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ON UNITARILY EQUIVALENT SUBMODULES

RONALD G. DOUGLAS AND JAYDEB SARKAR

Abstract. The Hardy space on the unit ball in Cn provides examples of a quasi-free,

finite rank Hilbert module which contains a pure submodule isometrically isomorphic

to the module itself. For n = 1 the submodule has finite codimension. In this note

we show that this phenomenon can only occur for modules over domains in C and for

finitely-connected domains only for Hardy-like spaces, the bundle shifts. Moreover,

we show for essentially reductive modules that even when the codimension is infinite,

the module is subnormal and again, on nice domains such as the unit ball, must be

Hardy-like.

1. Introduction

One approach to multivariate operator theory is via the study of a Hilbert space

which are modules over some natural algebra. Examples of such an algebra are A(Ω),

which can be defined for any bounded domains Ω in Cn as the completion, with respect

to the supremum norm over Ω, of the functions holomorphic on a neighborhood of the

closure of Ω. One way to obtain such Hilbert modules is as the closure of A(Ω) in

L2(µ) for some measure µ on the closure of Ω. For volume measure, one obtains the

Bergman space L2
a(Ω) and, when ∂Ω is smooth, the Hardy space H2(Ω) for surface

measure on ∂Ω. There is a class of modules called quasi-free to which these examples

belong.

One consequence of the celebrated theorem of Beurling [6] is that all non-zero sub-

modules of H2(D), where D is the unit disk in C, are unitarily equivalent to H2(D).

For submodules of H2(Dn) over A(Dn), n > 1, some are unitarily equivalent to H2(Dn)
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and some are not. For the Hardy module H2(∂Bn) over the ball algebra A(Bn), for the

unit ball Bn in Cn, the existence of inner functions on Bn [2] established the existence

of proper submodules of H2(∂Bn) that are unitarily equivalent to H2(Bn). For the

Bergman modules over the polydisk or the ball, one can show (cf. [7, 24, 25]) that no

proper submodule is unitarily equivalent to the Bergman module itself.

In this note we consider the question of which Hilbert modules have proper sub-

modules unitarily equivalent to the original. If U is an isometric module map on the

Hilbert module M, then UM is a submodule of M unitarily equivalent to M. Con-

versely, all such unitarily equivalent submodules have such a representation. Now U is

unitary iff UM = M. If U is a nonconstant unitary module map on M, although its

existence yields some implications about the nature of M, this is not the phenomenon

we examine in this note. Here, we consider the case in which
∞⋂

k≥0

UkM = (0), which,

for reasons which are apparent, we will call a pure unitarily equivalent submodule. We

are concerned with the question of when such submodules exist. More precisely, what

can one say about the algebra or the module in such a case. We prove three sets of

results with some corollaries.

First, we show if dimM ⊖ UM < ∞, then n = 1. Moreover, for a finite rank k,

quasi-free Hilbert module M over A(D), the existence of a pure unitarily equivalent

submodule of finite codimension implies that M is unitarily equivalent to H2
E(D) with

dim E = k. If Ω is finitely connected with nice boundary, then the same result holds

with bundle shifts (cf. [1]) replacing the Hardy space. Second, we show that an es-

sentially reductive, quasi-free Hilbert module M over A(Ω) for which there exists a

pure unitarily equivalent submodule must be subnormal and for Ω = Bn, is unitarily

equivalent to H2
E(B

n) with dim E < ∞. All of the results lend support to the conjecture

that isometrically isomorphic submodules of finite codimension for which the original

module is essentially reductive can occur only for Šilov modules [15]. Finally, for a

class of measures µ on the closure of Ω, we show that two submodules of L2
a(µ) are

isometrically isomorphic iff they are equal generalizing results of Richter [25], Putinar

[24], and Guo–Hu–Xu [21].
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An ancillary goal of this note is the development of techniques for the study of mul-

tivariate operator theory and we draw on methods from algebra and operator theory.

All the Hilbert spaces in this note are separable and are over the complex field C.

For a Hilbert space H, we denote the Banach space of all bounded linear operators by

L(H).

We begin by recalling the definition of quasi-free Hilbert module over A(Ω) which

was introduced in ([13],[12]) and is related to earlier ideas of Curto–Salinas [9]. The

Hilbert space M is said to be a contractive Hilbert module over A(Ω) if M is a unital

module over A(Ω) with module map A(Ω) ×M → M such that

‖ϕf‖M ≤ ‖ϕ‖A(Ω)‖f‖M

for ϕ in A(Ω) and f in M.

A Hilbert space R is said to be a quasi-free Hilbert module of rank m over A(Ω),

1 ≤ m ≤ ∞, if it is obtained as the completion of the algebraic tensor product A(Ω)⊗ℓ2
m

relative to an inner product such that:

(1) evalzzz : A(Ω) ⊗ l2m → l2m is bounded for zzz in Ω and locally uniformly bounded on

Ω;

(2) ‖ϕ(
∑

θi ⊗ xi)‖R = ‖
∑

ϕθi ⊗ xi‖R ≤ ‖ϕ‖A(Ω)‖θi ⊗ xi‖R for ϕ, {θi} in A(Ω) and

{xi} in ℓ2
m; and

(3) For {Fi} a sequence in A(Ω)⊗ ℓ2
m which is Cauchy in the R-norm, it follows that

evalzzz(Fi) → 0 for all zzz in Ω if and only if ‖Fi‖R → 0.

