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ABSTRACT. Let D be the open unit disk in C, let H2 denote the Hardy space
on D and let φ : D → D be a holomorphic self map of D. The composition
operator Cφ on H2 is defined by

(Cφ f )(z) = f (φ(z)) ( f ∈ H2, z ∈ D).
Denote by S(D) the set of all functions that are holomorphic and bounded by
one in modulus on D, that is

S(D) = {ψ ∈ H∞(D) : ∥ψ∥∞ := sup
z∈D

|ψ(z)| ≤ 1}.

The elements of S(D) are called Schur functions. The aim of this paper is to
answer the following question concerning invariant subspaces of composition
operators: Characterize φ, holomorphic self maps of D, and inner functions
θ ∈ H∞(D) such that the Beurling type invariant subspace θH2 is an invariant
subspace for Cφ. We prove the following result: Cφ(θH2) ⊆ θH2 if and only if

θ ◦ φ

θ
∈ S(D).

This classification also allows us to recover or improve some known results on
Beurling type invariant subspaces of composition operators.
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1. Introduction

The invariant subspace problem [9], one of the most important open prob-
lems in linear analysis, asks if every bounded linear operator on a separable
Hilbert space has a non-trivial closed invariant subspace. This problem has an
equivalent form which turns it into a more concrete function theoretic problem.
To be more specific, let D be the open unit disk in C, let H2 denote the Hardy
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space on D and let φ : D → D be a holomorphic self map of D. The composition
operator Cφ on H2 is defined by Cφ f = f ◦ φ, that is

(Cφ f )(z) = f (φ(z)),

for all f ∈ H2 and z ∈ D. Littlewood’s subordination principle [20] implies that
Cφ is a bounded operator on H2 and

∥Cφ∥ ≤

√
1 + |φ(0)|
1 − |φ(0)| .

By [16, 17], the invariant subspace problem for Hilbert space operators can be
reformulated by considering any, fixed hyperbolic disc automorphism φ. Indeed,
in the aforementioned papers it is shown that the (unknown) fact that any Hilbert
space operator acting on a complex, infinite-dimensional, separable space always
has proper invariant subspaces, is equivalent to the fact that the only minimal
invariant subspaces of Cφ are the 1-dimensional eigenspaces.

While descriptions of invariant subspace lattices of composition operators
exist, (see for instance [15]), the result in [16, 17] referred above implies that an
automorphic, hyperbolic composition operator has a very rich and complicated
invariant subspace lattice, and so, one way to understand it, would be by describ-
ing sublattices, for instance that consisting of joint invariant subspaces of Cφ and
Mz on H2. Here Mz denote the unilateral forward shift operator or the multipli-
cation operator induced by the coordinate function z on H2. The closed invariant
subspaces of Mz are called Beurling type subspaces (or Beurling subspaces).

The initiative of studying joint invariant subspaces of Cφ and Mz is recent
[10]. Among the papers bringing up convincing arguments that a line of research
like that is interesting we specify [6], [12] and [14]. In those papers, it is observed
and proved, that classical theorems in function theory, most notoriously, the Julia-
Carathéodory theorem, can be understood in terms of the action of composition
operators on Beurling subspaces. That theorem addresses the existence of angu-
lar derivatives in the sense of Constantin Carathéodory, and the authors of [6]
and [14] observe that the existence of such an angular derivative of some analytic
self map φ of the unit disc is equivalent to the fact that Cφ maps certain Beurl-
ing subspaces induced by some atomic singular inner functions into similar (not
necessarily identical) spaces.

It is evident now that the joint invariant subspace problem of Cφ and Mz
introduces also a lot of additional structure of holomorphic self maps and inner
functions. Indeed, the notion of inner functions arose as a result of the representa-
tions of shift invariant subspaces of the Hardy space. Recall that an inner function
is a function θ ∈ H2 whose radial limits have modulus one a.e. on ∂D. A classical
result of A. Beurling [2] classifies the invariant subspaces of Mz as follows:
Beurling's Theorem: Let S ̸= {0} be a closed subspace of H2. Then S is invariant
under Mz if and only if there exists an inner function θ (unique up to a scalar
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factor of unit modulus) such that

S = θH2.

