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Abstract. A commuting n-tuple (T1, . . . , Tn) of bounded linear operators on a Hilbert space
H associate a Hilbert module H over C[z1, . . . , zn] in the following sense:

C[z1, . . . , zn]×H → H, (p, h) 7→ p(T1, . . . , Tn)h,

where p ∈ C[z1, . . . , zn] and h ∈ H. A companion survey provides an introduction to the
theory of Hilbert modules and some (Hilbert) module point of view to multivariable oper-
ator theory. The purpose of this survey is to emphasize algebraic and geometric aspects of
Hilbert module approach to operator theory and to survey several applications of the theory
of Hilbert modules in multivariable operator theory. The topics which are studied include:
generalized canonical models and Cowen-Douglas class, dilations and factorization of repro-
ducing kernel Hilbert spaces, a class of simple submodules and quotient modules of the Hardy
modules over polydisc, commutant lifting theorem, similarity and free Hilbert modules, left
invertible multipliers, inner resolutions, essentially normal Hilbert modules, localizations of
free resolutions and rigidity phenomenon.
This article is a companion paper to “An Introduction to Hilbert Module Approach to Mul-
tivariable Operator Theory”.
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1. Introduction

The main motivation of Hilbert module approach to (multivariable) operator theory is
fourfold: (1) elucidating role of Brown-Douglas-Fillmore theory (1973) to operator theory,
(2) complex geometric interpretation of (a class of) reproducing kernel Hilbert spaces in the
sense of Cowen-Douglas class (1978), (3) Hormandar’s algebraic approach, in the sense of
Koszul complex, to corona problem (1967) and (4) Taylor’s notion of joint spectrum (1970),
again in the sense of Koszul complex, in operator theory and function theory.

The general topics for this article is to survey several applications of complex geometry and
commutative algebra, with a view of (Hilbert) module approach, to multivariable operator
theory.

It is hoped that the formalism and observations presented here will provide better under-
standing of the problems in operator theory in a more general framework. The underlying
idea of this survey is to:
(i) Study generalized canonical models and make connections between the multipliers and
the quotient modules on one side, and the hermitian anti-holomorphic vector bundles and
curvatures on the other side (see Section 2).
(ii) Determine when a quasi-free Hilbert module can be realized as a quotient module of a
reproducing kernel Hilbert module (see Section 3).
(iii) Analyze Beurling type representation of (a class of) submodules and quotient modules
of H2(Dn), n > 1 (see Section 4).
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(iv) Determine when a Hilbert module over C[z] is similar to a quasi-free (or reproducing
kernel) Hilbert module (see Section 5).
(v) Analyze similarity problem for generalized canonical models corresponding to corona pairs
in H∞(D) (see Section 6).
(vi) Analyze free resolutions of Hilbert modules and corresponding localizations and to relate
with the Taylor’s joint spectrum (see Section 7).
(vii) Study the rigidity properties, that is, to determine the lattice of submodules of a repro-
ducing kernel Hilbert module, up to unitarily equivalence (see Section 8).
(viii) Determine when a Hilbert module is small, that is, when a (reproducing kernel) Hilbert
module is essentially normal (see Section 9).
Notations and Conventions: (i) N = Set of all natural numbers including 0. (ii) n ∈ N and
n ≥ 1, unless specifically stated otherwise. (iii) Nn = {k = (k1, . . . , kn) : ki ∈ N, i = 1, . . . , n}.
(iv) Cn = the complex n-space. (v) Ω : Bounded domain in Cn. (vi) z = (z1, . . . , zn) ∈ Cn.
(vii) zk = zk11 · · · zknn . (viii) H,K, E , E∗ : Hilbert spaces. (ix) B(H,K) = the set of all bounded
linear operators from H to K. (x) T = (T1, . . . , Tn), n-tuple of commuting operators. (xi)
T k = T k1

1 · · ·T kn
n . (xii) C[z] = C[z1, . . . , zn]. (xiii) Dn = {z : |zi| < 1, i = 1, . . . , n},

Bn = {z : ∥z∥Cn < 1}. (xiv) H2
E(D) : E-valued Hardy space over D.

Throughout this note all Hilbert spaces are over the complex field and separable. Also for a
closed subspace S of a Hilbert space H, the orthogonal projection of H onto S will be denoted
by PS .

This article is a companion paper to “An Introduction to Hilbert Module Approach to
Multivariable Operator Theory” (see [Sa14a]).

2. Generalized canonical models in the Cowen-Douglas class

Let E and E∗ be Hilbert spaces and H ∈ B∗
1(Ω). Moreover, assume Θ ∈ MB(E,E∗)(H).

Then the quotient module HΘ = H⊗ E∗/Θ(H⊗ E) is called the generalized canonical model
associated with H and Θ. In other words, a generalized canonical model can be obtained by
the resolution

· · · −→ H⊗ E MΘ−→ H⊗ E∗
πΘ−→ HΘ −→ 0.

This is a generalization of Sz.-Nagy-Foias notion of canonical model (see Section 4 in [Sa14a])
to quotient modules of Hilbert modules.

Let H ∈ B∗
1(D) be a contractive Hilbert module over A(D). Then H is in C·0 class and the

characteristic function ΘH, in the sense of Sz.-Nagy and Foias, is a complete unitary invariant
(see Section 4 in [Sa14a]). On the other hand, the curvature, in the sense of Cowen and
Douglas, is another complete unitary invariant. A very natural question then arises: whether
the characteristic function is connected with the curvature of the canonical model of H.

One can formulate the above problem in a more general framework by replacing the Hardy
module with a Hilbert module in B∗

1(Ω). More precisely, letH ∈ B∗
1(Ω) and Θ ∈ MB(E,E∗)(H).

Suppose the quotient module HΘ = H ⊗ E∗/Θ(H ⊗ E) is in B∗
m(Ω). Does there exists

any connection between the multipliers and curvature corresponding to the hermitian anti-
holomorphic vector bundle EHΘ

?
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The purpose of this section is to study generalized canonical models and make connec-
tions between the multipliers and the quotient modules on one side, and the hermitian anti-
holomorphic vector bundles and curvatures on the other side. Results concerning similarity
and unitarily equivalence will be derived from these connections. The final subsection of
this section will discuss some quotient modules of the familiar Hardy and weighted Bergman
modules over A(D) and trace basic facts about unitary equivalence and curvature equality.

2.1. Generalized canonical models in B∗
m(Ω). Generalized canonical models yields a

deeper understanding of many issues in the study of Hilbert modules. However, the present
approach we will assume only finite dimensional coefficient spaces with left invertible multi-
plier:

0 −→ H⊗ Cp MΘ−→ H⊗ Cq πΘ−→ HΘ −→ 0,

where p, q ∈ N and q > p.

Theorem 2.1. Let 1 ≤ p < q and HΘ be a generalized canonical model corresponding to
H ∈ B∗

1(Ω) and a left invertible Θ ∈ MB(Cp,Cq)(H). Then
(1) HΘ ∈ B∗

q−p(Ω), and

(2) V ∗
Θ(w) = (ran Θ(w))⊥ = ker Θ(w)∗ defines a hermitian anti-holomorphic vector bundle

V ∗
Θ =

⨿
w∈Ω

VΘ(w)∗,

over Ω such that
E∗

HΘ

∼= E∗
H ⊗ V ∗

Θ.

In particular, if q = p+ 1 then HΘ ∈ B∗
1(Ω) and VΘ is a line bundle.

Proof. Localizing the short exact sequence of Hilbert modules

0 −→ H⊗ Cp MΘ−→ H⊗ Cq πΘ−→ HΘ −→ 0,

at w ∈ Ω, that is, taking quotients by Iw · (H⊗Cp), Iw · (H⊗Cq), and Iw · HΘ, respectively,
one obtain the following exact sequence (see Theorem 5.12 in [DoPa89])

Cw ⊗ Cp ICw⊗Θ(w)−→ Cw ⊗ Cq πΘ(w)−→ HΘ/Iw · HΘ −→ 0.

Since dim[ran Θ(w)] = p for all w ∈ Ω, it follows that dim
[
ker πΘ(w)

]
= p, and thus

dim
[
HΘ/Iw · HΘ

]
= dim

[
HΘ

/( n∑
i=1

(Mzi − wiIH)HΘ

)]
= q − p,

that is,

dim
[

n
∩
i=1

ker (Mzi − wiIH)
∗|HΘ

]
= q − p,

for all w ∈ Ω.
The next step is to prove the following equality∨

w∈Ω

{ker (Mz − wIH)
∗ ⊗ ker Θ(w)∗} = (H⊗ Cq)⊖ ran MΘ.
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For simplicity of notation, assume that q = p+1. The proof of the general case is essentially
the same as the one presented below (or see Theorem 3.3 in [DoKKSa14]). To this end, let
{ei}p+1

i=1 be the standard orthonormal basis for Cp+1 and let ∆Θ be the formal determinant

∆Θ(w) = det

 e1 θ1,1(w) · · · θ1,p(w)
...

...
...

...
ep+1 θp+1,1(w) · · · θp+1,p(w)

 ∈ Cp+1,

where Θ(w) = (θi,j(w)) and w ∈ Ω. Since Θ(w) has a left inverse Ψ(w), it follows that

rank Θ(w) = l, and hence ∆Θ(w) ̸= 0 for all w ∈ Ω. Set γw := kw ⊗ ∆Θ(w) ̸= 0 for all

w ∈ Ω, where kw is any non-zero vector in E∗
H(w) ⊆ H and ∆Θ(w) is the complex conjugate

of ∆Θ(w) relative to the basis {ei}p+1
i=1 . Moreover, consider the inner product of γw with

MΘ

h1...
hl

 =


∑p

j=1 θ1,jhj
...∑p

j=1θp+1,jhj

 ∈ H ⊗ Cp+1,

for {hi}pi=1 ⊆ H. Evaluating the resulting functions at w ∈ Ω, one can conclude that these
functions are the sum of the products of hi(w) with coefficients equal to the determinants of
matrices with repeated columns and hence

⟨MΘ

h1...
hp

 , γw⟩ = 0.

Thus, γw ⊥ ran MΘ for all w ∈ Ω. Also, it is easy to see that

(M∗
zi
⊗ ICp+1)γw = w̄iγw,

for w ∈ Ω and for all i = 1, . . . , n, so that
n∩

i=1

ker (Mzi ⊗ ICp+1 − wiIH⊗Cp+1)∗|HΘ
= C · γw,

for all w ∈ Ω.
The next step is to prove that

∨
w∈Ω kw ⊗∆Θ(w) = HΘ. For all g =

∑p+1
i=1 gi ⊗ ei ∈ H⊗Cp+1

with g ⊥ γw for every w ∈ Ω, one must exhibit the representation gi(w) =
∑p

j=1 ηj(w)θij(w)

for i = 1, ..., p + 1, where the {ηj}pj=1 are functions in H. Fix w0 ∈ Ω. The assumption
⟨g, γw0⟩ = 0 implies that

(2.1) det

 g1(w0) θ1,1(w0) · · · θ1,p(w0)
...

...
...

...
gp+1(w0) θp+1,1(w0) · · · θp+1,p(w0)

 = 0.

Now view the matrix

Θ(w0) =

 θ1,1(w0) · · · θ1,p(w0)
...

...
...

θp+1,1(w0) · · · θp+1,l(w0)


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as the coefficient matrix of a linear system of (p + 1) equations in p unknowns. Since
rank Θ(w0) = p, some principal minor (which means taking some p rows) has a non-zero
determinant. Hence, using Cramer’s rule, one can uniquely solve for {ηj(w0)}pj=1 ⊆ Cp, at
least for these p rows. But by (2.1), the solution must also satisfy the remaining equation.
Hence we obtain the {ηj(w0)}pj=1 ⊆ Cp and define

ξ(w0) =

p∑
j=1

ηj(w0)⊗ ej,

so that

g(w0) = Θ(w0)ξ(w0),

for each w0 ∈ Ω. After doing this for each w ∈ Ω, we use the left inverse Ψ(w) for Θ(w) to
obtain

ξ(w) = (Ψ(w)Θ(w))ξ(w) = Ψ(w)(Θ(w)ξ(w)) = Ψ(w)g(w) ∈ H ⊗ Cp.

Consequently, {ηj}pj=1 ⊆ H and
∨

w∈Ω γw = HΘ.
Lastly, the closed range property of HΘ follows from that of H. In particular, since the
column operator M∗

z − w̄IH (see Definition 3.1 in [Sa14a]) acting on H ⊗ Cl+1 has closed
range and a finite dimensional kernel, it follows that restricting it to the invariant subspace
HΘ ⊆ H⊗ Cp+1 yields an operator with closed range and hence HΘ ∈ B∗

1(Ω).
The above result allows one to construct a wide range of Cowen-Douglas Hilbert modules

over domains in Cn.

2.2. Curvature equality. The following is a very useful equality for the class of generalized
canonical models.

Theorem 2.2. Let 1 ≤ p < q and HΘ be a generalized canonical model corresponding to
H ∈ B∗

1(Ω) and a left invertible Θ ∈ MB(Cp,Cq)(H). Then

KE∗
HΘ

−KE∗
H
= KV ∗

Θ
.

Proof. To establish the curvature formula, first recall that the formula for the curvature of the
Chern connection on an open subset U ⊆ Ω for a hermitian anti-holomorphic vector bundle
is ∂̄[G−1∂G], where G is the Gramian for an anti-holomorphic frame {fi}q−p

i=1 for the vector
bundle on U (cf. [CuSal84]). Assume that U is chosen so that the {kw} for w ∈ Ω can be
chosen to be an anti-holomorphic function on U . Denoting by GΘ the Gramian for the frame
{kw ⊗ fi(w)}q−p

i=1 , GΘ(w) equals the (q − p)× (q − p) matrix

GΘ(w) =
(
⟨kw ⊗ fi(w), kw ⊗ fj(w)⟩

)q−p

i,j=1
= ∥kw∥2

(
⟨fi(w), fj(w)⟩

)q−p

i,j=1
= ∥kw∥2Gf (w),
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where Gf is the Gramian for the anti-holomorphic frame {fi(w)}q−p
i=1 for V ∗

Θ. Then

∂̄[G−1
Θ (∂GΘ)] = ∂̄[

1

∥kw∥2
G−1

f (∂(∥kw∥2Gf ))]

= ∂̄[
1

∥kw∥2
G−1

f (∂(∥kw∥2)Gf + ∥kw∥2∂Gf )]

= ∂̄[
1

∥kw∥2
∂(∥kw∥2) +G−1

f ∂Gf ]

= ∂̄[
1

∥kw∥2
∂(∥kw∥2)] + ∂̄[G−1

f ∂Gf ].

Hence, expressing these matrices in terms of the respective frames and using the fact that the
coordinates of a bundle and of its dual can be identified using the basis given by the frame,
one has

KE∗
HΘ

(w)−KE∗
H
(w)⊗ IV ∗

Θ(w) = IE∗
H(w) ⊗KV ∗

Θ
(w),

for all w ∈ U . Since the coordinate free formula does not involve U , this completes the proof.