If Iωωω0
denotes the maximal ideal of polynomials in C[zzz] = C[z1, . . . , zn] which vanish

at ωωω0 for some ωωω0 in Ω, then the Hilbert module M is said to be semi-Fredholm at ωωω0

if dimM/Iωωω0
·M = m is finite (cf. [19]). In particular, note that M semi-Fredholm

at ωωω0 implies that Iωωω0
M is a closed submodule of M.

One can show that ωωω → R/Iωωω ·R can be made into a rank m Hermitian holomorphic

vector bundle over Ω if R is semi-Fredholm at ωωω in Ω, dimR/Iωωω · R is constant m and

R is quasi-free, 1 ≤ m < ∞. Actually, all we need here is that the bundle obtained is

real-analytic which is established in ([9], Theorem 2.2).
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A quasi-free Hilbert module of rank m is a reproducing kernel Hilbert space with

the kernel

K(www,zzz) = evalwwweval∗zzz : Ω × Ω → L(ℓ2
m).

Before continuing to the existence question of isometrically isomorphic submodules,

let us consider a useful property of quasi-free Hilbert modules. For ϕ in A(Ω), let Mϕ

denote the bounded operator on the Hilbert module defined by module multiplication

by ϕ.

Lemma 1. If R is a quasi-free Hilbert module over A(Ω) which is semi-Fredholm for

ωωω in Ω, then
⋂

ϕ∈Iωωω

ker Mϕ = (0) for ωωω in Ω.

Proof. First, recall that the projection-valued function Pωωω is real-analytic (cf. [9]),

where Pωωω is the projection onto the closed submodule Iωωω · R of R.

Second, for f in
⋂

ϕ∈Iωωω

ker Mϕ, we have Mϕf = ϕ(ωωω)f for all ϕ in A(Ω). Let ω̃ωω be in

Ω\{ωωω} and ωi 6= ω̃i for some 1 ≤ i ≤ m. Then (Mzi
− ω̃i)f = (ωi− ω̃i)f and thus f is in

Iω̃ωω ·R for ω̃ωω 6= ωωω. Thus (I−Pω̃ωω)f = 0 for ωωω 6= ω̃ωω which implies since I−Pωωω is real-analytic

that (I−Pωωω)f = 0 or f is in Iωωω ·R also. However,
⋂

ϕ∈Iωωω

ker Mϕ ⊆
⋂

ω̃ωω∈Ω

Iω̃ωω ·R = (0) which

completes the proof.

Note the above proof does not require that C[zzz] is dense in A(Ω).

2. Finite Codimension Case

Many of the questions concerning pure unitarily equivalent submodules can be re-

duced to questions about Toeplitz operators as follows.

Recall that if P is the Szegö projection from L2
E(T) to H2

E(D), and ϕ is a function in

L∞
L(E)(T), then the Toeplitz operator Tϕ is defined on H2

E(D) so that Tϕf = P (ϕ · f),

where ϕ · f denotes the function defined by (ϕ · f)(eit) = ϕ(eit)f(eit) for eit in T.

We begin with a well-known lemma.
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Lemma 2. If ϕ is a function in H∞
L(E)(D) such that the Toeplitz operator Tϕ is bounded

below on H2
E, then the Laurent multiplication operator Lϕ is bounded below on L2

E(T).

Proof. Observe that the set {e−iNtf : N ∈ Z+, f ∈ H2
E(D)} is dense in L2

E(T) and for

each e−iNtf in that dense set, we have

‖Lϕ(e−iNtf)‖ = ‖e−iNtTϕf‖ = |e−iNt|‖Tϕf‖ ≥ ǫ‖e−iNtf‖,

where ǫ > 0 is the lower bound for Tϕ.

Let us now consider how Toeplitz operators (cf. [17]) enter the picture. Let M be a

Hilbert module over A(Ω) with U an isometric module map which satisfies
∞⋂

k=0

UkM =

(0), that is, UM is pure. If we set E = M ⊖ UM, then there exists a canonical

isomorphism Ψ: H2
E(D) → M such that ΨTz = UΨ. If Mzi

denotes the operator on

M defined by module multiplication by the coordinate function zi, then Xi = Ψ∗Mzi
Ψ

is an operator on H2
E(D) which commutes with Tz. Hence, there exists a function ϕi in

H∞
L(E)(D) such that Xi = Tϕi

. Moreover, since the {Mzi
} commute, so do the {Xi} and

hence the functions {ϕi} commute pointwise a.e. on T. In particular, R is isomorphic

as a module over C[zzz] to that obtained by letting zi act on H2
E(D) by Tϕi

. Hence, the

basic question is what Hilbert modules can be so represented in this form.

We summarize this construction as follows:

Proposition 1. Let M be a Hilbert module over A(Ω) for which there exists an

isometric module map U satisfying
∞⋂

k=0

UkM = (0). Then there exists an isomorphism

Ψ: H2
E(D) → M with E = M⊖ UM and a commuting n-tuple of functions {ϕi} in

H∞
L(E)(D) so that U = ΨTzΨ

∗ and Mzi
= ΨTϕi

Ψ∗ for i = 1, 2, . . . , n.

