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Abstract. Let {T1, . . . , Tn} be a set of n commuting bounded linear operators on a Hilbert
space H. Then the n-tuple (T1, . . . , Tn) turns H into a module over C[z1, . . . , zn] in the
following sense:

C[z1, . . . , zn]×H → H, (p, h) 7→ p(T1, . . . , Tn)h,

where p ∈ C[z1, . . . , zn] and h ∈ H. The above module is usually called the Hilbert module
over C[z1, . . . , zn]. Hilbert modules over C[z1, . . . , zn] (or natural function algebras) were first
introduced by R. G. Douglas and C. Foias in 1976. The two main driving forces were the
algebraic and complex geometric views to multivariable operator theory.
This article gives an introduction of Hilbert modules over function algebras and surveys some
recent developments. Here the theory of Hilbert modules is presented as combination of com-
mutative algebra, complex geometry and the geometry of Hilbert spaces and its applications
to the theory of n-tuples (n ≥ 1) of commuting operators. The topics which are studied
include: model theory from Hilbert module point of view, Hilbert modules of holomorphic
functions, module tensor products, localizations, dilations, submodules and quotient mod-
ules, free resolutions, curvature and Fredholm Hilbert modules. More developments in the
study of Hilbert module approach to operator theory can be found in a companion paper,
“Applications of Hilbert Module Approach to Multivariable Operator Theory”.
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1. Introduction

One of the most important areas of investigation in operator theory is the study of n-tuples
of commuting bounded linear operators on Hilbert spaces, or Hilbert modules over natural
function algebras. A Hilbert module H over C[z1, . . . , zn] is the Hilbert space H equipped
with n module maps, that is, with an n-tuple of commuting bounded linear operators on H.

The origins of Hilbert modules, in fact, lie in classical linear operators on finite dimensional
vector spaces. For instance, let T be a linear operator on an n-dimensional vector space H.
Then H is a module over C[z] in the following sense:

C[z]×H → H, (p, h) 7→ p(T )h, (p ∈ C[z], h ∈ H)
where for p =

∑
k≥0 akz

k ∈ C[z], p(T ) is the natural functional calculus given by p(T ) =∑
k≥0 akT

k. Since C[z] is a principle ideal domain, the ideal {p ∈ C[z] : p(T ) = 0} is
generated by a non-zero polynomial. Such a polynomial is called a minimal polynomial for T .
The existence of a minimal polynomial is a key step in the classification of linear operators
in finite dimensional Hilbert spaces [Fuh12]. More precisely, the existence of the Jordan form
follows from the structure theorem for finitely-generated modules over principle ideal domains.
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The idea of viewing a commuting tuple of operators on a Hilbert space as Hilbert mod-
ule over a natural function algebra goes back to Ronald G. Douglas in the middle of 1970.
Perhaps, the main motivations behind the Douglas approach to Hilbert modules were the
elucidating role of Brown-Douglas-Fillmore theory (1973), complex geometric interpretation
of the Cowen-Douglas class (1978), Hormandar’s algebraic approach, in the sense of Koszul
complex, to corona problem (1967) and later, Taylor’s notion of joint spectrum (1970), again
in the sense of Koszul complex, in operator theory and function theory.

Historically, the first ideas leading to Hilbert modules can be traced back to the unpublished
manuscript [DoFo76], in which Douglas and Foias proposed an algebraic approach to dilation
theory. Then in [Do86] and [Do88], the notion of Hilbert modules became refined.

A systematic study of Hilbert modules only really started in 1989 with the work of Douglas,
Paulsen and Yan [DoPaY89] and the monograph by Douglas and Paulsen [DoPa89].
Since then, this approach has become one of the essential tools of multivariable operator
theory. This field now has profound connections to various areas of mathematics including
commutative algebra, complex geometry and topology (see [DoY92], [DoPaSY95], [Ya92],
[DoKKSa14], [DoKKSa12], [DoSa08], [DoSa11], [DoMiSa12]).

The purpose of this survey article is to present a (Hilbert) module approach to multivariable
operator theory. The topics and results covered here are chosen to complement the existing
monographs by Douglas and Paulsen [DoPa89] and Chen and Guo [XCGu03] and surveys by
Douglas [Do14] and [Do09] though some overlap will be unavoidable. Many interesting results,
open problems and references can be found in the monograph and the surveys mentioned
above.

In view of time and space constraints, the present survey will not cover many interesting as-
pects of Hilbert module approach to multivariable operator theory, including the case of single
operators. A few of these are: (1) The classification program for reducing subspaces of mul-
tiplication by Blaschke products on the Bergman space, by Zhu, Guo, Douglas, Sun, Wang,
Putinar. (see [DoSuZ11], [DoPuW12], [GuH11]). (2) Extensions of Hilbert modules by Carl-
son, Clark, Foias, Guo, Didas and Eschmeier (see [DiEs06], [CaCl95], [CaCl97], [Gu99]). (3)
K0-group and similarity classification by Jiang, Wang, Ji, Guo (see [JJ07], [JWa06], [JGuJ05].
(4) Classification programme of homogeneous operators by Clark, Bagchi, Misra, Sastry and
Koranyi (see [MiS90], [BaMi03], [KMi11] and [KMi09]). (4) Sheaf-theoretic techniques by
Eschmeier, Albrecht, Putinar, Taylor and Vasilescu (see [EsP96], [Va82]).

Finally, although the main guiding principle of this development is the correspondence

commutingn-tuples ←→ Hilbert modules over C[z1, . . . , zn],

it is believed that the Hilbert module approach is a natural way to understand the subject of
multivariable operator theory.
Outline of the paper: The paper has seven sections besides this introduction. Section 2 begins
with a brief introduction of Hardy module which is a well-established procedure to pass from
the function theory to the one variable operator theory. This section also includes basics
of Hilbert modules over function algebras, localizations and dilations. The third section is
centered around those aspects of operator theory that played an important role in the de-
velopment of Hilbert modules. In particular, the third section introduce three basic notions
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which are directly formulated with the required structures, namely, algebraic, analytic and
geometric. Section 4 is devoted to the study of contractive Hilbert modules over C[z]. Section
5 describes the relationship of von Neumann-Wold decomposition with the structure of sub-
modules of the Hardy (general function Hilbert) module(s). Section 6 introduces the notion
of unitarily equivalence submodules of Hilbert modules of holomorphic functions. Section 7
sets the homological framework for Hilbert modules and Section 8 introduces the theory of
Drury-Arveson module.
Notations and Conventions: (i) N = Set of all natural numbers including 0. (ii) n ∈ N and
n ≥ 1, unless specifically stated otherwise. (iii) Nn = {k = (k1, . . . , kn) : ki ∈ N, i = 1, . . . , n}.
(iv) Cn = the complex n-space. (v) Ω : Bounded domain in Cn. (vi) z = (z1, . . . , zn) ∈ Cn.
(vii) zk = zk11 · · · zknn . (viii) H,K, E , E∗ : Hilbert spaces. (ix) B(H,K) = the set of all bounded
linear operators from H to K. (x) T = (T1, . . . , Tn), n-tuple of commuting operators. (xi)
T k = T k1

1 · · ·T kn
n . (xii) C[z] = C[z1, . . . , zn]. (xiii) Dn = {z : |zi| < 1, i = 1, . . . , n},

Bn = {z : ∥z∥Cn < 1}. (xiv) H2
E(D) : E-valued Hardy space over D.

Throughout this note all Hilbert spaces are over the complex field and separable. Also for a
closed subspace S of a Hilbert space H, the orthogonal projection of H onto S will be denoted
by PS .

2. Hilbert modules

The purpose of this section is to give some of the essential background for Hilbert modules.
The first subsection is devoted to set up the notion of Hilbert modules over the polynomial
algebra. The third subsection deals with Hilbert modules over function algebras. Basic
concepts and classical definitions are summarized in the subsequent subsections.

Before proceeding to the detailed development, it is more convenient to introduce a brief
overview of the Hardy space over the unit disc D. Results based on the Hardy space and the
multiplication operator on the Hardy space play an important role in both operator theory
and function theory. More precisely, for many aspects of geometric and analytic intuition, the
Hardy space techniques play a fundamental role in formulating problems in operator theory
and function theory both in one and several variables.

The Hardy space H2(D) over D is the set of all power series

f =
∞∑

m=0

amz
m, (am ∈ C)

such that

∥f∥H2(D) := (
∞∑

m=0

|am|2)
1
2 <∞.

Let f =
∑∞

m=0 amz
m ∈ H2(D). It is obvious that

∑∞
m=0 |w|m <∞ for each w ∈ D. This and∑∞

m=0 |am|2 <∞ readily implies that

∞∑
m=0

amw
m
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converges absolutely for each w ∈ D. In other words, f =
∑∞

m=0 amz
m is in H2(D) if and only

if f is a square summable holomorphic function on D.
Now, for each w ∈ D one can define a complex-valued function S(·, w) : D→ C by

(S(·, w))(z) =
∞∑

m=0

w̄mzm. (z ∈ D)

Since
∞∑

m=0

|w̄m|2 =
∞∑

m=0

(|w|2)m =
1

1− |w|2
,

it follows that
S(·, w) ∈ H2(D), (w ∈ D)

and

∥S(·, w)∥H2(D) =
1

(1− |w|2) 1
2

. (w ∈ D)

Moreover, if f =
∑∞

m=0 amz
m ∈ H2(D) and w ∈ D, then

f(w) =
∞∑

m=0

amw
m = ⟨

∞∑
m=0

amz
m,

∞∑
m=0

w̄mzm⟩H2(D) = ⟨f, S(·, w)⟩H2(D).