Based on Theorems 2.1 and 2.2, one can say that the isomorphism of quotient Hilbert
modules is independent of the choice of the basic Hilbert module ”building blocks” from
which they were created.

Corollary 2.3. Let H, H̃ ∈ B∗
1(Ω) and Θ1,Θ2 ∈ MB(Cp,Cq)(H) ∩ MB(Cp,Cq)(H̃) are left

invertible with inverse in MB(Cq ,Cp)(H) ∩ MB(Cq ,Cp)(H̃). Then HΘ1 is isomorphic to HΘ2 if

and only if H̃Θ1 is isomorphic to H̃Θ2.

Proof. The statement is obvious from the tensor product representations E∗
HΘi

∼= E∗
H ⊗ V ∗

Θi

and E∗
H̃Θi

∼= E∗
H̃⊗V ∗

Θi
, for i = 1, 2 ; that is, isomorphic as hermitian anti-holomorphic bundles,

and the result that KE∗
HΘ1

= KE∗
HΘ2

if and only if KV ∗
Θ1

= KV ∗
Θ2

as two forms.

In what follows, ▽2 denotes the Laplacian

▽2 = 4∂∂̄ = 4∂̄∂.

Theorem 2.4. Let H ∈ B∗
1(Ω) and Θ1,Θ2 ∈ MB(Cl,Cl+1)(H) are left invertible multipliers.

Then the quotient Hilbert modules HΘ1 and HΘ2 are isomorphic if and only if

▽2log ∥∆Θ1∥ = ▽2log ∥∆Θ2∥,

where ∆Θi
is an anti-holomorphic cross section of V ∗

Θi
and i = 1, 2.

Proof. Choose a cross section kw so that kw ⊗ ∆Θi
(w), i = 1, 2, are anti-holomorphic local

cross-sections of E∗
HΘ1

and E∗
HΘ2

, respectively, over some open subset U ⊆ Ω. Since every

w0 ∈ Ω is contained in such an open subset U of Ω, by rigidity theorem [CoDo78] (or Theorem
3.2 in [Sa14a]), it follows that HΘ1

∼= HΘ2 if and only if

KE∗
HΘ1

(z) = KE∗
HΘ2

(z),
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for every z ∈ Ω or, equivalently,

▽2log ∥∆Θ1∥ = ▽2log ∥∆Θ2∥,
by Theorem 2.2. This completes the proof.

2.3. Examples and applications. The purpose of this subsection is to describe a class of
simple examples of generalized canonical models in B∗

1(D).
Let Θ ∈ H∞

B(C,C2)(D) so that

Θ(z) =

[
θ1(z)
θ2(z)

]
,

and θ1, θ2 ∈ H∞(D) and z ∈ D. Θ is said to satisfy the corona condition if there exists an
ϵ > 0 such that |θ1(z)|2 + |θ2(z)|2 > ϵ for all z ∈ D (see Section 5).

For the rest of this subsection, fix a corona pair Θ =

[
θ1
θ2

]
∈ H∞

B(C,C2)(D) and use the notation

H to denote the Hardy, the Bergman, or a weighted Bergman module over D. Consider the
generalized canonical model HΘ corresponding to the exact sequence of Hilbert modules:

0 −→ H⊗ C MΘ−→ H⊗ C2 πΘ−→ HΘ −→ 0,

where the first map MΘ is MΘf = θ1f ⊗ e1 + θ2f ⊗ e2 and the second map πΘ is the quotient
Hilbert module map.

Note that by taking the kernel functions for H2(D) and L2
a,α(D) as an anti-holomorphic

cross section of bundles an easy computation shows that

KE∗
H2(D)

(z) = − 1

(1− |z|2)2
,

and

KE∗
L2
a,α(D)

(z) = − 2 + α

(1− |z|2)2
.

The following is immediate consequence of Theorems 2.1 and 2.2.

Theorem 2.5. For Θ =

[
θ1
θ2

]
satisfying the corona condition, HΘ ∈ B∗

1(D) and

(2.2) KE∗
HΘ

(w) = KE∗
H
(w)− 1

4
▽2 log (|θ1(w)|2 + |θ2(w)|2). (w ∈ D)

Theorem 2.6. Let Θ =

[
θ1
θ2

]
and Φ =

[
φ1

φ2

]
satisfy the corona condition. The quotient Hilbert

modules HΘ and HΦ are isomorphic if and only if

▽2log
|θ1(z)|2 + |θ2(z)|2

|φ1(z)|2 + |φ2(z)|2
= 0. (z ∈ D)

Proof. Since HΘ,HΦ ∈ B∗
1(D), they are isomorphic if and only if KE∗

HΘ
(w) = KE∗

HΦ
(w) for

all w ∈ D. But note that (2.2) and an analogous identity for Φ hold, where the θi are re-
placed with the φi. Since both Θ and Φ satisfy the corona condition, the result then follows.
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Theorem 2.7. Suppose that Θ =

[
θ1
θ2

]
and Φ =

[
φ1

φ2

]
satisfy the corona condition. The

quotient Hilbert modules (L2
a,α(D))Θ and (L2

a,β(D))Φ are isomorphic if and only if α = β and

▽2log
|θ1(z)|2 + |θ2(z)|2

|φ1(z)|2 + |φ2(z)|2
= 0. (z ∈ D)

Proof. Since

KE∗
(L2

a,α(D))Θ
(w) = − 2 + α

(1− |w|2)2
− 1

4
▽2 log (|θ1(w)|2 + |θ2(w)|2),

and

KE∗
(L2

a,β
(D))Φ

(w) = − 2 + β

(1− |w|2)2
− 1

4
▽2 log (|φ1(w)|2 + |φ2(w)|2),

by (2.2), one implication is obvious. For the other one, suppose that (L2
a,α(D))Θ is isomorphic

to (L2
a,β(D))Φ so that the curvatures coincide. Observe next that

4(β − α)

(1− |w|2)2
= ▽2log

|θ1(w)|2 + |θ2(w)|2

|φ1(w)|2 + |φ2(w)|2
.

Since a function f with ▽2f(z) = 1
(1−|z|2)2 for all z ∈ D is necessarily unbounded, one arrives

at a contradiction, unless α = β (see Lemma 2.8 below). This is due to the assumption that
the bounded functions Θ and Φ satisfy the corona condition.

Lemma 2.8. There is no bounded function f defined on the unit disk D that satisfies ▽2f(z) =
1

(1−|z|2)2 for all z ∈ D.

Proof. Suppose that such f exists. Since 1
4
▽2 [(|z|2)m] = ∂∂̄[(|z|2)m] = m2(|z|2)m−1 for all

m ∈ N, one see that for

g(z) :=
1

4

∞∑
m=1

|z|2m

m
= −1

4
log (1− |z|2),

▽2g(z) = 1
(1−|z|2)2 for all z ∈ D. Consequently, f(z) = g(z) + h(z) for some harmonic

function h. Since the assumption is that f is bounded, there exists an M > 0 such that
|g(z) + h(z)| ≤M for all z ∈ D. It follows that

exp (h(z)) ≤ exp (−g(z) +M) = (1− |z|2)
1
4 exp (M),

and letting z = reiθ, we have exp (h(reiθ)) ≤ (1 − r2)
1
4 exp (M). Thus exp (h(reiθ)) → 0

uniformly as r → 1−, and hence exph(z) ≡ 0. This is due to the maximum modulus principle

because exph(z) = | exp(h(z) + ih̃(z))|, where h̃ is a harmonic conjugate for h. This leads to
a contradiction, and the proof is complete.

Theorem 2.9. For Θ =

[
θ1
θ2

]
and Φ =

[
φ1

φ2

]
satisfying the corona condition, (H2(D))Θ cannot

be isomorphic to (L2
a,α(D))Φ.
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Proof. By identity (4.2), one can conclude that (H2)Θ is isomorphic to (A2
α)Φ if and only if

4(1 + α)

(1− |w|2)2
= ▽2log

|φ1(w)|2 + |φ2(w)|2

|θ1(w)|2 + |θ2(w)|2
.

But according to Lemma 4.6, this is impossible unless α = −1.
Further results and comments:

(1) Let E and E∗ be two Hilbert spaces and Θ ∈ O(Ω,B(E , E∗)). One can define the
holomorphic kernel and co-kernel bundles with fibers kerΘ(w) and cokerΘ(w) =
E∗/Θ(w)E for w ∈ Ω, respectively, whenever it make sense. Moreover, related Hilbert
modules with H ∈ B∗

m(Ω) can be defined for an arbitrary m ≥ 1. Here consideration
is restricted to the “simplest” case, when Θ is left invertible, and obtain some of the
most “direct” possible results.

(2) Let H ∈ B∗
m(D) be a contractive Hilbert module over A(D). Then one can prove

that H is in the C·0 class. In this case, the connection between the characteristic
function ΘH and the curvature of the generalized canonical model, that is, the Sz.-
Nagy-Foias canonical model H2

D∗/ΘHH
2
D(D), was addressed earlier by Uchiyama in

[U90]. His theory is instrumental in the study of generalized canonical models (cf.
[KT09], [Sa13b]).

(3) All results presented in this section can be found in [DoKKSa12] and [DoKKSa14].
(4) In connection with this section, see also the work by Zhu [Zh00], Eschmeier and

Schmitt [EsS14] and Kwon and Treil [KT09] and Uchiyama [U90] (see also [Sa13b]).

3. Dilation to quasi-free Hilbert modules

Recall that a Hilbert module H over C[z] is C·0-contractive if and only if (see Section 4 in
[Sa14a]) there exists a resolution of Hilbert modules

0 −→ F1
i−→ F2

π−→ H −→ 0,

where Fi = H2
Ei(D) for some Hilbert spaces E1 and E2.

Now let H be a C·0-contractive Hilbert module over C[z] (that is, Mi ∈ C0̇ for each i)
and n ≥ 2. If one attempts to obtain a similar resolution for H, then one quickly runs into
trouble. In particular, if n > 2 then Parrott’s example [Pu94] shows that, in general, an
isometric dilation need not exist. On the other hand, a pair of commuting contractions is
known to have an isometric dilation [An63], that is, a resolution exists for contractive Hilbert
module over C[z1, z2]. However, such dilations are not necessarily unique, that is, one can not
expect that F2 to be a free module H2(D2)⊗ E2.

The purpose of this section is to study the following problem: Let R ⊆ O(Ω,C) be a
reproducing kernel Hilbert module over A(Ω) and M be a quasi-free Hilbert module over
A(Ω). Determine when M can be realized as a quotient module of the free module R⊗E for
some coefficient space E , that is, when M admits a free resolution

0 −→ S i−→ R⊗ E π−→ M −→ 0,

where S is a submodule of R⊗ E .
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Another important motivation for studying dilation to quasi-free Hilbert modules is to
develop some connections between free resolutions, positivity of kernel functions and factor-
izations of kernel functions. Our main tool is to establish a close relationship between the
kernel functions for the Hilbert modules in an exact sequence using localization.

3.1. Factorization of reproducing kernels. Let R ⊆ O(Ω,C) be a reproducing kernel
Hilbert space and H be a quasi-free Hilbert module of multiplicity m over C[z] or A(Ω) and
E a Hilbert space. Then R ⊗ E being a dilation of H is equivalent to the exactness of the
sequence of Hilbert modules

0 −→ S i−→ R⊗ E π−→ H −→ 0,

where the second map is the inclusion i and the third map is the quotient map π which is a
co-isometry. The aim of this subsection is to relate the existence of an R ⊗ E-dilation of a
reproducing kernel Hilbert module HK to the positivity of the kernel function K.

Theorem 3.1. Let R ⊆ O(Ω,C) be a reproducing kernel Hilbert module with the scalar kernel
function k and H be a quasi-free Hilbert module of multiplicity m over A(Ω) or C[z]. Then
R⊗ E is a dilation of H for some Hilbert space E, if and only if there is a holomorphic map
πz ∈ O(Ω,L(E , l2m)) such that

KH(z,w) = k(z,w)πzπ
∗
w. (z,w ∈ Ω)

Proof. Let R⊗ E be a dilation of H, that is,

0 → S → R⊗ E → H → 0.

Localizing the above exact sequence of Hilbert modules at z ∈ Ω one arrives at

S/IzS (R⊗ E)/Iz(R⊗ E) H/IzH 0
iz πz

Nz Pz Qz

0 S R⊗ E H 0
i π-

-

- -

- -

-

? ? ?

which is commutative with exact rows for all w in Ω (see [DoPa89]). Here Nz, Pz and Qz are
the quotient module maps. Since one can identify H/IzH with l2m and (R ⊗ E)/Iz(R ⊗ E)
with E , the kernel functions of H and R ⊗ E are given by QzQ

∗
w and PzP

∗
w, respectively.

Moreover, since Qwπ = πwPw for all w ∈ Ω, it follows that

Qzππ
∗Qw = πzPzP

∗
wπ

∗
w. (z,w ∈ Ω)

Using the fact that ππ∗ = IH and PzP
∗
w = k(z,w)⊗ IE , one can now conclude that

QzQ
∗
w = k(z,w)πzπ

∗
w. (z,w ∈ Ω)
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Conversely, let the kernel function of the quasi-free Hilbert module H has the factorization

KH(z,w) = k(z,w)πzπ
∗
w, (z,w ∈ Ω)

for some function π : Ω → L(E , l2m). Note that if the function π satisfies the above equality
then it is holomorphic on Ω. Define a linear map X : H → R⊗ E so that

XQ∗
zη = P ∗

zπ
∗
zη. (η ∈ l2m)

It then follows that

⟨X(Q∗
wη), X(Q∗

zζ)⟩ = ⟨P ∗
wπ

∗
wη, P

∗
zπ

∗
zζ⟩ = ⟨πzPzP

∗
wπ

∗
wη, ζ⟩ = ⟨QzQ

∗
wη, ζ⟩ = ⟨Q∗

wη,Q
∗
zζ⟩,

for all η, ζ ∈ l2m. Therefore, since {Q∗
zη : z ∈ Ω, η ∈ l2m} is a total set of H, that X extends to

a bounded isometric operator. Moreover, by the reproducing property of the kernel function,
it follows that

M∗
zi
X(Q∗

zη) =M∗
zi
P ∗
z (π

∗
zη) = ziP

∗
zπ

∗
zη = ziX(Q∗

zη) = XQ∗
z(ziη) = XM∗

zi
(Q∗

zη),

for all 1 ≤ i ≤ n and η ∈ l2m. Hence, X ∈ B(H,R⊗ E) is a co-module map.
The following result is an application of the previous theorem.