If we are to reach conclusions about Ω, then we must find a closer connection between

the Hilbert module R and Ω. One possibility is to assume something about the Hilbert–

Samuel polynomial hωωω0

R in C[z] for R (cf. [3], [16], [18]). Recall that hωωω0

R is a polynomial

in one variable for which hωωω0

R (k) = dimC Ik
ωωω0
·R/Ik+1

ωωω0
·R for all k ≥ NR for some positive

integer NR. Here we are assuming that R is semi-Fredholm at ωωω0.
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Consider rank k quasi-free Hilbert modules R and R̃ over A(Ω) with 1 ≤ k < ∞.

Following Lemma 1 of [12], construct the rank k quasi-free Hilbert module ∆, which is

the graph of a closed densely defined module map from R to R̃ obtained as the closure

of the set {ϕfi ⊕ ϕgi : ϕ ∈ A(Ω)}, where {fi} and {gi} are generators for R and R̃,

respectively. Then the module map X : ∆ → R defined by fi ⊕ gi → fi is bounded,

one-to-one and has dense range.

If we consider the adjoint X∗ : R → ∆, then for fixed ωωω0 in Ω, X∗(Iωωω0
· R)⊥ ⊂

(Iωωω0
· ∆)⊥. Since the rank of ∆ is also k, this map is an isomorphism. Let {γi(ωωω)} be

anti-holomorphic functions from a neighborhood Ω0 of ωωω0 to R such that {γi(ωωω)} spans

(Iωωω ·R)⊥ for ωωω in Ω0. Then
{

∂ααα

∂zzzααα γi(ωωω)
}
|ααα|<k

forms a basis for (Ik
ωωω ·R)⊥ for k = 0, 1, 2, . . .

using the same argument as in Section 4 in [9] and Section 4 in [14]. Similarly, since

{X∗γi(ωωω)} is a basis for (Iωωω · ∆)⊥, we see that X∗ takes (Ik
ωωω · R)⊥ onto (Ik

ωωω · ∆)⊥ for

k = 0, 1, 2, . . . . Therefore, dim(Ik
ωωω · R)⊥ = dim(Ik

ωωω · ∆)⊥ for all k. Hence, hR
ωωω = h∆

ωωω

for all ωωω in Ω. Interchanging the roles of R and R̃ we have established the following

result.

Lemma 3. If R and R̃ are semi-Fredholm, having the same finite rank, quasi-free

Hilbert modules over A(Ω), then hR
ωωω ≡ h

eR
ωωω for ωωω in Ω.

In particular, one can calculate the Hilbert–Samuel polynomial by considering only

the Bergman module over A(Ω) since hR⊗Ck

ωωω ≡ khR
ωωω for all finite integers k. To accom-

plish that we can reduce to the case of a ball as follows.

Let Ω be a bounded domain in C
n and Bε(ωωω0) be a ball with radius ε centered at ωωω0,

whose closure is contained in Ω. An easy argument shows that the map X : L2
a(Ω) →

L2
a(Bε(ωωω0)) defined by Xf ≡ f |Bε(ωωω0) for f in L2

a(Ω) is bounded (actually compact),

one-to-one and has dense range. Moreover, one can repeat the above argument for ωωω

in Bε(ωωω0) to conclude that h
L2

a(Ω)
ω0ω0ω0

≡ h
Bε(ωωω0)
ω0ω0ω0

. The proof is completed by considering

the Hilbert–Samuel polynomials at ωωω0 of the Bergman module for the ball Bε(ωωω0) for

some ε > 0 which is centered at ωωω0. This calculation reduces to that of the module
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C[zzz] over the algebra C[zzz] since the monomials in L2
a(Bε(ωωω0)) are orthogonal. Hence,

h
L2

a(Bε(ωωω0)
ωωω0

(k) =
(

n+k−1
n

)
and we obtain:

Proposition 2. If R is a quasi-free Hilbert module over A(Ω) for Ω ⊂ Cn which is

semi-Fredholm for ωωω in a neighborhood of ωωω0 in Ω with constant codimension, then hω0

R

has degree n.

On the other hand, if there exists a pure isometrically isomorphic submodule of finite

codimension, the Hilbert–Samuel polynomial is linear.

Proposition 3. If M is semi-Fredholm at ωωω0 in Ω and N is a pure isometrically

isomorphic submodule of M having finite codimension in M, then hωωω0

M has degree at

most one.

Proof. As before, the existence of N in M yields a module isomorphism of M with

H2
E(D) for E = M⊖N . Assume that ωωω0 = 000 for simplicity and note that the assumption

that M is semi-Fredholm at ωωω0 = 000 implies that Mz1
· M + · · · + Mzm

· M has finite

codimension in M. Hence, Ñ = Tϕ1
·H2

E(D)+ · · ·+Tϕm
·H2

E(D) has finite codimension

in H2
E . Moreover, Ñ is invariant under the action of Tz. Therefore, by the Beurling–

Lax–Halmos Theorem (cf. [23]), there is an inner function Θ in H∞
L(E)(D) for which

Ñ = ΘH2
E(D). Further, since Ñ has finite codimension in H2

E(D) and the dimension

of E is finite, it follows that the matrix entries of Θ are rational functions with poles

outside the closed unit disk and Θ(eit) is unitary for eit in T (cf. [23], Chapter VI,

Section 4).

