is bounded, it follows that the sequence
{||S% " X,||} is also bounded (note that ||S%™|| = 1 for all m € Z,). Furthermore, by
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the Banach—Alaoglu theorem, the closed unit ball of B(H%(ID)) is compact in the weak op-

erator topology. Therefore, there exists a subsequence, which we denote by {Sznjlenj},
that converges in the weak operator topology. Let

WOT —1im S X, = A € B(H3(D)).
This, together with the fact that S;" — 0 as n — oo in the strong operator topology,
finally yields the desired limiting property:

A— SLASEL = X. (2.3)
Substituting the above in the expression of X,,, we get
X, =Sy A - SpASy) + SE (A — SpASy) S+ + (A — SEAS}E)SEn_l

As SgSy = I — Py, we have
X, = St A= S (1 — Pg)ASE + S5 2ASE — Si73 (1 — PR)ASh +-- -+ ASY —SLASY.
We write this as

X, =S A — SpASy — SEPRA+Q,,
where ,

Qn = S Py A+ S P ASy + S 2P ASy, + -+ PpASy .

Since

IS A — SpASE — S PeA| < 3|A],
boundedness of {||X,||}, ensures that {||@Q,]|}. is also bounded. Consequently, the se-
quence {[|Q% ]|}, is bounded as well. Note that

wn—1 wn—2 xn—3

Suppose now ||Q|| < C, for some constant C' > 0. Fix n € N and e € E. By using the
property of the backward shift S}, we have

n—k—1 Ax : < < o
Q;:(zk):{z A¥e f0<k<n-1

0 if & > n.
Given an F-valued polynomial
p=co+ze+ 22+ 42" te, € HE(D),
with e; € E foralli =0,1,...,n — 1, define
P=en1+zeno++22e, 5+ + 2" e
Therefore, we have
Qn(P) = Qnlen1) + Qn(zen—) + Qr(2%ens) + -+ + Q1(z" )
= 2" A%, 1 4+ 2" 2 A%, o+ 23 A e, 5+ - - + A¥ey.
Define

n—1
R(p) = Z 2 Ae;,
i=0

for E-valued polynomial p as above. It is now evident that

12(P)| = 1@:®)] < ClBll = Clpll (2.5)
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This means R is a well-defined bounded linear operator from the space of E-valued poly-
nomials to H%(D). Since E-valued polynomials form a dense subspace of H%(D), the
operator R admits a unique bounded linear extension to an element of B(H%(D)), which
we also call R. Furthermore, it is easy to see that

SeR(p) = RSp(p),

for each E-valued polynomial p € H%(D). Now pick f € Hz(D). Choose a sequence of
E-valued polynomials {q,,} € Hz(D) such that

limg, = f,
in H#(D). By a standard limiting argument, we have
SeR(f) = Sk lim R(qn) = lim SpR(qn) = lim RSg(an) = RS&(f),
that is, SgR = RSg. Therefore, R is an analytic Toeplitz operator, that is, there exists
an analytic symbol ¥ € Hjp (D) such that (cf. [23, Corollary 3.20])
R="Ty.
From the definition of R, we see that
A*e = Re = Tye = Ve,

for all e € E. This fact combined with (2.3) ascertains the validity of (2). On the other
hand, suppose (2) is true. Then there exist A € B(H%(D)) and ¥ € HEi (D) such that

X = A— SLASE,

and A*Pg = Ty Pg. To show that (1) is true under this assumption, it is enough to show
that
sup || X, || < oo,

where X,,’s are given as in (2.1) (see Lemma 2.1). Using the equality X = A — S5 AST,,
we can now perform exactly the same lines of computation succeeding (2.3), to obtain an
expression for X, as

X, =St A= SEASY — SE P A+ Q.

As a consequence, showing that {||X,|/}, is bounded amounts to showing {||Q%||}. (as
already pointed out earlier, where Q}; is defined in (2.4)) is bounded. Fix f = Y7 z'e; €
HZ(D), and observe that

n—1 o)
Qs (NI = [>_ Qu(z'er) + ) Qulz'er)
=0 =n

= [[z" A%y + 2" 2 AYe; + -+ Aten ||
= [|z" ey + 2" Wey + -+ Ve, ||
= |Ty(z" teg + 2" 21+ -+ en)]
< Tullllz" eo + 2" Per 4 -+ en|
< [ ¥l |If1],
which completes the proof. OJ
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The above theorem provides a somewhat satisfactory answer to the question of the
similarity of M gg(X ) to contractions in general. However, a more concrete answer is

expected for Foguel-type operators. This subject will be the theme of the following three
sections.

