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1. Introduction

An important problem in multivariable operator theory and function the-
ory of several complex variables is the question of a Beurling type represen-
tations of joint invariant subspaces for the n-tuple of multiplication operators
(Mz1 , . . . , Mzn) on H2(Dn), n > 1. Here H2(Dn) denotes the Hardy space over
the unit polydisc Dn in Cn (see Section 2 for notation and definitions). The main
obstacle here seems to be the subtleties of the theory of holomorphic functions
in several complex variables. This problem is compounded by another difficulty
associated with the complex (and mostly unknown) structure of n-tuples, n > 1,
of commuting isometries on Hilbert spaces.

In this paper, we answer the above question by providing a complete list
of natural conditions on closed subspaces of H2(Dn). Here we use the analytic
representations of shift invariant subspaces, representations of Toeplitz operators
on the unit disc, geometry of tensor product of Hilbert spaces and identification
of bounded linear operators under unitary equivalence to overcome such diffi-
culties.
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As motivation, recall that if n = 1, then the celebrated Beurling theorem [3]
says that a non-zero closed subspace S of H2(D) is invariant for Mz if and only if
there exists an inner function θ ∈ H∞(D) such that

S = θH2(D).

Note also that it follows (or the other way around) in particular from the above
representation of S that

S ⊖ zS = θC,

and so

S =
∞
⊕

m=0
zm(S ⊖ zS).

One may now ask whether an analogous characterization holds for invariant sub-
spaces for (Mz1 , . . . , Mzn) on H2(Dn), n > 1. However, Rudin’s pathological ex-
amples (see Rudin [20], page 70) indicates that the above Beurling type properties
does not hold in general for invariant subspaces for (Mz1 , . . . , Mzn) on H2(Dn),
n > 1: There exist invariant subspaces S1 and S2 for (Mz1 , Mz2) on H2(D2) such
that

(1) S1 is not finitely generated, and
(2) S2 ∩ H∞(D2) = {0}.

In fact, Beurling type invariant subspaces for (Mz1 , . . . , Mzn) on H2(Dn), n >
1, are rare. They are closely connected with the tensor product structure of the
Hardy space (or the product domain Dn).

Therefore, the structure of invariant subspaces for

(Mz1 , . . . , Mzn) on H2(Dn), n > 1,

is quite complicated. The list of important works in this area include the papers
by Agrawal, Clark, and Douglas [1], Ahern and Clark [2], Douglas and Yan [6],
Douglas, Paulsen, Sah and Yan [5], Guo [9, 10], Fang [7], Guo, Sun, Zheng and
Zhong [11], Rudin [21], Guo and Yang [12], Izuchi [14], Mandrekar [17] etc. (also
see the references therein).

In this paper, first, we represent H2(Dn+1), n ≥ 1, by the H2(Dn)-valued
Hardy space H2

H2(Dn)
(D). Under this identification, we prove that

(Mz1 , Mz2 , . . . , Mzn+1) on H2(Dn+1),

corresponds to
(Mz, Mκ1 , . . . , Mκn) on H2

H2(Dn)(D),

where κi ∈ H∞
B(H2(Dn))

(D), i = 1, . . . , n, is a constant as well as simple and explicit

B(H2(Dn))-valued analytic function (see Theorem 3.1, or part (i) of Theorem 1.1
below). Then we prove that a closed subspace S ⊆ H2

H2(Dn)
(D) is invariant for

(Mz, Mκ1 , . . . , Mκn) if and only if S is of Beurling [3], Lax [15] and Halmos [13]
type and the corresponding Beurling, Lax and Halmos inner function solves, in
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an appropriate sense, n operator equations explicitly and uniquely (see Theorem
3.2, or part (ii) of Theorem 1.1 below, and Theorem 5.2).

Recall that two m-tuples, m ≥ 1, of commuting operators (A1, . . . , Am) on
H and (B1, . . . , Bm) on K are said to be unitarily equivalent if there exists a unitary
operator U : H → K such that UAi = BiU for all i = 1, . . . , m.

We now summarize the main contents, namely, Theorems 3.1 and 3.2 re-
stricted to the scalar-valued Hardy space case, of this paper in the following state-
ment.

Theorem 1.1. Let n be a natural number, and let Hn = H2(Dn). Let κi ∈ H∞
B(Hn)

(D)
denote the B(Hn)-valued constant function on D defined by

κi(w) = Mzi ∈ B(Hn),

for all w ∈ D, and let Mκi denote the multiplication operator on H2
Hn

(D) defined by

Mκi f = κi f ,

for all f ∈ H2
Hn

(D) and i = 1, . . . , n. Then the following statements hold true:
(i) (Mz1 , Mz2 . . . , Mzn+1) on H2(Dn+1) and (Mz, Mκ1 , . . . , Mκn) on H2

Hn
(D) are

unitarily equivalent.
(ii) Let S be a closed subspace of H2

Hn
(D), and let W = S ⊖ zS . Then S is invari-

ant for (Mz, Mκ1 , . . . , Mκn) if and only if (MΦ1 , . . . , MΦn) is an n-tuple of commuting
shifts on H2

W (D) and there exists an inner function Θ ∈ H∞
B(W ,Hn)

(D) such that

S = ΘH2
W (D),

and
κiΘ = ΘΦi,

where
Φi(w) = PW (IS − wPS M∗

z )
−1Mκi |W ,

for all w ∈ D and i = 1, . . . , n

The representation of S , in terms of W , Θ and {MΦi}n
i=1, in part (ii) above

is unique in an appropriate sense (see Theorem 5.2). Furthermore, the multiplier
Φi can be represented as

Φi(w) = PW MΘ(IH2
W (D) − wM∗

z )
−1M∗

Θ Mκi |W ,

for all w ∈ D and i = 1, . . . , n. For a more detailed discussion on the analytic
functions {Φi}n

i=1 on D we refer to Remarks 3.3 and 3.5.
As an immediate application of Theorem 1.1 we have (see Corollary 3.6): If

S ⊆ H2
Hn

(D) is a closed invariant subspace for (Mz, Mκ1 , . . . , Mκn), then the tu-
ples (Mz|S , Mκ1 |S , . . . , Mκn |S ) on S and (Mz, MΦ1 , . . . , MΦn) on H2

W (D) are uni-
tarily equivalent, where W = S ⊖ zS and

Φi(w) = PW (IS − wPS M∗
z )

−1Mκi |W ,
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for all w ∈ D and i = 1, . . . , n. Our approach also yields a complete set of
unitary invariants for invariant subspaces: The n-tuples of commuting shifts
(MΦ1 , . . . , MΦn) on H2

W (D) is a complete set of unitary invariants for invariant
subspaces for (Mz, Mκ1 , . . . , Mκn) on H2

Hn
(D) (see Theorem 6.1 for more details).