Therefore, the vector S(·, w) ∈ H2(D) reproduces (cf. Subsection 3.1) the value of f ∈ H2(D)
at w ∈ D. In particular,

(S(·, w))(z) = ⟨S(·, w), S(·, z)⟩H2(D) =
∞∑

m=0

zmw̄m = (1− zw̄)−1. (z, w ∈ D)

The function S : D× D→ C defined by

S(z, w) = (1− zw̄)−1, (z, w ∈ D)
is called the Szegő or Cauchy-Szegő kernel of D. Consequently, H2(D) is a reproducing kernel
Hilbert space with kernel function S (see Subsection 3.1).

The next goal is to show that the set {S(·, w) : w ∈ D} is total in H2(D), that is,
span{S(·, w) : w ∈ D} = H2(D).

To see this notice that the reproducing property of the Szegő kernel yields f(w) = ⟨f, S(·, w)⟩H2(D)
for all f ∈ H2(D) and w ∈ D. Now the result follows from the fact that

f ⊥ S(·, w),
for f ∈ H2(D) and for all w ∈ D if and only if

f = 0.

It also follows that for each w ∈ D, the evaluation map evw : H2(D)→ C defined by

evw(f) = f(w), (f ∈ H2(D))
is continuous.
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The next task is to recall some of the most elementary properties of the multiplication
operator on H2(D). Observe first that

⟨z(zk), z(zl)⟩H2(D) = ⟨zk+1, zl+1⟩H2(D) = δk,l = ⟨zk, zl⟩H2(D). (k, l ∈ N)

Using the fact that the set {zm : m ∈ N} is total in H2(D), the previous equality implies that
the multiplication operator Mz on H2(D) defined by

(Mzf)(w) = wf(w), (f ∈ H2(D), w ∈ D)

is an isometric operator, that is,

M∗
zMz = IH2(D).

Moreover,

⟨M∗
z z

k, zl⟩H2(D) = ⟨zk, zl+1⟩H2(D) = δk,l+1 = δk−1,l = ⟨zk−1, zl⟩H2(D),

for all k ≥ 1 and l ∈ N. Also it follows that ⟨M∗
z 1, z

l⟩H2(D) = 0. Consequently,

M∗
z z

k =

{
zk−1 if k ≥ 1;
0 if k = 0.

It also follows that

⟨(IH2(D) −MzM
∗
z )S(·, w),S(·, z)⟩H2(D) = ⟨S(·, w), S(·, z)⟩H2(D) − ⟨M∗

z S(·, w),M∗
z S(·, z)⟩H2(D)

= S(z, w)− zw̄S(z, w) = 1

= ⟨PCS(·, w), S(·, z)⟩H2(D),

where PC is the orthogonal projection of H2(D) onto the one-dimensional subspace of all
constant functions on D. Therefore,

IH2(D) −MzM
∗
z = PC.

To compute the kernel, ker(Mz − wIH2(D))
∗ for w ∈ D, note that

M∗
z S(·, w) =M∗

z (1 + w̄z + w̄2z2 + · · · ) = w̄ + w̄2z + w̄3z2 + · · · = w̄(1 + w̄z + w̄2z2 + · · · )
= w̄S(·, w).

On the other hand, if M∗
z f = w̄f for some f ∈ H2(D) then

f(0) = PCf = (IH2(D) −MzM
∗
z )f = (1− zw̄)f,

that is, f = f(0)S(·, w). Consequently, M∗
z f = w̄f if and only if f = λS(·, w) for some λ ∈ C.

That is,

ker(Mz − wIH2(D))
∗ = {λS(·, w) : λ ∈ C}.

In particular, ∨
w∈D

ker(Mz − wIH2(D))
∗ = H2(D).

The following theorem summarizes the above observations.
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Theorem 2.1. Let H2(D) denote the Hardy space over D and Mz denote the multiplication
operator by the coordinate function z on H2(D). Then, the following properties hold:

(i) The set {S(·, w) : w ∈ D} is total in H2(D).
(ii) The evaluation map evw : H2(D)→ C defined by evw(f) = f(w) is continuous for each

w ∈ D.
(iii) σp(M

∗
z ) = D and ker(Mz − wIH2(D))

∗ = {λS(·, w) : λ ∈ C}.
(iv) f(w) = ⟨f, S(·, w)⟩H2(D) for all f ∈ H2(D) and w ∈ D.
(v)IH2(D) −MzM

∗
z = PC.

(vi)
∨

w∈D ker(Mz − wIH2(D))
∗ = H2(D).

Let E be a Hilbert space. In what follows, H2
E(D) stands for the Hardy space of E-valued

analytic functions on D. Moreover, by virtue of the unitary U : H2
E(D)→ H2(D)⊗ E defined

by

zmη 7→ zm ⊗ η, (η ∈ E ,m ∈ N)
the vector valued Hardy space H2

E(D) will be identified with the Hilbert space tensor product
H2(D)⊗ E .

For a more extensive treatment of the Hardy space and related topics, the reader is referred
to the books by Sz.-Nagy and Foias [NaFo70], Radjavi and Rosenthal [RaRo73], Rosenblum
and Rovnyak [RRov97] and Halmos [Ha82].

2.1. Hilbert modules over C[z]. Let {T1, . . . , Tn} be a set of n commuting bounded linear
operators on a Hilbert space H. Then the n-tuple (T1, . . . , Tn) turns H into a module over
C[z] in the following sense:

C[z]×H → H, (p, h) 7→ p(T1, . . . , Tn)h,

where p ∈ C[z] and h ∈ H. The above module is usually called the Hilbert module over C[z].
Denote by Mp : H → H the bounded linear operator

Mph = p · h = p(T1, . . . , Tn)h, (h ∈ H)

for p ∈ C[z]. In particular, for p = zi ∈ C[z], this gives the module multiplication operators
{Mj}nj=1 by the coordinate functions {zj}nj=1 defined by

Mih = zi(T1, . . . , Tn)h = Tih. (h ∈ H, 1 ≤ i ≤ n)

Here and in what follows, the notion of a Hilbert module H over C[z] will be used in place of
an n-tuple of commuting operators {T1, . . . , Tn} ⊆ B(H), where the operators are determined
by module multiplication by the coordinate functions, and vice versa.

When necessary, the notation {MH,i}ni=1 will be used to indicate the underlying Hilbert space
H with respect to which the module maps are defined.

Let S be a closed subspace ofH. Then S is a submodule ofH ifMiS ⊆ S for all i = 1, . . . , n.
A closed subspace Q of H is said to be quotient module of H if Q⊥ ∼= H/Q is a submodule of
H. Therefore, a closed subspace Q is a quotient module of H if and only if M∗

i Q ⊆ Q for all
i = 1, . . . , n. In particular, if the module multiplication operators on a Hilbert module H are
given by the commuting tuple of operators (T1, . . . , Tn) then S is a submodule of H if and
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only if S is joint (T1, . . . , Tn)-invariant subspace of H and Q is a quotient module of H if and
only if Q is joint (T ∗

1 , . . . , T
∗
n)-invariant subspace of H.

Let S be a submodule and Q be a quotient module of a Hilbert module H over C[z]. Then
S and Q are also Hilbert modules over C[z] where the module multiplication by the coordi-
nate functions on S and Q are given by the restrictions (R1, . . . , Rn) and the compressions
(C1, . . . , Cn) of the module multiplication operators on H, respectively. That is,

Ri =Mi|S and Ci = PQMi|Q. (1 ≤ i ≤ n)

Evidently,

R∗
i = PSM

∗
i |S and C∗

i =M∗
i |Q. (1 ≤ i ≤ n)

A bounded linear map X : H → K between two Hilbert modules H and K over C[z] is
said to be a module map if XMi = MiX for i = 1, . . . , n, or equivalently, if XMp = MpX
for p ∈ C[z]. A pair of Hilbert modules will be considered the ’same’, that is, isomorphic
provided there is a unitary module map between them, and similar if there is an invertible
module map between them.

2.2. Dilations. The purpose of this subsection is to present a modified version of dilation
theory for commuting tuples of operators.

Let H and K be Hilbert modules over C[z]. Then
(1) A map Π ∈ B(H,K) is called co-module map if Π∗ : K → H is a module map, that is,

ΠM∗
i =M∗

i Π.
(2) K is said to be dilation of H if there exists a co-module isometry Π : H → K. In this

case, we also say that Π ∈ B(H,K) is a dilation of H.
(3) A dilation Π ∈ B(H,K) of H is minimal if K = span{Mk(ΠH) : k ∈ Nn}.
Let Π ∈ B(H,K) be a dilation of H. Then Π(H) is a quotient module of K, that is, Π(H)

is a joint (M∗
1 , . . . ,M

∗
n)-invariant subspace of K, and

Mk = PΠ(H)M
k|Π(H),

for all k ∈ Nn. Moreover, one has the following short exact sequence of Hilbert modules

(2.1) 0 −→ S i−→ K π−→ H −→ 0,

where S = (ΠH)⊥(∼= K/ΠH), a submodule of K, i is the inclusion and π := Π∗ is the quotient
map. In other words, if K is a dilation of H then there exists a quotient module Q and a
submodule S of K such that K = S ⊕Q, that is,

0 −→ S i−→ K π−→ Q −→ 0,

and Q ∼= H.
Conversely, let H and K be Hilbert modules over C[z] and H ∼= Q, a quotient module of K.
Therefore, K is a dilation of H and by defining S := Q⊥, a submodule of K, one arrives at
the short exact sequence (2.1).

A Hilbert module H over C[z] is said to be contractive Hilbert module over C[z] if IH −
M∗M ≥ 0.