3. TOEPLITZ OPERATORS

The purpose of this section is to present a concrete characterization of symbols ® €
L) (T) such that M gj (T) is similar to a contraction. On this occasion, we will examine

the usefulness of the equivalence of the conditions in Theorem 2.2 in the context of Toeplitz
operators.

We need to recall some results concerning Toeplitz + Hankel operators. Let T, H €
B(H%(D)). Then T is a Toeplitz operator if and only if

SpTSEp=T.
And, H is a Hankel operator if and only if
SpH = HSE.

An operator X € B(H%(ID)) is said to be Toeplitz + Hankel operator if there exist symbols
D, 2 € Ly (T) such that
X =Ts + Hg.

In this case, we simply say that X is a Toeplitz + Hankel operator. In what follows, we
will use the following characterization of Toeplitz + Hankel operators established in [6,
Theorem 2.2]:

Theorem 3.1. Let A € B(H%(D)). The following conditions are equivalent:

(1) A is a Toeplitz + Hankel operator.
(2) ASg — S A is a Toeplitz operator.
(3) S} ASE — A is a Hankel operator.
(4) ASg + S37ASp = Sy A+ SpASE.

Recall that
2HEp (D) = {® € L) (T) : @ = ) 2", @, € B(E),n > 1}.

n=1

Also, recall the definitions of ®* and ® as provided in (1.1) and (1.2). Moreover, by the
definition of Toeplitz operators, we have the following relation:

TaPp = Piry )Mol )P = Pry o) MaPr,
which, according to our convention, is written more concisely as
In other words, for each e € E, we have

(Ts Pr)(e) = (Puzmy®Pr)(e) = Puz m)(Pe).

With this in hand, we now proceed to the main similarity result of this section.
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Theorem 3.2. Let ® € L) (T). Then Mgg (Ts) is similar to a contraction if and only

if
D € (1)L (T),

and
" + " € (1 — 2°)(Hg(p) (D) + 2H ) (D).

Proof. To start with, let us assume M 5§(T¢) to be similar to a contraction. By part (3)
of Theorem 2.2, there exist A € B(H(D)) and ¥ € Hgy, (D) such that
TeSEp = ASp — SLA,
with APg = TpPg and A*Pp = WPg. Since Sg = T, € B(H%(D)) and z is analytic, we
have T SE = T.4, and hence, the first identity yields
T. = ASp — SLA.
By virtue of Theorem 3.1, A is a Toeplitz + Hankel operator, that is, there exist symbols
©,Q € Ly (T) such that
A=Te+ Hq.
Substituting this value of A into the identity T, = ASE— S A and then using the Hankel
property SpHq = HqSE, we obtain:
T.o = (To + Hq)Sk — Sp(Te + Hq)

=ToSg — SiTe

= T(z—Z)@-
In the above, we have used the relations TgSp = T.e and SpTe = Tse (recall again

that Sp = T,). Therefore, by the uniqueness of the symbols for Toeplitz operators, we
conclude that

20 = (2 —2)0O,
which implies that ® = (1 — 2%)© € (1 — ZQ)L%O(E) (T), and hence
P
O=1—=

Since APgr = Tg Pg, we further obtain that
Pz y®Pp = P2 nyMoPp
=TsPg
= APy
= (To + Hq)Pr
)
= Prym) (1 - EQPE) + Pry o) (2Pp).

Here we have used the fact that HoPr = PH?E(D) MqJPg = PH%(D) Mq Pg. From the above,
we have

1
Pz ((CI) e 22¢)> PE) = Przo) (2Ps),
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and hence
-9

z
P2 (p) (ZQ — 1(I)PE) = Py2 ) (2Pp) .

Set
=2

T:=0Q—

52_

Then we have that Pyz ) (TPg) = 0. This implies

1<I> € Lgp)(T).