We also contribute to the classification problem of commuting tuples of
isometries on Hilbert spaces. On the one hand, n-tuples of commuting isome-
tries play a central role in multivariable operator theory and function theory,
whereas, on the other hand, the structure of n-tuples, n > 1, of commuting
isometries on Hilbert spaces is complicated. In Corollary 3.6, as a byproduct
of our analysis, we completely classify n-tuples of commuting isometries of the
form (Mz|S , Mκ1 |S , . . . , Mκn |S ) on S , where S is a closed invariant subspace for
(Mz, Mκ1 , . . . , Mκn) on H2

En
(D).

This paper is organized as follows. In Section 2 we give various background
definitions and results on the Hardy space over the unit polydisc. In Section 3, we
prove the central result of this paper - representations of invariant subspaces of
vector-valued Hardy spaces over polydisc. In chapter 4 we study and analyze the
model tuples of commuting isometries. Section 5 complements the main results
on representations of invariant subspaces and deals with the uniqueness part.
In Section 6 we give some applications related to the main theorems. The final
section of this paper is devoted to an appendix on a dimension inequality which
is relevant to the present context and of independent interest.

2. Prerequisites

We start by briefly recalling the relevant parts of the Hardy space over the
unit polydisc. Let n ≥ 1, and let Dn be the open unit polydisc in Cn. The Hardy
space H2(Dn) over Dn is the Hilbert space of all holomorphic functions f on Dn

such that

∥ f ∥H2(Dn) =

(
sup

0≤r<1

∫
Tn

| f (reiθ1 , . . . , reiθn)|2 dθ

) 1
2

< ∞,

where dθ is the normalized Lebesgue measure on the torus Tn, the distinguished
boundary of Dn. It is well known that H2(Dn) is a reproducing kernel Hilbert
space corresponding to the Szegö kernel Sn on Dn, where

Sn(z, w) =
n

∏
i=1

(1 − ziw̄i)
−1 (z, w ∈ Dn).

Clearly

S−1
n (z, w) = ∑

0≤|k|≤n
(−1)|k|zkw̄k,
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where |k| = ∑n
i=1 ki and 0 ≤ ki ≤ 1 for all i = 1, . . . , n. Here we use the notation z

for the n-tuple (z1, . . . , zn) in Cn. Also for any multi-index k = (k1, . . . , kn) ∈ Zn
+

and z ∈ Cn, we write zk = zk1
1 · · · zkn

n .
Let E be a Hilbert space, and let H2

E (D
n) denote the E -valued Hardy space

over Dn. Then H2
E (D

n) is the E -valued reproducing kernel Hilbert space with the
B(E)-valued kernel function

(z, w) 7→ Sn(z, w)IE (z, w ∈ Dn).

In the sequel, by virtue of the canonical unitary U : H2
E (D

n) → H2(Dn) ⊗ E
defined by

U(zkη) = zk ⊗ η (k ∈ Zn
+, η ∈ E),

we shall often identify the vector valued Hardy space H2(Dn)⊗ E with H2
E (D

n).
Let (Mz1 , . . . , Mzn) denote the n-tuple of multiplication operators on H2

E (D
n) by

the coordinate functions {zi}n
i=1, that is,

(Mzi f )(w) = wi f (w),

for all f ∈ H2
E (D

n), w ∈ Dn and i = 1, . . . , n. It is well known and easy to check
that

∥Mzi f ∥ = ∥ f ∥,

and
∥M∗m

zi
f ∥ → 0,

as m → ∞ and for all f ∈ H2
E (D

n), that is, Mzi defines a shift (see the definition
of shift below) on H2

E (D
n), i = 1, . . . , n. If n > 1, then it also follows easily that

Mzi Mzj = Mzj Mzi ,

and
M∗

zi
Mzj = Mzj M

∗
zi

,

for all 1 ≤ i < j ≤ n. Therefore, (Mz1 , . . . , Mzn) is an n-tuple of doubly commuting
shifts on H2

E (D
n). Evidently the shift Mzi on H2

E (D
n) can be identified with Mzi ⊗

IE on H2(Dn)⊗ E . This canonical identification will be used throughout the rest
of the paper.
We recall that a closed subspace S ⊆ H2

E (D
n) is called an invariant subspace for

(Mz1 , . . . , Mzn) on H2
E (D

n) if
ziS ⊆ S ,

for all i = 1, . . . , n.
Now we review and adapt some standard techniques for shift operators

which are useful for our purposes (see [16] for more details). Let H be a Hilbert
space. Let V be an isometry on H, that is, ∥V f ∥ = ∥ f ∥ for all f ∈ H. Then
V is said to be a shift [13] if there is no non trivial reducing subspace of H on



INVARIANT SUBSPACES IN THE POLYDISC 5

which V is unitary. Equivalently, an isometry V on H is a shift if V is pure, that
is, ∥V∗m f ∥ → 0 for all f ∈ H. Now if V is a shift on H, then

H =
∞
⊕

m=0
VmW ,

where W is the wandering subspace [13] for V, that is, W = ker V∗ = H ⊖ VH.
Hence the natural map ΠV : H → H2

W (D) defined by

ΠV(Vmη) = zmη,

for all m ≥ 0 and η ∈ W , is a unitary operator and

ΠVV = MzΠV .

Following Wold [23] and von Neumann [22], we call ΠV the Wold-von Neumann
decomposition of the shift V.

We will need the following representation theorem for commutators of shifts
proved in [16]. Here we only sketch this proof and refer the reader to [16] for more
details.

Theorem 2.1. Let H be a Hilbert space. Let V be a shift on H and C be a bounded
operator on H. Let ΠV be the Wold-von Neumann decomposition of V, M = ΠVCΠ∗

V ,
and let

Θ(z) = PW (IH − zV∗)−1C |W (z ∈ D).

Then CV = VC if and only if Θ ∈ H∞
B(W)(D) and

M = MΘ.

Sketch of proof: For the necessary part, let CV = VC. Then MMz = Mz M, and so

M = MΘ,

for some (unique) bounded analytic function Θ ∈ H∞
B(W)(D) [18]. Let z ∈ D and

η ∈ W . Since Θ(z)η = (MΘη)(z), it follows that

Θ(z)η = (ΠVCΠ∗
Vη)(z)

= (ΠVCη)(z),

as Π∗
Vη = η. Now a simple computation shows that (cf. [16])

IH =
∞

∑
m=0

VmPWV∗m,

in the strong operator topology, from which it follows that

Cη =
∞

∑
m=0

VmPWV∗mCη,



6 A. MAJI, A. MUNDAYADAN, J. SARKAR AND SANKAR T.R.

and so

Θ(z)η = (ΠV(
∞

∑
m=0

VmPWV∗mCη))(z)

= (
∞

∑
m=0

Mm
z (PWV∗mCη))(z).

Using the fact that PWV∗mCη ∈ W for all m ≥ 0, from here we get

Θ(z)η =
∞

∑
m=0

zm(PWV∗mCη)

= PW (IH − zV∗)−1Cη.

The sufficient part easily follows from the fact that Π∗
V MΠV = C. This proves

the theorem.
As usual, here H∞

B(W)(D) denotes the Banach algebra of all B(E)-valued
bounded analytic functions on the open unit disc D (cf. [18]).