Theorem 3.2. Let H be a quasi-free Hilbert module of finite multiplicity and R be a repro-
ducing kernel Hilbert module over A(Ω) (or over C[z]). Let k be the kernel function of R.
Then R⊗ E is a dilation of H for some Hilbert space E if and only if

KH(z,w) = k(z,w)K̃(z,w), (z,w ∈ Ω)

for some positive definite kernel K̃ over Ω. Moreover, if k−1 is defined, then the above
conclusion is true if and only if k−1KH is a positive definite kernel.

Proof. The necessary part follows from the previous theorem by setting K̃(z,w) = πzπ
∗
w. To

prove the sufficiency part, let KH = k · K̃ for some positive definite kernel K̃. We let H(K̃)
be the corresponding reproducing kernel Hilbert space and set E = H(K̃). Let

πz = evz ∈ B(E , l2m) (z ∈ Ω)

be the evaluation operator for the reproducing kernel Hilbert space H(K̃). Then

K̃(z,w) = πzπ
∗
w. (z,w ∈ Ω)

Consequently, by the previous theorem it follows that R⊗ E is a dilation of H.
Note that the reproducing kernel Hilbert space corresponding to the kernel function K̃ is

not necessarily a bounded module over A(Ω) or even over C[z]. If it is a bounded module, then
one can identify M canonically with the Hilbert module tensor product, R⊗C[z]H(K̃), which

yields an explicit representation of the co-isometry from the co-extension space R⊗H(K̃) to
M.
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3.2. Hereditary functional calculus. Let p be a polynomial in the 2n variables z =
(z1, . . . , zn), w̄ = (w̄1, . . . , w̄n), where the z -variables all commute and the w̄-variables all
commute with no assumptions made about the relation of the z and w̄ variables. For any
commuting n-tuple of operators T = (T1, . . . , Tn), define the value of p at T using the hered-
itary functional calculus (following Agler [Ag82]):

p(T, T ∗) =
∑
k,l

ak,lT
kT ∗l,

where p(z, w̄) =
∑

k,l ak,lz
kw̄l and k, l ∈ Nn. Here, in the “non-commutative polynomial”

p(z, w̄), the “z’s” are all placed on the left, while the “w̄’s” are placed on the right.
Let R ⊆ O(Ω, E) be an E-valued reproducing kernel Hilbert module over Ω for some Hilbert

space E and k be a positive definite kernel over Ω. Moreover, let

k−1(z,w) =
∑
k,l

ak,lz
kw̄l,

be a polynomial in z and w̄. Therefore, for the module multiplication operators on R one
gets

k−1(M,M∗) =
∑
k,l

ak,lM
kM∗l.

Proposition 3.3. Let R ⊆ O(Ω, E) be a reproducing kernel Hilbert module with kernel
function KR. Moreover, let k be a positive definite function defined on Ω and k−1(z,w) =∑

k,l ak,lz
kw̄l be a polynomial in z and w̄. Then

k−1(M,M∗) ≥ 0,

if and only if

(z,w) 7→ k−1(z,w)KR(z,w),

is a positive definite kernel on Ω.

Proof. For each z,w ∈ Ω and η, ζ ∈ E , as a result of the preceding identity,

⟨k−1(M,M∗)KR(·,w)η,KR(·,z)ζ⟩R = ⟨
(∑

k,l

ak,lM
kM∗l

)
KR(·,w)η,KR(·, z)ζ⟩R

=
∑
k,l

ak,l⟨M∗lKR(·,w)η,M∗kKR(·, z)ζ⟩R

=
∑
k,l

ak,lz
kw̄l⟨KR(·,w)η,KR(·,z)ζ⟩R

= k−1(z,w)⟨KR(z,w)η, ζ⟩E
= ⟨k−1(z,w)KR(z,w)η, ζ⟩E .
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Hence, for {zi}li=1 ⊆ Ω and {ηi}li=1 ⊆ l2m and l ∈ N it follows that

⟨k−1(M,M∗)(
l∑

i=1

KR(·,zi)ηi),
l∑

j=1

KR(·, zj)ηj⟩R

=
l∑

i,j=1

⟨k−1(M,M∗)(KR(·, zi)ηi), KR(·,zj)ηj⟩R

=
l∑

i,j=1

⟨k−1(zj,zi)KR(zj,zi)ηi, ηj⟩E

=
l∑

i,j=1

⟨(k−1 ◦KR)(zj,zi)ηj, ηi⟩E .

Consequently, k−1(M,M∗) ≥ 0 if and only if k−1(z,w)KM(z,w) is a non-negative definite
kernel. This completes the proof.

The following corollary is immediate.

Corollary 3.4. Let R ⊆ O(Ω, E) be a reproducing kernel Hilbert module with kernel func-
tion KR. Moreover, let k be a positive definite function defined on Ω and k−1(z,w) =∑

k,l ak,lz
kw̄l be a polynomial in z and w̄. Then k−1(M,M∗) ≥ 0 if and only if KR fac-

torizes as
KR(z,w) = k(z,w)K̃(z,w), (z,w ∈ Ω)

for some positive definite kernel K̃ on Ω.

The following dilation result is an application of Theorem 3.2 and Corollary 3.4.

Theorem 3.5. Let M be a quasi-free Hilbert module over A(Dn) of multiplicity m and Hk

be a reproducing kernel Hilbert module over A(Dn). Moreover, let k−1(z,w) =
∑

k,l ak,lz
kw̄l

be a polynomial in z and w̄. Then Hk ⊗ F is a dilation of M for some Hilbert space F if
and only if k−1(M,M∗) ≥ 0.

It is the aim of the present consideration to investigate the issue of uniqueness of the
minimal isometric dilations of contractive reproducing kernel Hilbert modules. The proof is
based on operator theory exploiting the fact that the co-ordinate multipliers define doubly
commuting isometries.

Theorem 3.6. Let Hk be a contractive reproducing kernel Hilbert module over A(Dn). Then
Hk dilates to H

2(Dn)⊗E if and only if S−1(M,M∗) ≥ 0 or, equivalently, S−1k ≥ 0. Moreover,
if such dilation exists, then the minimal one is unique.

Proof. By virtue of Theorem 3.5, one only needs to prove the uniqueness of the minimal
dilation. Let Πi : Hk → H2(Dn)⊗ Ei be minimal isometric dilations of Hk, that is,

H2(Dn)⊗ Ei = span{Mk
z (ΠiHk) : k ∈ Nn},

for i = 1, 2. Define
V : H2(Dn)⊗ E1 → H2(Dn)⊗ E2,
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by

V (
∑
|k|≤N

Mk
z Π1fk) =

∑
|α|≤N

Mk
z Π2fk,

where fk ∈ H and N ∈ N. Let k, l ∈ Nn and define multi-indices k̃ and l̃ so that

k̃i =

{
ki − li for ki − li ≥ 0

0 for ki − li < 0
and l̃i =

{
li − ki for li − ki ≥ 0

0 for li − ki < 0

Note that ki − li = k̃i − l̃i, k̃i, l̃i ≥ 0 and hence

M∗l
z M

k
z =M∗l̃

z M
k̃
z =M k̃

z M
∗l̃
z .

Therefore, for i = 1, 2, it follows that

⟨Mk
z Πifk,M

l
zΠifl⟩ = ⟨M∗l

z M
k
z Πifk,Πifl⟩ = ⟨M∗l̃

z Πifk,M
∗k̃
z Πifl⟩,

and, since Πi is an co-module isometry, one gets

⟨Mk
z Πifk,M

l
zΠifl⟩ = ⟨ΠiM

∗l̃
z fk,ΠiM

∗k̃
z fl⟩ = ⟨M∗l̃

z fk,M
∗k̃
z fl⟩.

Hence V is well-defined and isometric and

VΠ1 = Π2.

Moreover, since

{
∑
|k|≤N

Mk
z Πifk : fk ∈ H, N ∈ N}

is a total subset of H2(Dn) ⊗ Ei for i = 1, 2, by minimality, V is a unitary module map and
hence V = IH2(Dn) ⊗ V0 for some unitary V0 ∈ B(E1, E2). Therefore, the minimal dilations Π1

and Π2 are unitarily equivalent, which concludes the proof.

Corollary 3.7. If Hk be a contractive reproducing kernel Hilbert space over A(Dn). Then the
Hardy module H2(Dn)⊗E is a dilation of Hk if and only if S−1

n (M,M∗) ≥ 0 or, equivalently,
if and only if S−1

n k ≥ 0. Moreover, if an H2(Dn)⊗ E dilation exists, then the minimal one is
unique.

Proof. The necessary and sufficient part follows from Theorem 3.5. The uniqueness part
follows from Theorem 3.6.

The above proof will only work if the algebra is generated by functions for which module
multiplication defines doubly commuting isometric operators which happens for the Hardy
module on the polydisk. For a more general quasi-free Hilbert module R, the maps X∗

i

identify anti-holomorphic sub-bundles of the bundle ER ⊗ Ei, where ER is the Hermitian
holomorphic line bundle defined by R. To establish uniqueness, some how one must extend
this identification to the full bundles. Equivalently, one has to identify the holomorphic
quotient bundles of ER ⊗ E1, and ER ⊗ E2 and must some how lift it to the full bundles. At
this point it is not even obvious that the dimensions of E1 and E2 or the ranks of the bundles
are equal. This seems to be an interesting question. Using results on exact sequences of
bundles (cf. [GriHar94] and [We80]), one can establish uniqueness if dim E = rankEH + 1.
Further results and comments:
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(1) Most of the material in this section is based on the article [DoMiSa12].
(2) In [Ag85], [Ag82], [At87], [At90], [At92], [AEn03] and [AmEnMu02], Agler, Athavale,

Ambrozie, Arazy, Englis and Muller pointed out that the dilation theory and operator
positivity implemented by kernel functions are closely related to each other.

(3) Theorem 3.6 was proved by Douglas and Foias in [DoFo93] for the case of multiplicity
one. More precisely, let S1 and S2 be two submodules of H2(Dn). Then H2(Dn)/S1

∼=
H2(Dn)/S2 if and only if S1 = S2. This is a rigidity result concerning submodules of
the Hardy module (see Section 8).

(4) Notice that any n-tuple of doubly commuting contractions on a functional Hilbert
space over A(Dn) satisfies the hypothesis of Theorem 3.5. Consequently, one can
recover the result of Sz.-Nagy and Foias (cf. [NaFo70a]) in this situation. In particular,
Mn = M⊗ · · · ⊗M always possesses a dilation to the Hardy module H2(Dn) ⊗ E ,
where E is some Hilbert space, if M is contractive Hilbert module. The contractivity
condition implies that

K(z,w) = (1− zℓw̄ℓ)
−1Qℓ(z,w), (z,w ∈ Dn)

for some positive definite kernel Qℓ and for each ℓ = 1, 2, . . . , n. Thus

Kn(z,w) = Sn(z,w)Q(z,w), (z,w ∈ Dn)

where Q =
∏n

ℓ=1Qℓ. Thus the Hilbert module Mn corresponding to the positive
definite kernel Kn is contractive and admits the kernel SDn as a factor, as shown
above. This shows that Mn has an isometric co-extension to H2

Q(Dn), where Q is the
reproducing kernel Hilbert space for the kernel Q.

4. Hardy module over polydisc

This section begins by formulating a list of basic problems in commutative algebra. Let M
be a module over C[z] and M⊗n := M⊗C · · · ⊗C M, the n-fold vector space tensor product
of M. Then M⊗n is a module over C[z] ⊗C · · · ⊗C C[z] ∼= C[z]. Here the module action on
M⊗n is given by

(p1 ⊗ · · · ⊗ pn) · (f1 ⊗ · · · ⊗ fn) 7→ p1 · f1 ⊗ · · · ⊗ pn · fn,

for all {pi}ni=1 ⊆ C[z] and {fi}ni=1 ∈ Mi. Let {Qi}ni=1 be quotient modules of M. Then

(4.3) Q1 ⊗C · · · ⊗C Qn,

is a quotient module of M⊗n.
On the other hand, let Q be a quotient module and S a submodule of Mn. One is naturally

led to formulate the following problems:
(a) When is Q of the form (4.3)?
(b) When is M/S of the form (4.3)?

Let now M be the Hardy space H2(D), the Hilbert space completion of C[z], and consider
the analogous problem. The purpose of this section is to provide a complete answer to these
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questions when M = H2(D). In particular, a quotient module Q of the Hardy module
H2(Dn) ∼= H2(D)⊗ · · · ⊗H2(D) is of the form

Q = Q1 ⊗ · · · ⊗ Qn,

for n quotient modules {Qi}ni=1 of H2(D) if and only if Q is doubly commuting.
A quotient module Q ⊆ H2(Dn) is said to be doubly commuting if

CziC
∗
zj
= C∗

zj
Czi . (1 ≤ i < j ≤ n)

A submodule S is called co-doubly commuting if S⊥ ∼= H2(Dn)/S is doubly commuting
quotient module.

4.1. Submodules and Jordan blocks. A closed subspaceQ ⊆ H2(D) is said to be a Jordan
block of H2(D) if Q is a quotient module and Q ̸= H2(D) (see [NaFo70b], [NaFo70a]). By
Beurling’s theorem (see Corollary 5.4 in [Sa14a]), a closed subspace Q(̸= H2(D)) is a quotient
module of H2(D) if and only if the submodule Q⊥ is given by Q⊥ = ΘH2(D) for some inner
function Θ ∈ H∞(D). In other words, the quotient modules and hence the Jordan blocks of
H2(D) are precisely given by

QΘ := H2(D)/ΘH2(D),
for inner functions Θ ∈ H∞(D). Thus on the level of orthogonal projections, one gets

PQΘ
= IH2(D) −MΘM

∗
Θ and PΘH2(D) =MΘM

∗
Θ.

The following lemma is a variation on the theme of the isometric dilation theory of con-
tractions.

Lemma 4.1. Let Q be a quotient module of H2(D) and L = ran(IQ−CzC
∗
z ) = ran(PQPCPQ).

Then Q = ∨∞
l=0 PQM

l
zL.

Proof. The result is trivial if Q = {0}. Let Q ≠ {0}, that is, Q⊥ is a proper submodule of
H2(D), or equivalently, 1 /∈ Q⊥. Notice that

∞
∨
l=0

PQM
l
zL ⊆ Q.

Let now

f =
∞∑
l=0

alz
l ∈ Q,

be such that f ⊥ ∨∞
l=0PQM

l
zL. It then follows that f ⊥ PQM

l
zPQPCQ, or equivalently,

PCM
∗l
z f ∈ Q⊥ for all l ≥ 0. Since PCM

∗l
z f = al ∈ C and 1 /∈ Q⊥, it follows that al =

PCM
∗l
z f = 0 for all l ≥ 0. Consequently, f = 0. This concludes the proof.