T € zHy (D).
Note that H{, = Hg., and
Mg =M o .
1—=z
Also, rewrite €2 as
=2
z
Q=7 .
* 2 -1

Then from the condition W Pg = A* Py, we get
VPp = (15 + H,) Pr
= Pz ) (M&Pp) + Pz m) (Mg Pr)

52

1 N s z
= Py o) (1_—Z2‘D PE) + Puz (o) (T Pp+ 55—

1, 2~

1 — 22 72

If we set
1 * 22 ok 00

then the above identity converts to

A

which implies A € zH B(B) (D), and consequently
1 1 =~
o + O =A+ V.

1 — 22 1— 22

This gives us the desired condition that

O + &* € (1 - 2°)(Hyip) (D) + zHgp (D).

Conversely, assume that ¢ € (1 — ZQ)L%‘E ) (T) and

" + " € (1 — 2°)(Hg(p) (D) + 2Hg 5 (D).

P*P
1 E)

There exist © € L) (T), ¥ € Hy (D), and T € zHg, (D) such that

(E)
d = (1-2%)6,

and N
P+ 0 =(1-2H)(T+T).

13
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Since ® = (1 — 2%)0, it follows that Q € L) (T), where
52
Q= ﬁQ € Lg)(T).
Note that © + 2 = ®. Set
A=Te+ Hq.
Using again the property of Hankel operators HoSgp = S}, Hq, we have
ASE — SpA = (To + Hq)Sk — Si(Toe + Hq)
=ToeSg — SiTo
=T:-20
=T.0 = TeSE.
Furthermore,
APp = (To + Hq)Pr = Pr2 ) (©+Q)Pg) = P2 (p) (PPg) = Te P,
that is, APg = T Pg. Finally, since
A*Pg = (Te + Hq)" Pg

1 * %
= Pz o) (1 — a2+ )PE>
= Pz (Y + T)Pg)
= PH%J(]D))\I/PE
- \I}PE7

by Theorem 2.2, we conclude that M 55 (Ts) is similar to a contraction. 0J

In a later section, we will see an application of the E = C case of this result.

4. HANKEL OPERATORS

In this section, we will characterize symbols ® that make the Foguel-type operator
M gg(Hq)) similar to a contraction. The goal is, of course, to verify the applicability
of Theorem 2.2, as we did for Toeplitz operators in the previous section. We need the
concept of differential operators.

For each n € Z, and e € E, define

Dg(z"e) = {

nz""le ifn>1

0 ifn=0.

The differential operator Dg on the space of F-valued polynomials extends the action of
Dy as defined on E-valued monomials. Therefore, for all p = M 2%, € HE(D), we
have

Dg(p) =7/,
where p/ = 3™ nz"le,. It is worth clarifying that, by A € B(H%(D)), where A is
originally defined on polynomials, we mean that A admits a unique extension to a bounded
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linear operator on the entire space Hz (D). With all these preparations, we are ready for
characterizations of Foguel-type operators M 555 (Hg) that are similar to contractions:

Theorem 4.1. Let ¢ € Ly (T). Then Mgg(]—!@) is similar to a contraction if and only

if
HeDp € B(HE(D)),

and there exists ¥ € Hy ) (D) such that

(HoDpSg)*Pg = VPg.
Proof. Assume that M 5§(H¢) is similar to a contraction. Then by Theorem 2.2, there
exist A € B(Hz(D)) and ¥ € Hyp) (D) such that

HeSp = ASp — SEA,
with AP = HePr and A*Pp = VPg. As DpSgPr = Pg, it follows that

APg = HoPp = Hs DpSgPr.
To apply mathematical induction, let us fix a natural number m and suppose that
A(z™e) = HeDSgp(z™e),
for all e € E. Fix e € E. Again the condition HSp = ASg — S A gives
Hy (2™ e) = HySp(2™e)

= (ASg — SLA)(z™e)

= A(z"e) — SpA(2"e)

= A(z"e) — SpHeDpSp(2™e),

as A(z™e) = HeDpSg(2™e). Using the property of Hankel operators, namely HgSp =
SpHg, it follows that