3. Main results

With the above preparation, we now turn to the representations of joint in-
variant subspaces of vector-valued Hardy spaces. Let n be a positive integer.
Let E be a Hilbert space, and consider the vector-valued Hardy space H2

E (D
n+1).

Our strategy here is to identify Mz1 on H2
E (D

n+1) with the multiplication operator
Mz on the H2

E (D
n)-valued Hardy space on the disc D. Then we show that under

this identification, the remaining operators {Mz2 , . . . , Mzn+1} on H2
E (D

n+1) can be
represented as the multiplication operators by n simple and constant B(H2

E (D
n))-

valued functions on D. For this we need a few more notations.
For each Hilbert space L, for the sake of notational ease, define

Ln = H2(Dn)⊗L.

When L = C, we simply write Ln = Hn, that is,

Hn = H2(Dn).

Also, for each i = 1, . . . , n, we define

κL,i(w) = Mzi ⊗ IL,

for all w ∈ D, and write
κL,i = κi,

when L is clear from the context. It is evident that κi ∈ H∞
B(Ln)

(D) is a constant

function and Mκi on H2
Ln
(D), defined by

Mκi f = κi f ( f ∈ H2
Ln
(D)),

is a shift on H2
Ln
(D) for all i = 1, . . . , n.
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Now we return to the invariant subspaces of H2
E (D

n+1). First we iden-
tify H2

E (D
n+1) with H2(D) ⊗ En by the natural unitary map Û : H2

E (D
n+1) →

H2(D)⊗ En defined by

Û(zk1
1 zk2

2 · · · zkn+1
n+1 η) = zk1 ⊗ (zk2

1 · · · zkn+1
n η),

for all k1, . . . , kn+1 ≥ 0 and η ∈ E . Then it is clear that

ÛMz1 = (Mz ⊗ IEn)Û.

Moreover, a simple computation shows that

ÛMz1+i = (IH2(D) ⊗ Ki)Û,

where Ki is the multiplicational operator Mzi on En, that is

Ki = Mzi ,

for all i = 1, . . . , n. Therefore, the tuples (Mz1 , Mz2 , . . . , Mzn+1) on H2
E (D

n+1) and
(Mz ⊗ IEn , IH2(D) ⊗ K1, . . . , IH2(D) ⊗ Kn) on H2(D)⊗ En are unitarily equivalent.
We further identify H2(D)⊗ En with the En-valued Hardy space H2

En
(D) by the

canonical unitary map Ũ : H2(D)⊗ En → H2
En
(D) defined by

Ũ(zk ⊗ η) = zkη,

for all k ≥ 0 and η ∈ En. Clearly

Ũ(Mz ⊗ IEn) = MzŨ.

Now for each i = 1, . . . , n, define the constant B(En)-valued (analytic) function
on D by

κi(z) = Ki,

for all z ∈ D. Then κi ∈ H∞
B(En)

(D), and the multiplication operator Mκi on

H2
En
(D), defined by

(Mκi (z
mη))(w) = wm(Kiη),

for all m ≥ 0, η ∈ En and w ∈ D, is a shift on H2
En
(D). It is now easy to see that

Ũ(IH2(D) ⊗ Ki) = Mκi Ũ.

for all i = 1, . . . , n. Finally, by setting

U = ŨÛ,

it follows that U : H2
E (D

n+1) → H2
En
(D) is a unitary operator and

UMz1 = MzU,

and
UMz1+i = Mκi U,

for all i = 1, . . . , n. This proves the vector-valued version of the first half of the
statement of Theorem 1.1:
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Theorem 3.1. Let E be a Hilbert space. Then (Mz1 , Mz2 . . . , Mzn+1) on H2
E (D

n+1) and
(Mz, Mκ1 , . . . , Mκn) on H2

En
(D) are unitarily equivalent, where κi ∈ H∞

B(En)
(D) is the

constant function
κi(w) = Mzi ∈ B(En),

for all w ∈ D and i = 1, . . . , n.

Now we proceed to prove the remaining half of Theorem 1.1 in the vector-
valued Hardy space setting. Let S ⊆ H2

En
(D) be a closed invariant subspace for

(Mz, Mκ1 , . . . , Mκn) on H2
En
(D). Set

V = Mz|S ,

and
Vi = Mκi |S ,

for all i = 1, . . . , n. Clearly, (V, V1, . . . , Vn) is a commuting tuple of isometries on
S . Note that if f ∈ S , then

∥V∗m
i f ∥S = ∥PS M∗m

κi
f ∥|S

≤ ∥M∗m
κi

f ∥|H2
En

(D),

that is, Vi, i = 1, . . . , n, is a shift on S , and similarly V is also a shift on S . Let
W = S ⊖ VS denote the wandering subspace for V, that is

W = ker V∗

= ker PS M∗
z ,

and let ΠV : S → H2
W (D) be the Wold-von Neumann decomposition of V on S

(see Section 2). Then ΠV is a unitary operator and

ΠVV = MzΠV .

Since
VVi = ViV,

applying Theorem 2.1 to Vi, we obtain

ΠVVi = MΦi ΠV ,

where
Φi(w) = PW (IS − wV∗)−1Vi|W ,

for all w ∈ D, Φi ∈ H∞
B(W)(D), MΦi is a shift on H2

W (D) since Vi is a shift on S
and i = 1, . . . , n. Now since ΠV is unitary, we obtain that

Π∗
V Mz = VΠ∗

V ,

and
Π∗

VVi = MΦi Π
∗
V ,
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for all i = 1, . . . , n. Finally, if we let iS denote the inclusion map iS : S ↪→ H2
En
(D),

then ΠS : H2
W (D) → H2

En
(D) is an isometry, where

ΠS = iS ◦ Π∗
V .

Clearly ΠSΠ∗
S = iS i∗S . This implies that

ran ΠS = ran iS ,

and so
ran ΠS = S .

Now, using iSV = MziS and iSVj = Mκj iS , we have

ΠS Mz = MzΠS ,

and
ΠS MΦi = Mκi ΠS ,

for all i = 1, . . . , n. From the first equality it follows that there exists an inner
function Θ ∈ H∞

B(W ,En)
(D) such that

ΠS = MΘ.

This and the second equality implies that

κiΘ = ΘΦi,

for all i = 1, . . . , n. Moreover, ran ΠS = S yields

S = ΘH2
W (D).

To prove that (MΦ1 , . . . , MΦn) is a commuting tuple, observe that

MΦi MΦj ΠV = MΦi ΠVVj

= ΠVViVj

= ΠVVjVi

= MΦj MΦi ΠV ,

and so
MΦi MΦj = MΦj MΦi ,

for all i, j = 1, . . . , n. For the converse, let us begin by observing that if S =
ΘH2

W (D) for some inner function Θ ∈ H∞
B(W ,En)

(D), then S is invariant for Mz

and
PS M∗

z PS = PS M∗
z .