4.2. Reducing submodules. The following result gives a characterization of Mz1-reducing
subspace of H2(Dn).

Proposition 4.2. Let n > 1 and S be a closed subspace of H2(Dn). Then S is a (Mz2 , . . . ,Mzn)-
reducing subspace of H2(Dn) if and only if S = S1 ⊗ H2(Dn−1) for some closed subspace S1

of H2(D).
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Proof. Let S be a (Mz2 , . . . ,Mzn)-reducing closed subspace ofH2(Dn), that is,MziPS = PSMzi

for all 2 ≤ i ≤ n. Since∑
0≤i1<...<il≤n,i1,i2 ̸=1

(−1)lMzi1
· · ·Mzil

M∗
zi1

· · ·M∗
zil

= (IH2(Dn) −Mz2M
∗
z2
) · · · (IH2(D2) −MznM

∗
zn)

= PH2(D) ⊗ PC ⊗ · · · ⊗ PC,

we have that (PH2(D)⊗PC⊗· · ·⊗PC)PS = PS(PH2(D)⊗PC⊗· · ·⊗PC). Therefore, PS(PH2(D)⊗
PC ⊗ · · · ⊗ PC) is an orthogonal projection and

PS(PH2(D) ⊗ PC ⊗ · · · ⊗ PC) = (PH2(D) ⊗ PC ⊗ · · · ⊗ PC)PS = PS̃1
,

where S̃1 := (H2(D)⊗C⊗ · · · ⊗C)∩S. Let S̃1 = S1 ⊗C⊗ · · · ⊗C, for some closed subspace
S1 of H2(D). It then follows that

S = span{M l2
z2
· · ·M ln

znS̃1 : l2, . . . , ln ∈ N} = S1 ⊗H2(Dn−1).

The converse part is immediate. This concludes the proof of the proposition.
It is well known that a closed subspace M of H2(Dn) is Mz1-reducing if and only if

M = H2(D)⊗ E ,

for some closed subspace E ⊆ H2(Dn−1). The following key proposition is a generalization of
this fact.

Proposition 4.3. Let Q1 be a quotient module of H2(D) and M be a closed subspace of
Q = Q1 ⊗H2(Dn−1). Then M is a PQMz1 |Q-reducing subspace of Q if and only if

M = Q1 ⊗ E ,

for some closed subspace E of H2(Dn−1).

Proof. Let M be a PQMz1 |Q-reducing subspace of Q. Then

(4.4) (PQMz1|Q)PM = PM(PQMz1 |Q),

or equivalently, (PQ1Mz|Q1 ⊗ IH2(Dn−1))PM = PM(PQ1Mz|Q1 ⊗ IH2(Dn−1)). Now

IQ − (PQMz1 |Q)(PQMz1 |Q)∗ = (PQ1PC|Q1)⊗ IH2(Dn−1).

Further (4.4) yields PM((PQ1PC|Q1)⊗ IH2(Dn−1)) = ((PQ1PC|Q1)⊗ IH2(Dn−1))PM. Let

L := M∩ ran ((PQ1PC|Q1)⊗ IH2(Dn−1)) = M∩ (L1 ⊗H2(Dn−1)),

where

L1 = ran (PQ1PC|Q1) ⊆ Q1.

Since L ⊆ L1⊗H2(D)⊗· · ·⊗H2(D) and dim L1 = 1 (otherwise, by Lemma 4.1 that L1 = {0}
is equivalent to Q1 = {0}), it follows that L = L1⊗E for some closed subspace E ⊆ H2(Dn−1).
Hence PM((PQ1PC|Q1)⊗ IH2(Dn−1)) = PL = PL1⊗E . Claim:

M =
∞
∨
l=0

PQM
l
z1
L.
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Since M is PQMz1 |Q-reducing subspace and M ⊇ L, it follows that M ⊇ ∨∞
l=0 PQM

l
z1
L. To

prove the reverse inclusion, we let f ∈ M and f =
∑

k∈Nn akz
k, where ak ∈ C for all k ∈ Nn.

Then f = PMPQf = PMPQ
∑

k∈Nn akz
k. Observe now that for all k ∈ Nn,

PMPQz
k = PM((PQ1z

k1
1 )(zk22 · · · zknn ))

= PM((PQ1M
k1
z1
PQ11)(z

k2
2 · · · zknn ))

= PQM
k1
z1
(PM(PQ11⊗ zk22 · · · zknn )),

by (4.4), where the second equality follows from ⟨zk11 , f⟩ = ⟨1, (Mk1
z1
)∗f⟩ = ⟨PQ1M

k1
z1
PQ11, f⟩,

for all f ∈ Q1. By the fact that PQ11 ∈ L1 one gets PM(PQ11 ⊗ zk22 · · · zknn ) ∈ L and
infer PMPQz

k ∈ ∨∞
l=0 PQ1M

l
z1
L for all k ∈ Nn. Therefore f ∈ ∨∞

l=0PQM
l
z1
L and hence

M = ∨∞
l=0PQM

l
z1
L, and the claim follows. Finally, L = L1 ⊗ E yields

M =
∞
∨
l=0

PQM
l
z1
L = (

∞
∨
l=0

PQ1M
l
z1
L1)⊗ E ,

and therefore by Lemma 4.1, M = Q1 ⊗ E . The converse part is trivial. This finishes the
proof.

4.3. Tensor product of Jordan blocks. Let Q1, . . . ,Qn be n quotient modules of H2(D).
Then the module multiplication operators on Q = Q1 ⊗ · · · ⊗ Qn are given by

{IQ1 ⊗ · · · ⊗ PQi
Mz|Qi

⊗ · · · ⊗ IQn}ni=1,

that is, Q is a doubly commuting quotient module. The following theorem provides a converse
statement.

Theorem 4.4. Let Q be a quotient module of H2(Dn). Then Q is doubly commuting if and
only if there exists quotient modules Q1, . . . ,Qn of H2(D) such that

Q = Q1 ⊗ · · · ⊗ Qn.

Proof. Let Q be a doubly commuting quotient module of H2(Dn). Set

Q̃1 = span{zl22 · · · zlnn Q : l2, . . . , ln ∈ N},

a joint (Mz2 , . . . ,Mzn)-reducing subspace of H2(Dn). By Proposition 4.2, it follows that

Q̃1 = Q1 ⊗H2(Dn−1),

for some closed subspace Q1 of H2(D). Since Q̃1 is M∗
z1
-invariant subspace, that Q1 is a

M∗
z -invariant subspace of H2(D), that is, Q1 is a quotient module of H2(D).

Note that Q ⊆ Q̃1. Claim: Q is a M∗
z1
|Q̃1

-reducing subspace of Q̃1, that is,

PQ(M
∗
z1
|Q̃1

) = (M∗
z1
|Q̃1

)PQ.

In order to prove the claim, first observe that C∗
z1
C l

zi
= C l

zi
C∗

z1
for all l ≥ 0 and 2 ≤ i ≤ n,

and hence

C∗
z1
C l2

z2
· · ·C ln

zn = C l2
z2
· · ·C ln

znC
∗
z1
,
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for all l2, . . . , ln ≥ 0, that is, M∗
z1
PQM

l2
z2
· · ·M ln

znPQ = PQM
l2
z2
· · ·M ln

znM
∗
z1
PQ or,

M∗
z1
PQM

l2
z2
· · ·M ln

znPQ = PQM
∗
z1
M l2

z2
· · ·M ln

znPQ.

From this it follows that for all f ∈ Q and l2, . . . , ln ≥ 0,

(PQM
∗
z1
|Q̃1

)(zl22 · · · zlnn f) = PQM
∗
z1
(zl22 · · · zlnn f) = (M∗

z1
PQ)(z

l2
2 · · · zlnn f).

Also by PQQ̃1 ⊆ Q̃1 one gets
PQPQ̃1

= PQ̃1
PQPQ̃1

.

This yields

(PQM
∗
z1
|Q̃1

)(zl22 · · · zlnn f) = (M∗
z1
PQ)(z

l2
2 · · · zlnn f)

=M∗
z1
PQPQ̃1

(zl22 · · · zlnn f)
= (M∗

z1
|Q̃1
PQ)(z

l2
2 · · · zlnn f),

for all f ∈ Q and l2, . . . , ln ≥ 0, and therefore

PQ(M
∗
z1
|Q̃1

) = (M∗
z1
|Q̃1

)PQ.

HenceQ is aM∗
z1
|Q̃1

-reducing subspace of Q̃1 = Q1⊗H2(D)⊗· · ·⊗H2(D). Now by Proposition
4.3, there exists a closed subspace E1 of H2(Dn−1) such that

Q = Q1 ⊗ E1.
Moreover, since

∞
∨
l=0

zl1Q =
∞
∨
l=0

zl1(Q1 ⊗ E1) = H2(D)⊗ E1,

and ∨∞
l=0 z

l
1Q is a doubly commuting quotient module of H2(Dn), it follows that E1 ⊆

H2(Dn−1), a doubly commuting quotient module of H2(Dn−1).
By the same argument as above, we conclude that E1 = Q2⊗E2, for some doubly commuting
quotient module of H2(Dn−2). Continuing this process, we have Q = Q1 ⊗ · · · ⊗ Qn, where
Q1, . . . ,Qn are quotient modules of H2(D). This completes the proof.

As a corollary, one can easily derive the following fact concerning Jordan blocks of H2(Dn).

Corollary 4.5. Let Q be a closed subspace of H2(Dn). Then Q is doubly commuting quotient
module if and only if there exists {Θi}ni=1 ⊆ H∞(D) such that each Θi is either inner or the
zero function for all 1 ≤ i ≤ n and

Q = QΘ1 ⊗ · · · ⊗ QΘn .

4.4. Beurling’s representation. The aim of this subsection is to relate the Hilbert tensor
product structure of the doubly commuting quotient modules to the Beurling like represen-
tations of the corresponding co-doubly commuting submodules.

The following piece of notation will be used in the rest of the subsection.
Let Θi ∈ H∞(D) be a given function indexed by i ∈ {1, . . . , n}. In what follows, Θ̃i ∈ H∞(Dn)
will denote the extension function defined by

Θ̃i(z) = Θi(zi),

for all z ∈ Dn.
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The reader is referred to Lemma 2.5 in [Sa14b] for a proof of the following lemma.

Lemma 4.6. Let {Pi}ni=1 be a collection of commuting orthogonal projections on a Hilbert
space H. Then

L :=
n∑

i=1

ranPi,

is closed and the orthogonal projection of H onto L is given by

PL = P1(I − P2) · · · (I − Pn) + P2(I − P3) · · · (I − Pn) + · · ·+ Pn−1(I − Pn) + Pn

= Pn(I − Pn−1) · · · (I − P1) + Pn−1(I − Pn−2) · · · (I − P1) + · · ·+ P2(I − P1) + P1.

Moreover,

PL = I −
n∏

i=1

(I − Pi).

The following provides an explicit correspondence between the doubly commuting quotient
modules and the co-doubly commuting submodules of H2(Dn).

Theorem 4.7. Let Q be a quotient module of H2(Dn) and Q ≠ H2(Dn). Then Q is doubly
commuting if and only if there exists inner functions Θij ∈ H∞(D) for 1 ≤ i1 < . . . < im ≤ n
for some integer m ∈ {1, . . . , n} such that

Q = H2(Dn)/[Θ̃i1H
2(Dn) + · · ·+ Θ̃imH

2(Dn)],

where Θ̃ij(z) = Θij(zij) for all z ∈ Dn.

Proof. The proof follows from Corollary 4.5 and Lemma 4.6.
The conclusion of this subsection concerns the orthogonal projection formulae for the co-

doubly commuting submodules and the doubly commuting quotient modules of H2(Dn). It
can be treated as a co-doubly commuting submodules analogue of Beurling’s theorem on
submodules of H2(D).

Corollary 4.8. Let Q be a doubly commuting submodule of H2(Dn). Then there exists an
integer m ∈ {1, . . . , n} and inner functions {Θij}mj=1 ⊆ H∞(D) such that

Q⊥ =
∑

1≤i1<...<im≤n

Θ̃ijH
2(Dn),

where Θ̃i(z) = Θij(zij) for all z ∈ Dn. Moreover,

PQ = IH2(Dn) −
m

Π
j=1

(IH2(Dn) −MΘ̃ij
M∗

Θ̃ij
),

and

PQ⊥ =
m

Π
j=1

(IH2(Dn) −MΘ̃ij
M∗

Θ̃ij
).

This is an immediate consequence of Theorem 4.7. The reason to state Theorem 4.7
explicitly is its usefulness.
Further results and comments:
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(1) An efficient solution to the algebraic problems, posed in the introduction of this sec-
tion, would likely have practical applications.

(2) The study of the doubly commuting quotient modules of H2(D2) was initiated by
Douglas and Yang in [DoY98] and [DoY00] (also see [BerCL78]). Later in [INS04]
Izuchi, Nakazi and Seto obtained the tensor product classification of doubly commut-
ing quotient modules of H2(D2).

(3) The results of this section can be found in the papers [Sa13a] and [Sa14b]. For the
base case n = 2, they were obtained by Izuchi, Nakazi and Seto [IN04], [INS04].

(4) The tensor product representations of doubly commuting quotient modules of H2(D2)
has deep and far reaching applications to the general study of submodules and quotient
modules of the Hardy module H2(D2). See the work by K. J. Izuchi, K. H. Izuchi and
Y. Izuchi [III11], [III11] and Yang [Y05a], [Y05b].

(5) The techniques embodied in this section can be used to give stronger results concerning
doubly commuting quotient modules of a large class of reproducing kernel Hilbert
modules over Dn including the weighted Bergman modules (see [CDSa14]).

(6) Other related work concerning submodules and quotient modules of H2(Dn) appears
in Berger, Coburn and Lebow [BerCL78], Yang [Y01], [Y05b], Guo and Yang [GuY04]
and the book by Chen and Guo [ChGu03].

(7) In connection with Beurling representations for submodules of H2(Dn), we refer the
reader to Cotlar and Sadosky [CoSa98].

5. Similarity to free Hilbert modules

This section begins by describing the notion of ”split short exact sequence”from commuta-
tive algebra. Let M1 and M2 be modules over a ring R. Then M1 ⊕M2, module direct sum
of M1 and M2, yields the short exact sequence

0 −→M1
i−→M1 ⊕M2

π−→M2 −→ 0,

where i is the embedding, m1 7→ (m1, 0) and π is the projection, (m1,m2) 7→ m2 for all
m1 ∈M1 and m2 ∈M2. A short exact sequence of modules

0 −→M1
φ1−→M

φ2−→M2 −→ 0, ,

is called split exact sequence if there exists a module isomorphism φ : M → M1 ⊕M2 such
that the diagram

0 −−−→ M1
φ1−−−→ M

φ2−−−→ M2 −−−→ 0

IM1

y φ

y IM2

y
0 −−−→ M1

i−−−→ M1 ⊕M2
π−−−→ M2 −−−→ 0

commutes. It is well known that a short exact sequence of modules

0 −→M1
φ1−→M

φ2−→M2 −→ 0,

splits if and only if φ2 has a right inverse, if and only if φ1 has a left inverse.
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Now let R ⊆ O(Ω,C) be a reproducing kernel Hilbert module. In the rest of this section
focus will be on the quotient module QΘ of R ⊗ E∗ given by the exact sequence of Hilbert
modules

· · · −→ R⊗ E MΘ−→ R⊗ E∗
πΘ−→ QΘ −→ 0,

where Θ ∈ MR(E , E∗) is a multiplier. In other words,

QΘ = (R⊗ E∗)/ranMΘ.