Hy(2™e) = A(z™e) — HeSpDp(2™e) = A(z™e) — (m + 1)Hg (2™ e),
and hence
A(Z™e) = (m + 2)Hy (2™ e) = He DpSp(2™e).
By the principle of mathematical induction, we finally conclude that
A(z"e) = HeDgSg(2"e),
for all n > 1 and e € E. Therefore,
A(p) = HoDpSg(p),

for all E-valued polynomials p € Hz(D). Since A € B(H%(D)), the linear operator
Hg DgpSg between the space of E-valued polynomials and H%(D) is bounded. Recall that
these polynomials constitute a dense subspace of Hz(D), and thus HeDpSg admits a
unique bounded linear extension to an element of B(H%(DD)), which we also call

H@DESE

In other words,

A= HeDgpSEg,
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on all of H%(ID), and hence, the condition A*Pg = ¥ Pg yields
(HoDpSg)"Pg = VU Pg.

We now need to show that He Dpg, defined originally on E-valued polynomials, can also
be extended uniquely to an element in B(H%(D)). To see this, for an E-valued polynomial
p € H%(D), we compute

Since both He DpSg and S} are bounded on H% (D), it follows that HeDg extends to a
bounded linear operator on H%(D).

Conversely, assume that HeDp € B(H%(D)) and there is a function ¥ € H 5z (D) such
that

(HeDpSg)'Pp = VPg.
Then we set
A= HsDpSp € B(Hy(D)).
Clearly,
A*Pg = (HeDpSg)"Pp = V Pg.
On the other hand, since DgSge = e for all e € F, it follows that
APg = HpDpSgpPg = Ho Pg.

Finally, for an E-valued polynomial p € H%(D), we compute

ASg(p) — SpA(p) = (He DpSg)(2p) — Sp(He DrSg)(p)
= Hy(22p + 2°p') — SpHa(p + 2p)
= Hy(22p + 2°p’) — HoSp(p + 2p’)
= Hqy(2p)
= HeSe(p).

Using the boundedness of A and the density of E-valued polynomials in H%(D), we
conclude that

ASp(f) = SLA(f) = HeSe(f)

for all f € H%(D). By Theorem 2.2, we now conclude that M‘%(Hq;) is similar to a
contraction. This completes our proof. 0

We will later discuss the £ = C case of the above result in the form of Theorem 6.1,
as well as some of its applications.
Let us also remark that differential operators in the context of the similarity problem

for operators of the form M 5EE (X) have appeared in [8] as well.
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5. TOEPLITZ AND HANKEL OPERATORS

In the previous two sections, we have answered the similarity problem for M gEE (X),

where X is a Toeplitz or Hankel operator. In the present section, we provide complete
answers for the similarity problem for MY (X) when

Y =7=5g,
or
Y =7=25},
and X i 1s a Toeplitz or a Hankel operator. We will also completely analyze the remaining

case M E(X ), where X is a Toeplitz operator.
We begm by highlighting a reduction result for the first four classes of operators. By
the Foiag-Williams criterion (1.4), we have the following fact:

v =¥ 3] mo e s -+ mo)e me)
is similar to a contraction if and only if there exists A € B(H%(D)) such that
SpA— ASg = X. (5.1)
Similarly,
S5 Sy X 2 2 2 2
Mg: (X) = 0 Syl Hp(D) & Hp(D) — Hp(D) & Hy(D)
is similar to a contraction if and only if there exists A’ € B(H%(DD)) such that

SpA — A'Sh = X. (5.2)

Clearly, A’ satlsﬁes (5.2) if and only if A = —A"" satisfies (5.1), with X replaced by X*.
Hence, M S*E (X) is similar to contraction if and only if M3” = (X™) is. Now, considering our
choices X = Ty and Hg, we note that both Ty and Hg are again Toeplitz and Hankel
operators, respectively.

Therefore, it suffices to focus on the operator M 5}? (X), where X is a Toeplitz or a
Hankel operator. We show below that the first class of operators is trivial.

Theorem 5.1. Let ® € Lz ) (T). Then Mgg(Tq,) is similar to a contraction if and only
if
® =0.