In particular
PS M∗

z |S = PS M∗
z ∈ B(S),

and so {Φ1, . . . , Φn} is a well-defined set of B(W)-valued analytic functions on D.
Furthermore, if (MΦ1 , . . . , MΦn) is an n-tuple of commuting shifts on H2

W (D) (so,
in particular, Φi ∈ H∞

B(W)(D) for all i = 1, . . . , n. See Remark 3.3) and κiΘ = ΘΦi,
then it follows obviously that κiS ⊆ S for all i = 1, . . . , n, that is, S is invariant
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for (Mκ1 , . . . , Mκn). This proves the last part of Theorem 1.1 in the vector-valued
Hardy space setting:

Theorem 3.2. Let E be a Hilbert space, S ⊆ H2
En
(D) be a closed subspace, and let W =

S ⊖ zS . Then S is invariant for (Mz, Mκ1 , . . . , Mκn) if and only if (MΦ1 , . . . , MΦn)

is an n-tuple of commuting shifts on H2
W (D) and there exists an inner function Θ ∈

H∞
B(W ,En)

(D) such that

S = ΘH2
W (D),

and
κiΘ = ΘΦi,

where
Φi(w) = PW (IS − wPS M∗

z )
−1Mκi |W ,

for all w ∈ D and i = 1, . . . , n.

A few remarks are in order.

Remark 3.3. Note that since ∥wPS M∗
z∥ < 1 for all w ∈ D, the B(W)-valued func-

tion Φi, as defined in the above theorem, is analytic on D. Here the boundedness
condition (or the shift condition) on MΦi on H2

W (D) assures that Φi ∈ H∞
B(W)(D)

for all i = 1, . . . , n.

Remark 3.4. Clearly, one obvious necessary condition for a closed subspace S of
H2
En
(D) to be invariant for (Mz, Mκ1 , . . . , Mκn) is that S is invariant for Mz, and,

consequently
S = ΘH2

W (D),
is the classical Beurling, Lax and Halmos representation of S , where W = S ⊖
zS is the wandering subspace for Mz|S and Θ ∈ H∞

B(W ,En)
(D) is the (unique

up to a unitary constant right factor; see Section 5) Beurling, Lax and Halmos
inner function. Moreover, since κiS ⊆ S , another condition which is evidently
necessary (by Douglas’s range inclusion theorem) is that

κiΘ = ΘΓi,

for some Γi ∈ B(H2
W (D)), i = 1, . . . , n. In the above theorem, we prove that Γi is

explicit, that is
Γi = Φi ∈ H∞

B(W)(D),

for all i = 1, . . . , n, and (Γ1, . . . , Γn) is an n-tuple of commuting shifts on H2
W (D).

This is probably the most non-trivial part of our treatment to the invariant sub-
space problem in the present setting.

Remark 3.5. Let E be a Hilbert space, and let S ⊆ H2
En
(D) be a closed invariant

subspace for (Mz, Mκ1 , . . . , Mκn) on H2
En
(D). Let W , Θ and

{Φi}n
i=1 ⊆ H∞

B(W ,En)
(D),
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be as in Theorem 3.2. Now it follows from PS = MΘ M∗
Θ that

PS M∗m
z = MΘ M∗m

z M∗
Θ,

for all m ≥ 0. Hence the equality

(IS − wPS M∗
z )

−1 =
∞

∑
m=0

wmPS M∗m
z ,

yields
(IS − wPS M∗

z )
−1 = MΘ(IH2

W (D) − wM∗
z )

−1M∗
Θ,

so that
Φi(w) = PW MΘ(IH2

W (D) − wM∗
z )

−1M∗
Θ Mκi |W ,

for all w ∈ D and i = 1, . . . , n.

A well known consequence of the Beurling, Lax and Halmos theorem (cf.
page 239, Foias and Frazho [8]) implies that a closed subspace S ⊆ H2

E (D) is
invariant for Mz if and only if S ∼= H2

F (D) for some Hilbert space F with

dim F ≤ dim E .

More specifically, if S is a closed invariant subspace of H2
E (D) and if W = S ⊖ zS ,

then the pure isometry Mz|S on S and Mz on H2
W (D) are unitarily equivalent, and

dim W ≤ dim E . The above theorem sets the stage for a similar result.

Corollary 3.6. Let E be a Hilbert space, and let S ⊆ H2
En
(D) be a closed invariant

subspace for (Mz, Mκ1 , . . . , Mκn) on H2
En
(D). Let W = S ⊖ zS , and

Φi(w) = PW (IS − wPS M∗
z )

−1Mκi |W (w ∈ D),
for all i = 1, . . . , n. Then (Mz|S , Mκ1 |S , . . . , Mκn |S ) on S and (Mz, MΦ1 , . . . , MΦn)

on H2
W (D) are unitarily equivalent.

Proof. Let W , Θ and {Φi}n
i=1 ⊆ H∞

B(W)(D) be as in Theorem 3.2. Then it
follows that

X : H2
W (D) → ΘH2

W (D) = S ,
is a unitary operator, where

X = MΘ.
It is now clear that X intertwines (Mz, MΦ1 , . . . , MΦn) on H2

W (D) and

(Mz|S , Mκ1 |S , . . . , Mκn |S ),
on S . This completes the proof of the corollary.

Let E be a Hilbert space, and let S ⊆ H2
En
(D) be an invariant subspace

for Mz. Then S = ΘH2
W (D), where W = S ⊖ zS and Θ ∈ H∞

B(W ,En)
(D) is the

Beurling, Lax and Halmos inner function. A natural question arises in connection
with Remark 3.4: Under what additional condition(s) on Θ is S also invariant for
(Mκ1 , . . . , Mκn)? An answer to this question directly follows, with appropriate
reformulation, from Theorem 3.2 and Remark 3.5:
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Theorem 3.7. Let E be a Hilbert space, and let S ⊆ H2
En
(D) be an invariant subspace

for Mz on H2
En
(D). Let S = ΘH2

W (D), where W = S ⊖ zS and Θ ∈ H∞
B(W ,En)

(D) is
the Beurling Lax and Halmos inner function. Set

Φi(w) = PW MΘ(IH2
W (D) − wM∗

z )
−1M∗

Θ Mκi |W ,

for all w ∈ D and i = 1, . . . , n. Then S is invariant for (Mκ1 , . . . , Mκn) if and only if
(MΦ1 , . . . , MΦn) on H2

W (D) is an n-tuple of commuting shifts, and

κiΘ = ΘΦi,

for all i = 1, . . . , n. Moreover, in this case, (Mz|S , Mκ1 |S , . . . , Mκn |S ) on S and
(Mz, MΦ1 , . . . , MΦn) on H2

W (D) are unitarily equivalent.

Thus the n-tuples of commuting shifts

(MΦ1 , . . . , MΦn) on H2
L(D),

for Hilbert spaces L and inner multipliers {Φi}n
i=1 ⊆ H∞

B(L)(D), yielding invari-

ant subspaces of vector-valued Hardy spaces over Dn+1 are distinguished among
the general n-tuples of commuting shifts by the fact that

Φi(w) = PL(IS − wPS M∗
z )

−1Mκi |L (w ∈ D),

where S = ΘH2
L(D) for some inner function Θ ∈ H∞

B(L,En)
(D), and

κiΘ = ΘΦi,

for all i = 1, . . . , n. Moreover, in view of Remark 3.5, the above condition is
equivalent to the condition that

Φi(w) = PW MΘ(IH2
L(D)

− wM∗
z )

−1M∗
Θ Mκi |W ,

for some inner function Θ ∈ H∞
B(L,En)

(D) such that

κiΘ = ΘΦi,

for all i = 1, . . . , n.