Among many other results, Matache [14] proved that for every holomorphic
self map φ of D there exists a non-trivial Mz-invariant closed subspace S $ H2

(depending on φ) such that CφS ⊆ S (also see Theorem 3.2 for a new proof).
At the present stage, it is also worthwhile to recall the following problem

[14, Problem 1]: Characterize in measure theoretical terms when Cφ(θ1H2) ⊆ θ2H2,
where θ1 and θ2 are singular inner functions. If θ1 = θ2, this problem becomes an
invariant subspace problem, namely, “When is a Beurling subspace induced by a
singular inner function left invariant by a composition operator”? We point out that
[14, Problem 1] is solved in [14, Corollary 2.15] in the particular case of singular
inner functions induced by purely atomic measures.

Typical results and proofs in this direction (including the ones mentioned
above) often involves analytic properties of φ like (Denjoy-Wolff) fixed points and
derivative of φ at fixed points. However, due to the complex classificational struc-
ture of (bi-)holomorphic self maps of D, most known results are case-specific. But,
from a more general point of view, we prove the following result: Let φ be a holo-
morphic self map of D, and let θ ∈ H∞(D) be an inner function. Then, the Beurl-
ing type invariant subspace θH2 is invariant under Cφ (that is, Cφ(θH2) ⊆ θH2)
if and only if

θ ◦ φ

θ
∈ S(D).

Here S(D) denote the set of all functions that are holomorphic and bounded by
one in modulus on D, that is

S(D) = {ψ ∈ H∞(D) : ∥ψ∥∞ := sup
z∈D

|ψ(z)| ≤ 1}.

The set S(D) is known as the Schur class and the elements of S(D) are called Schur
functions (see Schur [18, 19] and also the monograph [1]).

The proof of the above result, as presented in Section 2, is a simple appli-
cation of Riesz factorization theorem for H2 functions. Moreover, it is curious
to note that several variants of the above result have been used, implicitly, in
a number of constructions and proofs in the existing literature (see for instance
[6, 10, 12, 14]). In Section 3, we present this point of view by recovering and
improving some known results.

In the final section, we point out and correct an error in a corollary of Jones
[10]. On the contrary to the claim of Part 1 of [10, Corollary 1], in Theorem 4.1
we prove that for a parabolic automorphism φ of D, the closed subspace BzH2 is
invariant under Cφ, where Bz is the Blaschke product corresponding to the orbit
{φm(z)}m≥0 and z ∈ D (here φm denotes the composition of φ with itself m times).

For general theory of composition operators on H2 we refer the reader to
Cowen [3] and the books by Cowen and MacCluer [4] and Shapiro [20].
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2. Invariant subspaces

We begin by recalling basic facts about Hardy space and bounded holo-
morphic functions on D and refer the reader to Duren [8, Chapter 2] for a more
detailed exposition.

Let O(D) denote the set of all holomorphic functions on D. We define the
Hardy space H2 as the set of all functions f ∈ O(D) such that

∥ f ∥2 := sup
0≤r<1

( 1
2π

∫ 2π

0
| f (reit)|2 dt

) 1
2
< ∞.

It is well known (due to Fatou’s theorem) that for f ∈ H2, the radial limit

f̃ (eit) := lim
r→1−

f (reit),

exists almost everywhere and f̃ ∈ L2(∂D) (with respect to the Lebesgue measure
on ∂D). In what follows, we will identify f with f̃ and regard H2 as the closed
subspace of L2(∂D). Therefore

H2 = C[z]L
2(∂D)

,

and

⟨ f , g⟩H2 =
1

2π

∫ 2π

0
f (eit)g(eit) dt ( f , g ∈ H2).

The space H∞(D) consists of all bounded functions ψ ∈ O(D). Clearly H∞(D) ⊆
H2, and H∞(D) is a Banach algebra with respect to the uniform norm. There-
fore, S(D) is the closed unit ball of H∞(D). It is also worth noting that (cf. [13,
Corollary 1.1.24])

H2 ∩ L∞(∂D) = H∞(D).
Recall again that a function θ ∈ O(D) is said to be an inner function if |θ(z)| ≤ 1
for all z ∈ D (in particular, θ ∈ H∞(D)) and its radial limit |θ(eit)| = 1 a.e. on
∂D. Every inner function θ can be factored into a Blaschke product and a singular
inner function. That is

θ = BS,
where the Blaschke product

B(z) = zm
∞

∏
n=1

|an|
an

an − z
1 − anz

(z ∈ D),

for some non-negative integer m, is constructed from the zeros of θ and the sin-
gular inner factor

S(z) = c exp
(
−

∫ 2π

0

eit + z
eit − z

dµ(t)
)

(z ∈ D),

for some unimodular constant c and positive measure µ supported on a set of
Lebesgue measure zero, has no zeros in D. Along the same line, Riesz factoriza-
tion theorem is enormously useful [8, Theorem 2.5]:
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Theorem 2.1 (Riesz factorization theorem). Let f be a non-zero function in H2. Then
there exist a Blaschke product B and a function g ∈ H2 such that g(z) ̸= 0 for all z ∈ D
and

f = Bg.