The exact sequence is called split if πΘ has a module right inverse, that is, if there exists a
module map σΘ : QΘ → R⊗ E∗ such that

πΘσΘ = IR⊗E∗ .

5.1. Complemented submodules. This subsection provides a direct result concerning split-
ting of Hilbert modules, which involves a mixture of operator theory and algebra.

Theorem 5.1. Let R ⊆ O(Ω,C) be a reproducing kernel Hilbert module and Θ ∈ MB(E,E∗)(R)
be a multiplier for Hilbert spaces E and E∗ such that ranMΘ is closed. Then ranMΘ is
complemented in R ⊗ E∗ if and only if πΘ is right invertible, that is, there exists a module
map σΘ : QΘ → R⊗ E∗ such that πΘσΘ = IR⊗E∗.

Proof. Let S be a submodule of R⊗ E∗ such that R⊗ E∗ = ranMΘ

·
+ S. Then

Y = πΘ|S : S → QΘ

is one-to-one. Also for f ∈ QΘ and f = f1 + f2 with f1 ∈ ranMΘ and f2 ∈ S one gets

πΘf2 = πΘ(f − f1) = f − πΘf1 = f.

Consequently, Y = πΘ|S is onto. Hence

Y −1 : (R⊗ E∗) / ranMΘ → S,

is bounded by the closed graph theorem. Let

σΘ = i Y −1,

where i : S → R ⊗ E∗ is the inclusion map. Again for f = f1 + f2 ∈ QΘ with f1 ∈ ranMΘ

and f2 ∈ S one gets

πΘσΘf = πΘ(iY
−1)(f1 + f2) = πΘif2 = πΘf2 = πΘ(f − f1) = πΘf = f.

Therefore, σΘ is a right inverse for πΘ. Also that σΘ is a module map follows from the fact
that Y is a module map.
Conversely, let σΘ : QΘ → R ⊗ E∗ be a module map which is a right inverse of πΘ. Then
σΘπΘ is an idempotent on R⊗E∗ such that S = ran σΘπΘ is a complementary submodule for
the closed submodule ranMΘ in R⊗ E∗.

Examples in the case n = 1 show that the existence of a right inverse for πΘ does not imply
that ranMΘ is closed. However, if Θ ∈ MB(E,E∗)(R) and ranMΘ is complemented in R⊗ E∗,
then ranMΘ is closed.



24 JAYDEB SARKAR

5.2. Lifting and range-inclusion theorems. This subsection concerned with the study of
lifting and Drury-Arveson module (see [Ar98] or [Sa14a]). The commutant lifting theorem
will be used to extend some algebraic results for the case of quotient modules of the Drury-
Arveson module. The commutant lifting theorem for the Drury-Arveson module is due to
Ball, Trent and Vinnikov, Theorem 5.1 in [BaTrVi01].

Theorem 5.2. Let N and N∗ be quotient modules of H2
n ⊗ E and H2

n ⊗ E∗ for some Hilbert
spaces E and E∗, respectively. If X : N → N∗ is a bounded module map, that is,

XPN (Mzi ⊗ IE)|N = PN∗(Mzi ⊗ IE∗)|N∗X,

for i = 1, . . . , n, then there exists a multiplier Φ ∈ MB(E,E∗)(H
2
n) such that ∥X∥ = ∥MΦ∥ and

PN∗MΦ = X.

In the language of Hilbert modules, one has the following commutative diagram

H2
n ⊗ E MΦ−−−→ H2

n ⊗ E∗
πN

y πN∗

y
N X−−−→ N∗

where πN and πN∗ are the quotient maps.
As one knows, by considering the n = 1 case, there is more than one multiplier Θ ∈

MB(E,E∗)(H
2
n) for Hilbert spaces E and E∗ with the same range and thus yielding the same

quotient. Things are even more complicated for n > 1. However, the following result using
the commutant lifting theorem introduces some order.

Theorem 5.3. Let Θ ∈ MB(E,E∗)(H
2
n) be a multiplier with closed range for Hilbert spaces E

and E∗ and Φ ∈ MB(F ,E∗)(H
2
n) for some Hilbert space F . Then

ran MΦ ⊆ ran MΘ,

if and only if
Φ = ΘΨ,

for some multiplier Ψ ∈ MB(F ,E)(H
2
n).

Proof. If Ψ ∈ M(F , E) such that Φ = ΘΨ, then MΦ =MΘMΨ and hence

ran MΦ = ran MΘMΨ ⊆ ran MΘ.

Suppose ran MΦ ⊆ ran MΘ. Consider the module map M̂Θ : (H2
n ⊗E) / ker MΘ −→ ran MΘ

defined by
M̂ΘγΘ =MΘ,

where γΘ : H2
n⊗E −→ (H2

n⊗E)/ ker MΘ is the quotient module map. Since ran MΘ is closed

that M̂Θ is invertible. Then

X̂ := M̂Θ
−1

: ran MΘ → (H2
n ⊗ E)/ ker MΘ

is bounded by the closed graph theorem and so is

X̂MΦ : H2
n ⊗F → (H2

n ⊗ E) / ker MΘ.
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By Theorem 5.2 there exists a multiplier Ψ ∈ MB(F ,E)(H
2
n) so that

γΘMΨ = X̂MΦ,

and hence
MΘMΨ = (M̂ΘγΘ)MΨ = M̂Θ(X̂MΦ) =MΦ,

or Φ = ΘΨ which completes the proof.

5.3. Regular inverse and similarity problem. The purpose of this subsection is to es-
tablish an equivalent condition which will allow one to tell when the range of a multiplier will
be complemented.

A multiplier Θ ∈ MB(E,E∗)(H
2
n) is said to have a regular inverse if there exists Ψ ∈

MB(E∗,E)(H
2
n) such that

Θ(z)Ψ(z)Θ(z) = Θ(z). (z ∈ Bn)

Theorem 5.4. Let Θ ∈ MB(E,E∗)(H
2
n). Then Θ admits a regular inverse if and only if ranMΘ

is complemented in H2
n ⊗ E∗, or

H2
n ⊗ E∗ = ranMΘ

·
+ S,

for some submodule S of H2
n ⊗ E∗.

Proof. If H2
n ⊗ E∗ = ranMΘ

·
+ S for some (closed) submodule S, then ran MΘ is closed.

Consider the module map M̂Θ : (H2
n ⊗ E) / kerMΘ −→ (H2

n ⊗ E∗) /S defined by

M̂ΘγΘ = πSMΘ,

where γΘ : H2
n⊗E → (H2

n⊗E) / kerMΘ and πS : H2
n⊗E∗ → (H2

n⊗E∗) /S are quotient maps.

This map is one-to-one and onto and thus has a bounded inverse X̂ = M̂Θ
−1

: (H2
n⊗E∗) /S →

(H2
n ⊗ E) / ker MΘ by the closed graph theorem. Since X̂ satisfies the hypotheses of the

commutant lifting theorem, there exists Ψ ∈ MB(E∗,E)(H
2
n) such that γΘMΨ = X̂πS . Further,

M̂ΘγΘ = πSMΘ yields

πSMΘMΨ = M̂ΘγΘMΨ = M̂ΘX̂πS = πS ,

and therefore,
πS(MΘMΨMΘ −MΘ) = 0.

Since πS is one-to-one on ranMΘ, it follows that MΘMΨMΘ =MΘ.
Now suppose there exists Ψ ∈ MB(E∗,E)(H

2
n) such that MΘMΨMΘ =MΘ. This implies that

(MΘMΨ)
2 =MΘMΨ,

and hence MΘMΨ is an idempotent. From the equality MΘMΨMΘ = MΘ one obtains both
that ranMΘMΨ contains ranMΘ and that ranMΘMΨ is contained in ranMΘ. Therefore,

ranMΘMΨ = ranMΘ,

and
S = ran (I −MΘMΨ),

is a complementary submodule of ran MΘ in H2
n ⊗ E∗.
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Corollary 5.5. Assume Θ ∈ MB(E,E∗)(H
2
n) for Hilbert spaces E and E∗ such that ranMΘ is

closed and HΘ is defined by

H2
n ⊗ E MΘ−→ H2

n ⊗ E∗ −→ HΘ −→ 0.

If HΘ is similar to H2
n ⊗F for some Hilbert space F , then the sequence splits.

Proof. First, assume that there exists an invertible module map X : H2
n ⊗ F → HΘ, and let

Φ ∈ MB(F ,E∗)(H
2
n) be defined by the commutant lifting theorem, Theorem 5.2, so that

πΘMΦ = X,

where πΘ : H2
n ⊗E∗ → (H2

n ⊗E∗) / ran MΘ is the quotient map. Since X is invertible one gets

H2
n ⊗ E∗ = ran MΦ

.
+ ranMΘ.

Thus ran MΘ is complemented and hence it follows from Theorem 5.1 that the sequence splits.

Finally, the following weaker converse to Corollary 5.5 always holds.

Corollary 5.6. Let Θ ∈ MB(E,E∗)(H
2
n) for Hilbert spaces E and E∗, and set HΘ = (H2

n ⊗
E∗)/ clos [ran MΘ]. Then the following statements are equivalent:
(i) Θ is left invertible, that is, there exists Ψ ∈ MB(E∗,E)(H

2
n) such that ΨΘ = IE .

(ii) ran MΘ is closed, ker MΘ = {0} and HΘ is similar to a complemented submodule S of
H2

n ⊗ E∗.
Proof. If (i) holds, then ran MΘ is closed and ker MΘ = {0}. Further,MΘMΨ is an idempotent
on H2

n ⊗ E∗ such that ran MΘMΨ = ran MΘ and HΘ is isomorphic to

S = ran (I −MΘMΨ) ⊆ H2
n ⊗ E∗,

and
H2

n ⊗ E∗ = ran MΘ

.
+ S,

so S is complemented.
Now assume that (ii) holds and there exists an isomorphism X : HΘ → S ⊆ H2

n ⊗ E∗, where
S is a complemented submodule of H2

n ⊗ E∗. Then
Y = XπΘ : H2

n ⊗ E∗ → H2
n ⊗ E∗,

is a module map and hence there exists a multiplier Ξ ∈ MB(E∗,E∗)(H
2
n) so that Y =MΞ. Since

X is invertible, ran MΞ = S, which is complemented by assumption, and hence by Theorem
5.4 there exists Ψ ∈ MB(E∗,E∗)(H

2
n) such that MΞ = MΞMΨMΞ or MΞ(I − MΨMΞ) = 0.

Therefore,
ran (I −MΨMΞ) ⊆ ker MΞ = ker Y = ker πΘ = ran MΘ.

Applying Theorem 5.3, we obtain Φ ∈ MB(E∗,E)(H
2
n) so that

I −MΨMΞ =MΘMΦ.

Thus using MΞMΘ = 0 we see that MΘMΦMΘ = (I − MΨMΞ)MΘ = MΘ, or, MΘ =
MΘMΦMΘ. Since ker MΘ = {0}, we have MΦMΘ = IH2

n⊗E , which completes the proof.

Theorem 5.4 and Corollary 5.5 yields the main result of the present subsection.
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Corollary 5.7. Given Θ ∈ MB(E,E∗)(H
2
n) for Hilbert spaces E and E∗ such that ran MΘ is

closed, consider the quotient Hilbert module HΘ given by

H2
n ⊗ E MΘ−→ H2

n ⊗ E∗ −→ HΘ −→ 0.

If HΘ is similar to H2
n ⊗F for some Hilbert space F , then Θ has a regular inverse.

Further results and comments:

(1) Most of the material in this section can be found in [DoFoSa12].
(2) It is well known that (see [NaFo70a]) a contractive Hilbert module H over A(D) is

similar to a unilateral shift if and only if its characteristic function ΘH has a left
inverse. Various approaches to this result have been given but the present one uses
the commutant lifting theorem and, implicitly, the Beurling-Lax-Halmos theorem. In
particular, the proof does not involve, at least explicitly, the geometry of the dilation
space for the contraction.

(3) For n = 1, Corollary 5.7 yields a more general result concerning similarity of contrac-
tive Hilbert modules over A(D):

Theorem 5.8. Let E and E∗ be Hilbert spaces and Θ ∈ H∞
B(E,E∗)(D) be a bounded

analytic function such that ker MΘ = {0} and ran MΘ is closed. Then the quotient
module HΘ given by

0 −→ H2
E(D)

MΘ−→ H2
E∗(D) −→ HΘ −→ 0,

is similar to H2
F(D) for some Hilbert space F if and only if ΘΨΘ = Θ for some

Ψ ∈ H∞
B(E∗,E)(D).

(4) If H is a Hilbert module over C[z], Corollary 5.7 remains true under the assumption
that the analogue of the commutant lifting theorem holds for the class of Hilbert
modules under consideration. In particular, Corollary 5.7 can be generalized to any
other reproducing kernel Hilbert modules where the kernel is given by a complete
Nevanlinna-Pick kernel (see [AgMc00]).

(5) For other results concerning similarity in both commutative and noncommutative
setup see Popescu [Po11].

6. Generalized canonical models and similarity

This section describes conditions for certain quotient Hilbert modules to be similar to the
reproducing kernel Hilbert modules from which they are constructed.

In particular, it is shown that the similarity criterion for a certain class of quotient Hilbert
modules is independent of the choice of the basic Hilbert module “building blocks” as in the
isomorphism case, so long as the multiplier algebras are the same.

6.1. Corona pairs. This subsection begins with the case in which the existence of a left
inverse for the multiplier depends only on a positive answer to the corona problem for the
domain.
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Theorem 6.1. Let R ⊆ O(Ω,C) be a reproducing kernel Hilbert module over C[z]. Assume
that θ1, θ2, ψ1, ψ2 are in M(R) and that θ1ψ1 + θ2ψ2 = 1. Then the quotient Hilbert module
RΘ = (R⊗C2)/MΘR is similar to R, where MΘf = θ1f⊗e1+θ2f⊗e2 ∈ H⊗C2 and f ∈ R,
with {e1, e2} the standard orthonormal basis for C2.

Proof. Let RΨ : R⊕R → R be the bounded module map defined by RΨ(f ⊕ g) = ψ1f +ψ2g
for f, g ∈ R. Note that

RΨMΘ = IH,

or that RΨ is a left inverse for MΘ. Then for any f ⊕ g ∈ R⊕R, one gets

f ⊕ g = (MΘRΨ(f ⊕ g)) + (f ⊕ g −MΘRΨ(f ⊕ g)),

with MΘRΨ(f ⊕ g) ∈ ranMΘ and f ⊕ g−MΘRΨ(f ⊕ g) ∈ kerRΨ. This decomposition, along
with

ranMΘ ∩ kerRΨ = {0}
implies that

R⊕R = ranMΘ

·
+ kerRΨ.