4. Representations of model isometries

In connection with Theorem 3.1 (or part (i) of Theorem 1.1), a natural ques-
tion arises: Given a Hilbert space E , how to identify Hilbert spaces F and B(F )-
valued multipliers {Ψ}n

i=1 ⊆ H∞
B(F )(D) such that (Mz, MΨ1 , . . . , MΨn) on H2

Fn
(D)

and (Mz, Mκ1 , . . . , Mκn) on H2
En
(D) are unitarily equivalent. More generally, given

a Hilbert space E , characterize (n + 1)-tuples of commuting shifts on Hilbert
spaces that are unitarily equivalent to (Mz, Mκ1 , . . . , Mκn) on H2

En
(D).

This question has a simple answer, although a rigorous proof of it involves
some technicalities. More specifically, the answer to this question is related to a
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numerical invariant, the rank of an operator associated with the Szegö kernel on
Dn+1. First, however, we need a few more definitions.

Let (T1, . . . , Tm) be an m-tuple of commuting contractions on a Hilbert space
H. Define the defect operator [12] corresponding to (T1, . . . , Tm) as

S−1
m (T1, . . . , Tm) = ∑

0≤|k|≤m
(−1)|k|Tk1

1 · · · Tkm
m T∗k1

1 · · · T∗km
m ,

where 0 ≤ ki ≤ 1, i = 1, . . . , m. This definition is motivated by the representation
of the Szegö kernel on the polydisc Dm (see Section 2). We say that (T1, . . . , Tm) is
of rank p (p ∈ N∪ {∞}) if

rank [S−1
m (T1, . . . , Tm)] = p,

and we write
rank (T1, . . . , Tm) = p.

The defect operators plays an important role in multivariable operator theory (cf.
[10, 12]). For instance, if E is a Hilbert space, then the defect operator of the
multiplication operator tuple (Mz1 , . . . , Mzn) on H2

E (D
n) is given by

S−1
n (Mz1 , . . . , Mzn) = PH2

c (Dn) ⊗ IE ,

where PH2
c (Dn) denotes the orthogonal projection of H2(Dn) onto the one dimen-

sional space of constant functions. Furthermore, as is evident from the definition
(and also see the proof of Theorem 3.1), the defect operator for (Mz, Mκ1 , . . . , Mκn)
on H2

En
(D) is given by

S−1
n+1(Mz, Mκ1 , . . . , Mκn) = PH2

c (D) ⊗ PH2
c (Dn) ⊗ IE .

In particular,

dim E = rank (Mz, Mκ1 , . . . , Mκn) = rank (Mz1 , . . . , Mzn).

Now let E and K be Hilbert spaces, and let (V, V1 . . . , Vn) be an (n+ 1)-tuple
of commuting shifts on K. Suppose that (V, V1 . . . , Vn) and (Mz, Mκ1 , . . . , Mκn) on
K and H2

En
(D), respectively, are unitarily equivalent. In this case, it is necessary

that Mz on H2
En
(D) and V on K are unitarily equivalent. As VVi = ViV and

ViVj = VjVi for all i, j = 1, . . . , n, Theorem 2.1 implies that (V, V1, . . . , Vn) and
(Mz, MΦ1 , . . . , MΦn) on H2

W (D) are unitarily equivalent, where W = K ⊖ VK,
and

Φi(z) = PW (IK − zV∗)−1Vi|W ,

for all z ∈ D and i = 1, . . . , n. Since (Mz, Mκ1 , . . . , Mκn) on H2
En
(D) is doubly

commuting, another necessary condition is that (V, V1, . . . , Vn+1) is doubly com-
muting. In particular, V∗Vi = ViV∗, and so

V∗mVi = ViV∗m,
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for all m ≥ 0 and i = 1, . . . , n. Using V∗m|W = 0 for all m ≥ 1, this implies that
Φi(z) = PWVi|W for all z ∈ D. Again using VV∗

i = V∗
i V, we have

Vi(I − VV∗) = (I − VV∗)Vi,

for all i = 1, . . . , n. This implies that W is a reducing subspace for Vi, and hence
we obtain

Φi(z) = Vi|W ,

that is, Φi is a constant shift-valued function on D for all i = 1, . . . , n. This obser-
vation leads to the following proposition:

Proposition 4.1. Let (V, V1, . . . , Vn) be an (n + 1)-tuple of doubly commuting shifts
on some Hilbert space H. Let W = H⊖ VH, and let

Φi(z) = Vi|W (i = 1, . . . , n),

for all z ∈ D. Then W is reducing for Vi, i = 1, . . . , n, and (V, V1, . . . , Vn) and
(Mz, MΦ1 , . . . , MΦn) on H2

W (D) are unitarily equivalent.

In particular, if L is a Hilbert space and (Mz, MΦ1 , . . . , MΦn) on H2
L(D), for

some {Φi}n
i=1 ⊆ H∞

B(L)(D), is a tuple of doubly commuting shifts, then

Φi(z) = Φi(0) (z ∈ D),

that is, Φ is a constant function for all i = 1, . . . , n.
Now we return to (V, V1 . . . , Vn), which in turn is an (n+ 1)-tuple of doubly

commuting shifts on H. For simplicity of notation, set U1 = V, Ui+1 = Vi for all
i = 1, . . . , n, and let

D = ran S−1
n+1(V, V1, . . . , Vn) =

n+1
∩

i=1
ker U∗

i ,

is the wandering subspace for (V, V1, . . . , Vn) (cf. [19]). From here, one can use
the fact that (cf. Theorem 3.3 in [19])

H = ⊕
k∈Zn+1

+

UkD,

to prove that the map Γ : H → H2
D(D

n+1) defined by

Γ(Ukη) = zkη (k ∈ Zn+1
+ , η ∈ D),

is a unitary and
ΓUi = Mzi Γ,

for all i = 1, . . . , n + 1. Therefore, (V, V1, . . . , Vn) on H and (Mz1 , . . . , Mzn+1) on
H2
D(D

n+1) are unitarily equivalent. In addition, if E is a Hilbert space, and

dim E = rank (V, V1, . . . , Vn) (= dimD),

then it follows that (see the equivalence of (ii) and (v) of Theorem 3.3 in [19])
(Mz1 , . . . , Mzn+1) on H2

D(D
n+1) and (Mz1 , . . . , Mzn+1) on H2

E (D
n+1) are unitarily

equivalent. But then Theorem 3.1 yields immediately that (Mz1 , . . . , Mzn+1) on
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H2
D(D

n+1) and (Mz, Mκ1 , . . . , Mκn) on H2
En
(D) are unitarily equivalent. This gives

the following:

Theorem 4.2. In the setting of Proposition 4.1 the following hold: (V, V1, . . . , Vn) on
H, (Mz, MΨ1 , . . . , MΨn) on H2

W (D), and (Mz, Mκ1 , . . . , Mκn) on H2
En
(D) are unitarily

equivalent, where E is a Hilbert space and

dim E = rank (V, V1, . . . , Vn).