The famous isometric dilation theorem of Sz. Nagy (cf. [NaFo70]) states that:
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Theorem 2.2. Every contractive Hilbert module H over C[z] has a minimal isometric dila-
tion.

Proof. Let H be a contractive Hilbert module over C[z]. Let DH = (IH − M∗M)
1
2 and

NH := H⊕H2
H(D). Define NH ∈ B(NH) by

NH :=

[
M 0
DH Mz

]
,

where DH : H → H2
H(D) is the constant function defined by (DHh)(z) = DHh for all h ∈ H

and z ∈ D. Consequently,

N∗
HNH =

[
M∗M +D2

H 0
0 IH2

H(D)

]
=

[
IH 0
0 IH2

H(D)

]
,

that is, NH is an isometry. Moreover, one can check immediately that

Nk
H :=

[
Mk 0
∗ Mk

z

]
, (k ∈ N)

which along with the isometric embedding ΠN ∈ B(H,NH) defined by ΠNh = h ⊕ 0, for all
h ∈ H, implies that ΠN is an isometric dilation of H with the isometric map NH. Then
Π̃N := PÑH

ΠN ∈ B(H, ÑH) is the minimal isometric dilation of H, where ÑH = span{Nk
HH :

k ∈ N} and ÑH = NH|ÑH
.

Sz.-Nagy’s minimal isometric dilation is unique in the following sense: if Π ∈ B(H,M)
is a minimal isometric dilation of H with isometry V , then there exists a (unique) unitary
Φ : ÑH →M such that V Φ = ΦÑH.

It is also worth mentioning that the Schäffer isometric dilation of H is always minimal.
The Schäffer dilation space is defined by SH := H⊕H2

DH
(D) with

SH :=

[
M 0
DH Mz

]
,

where DH = ranDH (see [NaFo70]).
The von Neumann inequality [Jv51] follows from the isometric, and hence unitary (cf.

[NaFo70]), dilation theorem for contractive Hilbert modules.

Theorem 2.3. Let H be a Hilbert module over C[z]. Then H is contractive if and only if

∥p(M)∥ ≤ ∥p∥∞ = max
|z|≤1
|p(z)|. (p ∈ C[z])

As a consequence, the polynomial functional calculus of a contractive Hilbert module over
C[z] extends to the disc algebra A(D), where

A(D) = O(D) ∩ C(D) = C[z]
∥·∥∞

.

This implies that

∥f(M)∥ ≤ ∥f∥∞,
for all f ∈ A(D).
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2.3. Hilbert modules over A(Ω). Let Ω be a domain in Cn and A(Ω) be the unital Banach
algebra obtained from the closure in the supremum norm on Ω of all functions holomorphic
in some neighborhood of the closure of Ω. The most classical and familiar examples of A(Ω)
are the ball algebra A(Bn) and the polydisc algebra A(Dn).

Now let H be a Hilbert space and π a norm continuous unital algebra homomorphism from
the Banach algebra A(Ω) to the C∗-algebra B(H). Then the Hilbert space H is said to be a
Hilbert module over A(Ω) if it is an A(Ω)-module in the sense of algebra,

A(Ω)×H → H, (φ, f) 7→ φ · f = π(φ)h,

with the additional property that the module multiplication A(Ω)×H → H is norm contin-
uous. We say that a Hilbert module H over A(Ω) is contractive if π is a contraction, that
is,

∥φ · f∥H ≤ ∥φ∥A(Ω)∥f∥H. (φ ∈ A(Ω), f ∈ H)
The following are some important and instructive examples of contractive Hilbert modules.
(1) the Hardy module H2(Dn) ([FeSt72], [Ru69]), the closure of C[z] in L2(Tn), over A(Dn),
(2) the Hardy module H2(Bn) [Ru80], the closure of C[z] in L2(∂Bn), over A(Bn) and
(3) the Bergman module over the ball L2

a(Bn), the closure of A(Bn) in L2(Bn), over A(Bn).
(4) Quotient modules and submodules of (1), (2) and (3) over the corresponding algebras.

2.4. Module tensor products and localizations. Module tensor product and localizations
are in the center of commutative algebra and algebraic geometry. The notion of module tensor
products and localizations for Hilbert modules introduced by Douglas and Paulsen [DoPa89]
was one of the inspiration points for Hilbert module method to operator theory.

Let H1 and H2 be two Hilbert modules over A(Ω) and H1⊗H2 be the Hilbert space tensor
product. Then H1⊗H2 turns into both a left and a right A(Ω) modules, A(Ω)×H1⊗H2 →
H1 ⊗H2, by setting

(φ, h1 ⊗ h2) 7→ (φ · h1)⊗ h2, and (φ, h1 ⊗ h2) 7→ h1 ⊗ (φ · h2),
respectively. Note that

N = span{(φ · h1)⊗ h2 − h1 ⊗ (φ · h2) : h1 ∈ H1, h2 ∈ H2, φ ∈ A(Ω)}
is both a left and a right A(Ω)-submodule of H1 ⊗H2. Then N⊥(∼= (H1 ⊗H2)/N ) is both a
left and a right A(Ω)-quotient module and

PN⊥((φ · h1)⊗ h2) = PN⊥(h1 ⊗ (φ · h2)),
for all h1 ∈ H1, h2 ∈ H2 and φ ∈ A(Ω). In conclusion, these quotient modules are isomorphic
Hilbert modules over A(Ω), which will denote by H1 ⊗A(Ω) H2 and referred as the module
tensor product of the Hilbert modules H1 and H2 over A(Ω).

For each w ∈ Ω denote by Cw the one dimensional Hilbert module over A(Ω):

A(Ω)× Cw → Cw, (φ, λ) 7→ φ(w)λ.

Further, for each w ∈ Ω denote by A(Ω)w the set of functions in A(Ω) vanishing at w, that
is,

A(Ω)w = {φ ∈ A(Ω) : φ(w) = 0}.
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Let H be a Hilbert module over A(Ω) and w ∈ Ω. Then the module tensor product
H⊗A(Ω) Cw is called the localization of the Hilbert module H at w.

It is easy to see that

Hw := span{φf : φ ∈ A(Ω)w, f ∈ H}.
is a submodule of H for each w ∈ Ω. Moreover, the quotient module H/Hw is canonically
isomorphic to H⊗A(Ω) Cw, the localization of H at w ∈ Ω, in the following sense

H⊗A(Ω) Cw → H/Hw, f ⊗A(Ω) 1 7→ PH/Hwf.

The following list of examples of localizations will be useful in a number of occasions later.
(1) For all w ∈ Dn,

H2(Dn)⊗A(Dn) Cw
∼= Cw,

where ∼= stands for module isomorphism.
(2) Let H = H2(Bn) or L2

a(Bn). Then for all w ∈ Bn,

H⊗A(Bn) Cw
∼= Cw.

(3) Let H2(D2)0 = {f ∈ H2(D2) : f(0) = 0}, the submodule of H2(D2) of functions vanishing
at the origin. Then

H2(D2)0 ⊗A(D2) Cw =

{
Cw if w ̸= 0;
C0 ⊕ C0 if w = 0.

Further results and comments:

(1) von Neumann inequality says that one can extend the functional calculus from C[z]
to A(D) for contractive Hilbert module over C[z]. Another approach to extend the
functional calculus is to consider the rational functions. More precisely, let K be a
non-empty compact subset of C and T ∈ B(H). Denote Rat(X) the set of rational
functions with poles off K. Then K is a spectral set for T if σ(T ) ⊆ K and

∥f(T )∥ ≤ ∥f∥K := sup {|f(z)| : z ∈ K}.
The notion of spectral set was introduced by J. von Neumann in [Jv51] where he
proved that the closed unit disk is a spectral set of a bounded linear operator on a
Hilbert space if and only if the operator is a contraction. Also recall that a bounded
linear operator T on H has a normal ∂K-dilation if there exists a normal operator N
on K ⊇ H such that σ(N) ⊆ ∂K and

PHf(N)|H = f(T ). (f ∈ Rat(K))

The Sz. Nagy dilation theory shows that every contraction has a normal ∂D-dilation.
It is known that the normal ∂K-dilation holds if K is the closure of an annulus [Ag85]
and fails, in general, when K is a triply connected domain in C [DrMc05] (see also
[AgHR08], [AgYo03] and [Sa14b]).

(2) Ando’s theorem [An63] extends Sz.-Nagy’s unitary dilation result to a pair of opera-
tors, that is, any pair of commuting contractions has a unitary dilation. However, the
Ando dilation is not unique and it fails for three or more operators (see [Pa70] and
[Va74]).
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(3) The Ando dilation theorem is closely related to the commutant lifting theorem (see
[Pa70]).

(4) A 2-variables analogue of von Neumanns inequality follows from Ando’s dilation the-
orem [An63]. It is well known that for n-tuples of operators, n ≥ 3, the von Neumann
inequality fails in general. In [AVVW09], Anatolii, Kaliuzhnyi-Verbovetskyi, Vinnikov
and Woerdeman proved a several variables analogue of von Neumanns inequality for
a class of commuting n-tuples of strict contractions.

(5) The notion of module tensor product is due to Douglas (see [DoPa89]).
(6) The notion of localization of Hilbert modules, however, is by far not enough. The

computation of higher order localizations is another important issue in the theory of
Hilbert modules over C[z], which in general can be very difficult [XCDo92].

(7) In connection with this section see [DoPa89], [NaFo70], [Sa14b].

3. Hilbert modules of holomorphic functions

In various parts of operator theory and functional analysis, one is confronted with Hilbert
spaces of functions, such that it is both simple and instructive to deal with a large class of
operators (cf. [AraEn03]). The purpose of this section is to provide a brief introduction to the
theory of Hilbert modules of holomorphic functions that will be used in subsequent sections.