Moreover, if f ∈ H∞(D), then g ∈ H∞(D) and ∥ f ∥∞ = ∥g∥∞.

It is worth noticing that every Blaschke product is an inner function.
Denote by Z( f ) the zero set of a holomorphic function f ∈ O(D). The

multiplicity (or, order) of w ∈ Z( f ) will be denoted by mult f (w).
We now return to invariant subspaces of composition operators. Throughout

this article, φ will denote a holomorphic self map of D and θ will denote an inner

function in H∞(D).
Suppose Cφ(θH2) ⊆ θH2. Then there exists f ∈ H2 such that

Cφ(θ1) = θ ◦ φ = θ f .

This yields
Z(θ) ⊆ Z(θ ◦ φ),

or equivalently
φ(Z(θ)) ⊆ Z(θ).

More generally, the following easy-to-see remarks adds additional illustration of
the concept of zero sets.

Remark 2.2. (1) If θH2 is an invariant subspace for Cφ, then

multθ(α) ≤ multθ◦φ(α),

for all α ∈ Z(θ).

(2) The quotient
θ ◦ φ

θ
defines a holomorphic function on D if and only if

multθ(α) ≤ multθ◦φ(α),

for all α ∈ Z(θ).

The first inequality is merely a necessary condition for θH2 to be invariant
under Cφ and is not a sufficient condition. A converse of the first remark will be
discussed in the next section (see Corollary 2.4). Moreover, it is equally evident
that the problem of determining effective sufficient conditions, in terms of zero
sets of holomorphic functions, is more elusive for zero-free holomorphic func-
tions (like singular inner functions).

Now we are ready to present the central result of this paper.

Theorem 2.3. The following statements are equivalent:
(a) θH2 is an invariant subspace for Cφ.

(b)
θ ◦ φ

θ
∈ S(D).
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Proof. (a) ⇒ (b): Suppose θH2 is an invariant subspace for Cφ. By Remark
2.2, we see that

θ ◦ φ

θ
∈ O(D).

Since θ ◦ φ ∈ θH2, there exists f ∈ H2 such that

θ ◦ φ = θ f .

It follows that

f =
θ ◦ φ

θ
∈ H2.

Now by Theorem 2.1, there exist a function g1 ∈ H∞(D) and a Blaschke product
B1 (note that B1(z) ≡ 1 if Z(θ) = ∅) such that g1(z) ̸= 0 for all z ∈ D and

θ = B1g1.

Since Z(θ) ⊆ Z(θ ◦ φ), again by Theorem 2.1, there exist a function g2 ∈ H∞(D)
and a Blaschke product B2 such that g2(z) ̸= 0 for all z ∈ D and

θ ◦ φ = B1B2g2.

Since g2 ∈ H∞(D) and ∥B1B2∥∞ = 1, as B1B2 is an inner function, it follows that

∥g2∥∞ = ∥B1B2g2∥∞ = ∥θ ◦ φ∥∞ ≤ 1.

Observe

f =
θ ◦ φ

θ
=

B2g2

g1
∈ H2.

As |g1(eit)| = 1 a.e., by taking the radial limit of both sides, we get

| f (eit)| =
∣∣∣∣ g2(eit)B2(eit)

g1(eit)

∣∣∣∣ = |g2(eit)| a.e.

Hence f ∈ H∞(D) and ∥ f ∥∞ = ∥g2∥∞ ≤ 1. Therefore f ∈ S(D).
(b) ⇒ (a): Suppose

θ ◦ φ

θ
∈ S(D). Then, there exists f ∈ S(D) such that

θ ◦ φ = θ f .

Suppose h ∈ H2. Then

Cφ(θh) = (θ ◦ φ) (h ◦ φ) = θ f (h ◦ φ).

On the other hand,

h ◦ φ ∈ H2,

since Cφ is bounded. As f ∈ H∞(D), we have f (h ◦ φ) ∈ H2 and hence Cφ(θh) ∈
θH2. This completes the proof of the theorem.
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It is worth noting that the above proof depends on the Riesz factorization
theorem on the Hardy space H2. Thus, the above classification result is also valid
for Hp spaces on D.