Proof. If ® =0, then Mgg (To) is itself a contraction. Let us now assume that Mg}f (To)
is similar to a contraction. By (5.1), there exists A € B(H%(D)) such that

SpA — ASg =Ts.
Multiplying both sides on the left by S}, we obtain
A— SLASE = Tse.
By the property of Toeplitz operators, we know
Sy e Syt = Tie,
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which in turn gives
Sy ASE — S AS = S5 (A~ SpASE) Sy
= S}"‘lT@Sgl
= 1zo,

for all n > 1. Fix n > 1 and write

A-S§Asy =" (5§~ Ask™ — sy ASE).
k=1
It now follows that
A— Sy ASE = nTsg,

and hence

nf|®llee = nl[Tze| = |A = S5 ASE < 2| Al
for all n > 1. Consequently, ® = 0. 0

In view of the above result and the observation in the beginning of this section, we have
the following: Let ® € Lz (T). Then M 55 (Ts) is similar to a contraction if and only if
d =0.

Before proceeding, we need to establish some basic identities relating Toeplitz and
Hankel operators. For the purpose of completeness, we prefer to provide full proofs of
these identities, even though these are well known in the scalar case and probably familiar
to specialists in the general vector-valued case. Recall that, for each ® € Lip) (T), we

define ® € L, (T) by
O(2) = P(2).

Lemma 5.2. Let ®, ¥ € Lz, (T). The following two identities hold:

(1) Ty — ToTy = Hzo H 5.

(2) Hgy = HgTo + T35
Proof. Let us first note that

JPy2 ) = M. (I — Py p)) M:

which can be easily verified on the standard orthonormal basis of L%(T), and hence is
true for any arbitrary element in L3,(T). Using this, we have for any f € Hz(D):

T<I>\Il(f) - T<I>T\I/(f) = PH%(D)((I)‘I’f) - PH%(D)((I)PH%(D)(\DJC»
= Py o) (9 — Pay)) U )
= Pz oy ((I)MEJPH%(D)JMZ\IJ f)
= Puzo) (207 Py ) (29(2)1 1))

= P2y (29 Hzu(5)(f))
= 2<I>Hz(f;(f)'
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This proves the first identity. For the second identity, we compute, for each f € Hz(D),
Hg3(f) — HgTuw(f) = P2 ) (E‘T)‘T’Jf> — Pr2 ) (5‘5JPH,23(D)(‘I’JC))
= P2 (p) (EEISJ(\IJJC)) — Pyz ) (5&)JPH?E(D)(\I’JC))
= P2 (m) (5~J(I - PH%(ID)))(\I/JC>)

= Py o) (zEISJMEJPHgE(D) JM, (¥ f))

K

This completes the proof of the lemma. O

With the above information in hand, we proceed to solve the similarity to contraction
problem for Mgg(H@).

Theorem 5.3. Let ¢ € Ly (T). Then Mgg(Hqﬂ is similar to a contraction if and only

if
® € (2 — 2)Ly(p)(T) + zHg ) (D).

Proof. Let Mgg(Hq>) be similar to a contraction. In view of (5.1), there exists A €
B(HZ%(D)) such that
SpA — ASg = He, (5.3)
and hence
A— SpASE = Sp;He = Hze.
By Theorem 3.1, we know that A is a Toeplitz + Hankel operator, that is, there exist
symbols ©,Q € L5 (T) such that
A=Te+ Hg.
Substituting this value of A in A — S}, ASE = Hz¢ gives
Hqo — SLHoSE = Hso.
Applying the Hankel property Sy, Hqo = HoSE to the above, we obtain
H(1—22)Q = H2<I>7
which implies
(1-2)0 =20+ VU,

for some
o

V=YV, €zHy, (D).
n=1
This yields
(z=2)Q=D+ 27,
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which can be rewritten as

(z—2)Q=®+ (2 —2)V + 20,
As a result,

O =(z—2)(Q- V) — 2V € (2 — 2) L (T) + 2Hgp, (D).

Conversely, let ® € (2 —2) Lz ) (T) + 2Hg{ (D). In other words, there exist @ € L) (T)
and ¥ € 2Hp7 ) (D) such that
b= (z—2)Q+ V.
Set
0(z) = -7

Clearly, © € L%O(E)(T). By Lemma 5.2, we have

T.e —T.Te = H;, H g,
and

T.Ho = H.q— H;, T

Here I denotes the identity operator in B(E). Using the above information, and the fact
that H;, = Pg, we compute

SE(T@ + HQ) — (T@ -+ HQ)SE = (TZT@ — Tze) -+ (TzHQ — HQTZ)
=-—Hi,Hg+Ho—HTg— H:
= —HipH g+ He-zo — HipTg
= PpH.q+ Ho — Pl g,

that is,
Sg(Te + Hqo) — (Te + Hq)Sg = He + (PEHZQ — PETZQ) ) (5.4)

For each e € E, we now have

Hig(e) = H g.(€) = Py ) ('),
and also

T’4(e) = Thaez)-(€) = Pruzm)(227).
As a result, we have H},Pp = TZ%PE, or, equivalently,

PpH.q = PgT_g.