3.1. Reproducing kernel Hilbert modules. A natural source of Hilbert module comes
from the study of reproducing kernel Hilbert spaces (cf. [Aro50], [AgMc02], [CuSal84]) on
domains in Cn.

LetX be a non-empty set, and E a Hilbert space. An operator-valued functionK : X×X →
B(E) is said to be positive definite kernel if

k∑
i,j=1

⟨K(zi, zj)ηj, ηi⟩ ≥ 0,

for all ηi ∈ E , zi ∈ X, i = 1, · · · , k, and k ∈ N. Given such a positive definite kernel K on X,
let HK be the Hilbert space completion of the linear span of the set {K(·, w)η : w ∈ X, η ∈ E}
with respect to the inner product

⟨K(·, w)η,K(·, z)ζ⟩HK
= ⟨K(z, w)η, ζ⟩E ,

for all z, w ∈ X and η, ζ ∈ E . Therefore, HK is a Hilbert space of E-valued functions on X.
The kernel function K has the reproducing property:

⟨f,K(·, z)η⟩HK
= ⟨f(z), η⟩E ,

for all z ∈ X, f ∈ HK and η ∈ E . In particular, for each z ∈ X, the evaluation operator
evz : HK → E defined by

⟨evz(f), η⟩E = ⟨f,K(·, z)η⟩HK
, (η ∈ E , f ∈ HK)

is bounded. Conversely, let H be a Hilbert space of functions from X to E with bounded and
non-zero evaluation operators evz for all z ∈ X. Therefore, H is a reproducing kernel Hilbert
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space with reproducing kernel

K(z, w) = evz ◦ ev∗w ∈ B(E). (z, w ∈ X)

Now let X = Ω a domain in Cn and K : Ω× Ω→ B(E) be a kernel function, holomorphic in
the first variable and anti-holomorphic in the second variable. Then HK is a Hilbert space of
holomorphic functions on Ω (cf. [CuSal84]).

A Hilbert module HK is said to be reproducing kernel Hilbert module over Ω if HK ⊆
O(Ω, E) and for each 1 ≤ i ≤ n,

Mif = zif,

where

(zif)(w) = wif(w). (f ∈ HK ,w ∈ Ω)

It is easy to verify that

M∗
zi
(K(·,w)η) = w̄iK(·,w)η,

for all w ∈ Ω, η ∈ E and i = 1, . . . , n.
In most of the following the module maps {Mi}ni=1 of a reproducing kernel Hilbert module

will simply be denoted by the multiplication operators {Mzi}ni=1 by the coordinate functions
{zi}ni=1.
Examples: (1) The Drury-Arveson module, denoted by H2

n, is the reproducing kernel Hilbert
module corresponding to the kernel kn : Bn × Bn → C, where

kn(z,w) = (1−
n∑

i=1

ziw̄i)
−1. (z,w ∈ Bn)

(2) Suppose α > n. The weighted Bergman space L2
a,α(Bn) (see [Zh08]) is a reproducing

kernel Hilbert space with kernel function

kα(z,w) =
1

(1− ⟨z,w⟩Cn)α
. (z,w ∈ Bn)

When α = n, L2
a,α(Bn) is the usual Hardy module H2(Bn).

(3) The kernel function for the Dirichlet module (see [Zh91]) D(Bn) is given by

kD(Bn)(z,w) = 1 + log
1

1− ⟨z,w⟩Cn

. (z,w ∈ Bn)

(4) H2(Dn), the Hardy module over Dn, is given by the reproducing kernel

Sn(z,w) =
n

Π
i=1

(1− ziw̄i)
−1. (z,w ∈ Dn)

Finally, let I be a non-empty set and

l2(I) = {f : I → C :
∑
i∈I

|f(i)|2 <∞}.

Then l2(I) is a reproducing kernel Hilbert space with kernel k(i, j) = δij for all (i, j) ∈ I × I.
Moreover, {k(·, j) : j ∈ I} is an orthonormal basis of l2(I). In general, l2(I) is not a
reproducing kernel Hilbert module.
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3.2. Cowen-Douglas Hilbert modules. Let m be a positive integer. A class of Hilbert
modules over Ω ⊆ C, denoted by Bm(Ω), was introduced by Cowen and Douglas in [CoDo78].
This notion was extended to the multivariable setting, for Ω ⊆ Cn, by Curto and Salinas
[CuSal84] and by Chen and Douglas [XCDo92]. See also [CoDo83].

Definition 3.1. Let Ω be a domain in Cn and m be a positive integer. Then a Hilbert module
H over C[z] is said to be in B∗

m(Ω) if
(i) the column operator (M −wIH)

∗ : H → Hn defined by

(M −wIH)
∗h = (M1 − w1IH)

∗h⊕ · · · ⊕ (Mn − wnIH)
∗h, (h ∈ H)

has closed range for all w ∈ Ω, where Hn = H⊕ · · · ⊕ H.
(ii) dim ker (M −wIH)

∗ = dim[ ∩ni=1ker(Mi − wiIH)
∗] = m for all w ∈ Ω, and

(iii)
∨

w∈Ω ker (M −wIH)
∗ = H.

Given a Hilbert module H in B∗
m(Ω), define

E∗
H =

∪
w∈Ω

{w̄} × ker(M −wIH)
∗.

Then the mapping w 7→ E∗
H(w) := {w̄} × ker (M −wIH) defines a rank m hermitian anti-

holomorphic vector bundle over Ω. For a proof of this fact, the reader is referred to [CoDo78],
[CoDo83], [CuSal84] and [EsSc14].

The fundamental relation between H ∈ B∗
m(Ω) and the associated anti-holomorphic her-

mitian vector bundle [We80] over Ω defined by

E∗
H : ker (M −wIH)

∗

↓

w
is the following identification:

Theorem 3.2. Let Ω = Bn or Dn and H, H̃ ∈ B∗
m(Ω). Then H ∼= H̃ if and only if the

complex bundles E∗
H and E∗

H̃ are equivalent as Hermitian anti-holomorphic vector bundles.

Note that for U an open subset of Ω, the anti-holomorphic sections of E∗
H over U are given

by γf : U → E∗
H, where γf (w) = (w̄, f(w)) and f : U → H is an anti-holomorphic function

with f(w) ∈ ker(M −wIH)
∗ for all w ∈ U .

The Grauert’s theorem asserts that the anti-holomorphic vector bundle E∗
H over a domain

in C or a contractible domain of holomorphy in Cn is holomorphically trivial, that is, E∗
H pos-

sesses a global anti-holomorphic frame. In particular, there exists anti-holomorphic functions
{si}mi=1 ⊆ O∗(Ω,H) such that {si(w)}mi=1 is a basis of ker (M−wIH) for all w ∈ Ω. Moreover,
H is unitarily equivalent to a reproducing kernel Hilbert module with B(Cm)-valued kernel
(see [Alp88], [CuSal84], [EsSc14]).

Theorem 3.3. Let H ∈ B∗
m(Ω) where Ω be a domain in C or a contractible domain of

holomorphy in Cn. Then there exits a reproducing kernel Hilbert module HK ⊆ O(Ω,Cm)
such that H ∼= HK.
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Proof. Define Js : H → O(Ω,Cm) by

(Js(f))(w) = (⟨f, s1(w)⟩H, . . . , ⟨f, sm(w)⟩H). (f ∈ H,w ∈ Ω)

Note that Js is an injective map. Consequently, the space HJs := ranJs ⊆ O(Ω,Cm) equipped
with the norm

∥Jsf∥HJs
:= ∥f∥H, (f ∈ H)

is a Cm-valued reproducing kernel Hilbert space with kernel Ks : Ω × Ω → B(Cm) given by
the ”Gram matrix” of the frame {si(w) : 1 ≤ i ≤ m}:

Ks(z,w) =
(
⟨sj(w), si(z)⟩H)mi,j=1. (z,w ∈ Ω)

Further, note that

(JsMif)(w) = (⟨Mif, s1(w)⟩H), . . . , ⟨Mif, sm(w)⟩H))
= (⟨f,M∗

i s1(w)⟩H), . . . , ⟨f,M∗
i sm(w)⟩H))

= wi(⟨f, s1(w)⟩H), . . . , ⟨f, sm(w)⟩H))
= (MziJsf)(w),

for all f ∈ H and w ∈ Ω. This implies that JsMi = MziJs for all 1 ≤ i ≤ n and hence the
Hilbert module H is module isometric isomorphic with the reproducing kernel Hilbert module
HJs .

If E∗
H is not trivial, then we can use an anti-holomorphic frame over an open subset U ⊆ Ω to

define a kernel function KU on U . Since a domain is connected, one can show that HKU
∼= H.

One way to obtain a local frame is to identify the fiber of the dual vector bundle EH with
H/Iw · H ∼= Cm ∼= span{si(w) : 1 ≤ i ≤ m}, where Iw = {p ∈ C[z] : p(w) = 0} is the
maximal ideal of C[z] at w ∈ Ω.