Given the standard factorization of Hardy space functions in a product of a
Blaschke product, a singular inner function, and an outer function, it is clear that
Cφ(BH2) ⊆ BH2, if and only if the Blaschke product B1 in the standard factor-
ization of B ◦ φ is representable as B1 = BB2, where B2 is a (possibly constant)
Blaschke product, a fact that can be written in terms of multiplicity functions like
in the text of the below corollary.

Corollary 2.4. Let B be a Blaschke product and let φ be a holomorphic self map of D.
Then the following statements are equivalent:

(1) BH2 is invariant under Cφ.
(2) multB(w) ≤ multB◦φ(w) for all w in Z(B).

We refer to Cowen and Wahl [6, Lemma 8] for a particular case (where φ
is a non-constant and non-elliptic automorphism) of the above result. Also the
special case of inner functions φ is due to Jones [10, Lemma 1].

Now we proceed to prove a bounded extension problem. Recall that the
Hardy space H2 is also a reproducing kernel Hilbert space corresponding to the
Szegö kernel

K(z, w) = (1 − zw̄)−1 (z, w ∈ D).
For each w ∈ D, denote by K(·, w) ∈ H2 the kernel function at w:(

K(·, w)
)
(z) = K(z, w) (z ∈ D).

The Szegö kernel has the following reproducing property:

f (w) = ⟨ f , K(·, w)⟩,

for all f ∈ H2 and w ∈ D. By using this property, one readily checks that

M∗
ψK(·, w) = ψ(w)K(·, w),

and
C∗

φK(·, w) = K(·, φ(w)),

for all w ∈ D and ψ ∈ H∞(D).

Proposition 2.5. The following statements are equivalent:
(a) Cφ(θH2) ⊆ θH2.
(b) The map

A
(

θ(w)K(·, w)
)
= θ(φ(w))K(·, φ(w)) (w ∈ D),

extends to a bounded linear operator on H2.

(c)
θ ◦ φ

θ
∈ S(D).
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Proof. We observe that Cφ(θH2) ⊆ θH2 if and only if

ran (Cφ Mθ) ⊆ ran Mθ ,

which is, by Douglas range inclusion theorem [7, Theorem 1], equivalent to

Cφ Mθ = MθX,

or equivalently
X∗M∗

θ = M∗
θ C∗

φ,

for some bounded linear operator X on H2. Evaluating each side of the equation
by the kernel function K(·, w), w ∈ D, we get

X∗
(

θ(w)K(·, w)
)
= θ(φ(w))K(·, φ(w)).

Since {K(·, w) : w ∈ D} is a total set in H2, the result follows from Theorem 2.3.

3. Applications

We begin by recalling the notion of fixed points of holomorphic self maps.
Let φ be a holomorphic self map of D and let w ∈ D. We say that w is a fixed point
[4, page 50] of φ if

lim
r→1−

φ(rw) = w.

By a well known result [4, page 51], if w ∈ ∂D is a fixed point of φ, then

φ′(w) = lim
r→1−

φ′(rw),

exists as a positive real number or +∞. Now let φ be an automorphism of D. We
say that φ is:

(1) elliptic if it has exactly one fixed point situated in D,
(2) hyperbolic if it has two distinct fixed points in ∂D, and
(3) parabolic if there is only one fixed point in ∂D.

Next we recall the Denjoy-Wolff theorem: Let φ be a holomorphic self map
of D. If φ is not an elliptic automorphism, then there exists w ∈ D such that φn
(the composition of φ with itself n times) converges to the constant function w
uniformly on compact subsets of D. Moreover, φ(w) = w and (i) |φ′(w)| < 1 if
w ∈ D, and (ii) 0 < φ′(w) ≤ 1 if w ∈ ∂D.

The point w is referred to as the Denjoy-Wolff point of φ. In connection with
the notion of Denjoy-Wolff point and Denjoy-Wolff theorem, we refer the inter-
ested reader to [4, Chapter 2] (also see [5, 21]).

By combining Theorem 2.3 with [6, Corollary 7] or [14, Theorem 2.11] we
obtain the following result concerning shift invariant subspaces generated by
atomic singular inner functions.
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Theorem 3.1. Let φ be a holomorphic self map of D and let α > 0. Consider the atomic
singular inner function θ(z) = eα( z+1

z−1 ), z ∈ D. Then the following statements are
equivalent:

(a) φ(1) = 1 and φ′(1) ≤ 1, that is, 1 is the Denjoy-Wolff point of φ.