Now the determinant, det Θ, is a scalar-valued rational inner function in H∞(D)

and hence is a finite Blaschke product. Using Cramer’s Rule one can show that

(det Θ)H2
E(D) ⊆ ΘH2

E(D) (cf. [22], Theorem 11) which implies that

dimC H2
E(D)/ΘH2

E(D) ≤ dimC H2
E(D)/(det Θ)H2

E(D).
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Continuing, we have

Ψ(I2
ωωω0

· M) = Ψ

(
n∨

i,j=1

XiXjM

)

=

n∨

i,j=1

Tϕi
Tϕj

H2
E(D)

=

n∨

i=1

Tϕi
(ΘH2

E(D)) ⊇
n∨

i=1

Tϕi
(det Θ)H2

E(D)

⊇
n∨

i=1

det Θ(Tϕi
H2

E(D)) = (det Θ)ΘH2
E(D)

⊇ (det Θ)2H2
E(D).

Therefore, we have

dim(M/I2
ωωω0

· M) ≤ dim H2
E(D)/(detΘ)2H2

E(D).

Proceeding by induction, we obtain for each positive integer k that

dim(M/Ik
ωωω0

· M) ≤ dim H2
E(D)/(det Θ)kH2

E(D).

If D is the dimension of H2/(det Θ)H2, then we have

hωωω0

M(k) ≤ dim H2
E(D)/(det Θ)kH2

E(D) = kD dim E for k ≥ NR.

Hence, the degree of hωωω0

M is at most one.

Observe that M is not required to be quasi-free in this proposition. This proof

extends one given by Fang in ([20], Proposition 29). In particular, he shows that a nec-

essary condition that one can represent a commuting n-tuple of isometries using inner

functions on H2
E(D), with dim E < ∞, is that the Hilbert–Samuel polynomial for the

corresponding Hilbert module over C[zzz] is linear. One might predict a generalization of

this result to show that the analogous criteria holds for inner functions in H∞
L(E)(D

k),

dim E < ∞, with the degree of the corresponding Hilbert–Samuel polynomial being

less than or equal to k. However, there is a gap in using the preceding argument since

the Beurling-Lax-Halmos Theorem is false for H2
E(D

k) for k > 1.

We combine Proposition 2 and 3 to obtain our first main result.
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Theorem 1. If R is a semi-Fredholm, quasi-free Hilbert module over A(Ω) with Ω ⊂

Cn having a pure isometrically isomorphic submodule of finite codimension, then n = 1.

Hence one can immediately reduce to the case of domains Ω in C if there exists a

pure isometrically isomorphic submodule of finite codimension.

Now let us consider what conclusions we can draw if we assume that Ω = D. In this

case, Mz, module multiplication by z on R, corresponds to Tϕ on H2
E(D) for some ϕ in

H∞
L(E)(D).

Theorem 2. Let M be a finite rank, quasi-free Hilbert module over A(D) which is

semi-Fredholm for ω in D. Assume there exists a pure module isometry U such that

dimM/UM < ∞. Then M and H2(D) are A(D)-module isomorphic.

Proof. As in Proposition 1, we can assume that M ∼= H2
E(D), where E = M⊖ UM

with dim E < ∞ and U corresponds to Tz. Let Tϕ denote the operator on H2
E(D)

unitarily equivalent to module multiplication by z on M, where ϕ is in H∞
L(E)(D) with

‖ϕ(z)‖ ≤ 1 for all z in D.

Since the operator Tϕ is defined by module multiplication on H2
E(D) and the corre-

sponding A(D)-module has finite rank, it is enough to show that ϕ is inner. Hence Tϕ

would be a pure isometry so that H2
E(D) and H2(D) would be A(D)-module isomorphic.

Since the range of Tϕ−ωI has finite codimension in H2
E(D) for ω in D, it follows that

the operator Tϕ − wI has closed range for each w in D. Now Ker(Tϕ − wI) = {0} by

Lemma 1 so that Tϕ −wI is bounded below. Then by Lemma 2, (Lϕ −wI) is bounded

below on L2
E(D).

For each w in D and k in N let us consider the set

Ew
k = {eit : dist(σ(ϕ(eit)), w) <

1

k
},

where σ(ϕ(eit)) denotes the spectrum of the matrix ϕ(eit).

Then either σ(ϕ(eit)) ⊂ T a.e or there exists a w0 in D such that m(Ew0

k ) > 0 for all

k ∈ N. In the latter case, we can find a sequence of functions {fk} in L2
E(T) such that



10 DOUGLAS AND SARKAR

fk is supported on Ew0

k , ‖fk(e
it)‖ = 1 for eit in Eω0

k and

‖ϕ(eit)fk(e
it) − w0fk(e

it)‖ ≤
1

k
.

Thus we obtain that

‖(Lϕ − w0)fk‖ ≤
1

k
‖fk‖

for all k in N, which contradicts the fact that Lϕ − w0I is bounded below. Hence,

σ(ϕ(eit)) ⊂ T, a.e. and hence ϕ(eit) is unitary a.e. Therefore, Tϕ is a pure isometry

and the Hilbert module H2
E(D) determined by Tϕ is A(D)-module isomorphic with

H2(D).