The curvature of the bundle E∗
H for the Chern connection determined by the metric defined

by the Gram matrix or, if E∗
H is not trivial, then with the inner product on E∗

H(w) =
ker(Mz −wIH)

∗ ⊆ H, is given by

KE∗
H
(w) = (∂̄j{K(w,w)−1∂iK(w,w)})ni,j=1,

for all w ∈ Ω. Note that the representation of the curvature matrix defined above is with
respect to the basis of two-forms {dwi ∧ dw̄j : 1 ≤ i, j ≤ n}. In particular, for a line bundle,
that is, when m = 1, the curvature form is given by

KE∗
H
(w) = ∂̄K(w,w)−1∂K(w,w) = −∂∂̄ log ∥K(·,w)∥2

= −
n∑

i,j=1

∂2

∂wi∂w̄j

logK(w,w)dwi ∧ dw̄j. (w ∈ Ω)

The Hardy modules H2(Bn) and H2(Dn), the Bergman modules L2
a(Bn) and L2

a(Dn), the
weighted Bergman modules L2

a,α(Bn) (α > n) and the Drury-Arveson module H2
n are the

standard examples of Hilbert modules in B∗
1(Ω) with Ω = Bn or Dn. A further source of

Hilbert modules in B∗
m(Ω) is a family of some quotient Hilbert modules, where the standard

examples are used as building blocks (see Section 2 in [Sa14a]).
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3.3. Quasi-free Hilbert modules. Besides reproducing kernel Hilbert modules, there is
another class of function Hilbert spaces which will be frequently used throughout this article.
These are the quasi-free Hilbert modules.

Recall that the Hardy module and the weighted Bergman modules over Dn (or Bn) are
singly-generated Hilbert module over A(Dn) (over A(Bn)). In other words, these modules
are the Hilbert space completion of A(Ω). More generally, every cyclic or singly-generated
bounded Hilbert module over A(Ω) is obtained as a Hilbert space completion of A(Ω).

On the other hand, finitely generated free modules over A(Ω), in the sense of commutative
algebra, have the form A(Ω)⊗alg l

2
m for somem ∈ N (see [Ei95]). However, the algebraic tensor

product A(Ω)⊗alg l
2
m is not a Hilbert space. In order to construct “free Hilbert modules” we

consider Hilbert space completions of free modules A(Ω)⊗alg l
2
m:

Let m ≥ 1. A Hilbert space R is said to be quasi-free Hilbert module over A(Ω) and of rank
m if R is a Hilbert space completion of the algebraic tensor product A(Ω)⊗alg l

2
m and

(1) multiplication by functions in A(Ω) define bounded operators on R,
(2) the evaluation operators evw : R → l2m are locally uniformly bounded on Ω, and
(3) a sequence {fk} ⊆ A(Ω) ⊗ l2m that is Cauchy in the norm of R converges to 0 in the

norm of R if and only if evw(fk) converges to 0 in l2m for w ∈ Ω.

Condition (1) implies thatR is a bounded Hilbert module over A(Ω). Condition (2) ensures
that R can be identified with a Hilbert space of l2m-valued holomorphic functions on Ω and
condition (3) implies that the limit function of a Cauchy sequence in A(Ω) ⊗alg l

2
m vanishes

identically if and only if the limit in the R-norm is the zero function. In other words, a
quasi-free Hilbert module R over A(Ω) is a finitely generated reproducing kernel Hilbert
module where the kernel function K : Ω×Ω→ B(l2m) is holomorphic in the first variable and
anti-holomorphic in the second variable.

In some instances, such as the Drury-Arveson module H2
n, this definition does not apply.

In such cases R is defined to be the completion of the polynomial algebra C[z] relative to an
inner product on it assuming that each p(z) in C[z] defines a bounded operator on R but
there is no uniform bound. Hence, in this case R is a Hilbert module over C[z].

3.4. Multipliers. Given E- and E∗-valued reproducing kernel Hilbert modules H and H∗,
respectively, over Ω, a function φ : Ω→ B(E , E∗) is said to be a multiplier if φf ∈ H∗, where
(φf)(w) = φ(w)f(w) for f ∈ H and w ∈ Ω. The set of all such multipliers is denoted by
M(H,H∗) or simplyM if H and H∗ are clear from the context (cf. [Bo03]). By the closed
graph theorem, each φ ∈M(H,H∗) induces a bounded linear mapMφ : H → H∗ (cf. [Ha82])
defined by

Mφf = φf,

for all f ∈ HK . Consequently,M(H,H∗) is a Banach space with

∥φ∥M(H,H∗) = ∥Mφ∥B(H,H∗).

For H = H∗,M(H) =M(H,H) is a Banach algebra with this norm.
Let R ⊆ O(Ω,C) be a reproducing kernel Hilbert module with kernel kR and E be a

Hilbert space. Then R ⊗ E is a reproducing kernel Hilbert module with kernel function
(z,w) 7→ kR(z,w)IE . ByMB(E,E∗)(R) we denote the set of all multipliersM(R⊗E ,R⊗E∗).
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The following characterization result is well known and easy to prove.

Theorem 3.4. Let X be a non-empty set and for i = 1, 2, Ki : X ×X → B(Ei) be positive
definite kernel functions with reproducing kernel Hilbert spaces HKi

. Suppose also that Θ :
X → B(E1, E2) is a function. Then the following are equivalent:

(1) Θ ∈M(HK1 ,HK2).
(2) There exists a constant c > 0 such that

(x, y)→ c2K2(x, y)−Θ(x)K1(x, y)Θ(y)∗

is positive definite. In this case, the multiplier norm of Θ is the infimum of all such constants
c > 0. Moreover, the infimum is achieved.

Examples:
(1) For the Drury-Aveson space H2

n, the multiplier space is given by

MB(E,E∗)(H
2
n) = {Θ ∈ O(Bn,B(E , E∗)) : sup∥Θ(rT )∥ <∞},

where the supremum ranges over 0 < r < 1 and commuting n-tuples (T, . . . , Tn) on Hilbert
spaces H such that

∑n
i=1 TiT

∗
i ≤ IH (see [EsP02], [BaTV01] for more details).

(2) Let H = H2(Bn) or L2
a(Bn). Then

MB(E,E∗)(H) = H∞
B(E,E∗)(B

n).

(3) Let H = H2(Dn) or L2
a(Dn). Then

MB(E,E∗)(H) = H∞
B(E,E∗)(D

n).

One striking fact about the Dirichlet space is that the multiplier spaceM(D(D)) is a proper
subset of H∞(D) (see [St80]). Also, it is bounded but not a contractive Hilbert module over
C[z]. Note that also the multiplier spaceM(H2

n) is a proper subspace of H∞(Bn). Moreover,
M(H2

n) does not contain the ball algebra A(Bn) (see [Dr78], [Arv98]).
This subsection concludes with a definition. Let Θi ∈MB(Ei,E∗i)(R) and i = 1, 2. Then Θ1

and Θ2 are said to coincide, denoted by Θ1
∼= Θ2, if there exists unitary operators τ : E1 → E2

and τ∗ : E∗1 → E∗2 such that the following diagram commutes:

R⊗ E1
MΘ1−−−→ R⊗ E∗1

IR⊗τ

y IR⊗τ∗

y
R⊗ E2

MΘ2−−−→ R⊗ E∗2
Further results and comments:

(1) Let Ω ⊆ C and V ∗(H) be the von Neumann algebra of operators commuting with
both Mz and M∗

z . Note that projections in V ∗(H), or reducing submodules of H, are
in one-to-one correspondence with reducing subbundles of E∗

H. A subbundle F of an
anti-holomorphic Hermitian vector bundle E is said to be a reducing subbundle if both
F and its orthogonal complement F⊥ in E are anti-holomorphic subbundles.
Also note that if S is an operator commuting with M∗

z , then SE∗
H(w) ⊆ E∗

H(w) for
each w ∈ Ω and hence S induces a holomorphic bundle map, denoted by Γ(S), on E∗

H.
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In [ChDoGu11], Chen, Douglas and Guo proved that if S lies in V ∗(H), then Γ(S) is
not only anti-holomorphic, but also connection-preserving.

Theorem 3.5. Let H ∈ B∗
m(Ω) and Φ be a bundle map on E∗

H. There exists an
operator TΦ in V ∗(H) such that Φ = Γ(TΦ) if and only if Φ is connection preserving.
Consequently, the map Γ is a ∗-isomorphism from V ∗(H) to connection-preserving
bundle maps on E∗

H.

(2) Let H1 ∈ B∗
m1

(Ω) and H2 ∈ B∗
m2

(Ω) and Ω ⊆ C. It is natural to ask the following
question: Determine the Hilbert module H, if such exists, in Bm1m2(Ω) corresponding
to the anti-holomorphic vector bundle E∗

H1
⊗ E∗

H2
. That is, find H ∈ Bm1m2(Ω) such

that E∗
H
∼= E∗

H1
⊗ E∗

H2
, where the equivalence is in terms of the anti-holomorphic

vector bundle isomorphism. In [Li88], Q. Lin proved the following remarkable result.

Theorem 3.6. Let H1 ∈ B∗
m1

(Ω) and H2 ∈ B∗
m2

(Ω) and Ω ⊆ C. Define

H =
∨
z∈Ω

[ker(M − zIH1)
∗ ⊗ ker(M − zIH2)

∗].

Then H is a submodule of H1 ⊗H2, and the module multiplications on H coincides:
(M ⊗ IH2)|H = (IH1 ⊗M)|H. Moreover, H ∈ B∗

m1m2
(Ω) and E∗

H
∼= E∗

H1
⊗ E∗

H2
.

(3) In [Zh00], Zhu suggested an alternative approach to the Cowen-Douglas theory based
on the notion of spanning holomorphic cross-sections. More precisely, let Ω ⊆ C and
H ∈ B∗

m(Ω). Then E∗
H possesses a spanning anti-holomorphic cross-section, that is,

there is an anti-holomorphic function γ : Ω → H such that γ(w) ∈ ker (M − wIH)∗
for all w ∈ Ω and H is the closed linear span of the range of γ.
More recently, Eschmeier and Schmitt [EsSc14] extended Zhu’s results to general do-
mains in Cn.