Therefore, an (n + 1)-tuple of doubly commuting shift operators

(Mz, MΦ1 , . . . , MΦn),

is completely determined by the numerical invariant rank (Mz, MΦ1 , . . . , MΦn):

Corollary 4.3. Let E and F be Hilbert spaces. Let (Mz, MΨ1 , . . . , MΨn) be an (n +

1)-tuple of commuting shifts on H2
F (D). Then (Mz, MΨ1 , . . . , MΨn) on H2

F (D) and
(Mz, Mκ1 , . . . , Mκn) on H2

En
(D) are unitarily equivalent if and only if

(Mz, MΨ1 , . . . , MΨn)

is doubly commuting and

dim E = rank (Mz, MΨ1 , . . . , MΨn).

The above corollary should be compared with the uniqueness of the multi-
plicity of shift operators on Hilbert spaces [13].

5. Nested invariant subspaces and uniqueness

Now we proceed to the description of nested invariant subspaces of H2
En
(D).

Let S1 and S2 be two closed invariant subspaces for

(Mz, Mκ1 , . . . , Mκn) on H2
En
(D).

Let Wj = S ⊖ zSj, and let

Φj,i(w) = PWj(ISj − wPSj M
∗
z )

−1Mκi |Wj ,

for all w ∈ D, j = 1, 2, and i = 1, . . . , n. Hence by Theorem 3.2 there exists an
inner function Θj ∈ H∞

B(Wj ,En)
(D) such that

Sj = ΘjH2
Wj

(D),

and

(5.1) κiΘj = ΘjΦj,i,

for all j = 1, 2, and i = 1, . . . , n. Now, let

S1 ⊆ S2,

that is
Θ1H2

W1
(D) ⊆ Θ2H2

W2
(D).
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Then there exists an inner multiplier Ψ ∈ H∞
B(W1,W2)

(D) [8] such that

Θ1 = Θ2Ψ.

Using this in (5.1), we get

Θ2ΨΦ1,i = Θ1Φ1,i

= κiΘ1

= κiΘ2Ψ

= Θ2Φ2,iΨ,

and so
ΨΦ1,i = Φ2,iΨ,

for all i = 1, . . . , n. On the other hand, given two invariant subspaces Sj =

ΘjH2
Wj

(D), j = 1, 2, for (Mz, Mκ1 , . . . , Mκn) on H2
En
(D) described as above, if there

exists an inner multiplier Ψ ∈ H∞
B(W1,W2)

(D) such that Θ1 = Θ2Ψ, then it readily
follows that S1 ⊆ S2. We state this in the following theorem:

Theorem 5.1. Let E be a Hilbert space, and let S1 = Θ1H2
W1

(D) and S2 = Θ2H2
W2

(D)
be two invariant subspaces for (Mz, Mκ1 , . . . , Mκn) on H2

En
(D). Let

Φj,i(w) = PWj(ISj − wPSj M
∗
z )

−1Mκi |Wj ,

for all w ∈ D, j = 1, 2, and i = 1, . . . , n. Then S1 ⊆ S2 if and only if there exists an
inner multiplier Ψ ∈ H∞

B(W1,W2)
(D) such that Θ1 = Θ2Ψ and ΨΦ1,i = Φ2,iΨ for all

i = 1, . . . , n.

We now proceed to prove the uniqueness of the representations of invariant
subspaces as described in Theorem 3.2. Let E be a Hilbert space, and let S be an
invariant subspace for (Mz, Mκ1 , . . . , Mκn) on H2

En
(D). Let S = ΘH2

W (D) and

κiΘ = ΘΦi (i = 1, . . . , n),

in the notation of Theorem 3.2. Now assume that Θ̃ ∈ H∞
B(W̃)

(D) is an inner

function, for some Hilbert space W̃ , and

S = Θ̃H2
W̃ (D).

Also assume that
κiΘ̃ = Θ̃Φ̃i,

for some shift MΦ̃i
on H2

W̃ (D) and i = 1, . . . , n. Then as an application of the
uniqueness of the Beurling, Lax and Halmos inner functions (cf. Theorem 2.1 in
page 239 [8]) to

ΘH2
W (D) = Θ̃H2

W̃ (D),
we get

Θ = Θ̃τ,
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for some unitary operator (constant in z) τ : W → W̃ . Then, the previous line of
argument shows that

τΦi = Φ̃iτ,
for all i = 1, . . . , n. This proves the uniqueness of the representations of invariant
subspaces in Theorem 3.2.

Theorem 5.2. In the setting of Theorem 3.2, if S = Θ̃H2
W̃ (D) and κiΘ̃ = Θ̃Φ̃i for

some Hilbert space W̃ , inner function Θ̃ ∈ H∞
B(W̃)

(D) and shift MΦ̃i
on H2

W̃ (D), i =

1, . . . , n, then there exists a unitary operator (constant in z) τ : W → W̃ such that

Θ = Θ̃τ,

and
τΦi = Φ̃iτ,

for all i = 1, . . . , n.

6. Applications

In this section, first, we explore a natural connection between the intertwin-
ing maps on vector-valued Hardy space over D and the commutators of the mul-
tiplication operators on the Hardy space over Dn+1. Then, as a noteworthy added
benefit to our approach, we compute a complete set of unitary invariants for in-
variant subspaces of vector-valued Hardy space over Dn+1. We also test our main
results on invariant subspaces unitarily equivalent to H2

En
(D). As a by-product,

we obtain some useful results about the structure of invariant subspaces for the
Hardy space. We begin with the following definition.

Let E and Ẽ be two Hilbert spaces. Let S and S̃ be invariant subspaces
for the (n + 1)-tuples of multiplication operators on H2

En
(D) and H2

Ẽn
(D), respec-

tively. We say that S and S̃ are unitarily equivalent, and write S ∼= S̃ , if there is a
unitary map U : S → S̃ such that

UMz|S = Mz|S̃U and UMκi |S = Mκi |S̃U,

for all i = 1, . . . , n.

6.1. INTERTWINING MAPS. Recall that, given a Hilbert space E , there exists a
unitary operator UE : H2

E (D
n+1) → H2

En
(D) (see Section 3) such that

UE Mz1 = MzUE ,

and
UE Mzi+1 = Mκi UE ,

for all i = 1, . . . , n. Let F be another Hilbert space, and let X : H2
E (D

n+1) →
H2
F (D

n+1) be a bounded linear operator such that

(6.1) XMzi = Mzi X,
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for all i = 1, . . . , n + 1. Set
Xn = UF XU∗

E .