(b)
θ ◦ φ

θ
∈ S(D).

We turn now to a remarkable theorem, due to Matache [14], that given a
holomorphic self map φ of D, there exists an inner function θ ∈ H∞ such that
θH2 $ H2 and

Cφ(θH2) ⊆ θH2.
This is one of the main results of the paper [14]. Here, we reprove Matache’s
result. However, our proof is somewhat shorter and simpler.

But before presenting the result, we recall the notion of invariant subspace
lattices of operators and make one additional useful observation: For a bounded
linear operator T on a Hilbert space H we denote by Lat T the lattice of T, that is,
the set of all closed invariant subspaces of T.
Now, let φ is a holomorphic self map of D and let a ∈ ∂D. Define ω and ψ,
holomorphic self maps of D, by

ω(z) = az and ψ = ω ◦ φ ◦ ω−1,

for all z ∈ D. It is easy to see that a is the Denjoy-Wolff point of φ if and only if
1 is the Denjoy-Wolff point of ψ. Moreover, if θ is an inner function, then θH2 ∈
Lat Cψ if and only if (by Theorem 2.3) θ ◦ ψ = θg for some g ∈ S(D). On the other
hand, θ ◦ ψ = θ ◦ (ω ◦ φ ◦ ω−1) and g ◦ ω ∈ S(D). Hence

(θ ◦ ω) ◦ φ = θg ◦ ω = (θ ◦ ω)(g ◦ ω),

implies, again by Theorem 2.3, that (θ ◦ ω)H2 ∈ Lat Cφ. In summary, we have
the following: (i) θH2 ∈ Lat Cψ if and only if (θ ◦ ω)H2 ∈ Lat Cφ, and (ii) a is the
Denjoy-Wolff point of φ if and only if 1 is the Denjoy-Wolff point of ψ.

Theorem 3.2. If φ is a holomorphic self map of D, then there exists a non-zero closed
subspace S $ H2 such that

S ∈ Lat Cφ ∩ Lat Mz.

Proof. Suppose φ has a fixed point α in D. Consider the inner function
(Blaschke factor)

θ(z) =
α − z

1 − αz
(z ∈ D).

Clearly, α is also a zero of θ ◦ φ with multiplicity at least one, and so Corollary 2.4,
we have Cφ(θH2) ⊆ θH2.
Finally, suppose φ does not have any fixed point in D. Then the Denjoy-Wolff
point a of φ must necessarily lie on ∂D, and so by Theorem 3.1 (along with the

remark above), eα( z+a
z−a )H2 is invariant under Cφ for all α > 0. This completes the

proof of the theorem.
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In the case of elliptic automorphisms of D, Theorem 2.3 is more definite:

Theorem 3.3. Let θ be an inner function and φ be an elliptic automorphism of D. Then
the following statements are equivalent:

(a) θH2 is invariant under Cφ.

(b)
θ ◦ φ

θ
is unimodular constant.

Moreover, in this case, if w ∈ D is the unique fixed point of φ, then

θ ◦ φ

θ
≡


(

φ′(w)
)multθ(w)

if w ∈ Z(θ)

1 otherwise.

Proof. Suppose θH2 is invariant under Cφ. By Theorem 2.3, there exists f ∈

S(D) such that f =
θ ◦ φ

θ
. Suppose w ∈ D is the unique fixed point of φ. Define

bw(z) =
w − z

1 − w̄z
(z ∈ D).

Now, if w ∈ Z(θ), then there exists an inner function θ1 such that θ1(w) ̸= 0 and

θ(z) =
(

bw(z)
)multθ(w)

θ1(z) (z ∈ D).

Using this we get

f =

(
bw ◦ φ

bw

)multθ(w) θ1 ◦ φ

θ1
.

On the other hand

lim
z→w

bw ◦ φ

bw
= φ′(w),

and φ(w) = w implies that

f (w) = φ′(w)multθ(w).

But, since φ is an elliptic automorphism, we have that |φ′(w)| = 1, and hence
| f (w)| = 1. Then the maximum modulus principle implies that f ≡ φ′(w)multθ(w).
Clearly, if θ(w) ̸= 0, then f ≡ f (w) = 1.
The converse part follows directly from Theorem 2.3.

The above theorem can be reformulated simply as: Let θ be an inner func-
tion and φ be an elliptic automorphism of D. Then Cφ(θH2) ⊆ θH2 if and only
if θ is an inner eigenfunction of Cφ. This result also follows from [14, Corollary
1.7, Proposition 2.9 and Corollary 2.10]. However, the present proof is new and
somewhat more direct.