(4) The concept of quasi-free Hilbert module is due to Douglas and Misra [DoMi03],
[DoMi05]. The notion is closely related to the generalized Bergman kernel introduced
by Curto and Salinas [CuSal84].

(5) For a systematic exposition of the theory of quasi-free Hilbert modules, see the work
by Chen [Ch09].

(6) In connection with Cowen-Douglas theory see Apostol and Martin [ApMa81], Mc-
Carthy [Mc96] and Martin [Ma85].

(7) In [Ba11], Barbian proved that an operator T between reproducing kernel Hilbert
spaces is a multiplier if and only if (Tf)(x) = 0 holds for all f and x satisfying
f(x) = 0.

(8) The reader is referred to [Aro50], [AgMc02], [CuSal84], [DoMiVa00] and [BuMa84]
for some introduction to the general theory of reproducing kernel Hilbert spaces. For
recent results on reproducing kernel Hilbert spaces see [Ba11], [Ba08] and the reference
therein.
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4. Contractive Hilbert modules over A(D)

This section gives a brief review of contractive Hilbert modules over A(D) and begins with
the definition of free resolutions from commutative algebra. The following subsection recast
the canonical model of Sz.-Nagy and Foias in terms of Hilbert modules. It is proved that
for a contractive Hilbert module over A(D) there exists a unique free resolution. The final
subsection is devoted to prove that the free resolutions of contractive Hilbert modules over
A(D) are uniquely determined by a nice class of bounded holomorphic functions on D.

4.1. Free resolutions. The purpose of this subsection is to recall the notion of free modules
from commutative algebra. Let M be a module over a commutative ring R. Then M is free
if and only if M is a direct sum of isomorphic copies of the underlying ring R.

It is well known and easy to see that every module has a free resolution with respect to the
underlying ring. More precisely, given a module M over a ring R, there exists a sequence of
free R-modules {Fi}∞i=0 and module maps φi : Fi → Fi−1, for all i ≥ 1, such that the sequence
of modules

· · · −→ Fm
φm−→ Fm−1 −→ · · · −→ F1

φ1−→ F0
φ0−→M −→ 0,

is exact where F0/ranφ1 =M and hence that φ0 is a projection. The above resolution is said
to be a finite resolution of length l, for some l ≥ 0, if Fl+1 = {0} and Fi ̸= {0} for 0 ≤ i ≤ l.

A celebrated result in commutative algebra, namely, the Hilbert Syzygy theorem, states
that: Every finitely generated graded C[z]-module has a finite graded free resolution of length
l for some l ≤ n by finitely generated free modules.

It is also a question of general interest: given a free resolution of a module over C[z] when
does the resolution stop.

4.2. Dilations and free resolutions. A contractive Hilbert module H over A(D) is said to
be completely non-unitary (or c.n.u.) if there is no non-zero reducing submodule S ⊆ H such
that M |S is unitary.

Let H be a contractive Hilbert module over A(D). Then the defect operators of H are

defined by DH = (IH −M∗M)
1
2 ∈ B(H) and D∗H = (IH −MM∗)

1
2 ∈ B(H), and the defect

spaces by DH = ranDH and D∗H = ranD∗H. The characteristic function ΘH ∈ H∞
B(DH,D∗H)(D)

is defined by

ΘH(z) = [−M + zD∗H(IH − zM∗)−1DH]|DH . (z ∈ D)

Define ∆H(t) = [IDH −ΘH(e
it)∗ΘH(e

it)]
1
2 ∈ B(L2

DH
(T)) for t ∈ [0, 1]. Then

MH = H2
D∗H

(D)⊕∆HL2
DH

(T),

is a contractive Hilbert module over A(D). Then

SH = {MΘHf ⊕∆Hf : f ∈ H2
DH

(D)} ⊆ MH,

defines a submodule ofMH. Also consider the quotient module

QH =MH ⊖ SH.
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Here the module map Mz ⊕Meit|∆HL2
DH

(T) on MH is an isometry where Mz on H2
D∗H

(D) is

the pure part and Meit|∆HL2
DH

(T) on ∆HL2
DH

(T) is the unitary part in the sense of the Wold

decomposition of isometries, Theorem 5.1. Consequently,

0 −→ H2
DH

(D)

ΘH
∆H


−→ MH

Π∗
NF−→ QH −→ 0,

where Π∗
NF is the quotient (module) map.

Theorem 4.1. (Sz.-Nagy and Foias) Let H be a c.n.u. contractive Hilbert module over A(D).
Then

(i) H ∼= QH.
(ii)MH is the minimal isometric dilation of H.

Minimality of Sz.-Nagy-Foias isometric dilation, conclusion (ii) in Theorem 4.1, can be
interpreted as a factorization of dilation maps in the following sense:
Let H be a c.n.u. contractive Hilbert module over A(D) and Π : H → K be an isometric
dilation of H with isometry V on K. Then there exists a unique co-module isometry Φ ∈
B(MH,K) such that

Π = ΦΠNF ,

that is, the following diagram commutes:

H
Π

K

MH

?�
�
�
�
��

-

ΠNF
Φ

As will be shown below, specializing to the case of C·0 class and using localization technique
one can recover the characteristic function of a given C·0-contractive Hilbert module. Recall
that a contractive Hilbert module H over A(D) is said to be in C·0 class if M∗k → 0 in SOT
as k →∞. Submodules and quotient modules of vector-valued Hardy modules are examples
of Hilbert modules in C·0 class.

Let H be a C·0 contractive Hilbert module over A(D). Then there exists a Hilbert space
E∗ such that H ∼= Q for some quotient module Q of H2

E∗(D) (cf. Corollary 8.2). Now by
Beurling-Lax-Halmos theorem, Theorem 5.3, there exists a Hilbert space E such that the
submodule Q⊥ ∼= H2

E(D). This yields the following short exact sequence of modules:

0 −→ H2
E(D)

X−→ H2
E∗(D)

π−→ H −→ 0,
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where X is isometric module map, and π is co-isometric module map. Localizing the isometric

part of the short exact sequence, H2
E(D)

X−→ H2
E∗(D), at z ∈ D one gets

H2
E(D)/(A(D)z ·H2

E(D))
Xz−→ H2

E∗(D)/(A(D)z ·H
2
E∗(D)).

IdentifyingH2
E(D)/(A(D)z ·H2

E(D)) with E andH2
E∗(D)/(A(D)zH

2
E∗(D)) with E∗ one can recover

the characteristic function of H as the map z 7→ Xz ∈ B(E , E∗).

4.3. Invariants. This subsection begins by proving a theorem, due to Sz.-Nagy and Foias
([NaFo70]), on a complete unitary invariant of c.n.u. contractions.

Theorem 4.2. Let H1 and H2 be c.n.u. contractive Hilbert modules over A(D). Then H1
∼=

H2 if and only if ΘH1
∼= ΘH2.

Proof. Denote the module multiplication operator on H1 and H2 byM1 andM2, respectively.
Now let uM1 =M2u, for some unitary u : H1 → H2. Since uD∗H1 = D∗H2u and uDH1 = DH2u

u|DH1
: DH1 → DH2 and u|D∗H1

: D∗H1 → D∗H2 ,

are unitary operators. A simple computation now reveals that

u|D∗H1
ΘH1(z) = ΘH2(z)u|DH1

,

for all z ∈ D, that is, ΘH1
∼= ΘH2 .

Conversely, given unitary operators u ∈ B(DH1 ,DH2) and u∗ ∈ B(D∗H1 ,D∗H2) with the
intertwining property u∗ΘH1(z) = ΘH2(z)u for all z ∈ D,

u = IH2(D) ⊗ u|DH1
: H2

DH1
(D)→ H2

DH2
(D),

and
u∗ = IH2(D) ⊗ u|D∗H1

: H2
D∗H1

(D)→ H2
D∗H2

(D),
and

τ = (IL2(T) ⊗ u)|∆H1
L2
DH1

(T) : ∆H1L
2
DH1

(T)→ ∆H2L
2
DH2

(T),

are module maps. Moreover,
u∗MΘH1

=MΘH2
u.

Consequently, one arrives at the following commutative diagram

0 −−−→ H2
DH1

(D)

MΘH1

∆H1


−−−−−−→ H2

D∗H1
(D)

Π∗
NF,1−−−→ QH1 −−−→ 0

u

y u∗⊕τ

y y
0 −−−→ H2

DH2
(D) −−−−−−→MΘH2

∆H2


H2

D∗H2
(D) −−−→

Π∗
NF,2

QH2 −−−→ 0

where the third vertical arrow is given by the unitary operator

Π∗
NF,2(u∗ ⊕ τ )ΠNF,1 : QH1 → QH2 .
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To see this, first note that

(u∗ ⊕ τ )(ranΠNF,1) = (u∗ ⊕ τ )((kerΠ∗
NF,1))

⊥ = (u∗ ⊕ τ )((ran

[
MΘH1

∆H1

]
)⊥)

= [(u∗ ⊕ τ )(ran

[
MΘH1

∆H1

]
)]⊥ = [ran

[
MΘH2

∆H2

]
]⊥

= ranΠH2 .

Moreover, the unitary operator

(u∗ ⊕ τ )|ranΠNF,1
: ranΠNF,1 → ranΠNF,2,

is a module map. This completes the proof.
Further results and comments:

(1) All results presented in this section can be found in the book by Sz.-Nagy and Foias
[NaFo70]. Here the Hilbert module point of view is slightly different from the classical
one.

(2) Theorem 4.2 is due to Sz.-Nagy and Foias [NaFo70].
(3) For non-commutative tuples of operators, Theorems 4.1 and 4.2 were generalized by

Popescu [Po89] and Ball and Vinnikov [BaV05] (see also [Po99], [BEsSa05], [BenTi07b],
[BenTi07a], [Po06], [Po10], [Po11], [Va92], [Ba78], and the references therein).