Hence we have from (5.4):

Sg(Te + Hq) — (Te + Hq)Sk = Hao,

that is, A = Te + Hq € B(H%(D)) is a solution of the operator equation (5.3). By
the Foiag-Williams criterion (see (5.1) again), we conclude that M 55([—[@) is similar to a
contraction. This completes the proof. O
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In view of the discussion following (5.2) and Theorem 5.3, we note that M S%(H@) is
similar to a contraction if and only if

" € (2 — 2) L) (T) + 2Hgi (D),

or, equivalently

b € (z — 2) L) (T) + 2Hg ) (D).

In other words, MgEE(Hq,) is similar to a contraction if and only if Mng(Hq,) is similar to
a contraction as well.
We conclude this section by addressing the remaining case of the similarity problem,

namely, the similarity of M 55 (X) to a contraction, where X is a Toeplitz operator. Note

that in this setting, the Foiag-Williams criterion (see (1.4)) for M 5EE (X) to be similar to a
contraction becomes equivalent to the existence of an operator A € B(H%(ID)) such that

StA— ASp = X.

Here we again use the characterization of Toeplitz + Hankel operators as we have done
earlier in several places.

Theorem 5.4. Let ® € L) (T). Then MgE(Tq,) is similar to a contraction if and only
if

Proof. In the case where X = Ty, the Foiag-Williams criterion, as discussed above, states

that M gf(Tq,) is similar to a contraction if and only if there exists A € B(H%(D)) such
that

SpA—ASE =Ts.
Now, assume that M 5}? (Ts) is similar to a contraction. The characterization of Toeplitz

-+ Hankel operators, as stated in Theorem 3.1, then guarantees the existence of symbols
© and Q in L5 (T) such that

A=Te+ Hq.
As SLHg = HqoSg, it follows that
Ty = Sp(Te + Ho) — (Te + Ha)Sg = Tiz—ze,
which gives
®=(2—-2)0 € (2 — 2)Lgp/(T).
Conversely, assume that there exists a symbol © € Ly (T) such that ¢ = (z — 2)©.

Then it is easy to see that
SpTe —ToSg = Ts.
Again the Foiag-Williams criterion, as pointed out above, guarantees that M 55 (Ts) is

similar to a contraction, completing the proof of this theorem. O

We remark that, as a consequence of a general theorem, it was observed in [4, Section
5.1] that an operator of the form M gf (X) is similar to a contraction if and only if it is
similar to an isometry.
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6. EXAMPLES

In this concluding section, we present some concrete examples, focusing on the scalar
case, of the results obtained so far. We also provide some general remarks. In the case
where F = C, we will omit the subscripts in the notation for the Hardy space, bounded
analytic functions, and related objects. For instance, we will simply write

HE(D) = H*(D),
and also
Sc = S.
We begin with a simple application of Theorem 3.2. Pick a function # € H*(D), and set
p(2) = (1 -79)0(2),
for z € T-a.e. Clearly, ¢ € L>(T). It is evident that
¢ € (1 —7Z%)L>(T).

Note that in the present scalar case, ¢* as defined in (1.1) simply becomes the conjugate
function p. For z € T-a.e. we also compute

(" +&)(2) = (1 = 2%)0(z) + (1 — 2°)0(2)

which implies
¢+ € (1-2%) (H*(D) + 2H¥(D)).
Theorem 3.2 then implies that M3.(T,,) is similar to a contraction.
6.1. BMOA functions. We will now focus on Hankel operators H, € B(H*(D)), ¢ €
L*>(T). To this end, let us first introduce the BMOA functions (cf. [20]). Denote by m

the normalized Lebesgue measure on T. Let I be a subarc of T, and let f be an absolutely
integrable function defined on T. Define

1
fIZW/Ifdm

Then f is called a function of bounded mean oscillation, if

1
m([)/I|f—f1|dm<oo.