If one attempts to extend the above proof to the case in which dimM/UM is

infinite, one must confront the fact that there exist non-unitary contraction operators

with spectrum containe in ∂D. However, it seems possible that the result is still valid

in this case.

This result can’t be extended to the case in which U is not pure. For example, for

M = H2(D) ⊕ L2
a(D), one could take U = Mz ⊕ I.

The above proof can be extended to the case of a finitely-connected domain Ω with

a nice boundary, that is, Ω for which ∂Ω is the finite union of simple closed curves.

First, we must recall the notion of the bundle shift H2
α(Ω) for Ω determined by the

unitary representation α of the fundamental group π1(Ω) of Ω. Then H2
α(Ω) is the

Hardy space of holomorphic sections of the flat unitary bundle over Ω determined by

α (cf. [1]).

Theorem 3. Let M be a finite rank, quasi-free Hilbert module over A(Ω), where Ω

is a finitely-connected domain in C with nice boundary, which is semi-Fredholm for ω

in Ω. Let U be a pure module isometry such that dimM/UM < ∞. Then there is a

unitary representation of π1(Ω) on some finite dimensional Hilbert space such that M

and the bundle shift H2
α(Ω), are A(Ω)-module isomorphic.
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Proof. If we proceed as in the proof of the previous theorem, then the operators

ϕ(eit) on E for eit in ∂Ω have clos Ω as a spectral set and the analogous argument

shows that the eigenvalues of ϕ(eit) lie in ∂Ω. As a consequence ϕ(eit) is normal. Hence

multiplication Lϕ by ϕ on L2
E(∂Ω) yields a normal operator with spectrum contained in

∂Ω. Therefore, Mz on the module M determined by Tϕ on H2
E is a subnormal operator

with its normal spectrum contained in ∂Ω. Hence, it is unitarily equivalent to a bundle

shift ([1], Theorem 11). The fact that the multiplicity of the unitary representation

is finite follows from the fact that M has finite rank and hence so does the normal

extension of M.

If H2
α(Ω) is the module determined by a bundle shift and ω0 is a point in Ω, then the

submodule of H2
α(Ω) consisting of sections which vanish at ω0 is also a bundle shift.

However, it need not be isometrically isomorphic to H2
α(Ω). But, the point ω0 can

always be chosen so that it is. Thus the hypotheses of the theorem can be satisfied.

As was pointed out in the introduction, the Hardy spaces on finitely-connected do-

mains are examples of Šilov modules. Recall that a Šilov module over a function algebra

A is a subnormal module for which the corresponding reductive or normal module con-

taining it is actually over C(∂A), where ∂A denotes the Šilov boundary of A. It seems

an interesting question as to whether these are the only finite rank, quasi-free Hilbert

module containing a pure isometrically isomorphic submodule of finite codimension.

3. Essentially Reductive Case

Now let us consider what we can say when the submodule UR has infinite codi-

mension in R. Let Ω be a domain in Cn and R be a quasi-free Hilbert module over

A(Ω). Then the Hilbert space tensor product R⊗ H2(D) is a quasi-free Hilbert mod-

ule over A(Ω×D) which clearly contains the pure isometrically isomorphic submodule

R⊗H2
0 (D). Hence, we can say little without some additional hypothesis for Ω or R or

both. One possibility would be to assume that Ω has no corners or is not a product.
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We will not pursue that direction here. Rather we make the additional assumption

that R is essentially reductive. (It is an extremely interesting question as to whether

essential reductivity is related to a lack of corners or not being a product.) The first

result we obtain, seems at first, to be a little remarkable.

Recall that a Hilbert module M is said to be essentially reductive [15] if the operators

{Mϕ}ϕ∈A(Ω) in L(M) defined by module multiplication are all essentially normal, that

is, the self-commutators [M∗
ϕ, Mϕ] = M∗

ϕMϕ − MϕM∗
ϕ are in the ideal of compact

operators in M for ϕ in A(Ω).

Theorem 4. Let R be an essentially reductive Hilbert module over A(Ω) and U be an

isometric module map U on R such that
∞⋂

k=0

UkR = (0). Then R is subnormal, that

is, there exists a reductive Hilbert module N over A(Ω) with R as a submodule.

Proof. As before, there exists an isometric isomorphism Ψ from R onto H2
E(D) with

E = R⊖UR and ϕ1, . . . , ϕn in H∞
L(E)(D) such that Ψ is a C[zzz]-module map relative to

the module structure on H2
E(D) defined so that zj → Tϕj

, j = 1, 2, . . . , n. We complete

the proof by showing that the n-tuple {ϕ1(e
it), . . . , ϕn(eit)} consists of commuting

normal operators for eit a.e. on T. Then N is L2
E(T) with the module multiplication

defined by zi → Lϕi
, where Lϕi

denotes pointwise multiplication on L2
E(T). Since the

{ϕj(e
it)}n

j=1 are normal and commute, L2
E(T) is a reductive Hilbert module.

The fact that R is essentially reductive implies that each Tϕi
is essentially normal

and hence that the cross-commutators [T ∗
ϕi

, Tϕj
] are compact for 1 ≤ i, j ≤ n. We

complete the proof by showing that [T ∗
ϕi

, Tϕj
] compact impiles that [L∗

ϕi
, Lϕj

] = 0 on

L2
E(T).