Thus, there exists a module idempotent Q ∈ B(R⊕R) with matrix entries inM(R) such that
Q(Θf + g) = g for f ∈ R and g ∈ ker RΨ. Moreover, ranMΘ = kerQ and kerRΨ = ranQ.
The composition Q◦π−1

Θ : RΘ → R is well-defined and is the required invertible module map
establishing the similarity of RΘ and R.

Corollary 6.2. Let θ1, θ2 ∈ M(H2
n) satisfy |θ1(z)|2 + |θ2(z)|2 ≥ ϵ for all z ∈ Bn and some

ϵ > 0. Then the quotient Hilbert module (H2
n)Θ = (H2

n ⊗ C2)/MΘH
2
n is similar to H2

n.

Proof. The corollary follows from Theorem 6.1 using the corona theorem for M(H2
n) (see

[CSW11] or [OF00]).

6.2. Left invertible multipliers. The question of similarity of a quotient Hilbert module
to the building block Hilbert module can be raised in the context of a split short exact
sequence. More precisely, suppose R, R̃ ⊆ O(Ω,C) be reproducing kernel Hilbert modules
and M(R) = M(R̃). Moreover, suppose Θ ∈ MB(E,E∗)(R) and hence Θ ∈ MB(E,E∗)(R̃).
Consider the generalized canonical models

R⊗ E MΘ−→ R⊗ E∗ −→ RΘ −→ 0, and R̃ ⊗ E MΘ−→ R̃ ⊗ E∗ −→ R̃Θ −→ 0.

One can propose the following assertion: RΘ is similar to R⊗F for some Hilbert space F if
and only if R̃Θ is similar to R̃ ⊗ F̃ for some Hilbert space F̃ .

Where the answer to the above question is not affirmative, however, the following hold:

Theorem 6.3. Let H, H̃ ∈ B∗
1(Ω) for Ω ⊆ Cn, be such that M(H) ⊆ M(H̃) and let

Θ ∈ MB(Cp,Cq)(H) , for 1 ≤ p < q, be left invertible. Then the similarity of HΘ =

(H⊗Cq)/MΘ(H⊗Cp) to H⊗Cq−p implies the similarity of H̃Θ = (H̃ ⊗Cq)/MΘ(H̃ ⊗Cp) to
H̃ ⊗ Cq−p.
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Proof. Since M(H) ⊆ M(H̃), Θ ∈ MB(Cp,Cq)(H) and H̃Θ is well-defined. Moreover, by

Theorem 2.1, we have HΘ, H̃Θ ∈ B∗
q−p(Ω). Let σΘ be a module cross-section for HΘ; that

is, σΘ : HΘ → H⊗ Cq such that πΘσΘ = IHΘ
. Since Q := σΘπΘ is a module idempotent on

H⊗ Cq, it follows that

ran Q
.
+ ran MΘ = H⊗ Cq.

But there exists a Φ ∈ MB(Cq)(H) such that

MΦ = Q,

and Φ(z) is an idempotent on B(Cq) for z ∈ Ω. An easy argument using localization shows
that

ran Φ(z)
.
+ ran Θ(z) = Cq,

for z ∈ Ω. But this fact is independent of H.
Therefore

σ̃Θ :=MΦπ̃
−1
Θ

is a module map from H̃Θ to H̃⊗Cq, where π̃Θ is the quotient map of the short exact sequence
for H̃Θ. Moreover, the idempotent Q̃ = σ̃Θπ̃Θ is again represented by MΦ.

Suppose that HΘ is similar to H ⊗ Cq−p. Then there exists an invertible module map
X : H⊗Cq−p → HΘ. Compose the module maps σΘ and X to obtain Y = σΘX : H⊗Cq−p →
H⊗ Cq and let Γ ∈ MB(Cq−p,Cq)(H) so that Y = MΓ. Since M(H) ⊆ M(H̃), one can use Γ
to define

MΓ : H̃ ⊗ Cq−p → H̃ ⊗ Cq.

Composing M−1
Γ and σ̃Θ, one gets an invertible module map M−1

Γ σ̃Θ from H̃Θ to H̃ ⊗ Cq−p,

which shows that H̃Θ is similar to H̃ ⊗ Cq−p.
Theorem 6.3 yields the following corollary.

Corollary 6.4. Let H ∈ B∗
1(D) be a contractive Hilbert module over A(D) and Θ ∈

H∞
B(Cp,Cq)(D) is left-invertible. Then HΘ is similar to H⊗ Cq−p.

Proof. Here one can use Theorem 6.3 with H̃ = H2(D) and H the given Hilbert module.
Clearly M(H̃) = H∞(D). The proof is completed by appealing to a result of Sz.-Nagy and
Foias about a left invertible Θ (cf. [NaFo70a]).
Further results and comments:

(1) Results of this section can be found in [DoKKSa14].
(2) The question of similarity is equivalent to a problem in complex geometry (cf. [Do88]).

In general, for a split short exact sequence

0 −→ H⊗ Cp MΘ−→ H⊗ Cq πΘ−→ HΘ −→ 0,

one can define the idempotent function Γ : Ω → B(Cq), where ran Γ yields a hermitian
holomorphic subbundle F of the trivial bundle Ω×Cq. If Ω is contractible, then F is
trivial. The question of similarity is equivalent to whether one can find a trivializing
frame for which the corresponding Gramian G is uniformly bounded above and below
when M(H) = H∞(Ω), or it and its inverse lie in the multiplier algebra when it is
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smaller. As mentioned above, this question is related to the corona problem and the
commutant lifting theorem.

7. Free resolutions of Hilbert modules

Consideration of dilations such as those in Section 8 in [Sa14a], raises the question of what
kind of resolutions exist for co-spherically contractive Hilbert modules over C[z]. In partic-
ular, Theorem 8.3 in [Sa14a] yields a unique resolution of an arbitrary pure co-spherically
contractive Hilbert module H over C[z] in terms of Drury-Arveson modules and inner multi-
pliers.

Let H be a co-spherically contractive Hilbert module over C[z]. By Theorem 8.3 in [Sa14a],
there exists a unique (assuming the minimality) free module F0 such that F0 is a dilation of
H. That is, there exists a module co-isometry

πH = X0 : F0 → H.
The kernel of X0 is a closed submodule of F0 and again by Theorem 8.3 in [Sa14a], there
exists a free module F1 and a partially isometric module map X1 : F1 → F0 such that

ranX1 = ker X0.

By repeating this process, one obtains a sequence of free Hilbert modules {Fi} and an exact
sequence:

(7.5) · · · X2−→ F1
X1−→ F0

X0−→ H −→ 0.,

A basic question is whether such a resolution can have finite length or, equivalently, whether
one can take EN = {0} for some finite N . That will be the case if and only if some Xk is an
isometry or, equivalently, if kerXk = {0}.

7.1. Isometric multipliers. Let V ∈ B(E , E∗) be an isometry. Then ΦV ∈ MB(E,E∗)(H
2
n),

defined by ΦV = IH2
n
⊗V is an isometric multiplier. The purpose of this subsection is to prove

that all isometric multipliers are of this form.

Theorem 7.1. For n > 1, if V : H2
n ⊗ E → H2

n ⊗ E∗ is an isometric module map for Hilbert
spaces E and E∗, then there exists an isometry V0 : E → E∗ such that

V (zk ⊗ x) = zk ⊗ V0x, for k ∈ Nn, x ∈ E∗.
Moreover, ran V is a reducing submodule of H2

n ⊗ E∗ of the form H2
n ⊗ (ranV0).

Proof. For x ∈ E , ∥x∥ = 1, one can compute

V (1⊗ x) = f(z) =
∑
k∈Nn

akz
k, for {ak} ⊆ E .

Then

V (z1 ⊗ x) = VMz1(1⊗ x) =Mz1V (1⊗ x) =Mz1f = z1f,

and

∥z1f∥2 = ∥z1V (1⊗ x)∥2 = ∥z1 ⊗ x∥2 = 1 = ∥f∥2.
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Therefore∑
k∈Nn

∥ak∥2E∗∥z
k∥2 =

∑
k∈Nn

∥ak∥2E∗∥z
k+e1∥2, where k + e1 = (k1 + 1, . . . , kn),

or ∑
k∈Nn

∥ak∥2E∗{∥z
k+e1∥2 − ∥zk∥2} = 0.

If k = (k1, . . . kn), then

∥zk+e1∥2 = (k1 + 1)! · · · kn!
(k1 + · · ·+ kn + 1)!

=
k1! · · · kn!

(k1 + · · ·+ kn)!

k1 + 1

k1 + · · ·+ kn + 1

<
k1! · · · kn!

(k1 + · · ·+ kn)!
= ∥zk∥2,

unless k2 = k3 = . . . = kn = 0. Since, ak ̸= 0 implies ∥zk+e1∥ = ∥zk∥ we have k2 = · · · = kn =
0. Repeating this argument using i = 2, . . . , n, it follows that ak = 0 unless k = (0, . . . , 0)
and therefore, f(z) = 1 ⊗ y for some y ∈ E∗. Set V0x = y to complete the first part of the
proof.

Finally, since ran V = H2
n ⊗ (ranV0), it follows that ran V is a reducing submodule, which

completes the proof.

7.2. Inner resolutions. This subsection begins with a definition based on the dilation result
in Section 8 in [Sa14a].

An inner resolution of length N , for N = 1, 2, 3, . . . ,∞, for a pure co-spherical contractive
Hilbert module H is given by a collection of Hilbert spaces {Ek}Nk=0, inner multipliers φk ∈
MB(Ek,Ek−1)(H

2
n) for k = 1, . . . , N with Xk = Mφk

and a co-isometric module map X0 :
H2

n ⊗ E0 → H so that
ranXk = kerXk−1,

for k = 0, 1, . . . , N . To be more precise, for N <∞ one has the finite resolution

0 −→ H2
n ⊗ EN

XN−→ H2
n ⊗ EN−1 −→ · · · −→ H2

n ⊗ E1
X1−→ H2

n ⊗ E0
X0−→ H −→ 0,

and for N = ∞, the infinite resolution

· · · −→ H2
n ⊗ EN

XN−→ H2
n ⊗ EN−1 −→ · · · −→ H2

n ⊗ E1
X1−→ H2

n ⊗ E0
X0−→ H −→ 0.

The following result shows that an inner resolution does not stop when n > 1, unless H is
a Drury-Arveson module and the resolution is a trivial one. In particular, the resolution in
(7.5) never stops unless H = H2

n ⊗ E for some Hilbert space E .

Theorem 7.2. If the pure, co-spherically contractive Hilbert module M possesses a finite
inner resolution, then H is isometrically isomorphic to H2

n ⊗F for some Hilbert space F .

Proof. By applying Theorem 7.1 to XN , one can decompose

EN−1 = E1
N−1 ⊕ E2

N−1,

so that
X̃N−1 = XN−1|H2

n⊗E2
N−1

∈ L(H2
n ⊗ E2

N−1, H
2
n ⊗ EN−2),
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is an isometry onto ranXN−1. Hence, one can apply the same theorem to X̃N−1. Therefore,
the desired conclusion follows by induction.

The following statement proceeds directly from the theorem.

Corollary 7.3. If Θ ∈ MB(E,E∗)(H
2
n) is an inner multiplier for the Hilbert spaces E and

E∗ with ker MΘ = {0}, then the quotient module HΘ = (H2
n ⊗ E∗)/ ranMΘ is isometrically

isomorphic to H2
n ⊗ F for a Hilbert space F . Moreover, F can be identified with (ranV0)

⊥,
where V0 is the isometry from E to E∗ given in Theorem 7.1.

Note that in the preceding corollary, one has dim E∗ = dim E + dim F .
A resolution ofH can always be made longer in a trivial way. Suppose we have the resolution

0 −→ H2
n ⊗ EN

XN−→ H2
n ⊗ EN−1 −→ · · · −→ H2

n ⊗ E0
X0−→ H −→ 0.

If EN+1 is a nontrivial Hilbert space, then define XN+1 as the inclusion map of H2
n ⊗ EN+1 ⊆

H2
n ⊗ (EN ⊕ EN+1). Further, set X̃N equal to XN on H2

n ⊗ EN ⊆ H2
n ⊗ (EN+1 ⊕ EN) and equal

to 0 on H2
n ⊗ EN+1 ⊆ H2

n ⊗ (EN ⊕ EN+1). Extending X̃N to all of H2
n ⊗ EN+1 linearly, one

obtains a longer resolution essentially equivalent to the original one

0 −→ H2
n ⊗ EN+1

XN+1−→ H2
n ⊗ (EN+1 ⊕ EN)

X̃N−→ · · · −→ H −→ 0.

Moreover, the new resolution will be inner if the original one is.
The proof of the preceding theorem shows that any finite inner resolution by Drury-Arveson

modules is equivalent to a series of such trivial extensions of the resolution

0 −→ H2
n ⊗ E X−→ H2

n ⊗ E −→ 0,

for some Hilbert space E and X = IH2
n⊗E . Such a resolution will be referred as trivial inner

resolution. The proof of the following statement is now straightforward.

Corollary 7.4. All finite inner resolutions for a pure co-spherically contractive Hilbert
module H are trivial inner resolutions.

7.3. Localizations of free resolutions. Let φ ∈ Aut(Bn) and φ = (φ1, . . . , φn) where
φi : Bn → D is the i-th coordinate function of φ and 1 ≤ i ≤ n. Denote (H2

n)φ by the Hilbert
module

C[z]×H2
n → H2

n, (p, f) 7→ p(φ1(Mz), . . . , φn(Mz))f. (p ∈ C[z], f ∈ H2
n)

One can check that (H2
n)φ is a co-spherically contractive Hilbert module over C[z]. Moreover,

as in n = 1 case, H2
n
∼= (H2

n)φ (see [Gr03]) for all φ ∈ Aut(Bn).
In [Gr03], D. Green proved the following surprising theorem.

Theorem 7.5. Let H be a co-spherically contractive Hilbert module over C[z] and φ ∈
Aut(Bn) with w = φ−1(0) and w ∈ Bn. Let (7.5) be the free resolution of H with Fi =
H2

n(Ei) ⊕ Si for some Hilbert space Ei and spherical Hilbert module Si (i ≥ 0). Then the
homology of

· · · X3(w)−→ E2
X2(w)−→ E1

X1(w)−→ E0,
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the localization of the free resolution of H at w ∈ Bn, is isomorphic to the homology of

K((H)φ) : 0 −→ En
n ((H)φ)

∂n,(H)φ−→ En
n−1((H)φ)

∂n−1,(H)φ−→ · · ·
∂1,(H)φ−→ En

1 ((H)φ) −→ 0,

the Koszul complex of (H)φ. Therefore, for all i ≥ 1 we have

ker ∂i,(H)φ/ran ∂i+1,(H)φ
∼= ker Xi(w)/ran Xi+1(w),

for each w ∈ Bn and φ ∈ Aut(Bn) such that φ(w) = 0.