(4) The notion of isometric dilation of contractions is closely related to the invariant
subspace problem (see [ChPa11], [Bea88], [RaRo73]). The reader is referred to [Sa13c],
[Sa13b] for further recent developments in this area.

(5) There are many other directions to the model theory (both in single and several
variables) that are not presented in this survey. For instance, coordinate free approach
by Douglas, Vasyunin and Nikolski, and the de Branges-Rovnyak model by de Branges,
Rovnyak, Ball and Dritschel. We recommend the monographs by Nikolski [Ni02] which
is a comprehensive source of these developments.

(6) The paper by Ball and Kriete [BaKr87] contains a remarkable connection between the
Sz.-Nagy and Foias functional model and the de Branges-Rovnyak model on the unit
disc.

5. Submodules

This section contains classical theory of isometries on Hilbert spaces, invariant subspaces
of Mz on H2(D) and some more advanced material on this subject.

Let S be an isometry on a Hilbert space H, that is, S∗S = IH. A closed subspaceW ⊆ H is
said to be wandering subspace for S if SkW ⊥ SlW for all k, l ∈ N with k ̸= l, or equivalently,
if SkW ⊥W for all k ≥ 1. An isometry S on H is said to be shift if

H =
⊕
k≥0

SkW ,
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for some wandering subspace W for S. Equivalently, an isometry S on H is shift if and only
if (see Theorem 5.1 below)

∞∩
k=0

SkH = {0}.

For a shift S on H with a wandering subspace W one sees that

H⊖ SH =
⊕
k≥0

SkW ⊖ S(
⊕
k≥0

SkW) =
⊕
k≥0

SkW ⊖
⊕
m≥1

SkW =W .

In other words, wandering subspace of a shift is uniquely determined by W = H⊖ SH. The
dimension of the wandering subspace of a shift is called the multiplicity of the shift.

As for the examples, the only invariant of a shift operator is its multiplicity, that is, the
wandering subspace, up to unitary equivalence.

5.1. von Neumann and Wold decomposition. One of the most important results in op-
erator algebras, operator theory and stochastic processes is the Wold decomposition theorem
[Wo38] (see also page 3 in [NaFo70]), which states that every isometry on a Hilbert space is
either a shift, or a unitary, or a direct sum of shift and unitary.

Theorem 5.1. Let S be an isometry on H. Then H admits a unique decomposition H =
Hs ⊕ Hu, where Hs and Hu are S-reducing subspaces of H and S|Hs is a shift and S|Hu is
unitary. Moreover,

Hs =
∞⊕
k=0

SkW and Hu =
∞∩
k=0

SkH,

where W = ran(I − SS∗) is the wandering subspace for S.

Proof. Let W = ran(I − SS∗) be the wandering subspace for S and Hs =
⊕∞

k=0 V
kW .

Consequently, Hs is a S-reducing subspace of H and that S|Hs is an isometry. On the other
hand, for all k ≥ 0,

(SkW)⊥ = (Skran(I − SS∗))⊥ = ran(I − Sk(I − SS∗)S∗k)

= ran[(I − SkS∗k) + Sk+1S∗ k+1] = ran(I − SkS∗k)⊕ ranSk+1

= (SkH)⊥ ⊕ Sk+1H.

Therefore

Hu := H⊥
s =

∞∩
k=0

SkH.

Uniqueness of the decomposition readily follows from the uniqueness of the wandering sub-
space W for S. This completes the proof.

Corollary 5.2. Let H be a Hilbert module over C[z]. If the module multiplication M on H
is a shift then there exists a Hilbert space W and a module isometry U from H2

W(D) onto H.
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Proof. Let W be the wandering subspace for M . Define

U : H2
W(D)→ H =

∞⊕
k=0

MkW ,

by U(zkf) = Mkf for all f ∈ W and k ∈ N. One can check that this is indeed the isometric
module map from H2

W(D) onto H.

5.2. Submodules of H2
E(D). The purpose of this subsection is to show that a submodule of

H2
E(D) is uniquely determined (up to unitary multipliers) by inner multipliers. The present

methodology applies the von Neumann-Wold decomposition theorem, to the submodules of
the Hardy module H2

E(D) (see page 239, Theorem 2.1 in [FoFr90] and [Do11]).

Theorem 5.3. (Beurling-Lax-Halmos Theorem) Let S be a submodule of the Hardy module
H2

E(D). Then there exists a closed subspace F ⊆ E such that

S ∼= H2
F(D).

In particular, there exists an inner function Θ ∈ H∞
L(F ,E)(D) such that MΘ : H2

F(D)→ H2
E(D)

is a module isometry and S = ΘH2
F(D). Moreover, Θ is unique up to a unitary constant right

factor, that is, if S = Θ̃H2
F̃(D) for some Hilbert space F̃ and inner function Θ̃ ∈ H∞

B(F̃ ,E)(D),
then Θ = Θ̃W where W is a unitary operator in B(F , F̃).
Proof. Let S be a submodule of H2

E(D). Then
∞∩
l=0

(Mz|S)lS ⊆
∞∩
l=0

M l
zH

2
E(D) = {0}.

By Corollary 5.2 there exists an isometric module map U from H2
F(D) onto S ⊆ H2

E(D).
Consequently, U =MΘ for some inner function Θ ∈ H∞

L(F ,E)(D).
In the particular case of the space E = C, the above result recovers Beurling’s characteri-

zation of submodules of H2(D).
Corollary 5.4. (Beurling) Let S be a non-zero submodule of H2(D). Then S = θH2(D) for
some inner function θ ∈ H∞(D).

Moreover, one also has the following corollary:

Corollary 5.5. Let S1 and S2 be submodules of H2(D). Then S1 ∼= S2.
The conclusion of Beurling’s theorem, Corollary 5.4, fails if H2(D) is replaced by the

Bergman module L2
a(D). However, a module theoretic interpretation of Beurling-Lax-Halmos

theorem states that: Let S be a closed subspace of the ”free module” H2(D)⊗ E(∼= H2
E(D)).

Then S is a submodule of H2
E(D) if and only if S is also ”free” with S ⊖ zS as a generating

set. Moreover, in this case dim[S⊖S] ≤ dim E . In particular, the wandering subspace S⊖zS
is a generating set of S.

Recall that a bounded linear operator T on a Hilbert space H is said to have the wandering
subspace property if H is generated by the subspace WT := H⊖ TH, that is,

H = [WT ] = span{TmWT : m ∈ N}.
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In that case WT is said to be a wandering subspace for T .
The following statements, due to Aleman, Richter and Sundberg [AlRiSu96], assert that

the same conclusion hold also in the Bergman module L2
a(D).

Theorem 5.6. Let S be a submodule of L2
a(D). Then

S =
∞∨
k=0

zk(S ⊖ zS).

The same conclusion holds for the weighted Bergman space L2
a,α(D) with weight α = 3

[Sh01] but for α > 3, the issue is more subtle (see [HePe04], [SMR02]).
Another important consequence of the Beurling-Lax-Halmos theorem is the characterization

of cyclic submodules of H2
E(D): Let f be a non-zero vector in H2

E(D). Then the cyclic
submodule of H2

E(D) generated by f (and denoted by [f ]) is isomorphic to H2(D).
There is no analog of the preceding result for the Bergman module:

Theorem 5.7. There does not exists any submodule S of L2
a(D) such that S ∼= [1 ⊕ z], the

cyclic submodule of L2
a(D)⊕ L2

a(D)(∼= L2
a(D)⊗ C2) generated by 1⊕ z.

Proof. Let S be a submodule of L2
a(D) and U be a module isometric isomorphism from [1⊕z]

onto S. Let
U(1⊕ z) = f,

for some f ∈ L2
a(D). Then the fact that the closed support of Lebesgue measure on D is D

implies that
|f(z)|2 = 1 + |z|2. (z ∈ D)

By Taylor series expansion of f(z) one can show this is impossible for any holomorphic
function f on D.

In the language of Hilbert modules, Beurling-Lax-Halmos theorem says that the set of all
non-zero submodules of H2

E∗(D) are uniquely determined by the set of all module isometric
maps from H2

E(D) to H2
E∗(D) where E is a Hilbert space so that dim E ≤ dim E∗. On the

other hand, a module map U : H2
E(D) → H2

E∗(D) is uniquely determined by a multiplier
Θ ∈ H∞

B(E,E∗)(D) and that Θ is inner if and only if U is isometry (cf. [NaFo70]). Consequently,
there exists a bijective correspondence, modulo the unitary group, between the set of all non-
zero submodules of H2

E∗(D) and the set of all isometric module maps from H2
E(D) to H2

E∗(D),
where E ⊆ E∗ and the set of all inner multipliers Θ ∈ H∞

B(E,E∗)(D), where E ⊆ E∗.

5.3. Submodules of H2
n. This subsection will show how to extend the classification result

of submodules of H2
E(D), the Beurling-Lax-Halmos theorem, to H2

n ⊗ E . This important
generalization was given by McCullough and Trent [SMT00].

Recall that the Drury-Arveson module H2
n ⊗ E is a reproducing kernel Hilbert module

corresponding to the kernel

(z,w) 7→ (1−
n∑

i=1

ziw̄i)
−1IE ,

for all z,w ∈ Bn (see Section 3). A multiplier Θ ∈MB(E,E∗)(H
2
n) is said to be inner if MΘ is

a partial isometry in L(H2
n ⊗ E , H2

n ⊗ E∗).
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Theorem 5.8. Let S (̸= {0}) be a closed subspace of H2
n ⊗ E∗. Then S is a submodule of

H2
n ⊗ E∗ if and only if

S = Θ(H2
n ⊗ E),

for some inner multiplier Θ ∈MB(E,E∗)(H
2
n).