Fix f in H2
E(D) and let N be a positive integer. We observe that

(*) lim
N→∞

‖(I − P )LN
z L∗

ϕi
Lϕj

f‖ = 0

and

(**) lim
N→∞

‖(I − P )LN
z L∗

ϕi
f‖ = 0,
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where P is the projection of L2
E(T) onto H2

E(D). Therefore we have

‖[T ∗
ϕi

, Tϕj
]MN

z f‖ = ‖PL∗
ϕi

PLϕj
PLN

z f − PLϕj
PL∗

ϕi
PLN

z f‖

= ‖[LN
z L∗ϕiLϕj

f − (I − P )LN
z L∗

ϕi
Lϕj

f ]

− [Lϕj
LN

z L∗
ϕi

f − Lϕj
(I − P )LN

z L∗
ϕi

f ]‖.

Using (∗) and (∗∗) we obtain

lim
N→∞

‖[T ∗
ϕi

, Tϕj
]LN

z f‖ = lim
N→∞

‖(LN
z L∗

ϕi
Lϕj

− Lϕj
LN

z L′
ϕi

)f‖

= lim
N→∞

‖LN
z [L∗

ϕi
, Lϕj

]f‖ = ‖[L∗
ϕi

, Lϕj
]f‖.

Since [T ∗
ϕi

, Tϕj
] is compact and the sequence {eiNtf} converges weakly to 0, we have

lim
N→∞

‖[T ∗
ϕi

, Tϕj
]eiNtf‖ = 0. Therefore, ‖[L∗

ϕi
, Lϕj

]f‖ = 0. Finally, the set of vectors

{e−iNtf} : N ≥ 0, f ∈ H2
E(D)} is norm dense in L2

E(T) and ‖[L∗
ϕi

, Lϕj
]e−iNtf‖ =

‖[L∗
ϕi

, Lϕj
]f‖ = 0. Therefore, [L∗

ϕi
, Lϕj

] = 0 which completes the proof.

The following result is complementary to Theorem 2.

Theorem 5. Let M be an essentially reductive, finite rank, quasi-free Hilbert module

over A(D). Let U be a module isometry such that ∩∞
k=0U

kM = {0}. Then M is

unitarily equivalent to H2
F(D) for some Hilbert space F with dimF = rank of M.

Proof. As before there is an isometrical isomorphism, Ψ: H2
F(D) → M such that

U = ΨTzΨ
∗ and there exists ϕ in H∞

L(F)(D) such that Mz = ΨTϕΨ∗. Moreover, by

Proposition 3, ϕ(eit) is normal for eit in T a.e. Further, since Mz is essentially normal

and Mz − ω is Fredholm for ω in D, it follows that Mz is an essential unitary. Finally,

this implies T ∗
ϕTϕ − I = Tϕ∗ϕ−I is compact and hence ϕ∗(eit)ϕ(eit) = I a.e. or ϕ is an

inner function which completes the proof.



14 DOUGLAS AND SARKAR

The only place in this proof in which the hypothesis that M is finite rank is needed

is to conclude that Mz − ω is Fredholm for ω in D. Thus it seems possible that the

result would be true without that assumption.

If we consider the same question for Bn instead of D, the result we obtain is that

the Hilbert module is defined by a row isometry, which, of course, is not unique. In

particular, one possibility is H2
E(B

n) but there are many others. For example, take

L2
a(µ) for any measure µ on ∂Bn for which L2

a(µ) 6= L2(µ).

We give an application of these ideas for the n-shift space H2
n on the ball Bn. In ([21],

Corollary 5.5) Guo, Hu and Yu proved that two nested unitarily equivalent submodules

of H2
n must be equal. We provide a rather different proof when the larger module is

H2
n, which depends on analyzing the case when the module isometry is not pure. The

special properties of the n-shift space used are the fact that it is essentially reductive

with essential module spectrum ∂Bn and on no submodule is it subnormal.

Corollary 1. If M is a submodule of the n-shift space H2
n which is isometrically

isomorphic to H2
n, then M = H2

n.

Proof. Again there exists an isometric module map U on H2
n such that M = UH2

n. Let

U = Us ⊕Uc ⊕Up on H2
n = Ms ⊕Mc ⊕Mp be the von Neumann–Wold decomposition

(cf. [23]) of U on H2
n so that Us and Uc are singular and absolutely continuous unitaries

and Up is a pure isometry. Since there are no non-zero operators that intertwine Us

with Uc ⊕ Up in either direction, it follows that Ms is a reducing submodule of H2
n for

the C[zzz] module action. However, an extension of the result in ([8], Corollary 1.11 or

[9]), shows that H2
n has no proper reducing submodules and hence either Ms = (0) or

Ms = H2
n. If Ms = H2

n, then U is unitary and M = H2
n. Therefore, we may assume

that U on H2
n has no singular part.