Then Xn : H2
En
(D) → H2

Fn
(D) is bounded and

(6.2) Xn Mz = MzXn and Xn Mκi = Mκi Xn,

for all i = 1, . . . , n. Conversely, a bounded linear operator Xn : H2
En
(D) →

H2
Fn
(D) satisfying (6.2) yields a canonical bounded linear map X : H2

E (D
n+1) →

H2
F (D

n+1), namely
X = U∗

F XnUE

such that (6.1) holds. Moreover, this construction shows that

X ∈ B(H2
E (D

n+1), H2
F (D

n+1))

is a contraction (respectively, isometry, unitary, etc.) if and only if

Xn ∈ B(H2
En
(D), H2

Fn
(D))

is a contraction (respectively, isometry, unitary, etc.).
For brevity, any map satisfying (6.2) will be referred to module maps.

6.2. A COMPLETE SET OF UNITARY INVARIANTS. Let E and Ẽ be Hilbert spaces,
and let {Ψ1, . . . , Ψn} ⊆ H∞

B(E)(D) and {Ψ̃1, . . . , Ψ̃n} ⊆ H∞
B(Ẽ)(D). We say that

{Ψ1, . . . , Ψn} and {Ψ̃1, . . . , Ψ̃n} coincide if there exists a unitary operator τ : E → Ẽ
such that

τΨi(z) = Ψ̃i(z)τ,

for all z ∈ D and i = 1, . . . , n.
Now let S ⊆ H2

En
(D) and S̃ ⊆ H2

Ẽn
(D) be invariant subspaces for

(Mz, Mκ1 , . . . , Mκn)

on H2
En
(D), and H2

Ẽn
(D), respectively. Let S ∼= S̃ . By Theorem 3.7, this implies

that
(Mz, MΦ1 , . . . , MΦn) on H2

W (D),
and (Mz, MΦ̃1

, . . . , MΦ̃n
) on H2

W̃ (D) are unitarily equivalent, where W = S ⊖ zS ,
W̃ = S̃ ⊖ zS̃ and

Φi(w) = PW (IS − wPS M∗
z )

−1Mκi |W ,

and
Φ̃i(w) = PW̃ (IS̃ − wPS̃ M∗

z )
−1Mκi |W̃ ,

for all w ∈ D and i = 1, . . . , n. Let U : H2
W (D) → H2

W̃ (D) be a unitary map such
that

UMz = MzU,

and
UMΦi = MΦ̃i

U,
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for all i = 1, . . . , n. The former condition implies that

U = IH2(D) ⊗ τ,

for some unitary operator τ : W → W̃ , and so the latter condition implies that

τΦi(z) = Φ̃i(z)τ,

for all z ∈ D and i = 1, . . . , n. Therefore {Φ1, . . . , Φn} and {Φ̃1, . . . , Φ̃n} coincide.
To prove the converse, assume now that the above equality holds for a given
unitary operator τ : W → W̃ . Obviously U = IH2(D) ⊗ τ is a unitary from
H2
W (D) to H2

W̃ (D). Clearly UMz = MzU and UMΦi = MΦ̃i
U for all i = 1, . . . , n.

So we have the following theorem on a complete set of unitary invariants for
invariant subspaces:

Theorem 6.1. Let E and Ẽ be Hilbert spaces. Let S ⊆ H2
En
(D) and S̃ ⊆ H2

Ẽn
(D) be

invariant subspaces for (Mz, Mκ1 , . . . , Mκn) on H2
En
(D) and H2

Ẽn
(D), respectively. Then

S ∼= S̃ if and only if {Φ1, . . . , Φn} and {Φ̃1, . . . , Φ̃n} coincide.

Now, if we consider the Beurling, Lax and Halmos representations of the
given invariant subspaces S and S̃ as

S = ΘH2
W (D),

and
S̃ = Θ̃H2

W̃ (D),

where Θ ∈ H∞
B(W ,En)

(D) and Θ̃ ∈ H∞
B(W̃ ,Ẽn)

(D), then, in view of Remark 3.5, the
multipliers in Theorem 6.1 can be represented as

Φi(w) = PW MΘ(IH2
W (D) − wM∗

z )
−1M∗

Θ Mκi |W ,

and
Φ̃i(w) = PW̃ MΘ̃(IH2

W̃ (D) − wM∗
z )

−1M∗
Θ̃

Mκi |W̃ ,

for all w ∈ D and i = 1, . . . , n.

6.3. UNITARILY EQUIVALENT INVARIANT SUBSPACES. Let E and F be Hilbert
spaces, and let Xn : H2

En
(D) → H2

Fn
(D) be a module map. If Xn is an isome-

try, then the closed subspace S ⊆ H2
Fn
(D) defined by

S = Xn(H2
En
(D)),

is invariant for (Mz, Mκ1 , . . . , Mκn) on H2
Fn
(D) and S ∼= H2

En
(D). In other words,

the tuples (Mz|S , Mκ1 |S , . . . , Mκn |S ) on S and (Mz, Mκ1 , . . . , Mκn) on H2
En
(D) are

unitarily equivalent. Conversely, let S ⊆ H2
Fn
(D) be a closed invariant subspace

for (Mz, Mκ1 , . . . , Mκn) on H2
Fn
(D), and let S ∼= H2

En
(D) for some Hilbert space E .

Let X̃n : H2
En
(D) → S be the unitary map which intertwines (Mz, Mκ1 , . . . , Mκn)
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on H2
En
(D) and (Mz|S , Mκ1 |S , . . . , Mκn |S ) on S . Suppose that iS : S ↪→ H2

Fn
(D) is

the inclusion map. Then
Xn = iS ◦ X̃n,

is an isometry from H2
En
(D) to H2

Fn
(D), Xn Mz = MzXn, Xn Mκi = Mκi Xn for all

i = 1, . . . , n, and
ran Xn = S .

Therefore, if S ⊆ H2
Fn
(D) is a closed invariant subspace for (Mz, Mκ1 , . . . , Mκn)

on H2
Fn
(D), then S ∼= H2

En
(D), for some Hilbert space E , if and only if there exists

an isometric module map Xn : H2
En
(D) → H2

Fn
(D) such that S = Xn(H2

En
(D)).

Now, it also follows from the discussion at the beginning of this section that X :
H2
E (D

n+1) → H2
F (D

n+1) (corresponding to the module map Xn) is an isometry
and XMzi = Mzi X for all i = 1, . . . , n. Then Theorem 7.1 tells us that

dim E ≤ dim F .

Therefore, we have the following theorem:

Theorem 6.2. Let E and F be Hilbert spaces, and let S ⊆ H2
Fn
(D) be a closed invariant

subspace for (Mz, Mκ1 , . . . , Mκn) on H2
Fn
(D). Then S ∼= H2

En
(D) if and only if there

exists an isometric module map Xn : H2
En
(D) → H2

Fn
(D) such that

S = Xn H2
En
(D).

Moreover, in this case
dim E ≤ dim F .

Of particular interest is the case when F = C. In this case (see Section 3)
the tensor product Hilbert space Fn = H2(Dn) ⊗ C is denoted by Hn, that is,
Hn = H2(Dn).