The space of such functions is named as BMO. The analytic subspace of BMO of interest
is

sup
I

BMOA = BMO N H*(D),

whose elements are known as bounded mean oscillation analytic functions. It is well
known that

Let us now pick ¢ € L>(T), and define

= Pmm(p).
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By virtue of the Theorem 4.4, Corollary 4.5 and 4.7 of [8], it is immediately seen that the
membership of f/ in BMOA is equivalent to the fact that

H,D € B(H*(D)).

Consider now the Fourier expansion of f on T as

f(z) = Z anz".

nel4
For each k € Z,, we compute

((H,DS)*(1),2") = (1,(H,DS)(="))

— <1, (k+1) ianzn_k>

n=k
This implies
(H,DS)*(1) = Y (n+1)anz" = (2f)"
n=0

In view of the above discussion, we immediately see that Theorem 4.1 takes the following
form for £ = C:

Theorem 6.1. Let p € L>(T). Then M§.(H,) is similar to a contraction if and only if
(Pr2y ()" € BMOA,

and
(2Pu2my(p)) € H*(D).

In particular, we can choose ¢ to be a complex polynomial, or, for each || > 1, we can
choose ¢ as

1
a—2z
for all z € T. For such choices of symbols ¢, we can conclude by Theorem 6.1 that
Mf3.(H,) is similar to a contraction.

p(z) =

6.2. Hilbert-Hankel matrix. Consider the Hilbert-Hankel matrix

— 1 1 —
L3 3
11 1
2 3 4
H =
111
3 4 5

This is a linear operator defined on [?(Z. ), and its boundedness was established by Hilbert.
This classical matrix represents the Hankel operator corresponding to the symbol ¢ €

L>(T) defined by
(') =ie (7 —t),
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for all ¢ € [0,27). More specifically, we observe that

o Zn
Prromy() =Y = € BMOA.
However,
/ - n n—
(Prey(0) = 3 =g 2" ¢ HPD)
n=1

As a consequence of Theorem 6.1, we have the following result:
Corollary 6.2. M5.(H,) is not similar to a contraction.

The same conclusion holds for the operator M5 (H,), since it follows from [1, Theorems
4.1 and 4.2] that the operator Mg (H,) is similar to a contraction if and only if

(P2 ()" € BMOA.

However, in the present case, we have already seen that
(Przm)(¥)) ¢ BMOA.

6.3. General remarks. Addressing the similarity problem for Foguel-type operators is
a natural and significant question in the theory of Hilbert function spaces. Moreover, we
remark that Paulsen’s identification of the “similarity to a contraction” problem with the
notion of complete polynomial boundedness [17] highlights the inherent difficulty of char-
acterizing operators similar to contractions. Indeed, complete polynomial boundedness
requires verification at all matrix levels, as it involves the contractivity of operator-valued
polynomial matrices of arbitrary size. From all these perspectives, we feel that the results
reported here, all concrete in nature, will be relevant for different purposes as well.

Let us conclude this paper with a curious observation regarding Theorems 5.3 and 5.4:

Given @ € L) (T), if Mg}f (To) is similar to a contraction, then so is Mgg(]—]@.

Acknowledgement: The first named author is supported by a National Postdoctoral
Fellowship (N-PDF) provided by the Anusandhan National Research Foundation, India
(File number: PDF/2025/000089). The research of the second named author is supported
by a post-doctoral fellowship provided by the National Board for Higher Mathematics
(NBHM), India (Order No: 0204/16(8)/2024/R&D- 11/6760, dated May 09, 2024). The
research of the third named author is supported in part by ANRF, Department of Science
& Technology (DST), Government of India (File No: ANRF/ARGM/2025/000130/MTR).

REFERENCES

[1] A. B. Aleksandrov and V. V. Peller, Hankel operators and similarity to a contraction, Internat.
Math. Res. Notices. 6 (1996), 263-275.

[2] J. Bourgain, On the similarity problem for polynomially bounded operators, Israel J. Math. 54 (1986),
227-241.

[3] J. F. Carlson, D. N. Clark, C. Foiag and J. P. Williams, Projective Hilbert A(D)-modules, New York
J. Math. 1 (1994), 26-38.