The following result is an immediate consequence of Theorem 7.5.

Corollary 7.6. Let

· · · X3(w)−→ E2
X2(w)−→ E1

X1(w)−→ E0,
be the localization at w ∈ Bn of the free resolution (7.5) of a co-spherically contractive Hilbert
module H over C[z]. Then for all i ≥ n+ 1,

ker Xi(w) = ran Xi+1(w).

Further results and comments:

(1) What happens when one relaxes the conditions on the module maps {Xk} so that
ranXk = kerXk−1 for all k but do not require them to be partial isometries? In this
case, non-trivial finite resolutions do exist, completely analogous to what happens for
the case of the Hardy or Bergman modules over C[z] for m > 1. Here is one simple
example:
Consider the module C(0,0) over C[z1, z2] and the resolution:

0 −→ H2
2

X2−→ H2
2 ⊕H2

2
X1−→ H2

2
X0−→ C(0,0) −→ 0,

where X0f = f(0, 0) for f ∈ H2
2 , X1(f1 ⊕ f2) =Mz1f1 +Mz2f2 for f1 ⊕ f2 ∈ H2

2 ⊕H2
2 ,

and X2f = Mz2f ⊕ (−Mz1f) for f ∈ H2
2 . One can show that this sequence, which is

closely related to the Koszul complex, is exact and non-trivial; in particular, it does
not split as trivial resolutions do.

(2) It is not known if there exists any relationship between the inner resolution for a pure
co-spherically contractive Hilbert module and more general, not necessarily inner,
resolutions by Drury-Arveson modules. In particular, is there any relation between
the minimal length of a not necessarily inner resolution and the inner resolution.
Theorem 5.3 and Corollary 7.6 provides some information on this matter.

(3) A parallel notion of resolution for Hilbert modules was studied by Arveson [Ar04],
[Ar07], which is different from the one considered in this section. For Arveson, the key
issue is the behavior of the resolution at 0 ∈ Bn or the localization of the sequence of
connecting maps at 0. His main goal, which he accomplishes and is quite non trivial,
is to extend an analogue of the Hilbert’s syzygy theorem. In particular, he exhibits a
resolution of Hilbert modules in his class which ends in finitely many steps.

(4) The resolutions considered in ([DoMi03], [DoMi05]) and this section are related to di-
lation theory although the requirement that the connecting maps are partial isometries
is sometimes relaxed.

(5) Theorem 7.1 is related to an earlier result of Guo, Hu and Xu [GuHuXu04].
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(6) Theorem 7.5 and Corollary 7.6 are due to Green [Gr03]. Except that, most of the
material is from [DoFoSa12]. However, Theorem 7.1 was first proved by Arias [Ari04].

8. Rigidity

Let H be a Hilbert module over A(Ω) (or, over C[z]). Denote by R(H) the set of all
non-unitarily equivalent submodules of H, that is, if S1,S2 ∈ R(H) and that S1

∼= S2 then
S1 = S2.
Problem: Determine R(H).

By virtue of the characterization results by Beurling and Richter (see Section 6 in [Sa14a]),
we have

R(H2(D)) = {{0}, H2(D)}, and R(L2
a(D)) = {S ⊆ L2

a(D) : S is a submodule}.
A Hilbert module H over A(Ω) is said to be rigid if

R(H) = {S ⊆ H : S is a submodule} = Lat(H).

Therefore, the Bergman module L2
a(D) is rigid. For the Hardy space H2(Dn) with n > 1

{{0}, H2(Dn)} ⊂ R(H2(Dn)) ⊂ Lat(H2(Dn))

The purpose of this section is to discuss some rigidity results for reproducing kernel Hilbert
modules over Bn and Dn. For the rest of the section, unless otherwise stated, it is assumed
that n > 1.

8.1. Rigidity of H2
n. In [GuHuXu04], Guo, Hu and Yu proved that two nested unitarily

equivalent submodules of H2
n must be equal.

Theorem 8.1. Let S1 and S2 be two submodules of H2
n and S1 ⊆ S2. Then S1

∼= S2 if and
only if S1 = S2.

It is not known whether there exists proper submodules S1 and S2 of H2
n such that S1

∼= S2

but S1 ̸= S2. Recall that a submodule S of H2
n is said to be proper if S ̸= H2

n, or equivalently,
1 /∈ S.

The following result provides a rather weaker version of Theorem 8.1.

Theorem 8.2. If S is a submodule of H2
n which is isometrically isomorphic to H2

n, then
S = H2

n.

Proof. The result follows directly from Theorem 7.1.

8.2. Rigidity of L2
a(µ). The purpose of this subsection is to prove that for a class of measures

µ on the closure of Ω, two submodules of L2
a(µ) are isometrically isomorphic if and only if

they are equal. The subsection will be concluded by considering when two submodules of a
subnormal Hilbert module M over A(Ω) can be isometrically isomorphic.

Let µ be the measure on D obtained from the sum of Lebesgue measure on ∂D and the
unit mass at 0, then L2

a(µ) is not a Šilov module (see [DoPa89]). However, it is easy to see
that the cyclic submodules generated by z and z2, respectively, are isometrically isomorphic
but distinct. A quick examination suggests the problem is that µ assigns positive measure to
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the intersection of a zero variety and D. It turns out that if one excludes that possibility and
L2(ν) is not a Šilov module, then distinct submodules can not be isometrically isomorphic.
The proof takes several steps.

Lemma 8.3. Let ν be a probability measure on clos Ω and f and g vectors in L2
a(ν) so that the

cyclic submodules of L2
a(ν), [f ] and [g], generated by f and g, respectively, are isometrically

isomorphic with f mapping to g. Then |f | = |g| a.e. ν.

Proof. If the correspondence V f = g extends to an isometric module map, then

⟨zkf, zlf⟩L2
a(ν)

= ⟨zkg, zlg⟩L2
a(ν)

,

for monomials zk and zl in C[z]. This implies that∫
clos Ω

zkz̄l|f |2dν =

∫
clos Ω

zkz̄l|g|2dν. (k, l ∈ Nn)

Since the linear span of the set {zkz̄l : k, l ∈ Nn} forms a self-adjoint algebra which separates
the points of clos Ω, it follows that the two measures |f |2 dν and |g|2 dν are equal or that
|f | = |g| a.e. ν.

The following theorem concerns measures for which point evaluation on Ω is bounded.

Theorem 8.4. Let ν be a probability measure on clos Ω such that point evaluation is bounded
on L2

a(Ω) with closed support properly containing ∂Ω but such that ν(X) = 0 for X the inter-
section of clos Ω with a zero variety. If S1 and S2 are isometrically isomorphic submodules
of L2

a(ν), then S1 = S2.

Proof. Let V be an isometric module map from S1 onto S2. For 0 ̸= f in S1, let g = V f .
Then by the previous lemma, it follows that |f | = |g| a.e. ν. Since ∂Ω is contained in the
closed support of ν, it follows that

|f(w)| = |g(w)|. (w ∈ ∂Ω)

Since point evaluation is bounded on L2
a(Ω), f and g are holomorphic on Ω. If

X = {w ∈ Ω : f(w) = 0},
then

ν(X) = 0,

which implies that ν(Ω\X) > 0. Now

sup
w∈Ω\X

|h(w)| ≤ 1,

where

h(w) :=
g(w)

f(w)
, (w ∈ Ω\X).

Since there is w0 in the support of ν in Ω\X such that |h(w0)| = 1, one gets |h(w)| ≡ 1 on
Ω\X. Thus there is a constant eiθ such that f = eiθg on Ω.
Since this holds for every f in S1, by considering f1, f2 and f1 + f2, it follows that V f = eiθf
for all f in S1 and hence S1 = S2.
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This result contains the results of Richter [Ri88], Putinar [Pu94], and Guo–Hu–Xu [GuHuXu04]
since area measure on D or volume measure on Ω satisfies the hypotheses of the theorem. How-
ever, so do the measures for the weighted Bergman spaces on D or weighted volume measure
on any domain Ω.

Corollary 8.5. If Ω is a bounded domain in Cn and S1 and S2 are isometrically isomorphic
submodules of L2

a(Ω), then S1 = S2.

8.3. Rigidity of H2(Dn). The purpose of this subsection is to discuss the rigidity issue for a
simple class of submodules of H2(Dn), namely, the co-doubly commuting submodules. There
is an extensive literature on rigidity phenomenon for submodules of the Hardy module over
Dn. The reader is referred to the book by Chen and Guo [ChGu03], Chapter 3.

The following rigidity result is due to Agrawal, Clark and Douglas (Corollary 4 in [ACDo86].
See also [I87]).

Theorem 8.6. Let S1 and S2 be two submodules of H2(Dn), both of which contain functions
independent of zi for i = 1, . . . , n. Then S1 and S2 are unitarily equivalent if and only if they
are equal.

This yields the following results concerning rigidity of co-doubly commuting submodules of
H2(Dn) (see Section 4).

Corollary 8.7. Let SΘ =
∑n

i=1 Θ̃iH
2(D)n and SΦ =

∑n
i=1 Φ̃iH

2(D)n be a pair of submodules

of H2(D)n, where Θ̃i(z) = Θi(zi) and Φ̃i(z) = Φi(zi) for inner functions Θi,Φi ∈ H∞(D) and
z ∈ Dn and i = 1, . . . , n. Then SΘ and SΦ are unitarily equivalent if and only if SΘ = SΦ.

Proof. Clearly Θ̃i ∈ SΘ and Φ̃i ∈ SΦ are independent of {z1, · · · , zi−1, zi+1, . . . , zn} for all
i = 1, . . . , n. Therefore, the submodules SΘ and SΦ contains functions independent of zi for
all i = 1, . . . , n. Consequently, if SΦ and SΦ are unitarily equivalent then SΘ = SΦ.

Corollary 8.8. Let SΘ =
∑n

i=1 Θ̃iH
2(D)n be a submodules of H2(D)n, where Θ̃i(z) = Θi(zi)

for inner functions Θi ∈ H∞(D) for all i = 1, . . . , n and z ∈ Dn. Then SΘ and H2(Dn) are
not unitarily equivalent.

Proof. The result follows from the previous theorem along with the observation that S⊥
Θ ̸=

{0}.
Further results and comments:

(1) In [DoPaSY95], Douglas, Paulsen, Sah and Yan used algebraic localization techniques
to obtain general rigidity results. In particular, under mild restrictions, they showed
that the submodules obtained from the closure of ideals are equivalent if and only if
the ideals coincide. See also [DoYa90], [ACDo86] for related results.

(2) Theorem 8.4 is from [DoSa08]. In connection with this section see Richter [Ri88],
Putinar [Pu94], and Guo, Hu and Xu [GuHuXu04]. Corollaries 8.7 and 8.8 are from
[Sa13a].

(3) In [Gu00], Guo used the notion of characteristic spaces [Gu99] and obtained a complete
classification submodules of H2(Dn) and H2(Bn) generated by polynomials.
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(4) In [I87], Izuchi proved the following results: Let S1 and S2 be submodules of H2(Dn).
(1) If dim(S1 ⊖ S2), dim(S2 ⊖ S1) <∞, then S1

∼= S2 if and only if S1 = S2.
(2) Let φ2 be an outer function and S2 = [φ2], the principle submodule generated by
φ2. If S1

∼= S2 then, S1 = ΘS2 for some inner function Θ ∈ H∞(Dn).
(5) For complete reference concerning rigidity for analytic Hilbert modules, the reader is

referred to the book by Chen and Guo [ChGu03].

9. Essentially normal Hilbert modules

The purpose of this section is to introduce the notion of essentially normal Hilbert module,
emphasizing a few highlights of the recent developments in the study of Hilbert modules.

9.1. Introduction to essential normality. A Hilbert module H over A, where A = A(Ω)
or C[z], is said to be essentially reductive or essentially normal if the cross-commutators

[M∗
i ,Mj] =M∗

i Mj −MjM
∗
i ,

are in the ideal of compact operators in H for all 1 ≤ i, j ≤ n.
There are many natural examples of essentially normal Hilbert modules. In particular, H2

n,
L2
a(Bn) and H2(Bn) are essentially normal. However, H2(Dn) and L2

a(Dn) are not essentially
normal whenever n > 1.

In [Do06], Douglas proved the following results: Let H be an essentially normal Hilbert
module over A and S be a submodule of H. Then S is essentially normal if and only if the
quotient module Q := H/S is essentially normal.

Another variant of this result concerns a relationship between essentially normal Hilbert
modules and resolutions of Hilbert modules (see Theorem 2.2 in [Do06]):

Theorem 9.1. Let H be a Hilbert module over A with a resolution of Hilbert modules

0 −→ F1
X−→ F2

π−→ H −→ 0,

for some essentially normal Hilbert modules F1 and F2. Then H is essentially normal.

The preceding results raise questions about essentially normal submodules.
Problem: Let S be a submodule of H, where H = H2

n or H2(Bn) or L2
a(Bn) and n > 1. Does

it follow that S is essentially normal?
This is one of the most active research areas in multivariable operator theory. For instance,

if S is a submodule of L2
a(Bn) and generated by a polynomial (by Douglas and Wang [DoW11])

or a submodule of H2
n and generated by a homogeneous polynomial (by Guo and Wang

[GuW08]), then S is p-essentially normal for all p > n (see also [FXi09], [Es11] and [DaRS14]).

9.2. Reductive modules. This subsection continues the study of unitarily equivalent sub-
modules of Hilbert modules (see Section 6 in [Sa14a]). In this context the following problem
is of interest.: Let R be an essentially normal quasi-free Hilbert module over A(Ω) for which
there exists a pure unitarily equivalent submodule. Does it follow that R is subnormal?

Now let R be a quasi-free Hilbert module over A(Ω). Then the Hilbert space tensor
product R⊗H2(D) is a quasi-free Hilbert module over A(Ω× D) which clearly contains the
pure isometrically isomorphic submodule R⊗H2

0 (D). Hence, one can say little without some
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additional hypothesis for Ω or R or both. Under the assumption of essential normality on R
the following holds:

Theorem 9.2. Let R be an essentially normal Hilbert module over A(Ω) and U be an iso-
metric module map U on R such that

∞∩
k=0

UkR = {0}.

Then R is subnormal, that is, there exists a normal (reductive) Hilbert module N over A(Ω)
with R as a submodule.