Since the module H2
n is essentially reductive with essential module spectrum ∂B

n,

it follows that I −
n∑

i=1

M∗
zi
Mzi

is compact, where Mzi
is the operator on H2

n defined to

be module multiplication by zi, i = 1, 2, . . . , n. Since Mc is a submodule of H2
n, it

follows that X = I −
n∑

i=1

M̃∗
zi
M̃zi

is compact, where M̃zi
is the restriction of Mzi

to Mc

for i = 1, 2, . . . , n. However, since U is a module map, it follows that the absolutely

continuous unitary operator commutes with X. Since X is compact, it must be the zero
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operator and hence {M̃zi
} is a row isometry. By the result of Athavale ([5], Proposition

2), the n-tuple is a jointly subnormal row isometry or Mc is a subnormal row isometry

submodule of H2
n. The following calculation uses the weights obtained by Arveson ([4],

Proposition 5.3) to show that Mc = (0).

Expand f in Mc, so that f(zzz) =
∑
ααα

aαααzααα. Then

∞∑

k=0

∑

|α|=k

|aααα|
2‖zααα‖2 = ‖f‖2 =

∥∥∥∥∥

n∑

i=1

M̃α
zi
M̃zi

f

∥∥∥∥∥ =

∥∥∥∥∥

n∑

i=1

Mα
zi
Mzi

f

∥∥∥∥∥ =

=
∞∑

k=0

∑

|α|=k

1 + k

n + k
|aααα|

2‖zααα‖2,

which implies |aααα| = 0 for all multi-indices ααα. As a consequence Mc = (0). Therefore,

U is pure and the result follows from the theorem.

If we consider the case of two nested submodules, then the approach used in this

argument would require that they be essentially reductive which is not true for all

submodules of H2
n. However, there is another problem. One must eliminate somehow

the possibility that Ms 6= (0). Unfortunately, one seems able only to conclude that Ms

is a submodule of H2
n on which the module action yields a row contraction commuting

with Us which is a row isometry modulo the compacts. But it is unclear how to show

that this is not possible.

4. Submodules of Subnormal Modules

We conclude by considering when two submodules of a subnormal Hilbert module

M over A(Ω) can be isometrically isomorphic. Of course, if M is Šilov, then in many

cases we have seen that there exists a proper isometrically isomorphic submodule.

What about the non-Šilov case?

If µ is the measure on clos D obtained from the sum of Lebesgue measure on ∂D

and the unit mass at 0, then L2
a(µ) is not a Šilov module. However, it is easy to
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see that the cyclic submodules generated by z and z2, respectively, are isometrically

isomorphic but distinct. A quick examination suggests the problem is that µ assigns

positive measure to the intersection of a zero variety and D. It turns out that if we

exclude that possibility and L2(ν) is not a Šilov module, then distinct submodules

can’t be isometrically isomorphic. The proof takes several steps.

Lemma 4. Let ν be a probability measure on clos Ω and f and g vectors in L2
a(ν) so

that the cyclic submodules of L2
a(ν), [f ] and [g], generated by f and g, respectively, are

isometrically isomorphic with f mapping to g. Then |f | = |g| a.e. ν.

Proof. If the correspondence V f = g extends to an isometric module map, then

〈zzzαααf,zzzβββf〉L2
a(ν)

= 〈zzzαααg,zzzβββg〉L2
a(ν) for monomials zzzααα and zzzβββ in C[zzz]. This implies that

∫

clos Ω

zzzαααz̄zzβββ |f |2dν =

∫

clos Ω

zzzαααz̄zzβββ|g|2dν for all monomials zzzααα

and zzzβββ. Since the linear span of the set {zzzαααz̄zzβββ} forms a self-adjoint algebra which

separates the points of clos Ω, it follows that the two measures |f |2 dν and |g|2 dν are

equal or that |f | = |g| a.e. ν.

Although it might be possible to avoid it, we consider measures for which point

evaluation on Ω is bounded.

Theorem 6. Let ν be a probability measure on clos Ω such that point evaluation is

bounded on L2
a(Ω) with closed support properly containing ∂Ω but such that ν(X) = 0

for X the intersection of clos Ω with a zero variety. If M1 and M2 are isometrically

isomorphic submodules of L2
a(ν), then M1 = M2.

Proof. Let V be an isometric module map from M1 onto M2. For 0 6= f in M1, let

g = V f . By the previous lemma, we have |f | = |g| a.e. ν. Since ∂Ω is contained in the

closed support of ν, it follows that |f(ωωω)| = |g(ωωω)| for ωωω in ∂Ω. Since point evaluation
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is bounded on L2
a(Ω), f and g are holomorphic on Ω. If X = {ωωω ∈ Ω | f(ωωω) = 0}, then

ν(X) = 0 which implies that ν(Ω\X) > 0. If we set h(ωωω) = g(ωωω)
f(ωωω)

for ωωω in Ω\X, then

sup
ωωω∈Ω\X

|h(ωωω)| ≤ 1. Since there is ωωω0 in the support of ν in Ω\X such that |h(ωωω0)| = 1,

we have |h(ωωω)| ≡ 1 on Ω\X. (Here we are using the fact that Ω\X is connected.) Thus

there is a constant eiθ such that f = eiθg on Ω.

Since this holds for every f in M1, by considering f1, f2 and f1 + f2, we see that

V f = eiθf for all f in M1 and hence M1 = M2.

This result contains the results of Richter [25], Putinar [24], and Guo–Hu–Xu [21]

mentioned earlier since area measure on D or volume measure on Ω satisfies the hy-

potheses of the theorem. However, so do the measures for the weighted Bergman spaces

on D or weighted volume measure on any domain Ω.