[4] G. Cassier, Generalized Toeplitz operators, restrictions to invariant subspaces and similarity prob-
lems, J. Operator Theory 53 (2005), 49—89.

[5] G. Cassier and D. Timotin, Power boundedness and similarity to contractions for some perturbations
of isometries, J. Math. Anal. Appl. 293 (2004), 160-180.



SIMILARITY TO CONTRACTIONS 25

[6] N. Das, S. Das, and J. Sarkar, Paired and Toeplitz + Hankel operators, available at arXiv:2404.05435.
To appear in Israel J. Math.
[7] K. R. Davidson, Polynomially bounded operators, a survey, NATO Adv. Sci. Inst. Ser. C: Math.
Phys. Sci., 495, Kluwer Academic Publishers Group, Dordrecht, 1997, 145-162.
[8] K. R. Davidson and V. L. Paulsen, Polynomially bounded operators, J. Reine Angew. Math. 487
(1997), 153-170.
[9] P. Deift, A. Its, and I. Krasovsky, Asymptotics of Toeplitz, Hankel and Toeplitz+Hankel determinants
with Fisher-Hartwig singularities, Ann. of Math. (2) 174 (2011), 1243-1299.
[10] T. Ehrhardt, R. Hagger, and J. Virtanen, Bounded and compact Toeplitz + Hankel matrices, Studia
Math. 260 (2021), 103-120.
[11] S.R. Foguel, A counterexample to a problem of Sz.-Nagy, Proc. Amer. Math. Soc. 15 (1964), 788-790.
[12] C. Foiag and J. Williams, On a class of polynomially bounded operators, preprint circa 1980, unpub-
lished.
[13] P. R. Halmos, On Foguel’s answer to Nagy’s question, Proc. Amer. Math. Soc. 15 (1964), 791-793.
[14] P. R. Halmos, Ten problems in Hilbert space, Bull. Amer. Math. Soc. 76 (1970), 887-933.
[15] B. Sz.-Nagy, On uniformly bounded linear transformations in Hilbert space, Acta Univ. Szeged. Sect.
Sci. Math. 11 (1947), 152-157.
[16] B. Sz.-Nagy, Completely continuous operators with uniformly bounded iterates, Magyar Tud. Akad.
Mat. Kutaté Int. Kozl. 4 (1959), 89-93.
[17] V. L Paulsen, Every completely polynomially bounded operator is similar to a contraction, J. Funct.
Anal. 55 (1984), no. 1, 1-17.
[18] V. I. Paulsen, Relative Yoneda cohomology for operator spaces, J. Funct. Anal. 157 (1998), 358-393.
[19] V. V. Peller, Estimates of functions of power bounded operators in Hilbert spaces, J. Oper. Th. 7
(1982), 341-372.
[20] V. V. Peller, Hankel operators and their applications, Springer Monogr. Math. Springer-Verlag, New
York, (2003).
[21] G. Pisier, A polynomially bounded operator on Hilbert space which is not similar to a contraction, J.
Amer. Math. Soc. 10 (1997), no. 2, 351-369.
[22] G. Pisier, The Halmos similarity problem, Oper. Theory Adv. Appl., 207 Birkhduser Verlag, Basel,
2010, 325-339.
[23] H. Radjavi, P. Rosenthal, Invariant subspaces, Dover Publications, Inc., Mineola, NY, 2003, xii4248
pp-
[24] J. von Neumann, Fine Spektraltheorie fir allgemeine Operatoren eines unitiren Raumes, Math.
Nachr. 4 (1951), 48-131.

INDIAN STATISTICAL INSTITUTE, STATISTICS AND MATHEMATICS UNIT, 8TH MILE, MYSORE ROAD,
BANGALORE, 560059, INDIA
Email address: nilanjand7@gmail.com

INDIAN STATISTICAL INSTITUTE, STATISTICS AND MATHEMATICS UNIT, 8TH MILE, MYSORE ROAD,
BANGALORE, 560059, INDIA
Email address: dsoma994@gmail.com

INDIAN STATISTICAL INSTITUTE, STATISTICS AND MATHEMATICS UNIT, 8TH MILE, MYSORE ROAD,
BANGALORE, 560059, INDIA
Email address: jay@isibang.ac.in, jaydebOgmail.com