Corollary 6.3. Let S ⊆ H2
Hn

(D) be a closed invariant subspace for (Mz, Mκ1 , . . . , Mκn)

on H2
Hn

(D). Then S ∼= H2
Hn

(D) if and only if there exists an isometric module map
Xn : H2

Hn
(D) → H2

Hn
(D) such that

S = Xn(H2
Hn

(D)).

The above result, in the polydisc setting, was first observed by Agrawal,
Clark and Douglas (see Corollary 1 in [1]). Also see Mandrekar [17].

We now proceed to analyze doubly commuting invariant subspaces. Let
F be a Hilbert space, and let S ⊆ H2

Fn
(D) be a closed invariant subspace for

(Mz, Mκ1 , . . . , Mκn) on H2
Fn
(D). Set

V = Mz|S ,

and
Vi = Mκi |S ,



INVARIANT SUBSPACES IN THE POLYDISC 21

for all i = 1, . . . , n. We say that S is doubly commuting if V∗
i Vj = VjV∗

i for all
1 ≤ i < j ≤ n, and VV∗

l = V∗
l V for all l = 1, . . . , n.

Now let E be a Hilbert space, and suppose that H2
En
(D) ∼= S . In view of The-

orem 6.2 this implies that (V, V1, . . . , Vn) on S and (Mz, Mκ1 , . . . , Mκn) on H2
En
(D)

are unitarily equivalent. Because H2
En
(D) is doubly commuting this immediately

implies that S is doubly commuting.
Conversely, let S be doubly commuting. From Theorem 3.7 we readily con-

clude that (Mz, MΦ1 , . . . , MΦn) on H2
W (D) and (V, V1, . . . , Vn) on S are unitarily

equivalent.
Applying Theorem 4.2 with (Mz, MΦ1 , . . . , MΦn) in place of

(Mz, MΨ1 , . . . , MΨn),

we see that (V, V1, . . . , Vn) on S and (Mz, Mκ1 , . . . , Mκn) on H2
En
(D) are unitarily

equivalent, where E is a Hilbert space. Now, proceeding as in the proof of the
necessary part of Theorem 6.2 one checks that there exists a module isometry
Xn : H2

En
(D) → H2

Fn
(D) such that

ran Xn = S .

This proves the following variant of Theorem 6.2:

Theorem 6.4. Let F be a Hilbert space. An invariant subspace S ⊆ H2
Fn
(D) is doubly

commuting if and only if there exists a Hilbert space E and an isometric module map
Xn : H2

En
(D) → H2

Fn
(D) such that

S = Xn H2
En
(D).

Moreover, in this case

dim E ≤ dim F .

The above result, in the polydisc setting, was first observed by Mandrekar
[17]. Also this should be compared with the discussion prior to Corollary 3.6 on
the application of the classical Beurling, Lax and Halmos theorem to invariant
subspaces of the Hardy space over the unit disc.

7. Appendix: An inequality on fibre dimensions

Given a Hilbert space E , the n-tuple of multiplication operators by the coor-
dinate functions zi, i = 1, . . . , n, on H2

E (D
n) is denoted by (ME

z1
, . . . , ME

zn). When-
ever E is clear from the context, we will omit the superscript E . Clearly, one
can regard E as a closed subspace of H2

E (D
n) by identifying E with the constant

E -valued functions on Dn.
In this appendix, we aim to prove the following result:
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Theorem 7.1. Let E1 and E2 be Hilbert spaces and let X : H2
E1
(Dn) → H2

E2
(Dn) be an

isometry. If
XME1

zi = ME2
zi X,

for all i = 1, . . . , n, then
dim E1 ≤ dim E2.

We believe that the above result (possibly) follows from the boundary be-
havior of bounded analytic functions following the classical case n = 1 (see the
remark at the end of this appendix). Here, however, we take a shorter approach
than generalizing the classical theory of bounded analytic functions on the unit
polydisc. We first prove the L2-version of the above statement.

Theorem 7.2. Let E1 and E2 be Hilbert spaces and let X̃ : L2
E1
(Tn) → L2

E2
(Tn) be an

isometry. If
X̃M

eiθj = M
eiθj X̃,

for all j = 1, . . . , n, then
dim E1 ≤ dim E2.

Proof. By the triviality, we can assume that

m := dim E2 < ∞.

Let {ηj}m
j=1 be an orthonormal basis for E2. Since {ek : k ∈ Zn}, where

ek =
n

∏
j=1

eikjθj (k ∈ Zn),

is an orthonormal basis for L2(Tn), this implies that {ekηj : k ∈ Zn, j = 1, . . . , n}
is an orthonormal basis for L2

E2
(Tn). Let { f j : j ∈ J} be an orthonormal basis for

X̃(E1), where J is a subset of Z+. In view of the intertwining property of X̃, this
implies that {ek f j : k ∈ Zn, j ∈ J} is an orthonormal basis for

X̃(L2
E1
(Tn)) ⊆ L2

E2
(Tn),

and so, an orthonormal set in L2
E2
(Tn). It follows from the Parseval’s identity that

dim E1 = dim(X̃E1)

= ∑
j∈J

∥ f j∥2

= ∑
j∈J

m

∑
l=1

∑
k∈Zn

|⟨Mk
eiθ ηl , f j⟩|2

= ∑
j∈J

m

∑
l=1

∑
k∈Zn

|⟨ηl , Mk
eiθ f j⟩|2

= ∑
j∈J

m

∑
l=1

∑
k∈Zn

|⟨ηl , ek f j⟩|2,
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on the one hand, and on the other, by Bessel’s Inequality,

m =
m

∑
l=1

∥ηl∥2

≥
m

∑
l=1

∑
j∈J

∑
k∈Zn

|⟨ηl , ek f j⟩|2.

This proves dim E1 ≤ m and completes the proof of the theorem.

Proof of Theorem 7.1: Define X̃ on {ekη : k ∈ Zn, η ∈ E1} by

X̃(ekη) = ekXη,

for all k ∈ Zn and η ∈ E1. The intertwining property of the isometry X then gives

⟨X̃(ekη), X̃(elζ)⟩L2
E2
(Tn) = ⟨ekη, elζ⟩L2

E1
(Tn),

for all k, l ∈ Zn and η, ζ ∈ E1. Therefore this map extends uniquely to an isometry,
denoted again by X̃ from L2

E1
(Tn) to L2

E2
(Tn), such that

X̃M
eiθj = M

eiθj X̃,

for all j = 1, . . . , n. The result then easily follows from Theorem 7.2.
If X : H2

E1
(Dn) → H2

E2
(Dn) is an isometry, and if XMzi = Mzi X for all

i = 1, . . . , n, then it is easy to see that

X = MΘ,

for some isometric multiplier Θ ∈ H∞
B(E1,E2)

(Dn) (that is, MΘ : H2
E1
(Dn) →

H2
E2
(Dn) is an isometry). In the case n = 1, the conclusion of Theorem 7.1 fol-

lows from the boundary behavior of bounded analytic functions on the open unit
disc: MΘ is an isometry if and only if Θ(eiθ) is isometry a.e. on T (cf. [18]). Un-
like the proof of the classical case n = 1, our proof does not use the boundary
behavior of Θ.
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