The same proof of Theorem 3.3 yields the following result:

Corollary 3.4. Let φ be a holomorphic self map of D and let w ∈ D be the fixed point of
φ. Let θ be an inner function and suppose that θ(w) ̸= 0. Then θH2 is invariant under
Cφ if and only if θ ◦ φ = θ.



10 S. BOSE, P. MUTHUKUMAR AND J. SARKAR

Now we prove a more definite result on non-automorphic holomorphic self
maps.

Corollary 3.5. Let φ be a non-automorphic and holomorphic self map of D and let w ∈ D
be the fixed point of φ. Let θ be an inner function and suppose that θ(w) ̸= 0. Then θH2

is invariant under Cφ if and only if θ is an unimodular constant. In particular, if θ is a
singular inner function, then θH2 cannot be invariant under Cφ.

Proof. Suppose θH2 is invariant under Cφ. By Corollary 3.4, θ ◦ φ = θ, and
hence

θ ◦ φm = θ,

for all m ≥ 1 (here φm denote the composition of φ with itself m times). Since
φm converges uniformly to the constant function w on every compact subset of
D, it follows that θ ≡ θ(w). Since θ is an inner function, we see that θ(w) is a
unimodular constant. The converse part again follows from Theorem 2.3.

4. Final comments and results

We are mainly concerned here with Part 1 of [10, Corollary 1]: “If φ is a
parabolic automorphism then Lat Cφ contains no non-trivial BHp.” This claim is
incorrect. Indeed, on the contrary, we prove the following (as always φm denotes
the composition of φ with itself m times):

Theorem 4.1. If φ be a parabolic automorphism of D, then (i) every orbit of φ is Blaschke
summable, and (ii) for each z ∈ D we have

Bz H2 ∈ Lat Cφ,

where Bz is the Blaschke product corresponding to the orbit {φm(z)}m≥0.

Proof. Let φ be a parabolic automorphism of D. Suppose

ω(z) =
1 + z
1 − z

(z ∈ D).

Then w is a conformal map from D onto the right half-plane H. Note that

ω−1(s) =
s − 1
s + 1

(s ∈ H).

Set
σ = ω ◦ φ ◦ ω−1.

Then there exists a non-zero real number b such that

σ(s) = s + ib (s ∈ H),

by the Linear-Fractional Model Theorem (cf. [4, Section 2.4]). On the other hand,

φm = ω−1 ◦ σm ◦ ω,
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for all m, and hence

1 − |φm(z)|2 = 1 − |ω−1(σm(ω(z)))|2

= 1 −
∣∣∣∣σm(ω(z))− 1
σm(ω(z)) + 1

∣∣∣∣2

=
4 Re

(
σm(ω(z))

)
|σm(ω(z)) + 1|2 ,

for all z ∈ D. Now we fix z ∈ D and let ω(z) = u + i v. Then

σm(ω(z)) = ω(z) + imb = u + i(mb + v),

for all m. It follows that

|σm(ω(z)) + 1|2 = (1 + u)2 + (mb + v)2,

and hence

1 − |φm(z)|2 =
4u

(mb + v)2 + (1 + u)2 ∼ 4u
b2m2 ,

for large m. Therefore

∑
m

1 − |φm(z)|2 < ∞ (z ∈ D).

Hence |φm(z)| ≥ |φm(z)|2 for all m yields that

∑
m

1 − |φm(z)| < ∞,

that is, the orbit {φm(z)}m≥0 of φ at z ∈ D is Blaschke summable. The second part
follows from the first and Corollary 2.4. This completes the proof of the theorem.

From the above proof it is now evident that the estimate

“1 − |φn(z)|2 ∼ c
n

”,

in the proof of Part 2 of [10, Lemma 3] is incorrect.
To conclude, we remark that a Schur function always admits a fractional

linear transformation representations in the following sense: Given φ ∈ S(D),
there exist a Hilbert space H and a unitary (/isometry/co-isometry/contractive)
matrix

U =

[
a B
C D

]
: C⊕H → C⊕H,

such that
φ(z) = a + zB(I − zD)−1C (z ∈ D).

This point of view has proved extremely fruitful in understanding the structure
of composition operators (cf. [11]). In the context of Theorem 2.3, a number of
questions arise naturally at this point. For instance, a natural question arises as to
whether one can relate the fractional linear transformations of φ and θ with the
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fractional linear transformation of θ◦φ
θ . We hope to return to this theme in future

work.
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