Proof. As in the proof of Proposition 6.1 in [Sa14a], there exists an isometric isomorphism
Ψ from R onto H2

W(D) with
W = R⊖ UR,

and φ1, . . . , φn in H∞
L(W)(D) such that Ψ is a C[zzz]-module map relative to the module structure

on H2
W(D) defined so that

zj 7→ Tφj
. (j = 1, . . . , n)

It remains only to prove that the n-tuple {φ1(e
it), . . . , φn(e

it)} consists of commuting normal
operators for eit-a.e. on T. Then N is L2

W(T) with the module multiplication defined by
zi 7→ Lφi

, where Lφi
denotes pointwise multiplication on L2

W(T). Since the {φj(e
it)}nj=1 are

normal and commute, L2
W(T) is a reductive Hilbert module.

The fact that R is essentially reductive implies that each Tφi
is essentially normal and hence

that the cross-commutators [T ∗
φi
, Tφj

] are compact for 1 ≤ i, j ≤ n. To finish the proof it

suffices to show that [T ∗
φi
, Tφj

] compact implies that [L∗
φi
, Lφj

] = 0 on L2
W(T).

Fix f in H2
W(D) and let N be a positive integer. Next observe that

(9.6) lim
N→∞

∥(I − P )LN
z L

∗
φi
Lφj

f∥ = 0,

and

(9.7) lim
N→∞

∥(I − P )LN
z L

∗
φi
f∥ = 0,

where P is the projection of L2
W(T) onto H2

W(D). Consequently
∥[T ∗

φi
, Tφj

]MN
z f∥ = ∥PL∗

φi
PLφj

PLN
z f − PLφj

PL∗
φi
PLN

z f∥
= ∥[LN

z L
∗φiLφj

f − (I − P )LN
z L

∗
φi
Lφj

f ]

− [Lφj
LN
z L

∗
φi
f − Lφj

(I − P )LN
z L

∗
φi
f ]∥.

By (9.6) and (9.7) one gets

lim
N→∞

∥[T ∗
φi
, Tφj

]LN
z f∥ = lim

N→∞
∥(LN

z L
∗
φi
Lφj

− Lφj
LN
z L

′
φi
)f∥

= lim
N→∞

∥LN
z [L

∗
φi
, Lφj

]f∥ = ∥[L∗
φi
, Lφj

]f∥.

Since [T ∗
φi
, Tφj

] is compact and the sequence {eiNtf} converges weakly to 0, it follows that

lim
N→∞

∥[T ∗
φi
, Tφj

]eiNtf∥ = 0.
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Therefore,
∥[L∗

φi
, Lφj

]f∥ = 0.

Finally, the set of vectors {e−iNtf} : N ≥ 0, f ∈ H2
W(D)} is norm dense in L2

W(T) and

∥[L∗
φi
, Lφj

]e−iNtf∥ = ∥[L∗
φi
, Lφj

]f∥ = 0.

Therefore, [L∗
φi
, Lφj

] = 0, which completes the proof.
The following result is complementary to Theorem 6.1, [Sa14a].

Theorem 9.3. Let M be an essentially reductive, finite rank, quasi-free Hilbert module over
A(D). Let U be a module isometry such that

∩∞
k=0U

kM = {0}.
Then M is unitarily equivalent to H2

F(D) for some Hilbert space F with

dim F = rank M.

Proof. As before (cf. Theorem 9.2) there is an isometrical isomorphism, Ψ: H2
F(D) → M

such that U = ΨTzΨ
∗ and there exists φ in H∞

L(F)(D) such that Mz = ΨTφΨ
∗. Further, since

Mz is essentially normal and Mz −ω is Fredholm for ω in D, it follows that Mz is an essential
unitary. Finally, this implies

T ∗
φTφ − I = Tφ∗φ−I ,

is compact and hence φ∗(eit)φ(eit) = I a.e. or φ is an inner function which completes the
proof.

9.3. Essentially doubly commutativity. Recall that the Hardy module H2(Dn) with n >
1 is doubly commuting but not essentially normal. Therefore, a natural approach to measure a
submodule of the Hardy moduleH2(Dn) from being small is to consider the cross commutators
[R∗

zi
, Rzj ] for all 1 ≤ i < j ≤ n.

It is difficult in general to characterize the class of essentially doubly commuting submodules
of H2(Dn). It is even more complicated to compute the cross-commutators of submodules of
H2(Dn). However, that is not the case for co-doubly commuting submodules [Sa13a]:

Theorem 9.4. Let S =
∑n

i=1 Θ̃iH
2(Dn) be a co-doubly commuting submodule of H2(Dn),

where Θ̃i(z) = Θi(zi) for all z ∈ Dn and each Θi ∈ H∞(D) is either an inner function or the
zero function and 1 ≤ i ≤ n. Then for all 1 ≤ i < j ≤ n,

[R∗
zi
, Rzj ] = IQΘ1

⊗ · · · ⊗ PQΘi
M∗

z |ΘiH2(D)︸ ︷︷ ︸
ith

⊗ · · · ⊗ PΘjH2(D)Mz|QΘj︸ ︷︷ ︸
jth

⊗ · · · ⊗ IQΘn
,

and
∥[R∗

zi
, Rzj ]∥ = (1− |Θi(0)|2)

1
2 (1− |Θj(0)|2)

1
2 .

Proof. Let S =
∑n

i=1 Θ̃iH
2(Dn), for some one variable inner functions Θi ∈ H∞(D). Let P̃i

be the orthogonal projection in L(S) defined by

P̃i =MΘ̃i
M∗

Θ̃i
,
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for all i = 1, . . . , n. By virtue of Corollary 4.8 and Lemma 4.6,

PS = IH2(Dn) −
n

Π
i=1

(IH2(Dn) − P̃i)

= P̃1(I − P̃2) · · · (I − P̃n) + P̃2(I − P̃3) · · · (I − P̃n) + · · ·+ P̃n−1(I − P̃n) + P̃n

= P̃n(I − P̃n−1) · · · (I − P̃1) + P̃n−1(I − P̃n−2) · · · (I − P̃1) + · · ·+ P̃2(I − P̃1) + P̃1,

and

PQ =
n

Π
i=1

(IH2(Dn) − P̃i).

On the other hand, for all 1 ≤ i < j ≤ n, one gets

[R∗
zi
, Rzj ] = PSM

∗
zi
Mzj |S − PSMzjPSM

∗
zi
|S ,

and that

PSM
∗
zi
MzjPS − PSMzjPSM

∗
zi
PS = PSM

∗
zi
MzjPS − PSMzj(I − PQ)M

∗
zi
PS

= PSMzjPQM
∗
zi
PS .

Furthermore, for all 1 ≤ i < j ≤ n,

PSMzjPQM
∗
zi
PS

= [P̃n(I − P̃n−1) · · · (I − P̃1) + P̃n−1(I − P̃n−2) · · · (I − P̃1) + · · ·+ P̃2(I − P̃1) + P̃1]

Mzj [
n

Π
l=1

(IH2(Dn) − P̃l)]M
∗
zi

[P̃1(I − P̃2) · · · (I − P̃n) + P̃2(I − P̃3) · · · (I − P̃n) + · · ·+ P̃n−1(I − P̃n) + P̃n]

= [P̃n(I − P̃n−1) · · · (I − P̃1) + P̃n−1(I − P̃n−2) · · · (I − P̃1) + · · ·+ P̃2(I − P̃1) + P̃1]

[ Π
l ̸=j

(IH2(Dn) − P̃l)]MzjM
∗
zi
[Π
l ̸=i

(IH2(Dn) − P̃l)]

[P̃1(I − P̃2) · · · (I − P̃n) + P̃2(I − P̃3) · · · (I − P̃n) + · · ·+ P̃n−1(I − P̃n) + P̃n]

= [P̃j(I − P̃j−1) · · · (I − P̃1)]M
∗
zi
Mzj [P̃i(I − P̃i+1) · · · (I − P̃n)]

= [(I − P̃1) · · · (I − P̃j−1)P̃j]M
∗
zi
Mzj [P̃i(I − P̃i+1) · · · (I − P̃n)].

These equalities shows that

[R∗
zi
, Rzj ] = [(I − P̃1) · · · (I − P̃i) · · · (I − P̃j−1)P̃j]M

∗
zi
Mzj [P̃i(I − P̃i+1) · · · (I − P̃j) · · · (I − P̃n)]

= (I − P̃1)(I − P̃2) · · · (I − P̃i−1) ((I − P̃i)M
∗
zi
P̃i) (I − P̃i+1) · · ·

· · · (I − P̃j−1) (P̃jMzj(I − P̃j)) (I − P̃j+1) · · · (I − P̃n).

Moreover,

[R∗
zi
, Rzj ] = [(I − P̃1) · · · (I − P̃j−1)P̃j]M

∗
zi
Mzj [(I − P̃1) · · · (I − P̃i−1)P̃i(I − P̃i+1) · · · (I − P̃n)],

and

[R∗
zi
, Rzj ] = [(I − P̃1) · · · (I − P̃j−1)P̃j(I − P̃j+1) · · · (I − P̃n)]M

∗
zi
Mzj [P̃i(I − P̃i+1) · · · (I − P̃n)].
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Now we can conclude that
[R∗

zi
, Rzj ] = IQΘ1

⊗ · · · ⊗ PQΘi
M∗

z |ΘiH2(D)︸ ︷︷ ︸
ith

⊗ · · · ⊗ PΘjH2(D)Mz|QΘj︸ ︷︷ ︸
jth

⊗ · · · ⊗ IQΘn
.

Further, note that

∥[R∗
zi
, Rzj ]∥ = ∥IQΘ1

⊗ · · · ⊗ PQΘi
M∗

z |ΘiH2(D) ⊗ · · · ⊗ PΘjH2(D)Mz|QΘj
⊗ · · · ⊗ IQΘn

∥
= ∥PQΘi

M∗
z |ΘiH2(D)∥∥PΘjH2(D)Mz|QΘj

∥,

and consequently by Proposition 2.3 in [Sa13a] it follows that

∥[R∗
zi
, Rzj ]∥ = (1− |Θi(0)|2)

1
2 (1− |Θj(0)|2)

1
2 .

This completes the proof.
The following corollary reveals the significance of the identity operators in the cross com-

mutators of the co-doubly commuting submodules of H2(Dn) for n > 2.

Corollary 9.5. Let S =
∑n

i=1 Θ̃iH
2(Dn) be a submodule of H2(Dn) for some one variable

inner functions {Θ̃i}ni=1 ⊆ H∞(Dn). Then
(1) for n = 2: the rank of the cross commutator of S is at most one and the Hilbert-Schmidth
norm of the cross commutator is given by

∥[R∗
z1
, Rz2 ]∥HS = (1− |Θ1(0)|2)

1
2 (1− |Θ2(0)|2)

1
2 .

In particular, S is essentially doubly commuting.
(2) for n > 2: S is essentially doubly commuting (or of Hilbert-Schmidth cross-commutators)
if and only if that S is of finite co-dimension, that is,

dim [H2(Dn)/S] <∞.

Moreover, in this case, for all 1 ≤ i < j ≤ n

∥[R∗
zi
, Rzj ]∥HS = (1− |Θi(0)|2)

1
2 (1− |Θj(0)|2)

1
2 .

The following statements also proceeds directly from the theorem.

Corollary 9.6. Let n > 2 and S =
∑k

i=1 Θ̃iH
2(Dn) be a co-doubly commuting proper

submodule of H2(Dn) for some inner functions {Θi}ki=1 and k < n. Then S is not essentially
doubly commuting.

Corollary 9.7. Let S be a co-doubly commuting submodule of H2(Dn) and Q := H2(Dn)/S
and n > 2. Then the following are equivalent:

(i) S is essentially doubly commuting.
(ii) S is of finite co-dimension.
(iii) Q is essentially normal.

The following one is a ”rigidity” type result.

Corollary 9.8. Let n ≥ 2 and S =
∑n

i=1 Θ̃iH
2(Dn) be an essentially normal co-doubly

commuting submodule of H2(Dn) for some one variable inner functions {Θi}ni=1. If S is of
infinite co-dimension, then n = 2.
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Proof. The result follows from Theorem 9.4 and the fact that a finite co-dimensional sub-
module of an essentially doubly commuting Hilbert module over C[z] is essentially doubly
commuting.

It is now clear that the general picture of essentially doubly commuting submodules of
H2(D)n is much more complicated.
Further results and comments:

(1) It is an extremely interesting question as to whether essential reductivity is related to
a lack of corners or not being a product.

(2) In [AhCl70], Ahern and Clark proved that there exists a bijective correspondence
between submodules of H2(Dn) of finite codimension, and the ideals in C[z] of finite
codimension whose zero sets are contained in Dn. In [GuZhe01], Guo and Zheng
characterized the finite co-dimensional submodules of the Bergman module and the
Hardy module over Bn or Dn (also see Corollary 2.5.4 in [ChGu03]).

Theorem 9.9. Let Ω = Bn or Dn and S be a submodule of L2
a(Ω) or H

2(Ω). Then S
is of finite co-dimension if and only if S⊥ consists of rational functions.

(3) Second subsection is from [DoSa08] and the final subsection is from [Sa13a]. Part (1)
of the Corollary 9.5 was obtained by R. Yang (Corollary 1.1, [Y05a]).

(4) In [BerSh74], Berger and Shaw proved a surprising result concerning essentially normal
Hilbert modules. Suppose H be a hyponormal Hilbert module over C[z], that is,
[M∗,M ] ≥ 0. Moreover, assume that H is rationally finitely generated, that is, there
exists m ∈ N and {f1, . . . , fm} ⊆ H such that

{
m∑
i=1

ri(M)fi : ri ∈ Rat(σ(M))}

is dense in H. Then

trace[M∗,M ] ≤ m

π
Area(σ(M)).

In particular, every rationally finitely generated hyponormal Hilbert module is essen-
tially normal. It is not known whether the Berger-Shaw theorem holds for ”hyponor-
mal” Hilbert modules over C[z]. However, in [DoY92], Douglas and Yan proposed a
version of Berger-Shaw theorem in several variables under the assumption that the
spectrum of the Hilbert module is contained in an algebraic curve (see also [Zh01]).
The reader is also referred to the work of Chavan [Ch07] for a different approach to
the Berger-Shaw theorem in the context of 2-hyperexpansive operators.

(5) In connection with trace formulae, integral operators, fundamental trace forms and
pseudo-differential operators see also Pincus [Pi68], Helton and Howe [HeHo75] and
Carey and Pincus [CaPi79], [CaPi77]. See also the recent article by Howe [Ho12].

(6) Let S be a homogeneous submodule of H2(D2). In [CuMY91], Curto, Muhly and Yan
proved that S is always essentially doubly commuting.

(7) The reader is referred to the work by Ahern and Clark [AhCl70] for more details on
finite co-dimensional submodules of the Hardy modules over Dn (see also [ChGu03]).
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(8) In [AlDu03], Alpay and Dubi characterized finite co-dimensional subspaces of H2
n⊗Cm

for m ∈ N (see also [AlDu05]).
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