Corollary 2. If Ω is a bounded domain in C
n and M1 and M2 are isometrically

isomorphic submodules of L2
a(Ω), then M1 = M2.

If R is a subnormal Hilbert module over A(Ω) of finite multiplicity greater than

one, then the conclusion of the previous results doesn’t follow. One possible substitute

result would be the existence of a unitary module map on the normal module which

extends it which takes one module to the other. That is not quite right but perhaps

something like that is. We leave the formulation of such a result as an open problem.

References

[1] M. Bruce Abrahamse and Ronald G. Douglas, A class of subnormal operators related to multiply

connected domains, Adv. Math. 19 (1976), 106–148; MR 531327.

[2] A.B. Aleksandrov, The existence of inner functions in a ball, Mat. Sb. (N.S.) 118 (160), 182,

147–163; MR 83i:32002.

[3] W. B. Arveson, The curvature invariant of a Hilbert module over C[z1, · · · , zd], J. Reine Angew.

Math. 522 (2000), 173–236; MR 2003a:47013.



18 DOUGLAS AND SARKAR

[4] W. B. Arveson, Subalgebras of C∗-algebras. III. Multivariable operator theory, Acta Math. 181

(1998), no. 2, 159–228; MR 2000e:47013.

[5] A. Athavale, On the intertwining of joint isometries, J. Operator Theory 23 (1990), 339–350;

MR 91i:47029.

[6] Arne Beurling, On two problems concerning linear transformations, Acta Math. 81 (1948), 239–

255; MR 10:381e.

[7] Xiaoman Chen and Kunyu Guo, Analytic Hilbert Modules, Chapman & Hall/CRC Research Notes

in Mathematics, 433. Chapman & Hall/CRC, Boca Raton, FL, 2003; MR 2004d:47024.

[8] Michael J. Cowen and Ronald G. Douglas, Complex geometry and operator theory, Acta Math.

141 (1978), 187–261; MR 80f:47012.

[9] Raul Curto and Norberto Salinas, Generalized Bergman kernels and the Cowen-Douglas theory,

Amer. J. Math. 106 (1984), 447–488; MR 85e:47042.

[10] Kenneth R Davidson and Ronald G. Douglas, The generalized Berezin transform and commutator

ideals, Pacific J. Math. 222 (2005), no. 1, 29–56; MR 2006k:46091.

[11] Ronald G. Douglas, Essentially reductive Hilbert modules, J. Operator Theory 55 (2006), no. 1,

117–133; MR 2007h:47014.

[12] Ronald G. Douglas and Gadadhar Misra, On quasi-free Hilbert modules, New York J. Math. 11

(2005), 547–561; MR 2007b:46044.

[13] Ronald G. Douglas and Gadadhar Misra, Quasi-free resolutions of Hilbert modules, Integral Equa-

tions Operator Theory 47 (2003), no. 4, 435–456; MR 2004i:46109.

[14] Ronald G. Douglas, Gadadhar Misra, and Cherian Varughese, On quotient modules—the case of

arbitrary multiplicity, J. Funct. Anal. 174 (2000), 364-398; MR 2001f:47012

[15] Ronald G. Douglas and Vern I. Paulsen, Hilbert Modules over Function Algebras, Research Notes

in Mathematics Series, 47, Longman, Harlow, 1989; MR 91g:46084.

[16] Ronald G. Douglas and Ke Ren Yan, Hilbert-Samuel polynomials for Hilbert modules, Indiana

Univ. Math. J. 42 (1993), 811–820; MR 94k:46093.

[17] R. G. Douglas, Banach algebra techniques in operator theory, Pure and Applied Math. 49, Aca-

demic Press, New York, 1972. MR 50:14335.

[18] David Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer-Verlag,

New York, 1995; MR 97a:13001.

[19] Joeng Eschmeier, On the Hilbert-Samuel Multiplicity of Fredholm Tuples, Indiana Univ. Math.

J., to appear.

[20] Xiang Fang, Invariants of commuting operator tuples by multivariate dilation theory, Thesis,

Texas A&M University, 2002.



ON UNITARILY EQUIVALENT SUBMODULES 19

[21] Kunyu Guo, Junyun Hu and Xianmin Xu, Toeplitz algebras, subnormal tuples and rigidity on

reproducing C[z1, . . . , zd]-modules, J. Funct. Anal. 210 (2004), no. 1, 214–247, MR 2005a:47007.

[22] H. Helson, Lectures on Invariant Subspaces, Academic Press, New York/London, 1964;

MR 301409.

[23] B. Sz.-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland,

1970, MR 43:947.

[24] Mihai Putinar, On the rigidity of Bergan submodules, Amer. J. Math. 116 (1994), 1421-1432;

MR 96h:47010.

[25] Stefan Richter, Unitary equivalence of invariant subspaces of Bergman and Dirichlet space, Pac.

J. Math. 133 (1988) 151–156; MR 89.g:47038.

Texas A & M University, College Station, Texas 77843, USA

E-mail address : rdouglas@math.tamu.edu, jsarkar@math.tamu.edu


	1. Introduction
	2. Finite Codimension Case
	3. Essentially Reductive Case
	4. Submodules of Subnormal Modules
	References