Proof. Let S be a submodule of H2
n ⊗ E∗ and Ri =Mzi|S , i = 1, . . . , n. Then

n∑
i=1

RiR
∗
i =

n∑
i=1

PSMziPSM
∗
zi
PS ≤

n∑
i=1

PSMziM
∗
zi
PS ,

and consequently,

PS −
n∑

i=1

RiR
∗
i = PS −

n∑
i=1

PSMziPSM
∗
zi
PS ≥ PS −

n∑
i=1

PSMziM
∗
zi
PS

= PS(IH2
n⊗E∗ −

n∑
i=1

MziM
∗
zi
)PS .

Define K : Bn ⊗ Bn → L(E∗), a positive definite kernel, by

⟨K(z,w)xl, xm⟩ = ⟨(PS −
n∑

i=1

PSMziPSM
∗
zi
PS)(kn(·,w)⊗ xl), kn(·, z)⊗ xm⟩

where {xl} is a basis of E∗. By Kolmogorov theorem, there exists a Hilbert space E , a function
Θ ∈ O(Bn,B(E , E∗)) such that

K(z,w) = Θ(z)Θ(w)∗. (z,w ∈ Bn)

On the other hand, since

PSMziPSM
∗
zi
PS =MziPSM

∗
zi
,

for i = 1, . . . , n, we have

⟨(PS −
n∑

i=1

PSMziPSM
∗
zi
PS)(kn(·,w)⊗ xl), kn(·, z)⊗ xm⟩

= ⟨(PS −
n∑

i=1

MziPSM
∗
zi
)(kn(·,w)⊗ xl), kn(·,z)⊗ xm⟩

= k−1
n (z,w)⟨PS(kn(·,w)⊗ xl), kn(·,z)⊗ xm⟩.

Thus

⟨kn(z,w)K(z,w)xl, xm⟩ = ⟨PS(kn(·,w)⊗ xl), kn(·, z)⊗ xm⟩.
This implies that

(z,w) 7→
(
IE∗ −K(z,w)

)
kn(z,w) =

(
IE∗ −Θ(z)Θ(w)∗

)
kn(z,w)
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is a B(E∗)-valued positive definite kernel, from which it follows that Θ is a multiplier, that is,
Θ ∈MB(E,E∗)(H

2
n). Finally,

⟨MΘM
∗
Θ(kn(·,w)⊗ xl), kn(·,z)⊗ xm⟩ = ⟨kn(z,w)Θ(z)Θ(w)∗xl, xm⟩

= ⟨kn(z,w)K(z,w)xl, xm⟩
= ⟨PS(kn(·,w)⊗ xl), kn(·, z)⊗ xm⟩,

and hence PS =MΘM
∗
Θ and that MΘ a partial isometry. This completes the proof.

In [GRSu02], Green, Richter and Sundberg prove that for almost every ζ ∈ ∂Bn the
nontangential limit Θ(ζ) of the inner multiplier Θ is a partial isometry. Moreover, the rank
of Θ(ζ) is equal to a constant almost everywhere.

5.4. Solution to a Toeplitz operator equation. This subsection contains an application
of Hilbert module approach to a problem concerning the classical analytic Toeplitz operators.
This Toeplitz operator equation problem can be formulated in a more general framework.

Let S = MΘH
2
E(D) be a Mz-invariant subspace of H2

E∗(D) for some inner multiplier Θ ∈
H∞

B(E,E∗)(D). Moreover, let S be invariant under MΦ for some Φ ∈ B(E∗). Then
ΦΘ = ΘΨ,

for some unique Ψ ∈ H∞
B(E)(D).

Problem: Determine Ψ, that is, find a representation of the unique multiplier Ψ. If Φ is a
polynomial, then under what conditions will Ψ be a polynomial, or a polynomial of the same
degree as Φ?

More precisely, given Θ and Φ as above, one seeks a (unique) solution X ∈ H∞
B(E)(D) to the

Toeplitz equation ΘX = ΦΘ.
This problem appears to be difficult because there are infinitely many obstructions (rather,
equations, if one expands Θ and Φ in power series). Thus a priori the answer is not expected
to be tractable in general. However, it turns out that if Φ(z) = A+A∗z, then Ψ = B+B∗z for
some unique B. The proof is a straightforward application of methods introduced by Agler
and Young in [AgYo03]. However, the intuitive idea behind this ”guess” is that, Φ turns
H2

E∗(D) into a natural Hilbert module over C[z1, z2] (see Corollary 5.12).
It is now time to proceed to the particular framework for the Toeplitz operator equation

problem. Let
Γ = {(z1 + z2, z1z2) : |z1|, |z2| ≤ 1} ⊆ C2,

be the symmetrized bidisc. A Hilbert module H over C[z1, z2] is said to be Γ-normal Hilbert
module ifM1 andM2 are normal operators and σTay(M1,M2), the Taylor spectrum of (M1,M2)
(see Section 7), is contained in the distinguished boundary of Γ. A Hilbert module H over
C[z1, z2] is said to be Γ-isometric Hilbert module if H is a submodule of a Γ-normal Hilbert
module. A Γ-isometric Hilbert module H is pure if M2 is a shift operator.
Let E∗ be a Hilbert space and A ∈ B(E∗) with w(A), the numerical radius of A, not greater

than one. By [H2
E∗(D)]A we denote the Hilbert module H2

E∗(D) with

C[z1, z2]×H2
E∗(D)→ H2

E∗(D), (p(z1, z2), h) 7→ p(A+ A∗Mz,Mz)h.

The following theorem is due to Agler and Young (see [AgYo03]).
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Theorem 5.9. Let H be a Hilbert module over C[z1, z2]. Then H is a pure Γ-isometric Hilbert
module if and only if H ∼= [H2

E∗(D)]A for some Hilbert space E∗, A ∈ B(E∗) and w(A) ≤ 1.

Given a Hilbert space E∗ and A ∈ B(E∗) with w(A) ≤ 1, the Hilbert module [H2
E∗(D)]A is

called a Γ-isometric Hardy module with symbol A.
Now let S be a non-zero submodule of [H2

E(D)]A. Then in particular, by the Beurling-Lax-
Halmos theorem, Theorem 5.3, we have

S = ΘH2
E(D),

for some Hilbert space E and inner multiplier Θ ∈ H∞
B(E,E∗)(D).

Now everything is in place to state and prove the main result of this subsection.

Theorem 5.10. Let S ̸= {0} be a closed subspace of H2
E∗(D) and A ∈ B(E∗) with w(A) ≤ 1.

Then S is a submodule of [H2
E∗(D)]A if and only

(A+ A∗Mz)MΘ =MΘ(B +B∗Mz),

for some unique B ∈ B(E) (up to unitary equivalence) with w(B) ≤ 1 where Θ ∈ H∞
B(E,E∗)(D)

is the Beurling-Lax-Halmos representation of S.

Proof. Assume that S be a non-zero submodule of [H2
E∗(D)]A and S = MΘH

2
E(D) be the

Beurling-Lax-Halmos representation of S where Θ ∈ H∞
B(E,E∗)(D) is an inner multiplier and E

is an auxiliary Hilbert space. Also

(A+ A∗Mz)(MΘH
2
E(D)) ⊆MΘH

2
E(D),

implies that (A+ A∗Mz)MΘ =MΘMΨ for some unique Ψ ∈ H∞
B(E)(D). Therefore,

M∗
Θ(A+ A∗Mz)MΘ =MΨ.

Multiplying both sides by M∗
z , one arrives at

M∗
zM

∗
Θ(A+ A∗Mz)MΘ =M∗

zMΨ.

Then M∗
Θ(AM

∗
z +A∗)MΘ =M∗

zMΨ and hence, M∗
zMΨ =M∗

Ψ, or equivalently, MΨ =M∗
ΨMz.

Since ∥MΨ∥ ≤ 2, it follows that (MΨ,Mz) is a Γ-isometry. By Theorem 5.9, it follows that

MΨ = B +B∗Mz,

for some B ∈ B(E) and w(B) ≤ 1, and uniqueness of B follows from that of Ψ.
The converse part is trivial, and the proof is complete.

One of the important applications of the above theorem is the following result concerning
Toeplitz operators with analytic polynomial symbols of the form A+ A∗z.

Theorem 5.11. Let S =MΘH
2
E(D) ⊆ H2

E∗(D) be a non-zero Mz-invariant subspace of H
2
E∗(D)

and A ∈ B(E∗). Then S is invariant under the Toeplitz operator with analytic polynomial
symbol A+ A∗z if and only if there exists a unique operator B ∈ B(E) such that

(A+ A∗z)Θ = Θ(B +B∗z).

The following result relates Theorem 5.10 to module maps of Γ-isometric Hardy modules.
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Corollary 5.12. Let S ̸= {0} be a closed subspace of H2
E∗(D). Then S is a submodule of the

Γ-isometric Hardy module [H2
E∗(D)]A with symbol A if and only if there exists a Γ-isometric

Hardy module [H2
E(D)]B with a unique symbol B ∈ B(E) and an isometric module map

U : [H2
E(D)]B −→ [H2

E∗(D)]A,

such that S = UH2
E(D).

Another application of Theorem 5.10 concerns unitary equivalence of Γ-isometric Hardy
module submodules.

Corollary 5.13. A non-zero submodule of a Γ-isometric Hardy module is isometrically
isomorphic with a Γ-isometric Hardy module.

Further results and comments:

(1) The classification result of invariant subspaces, Corollary 5.4, is due to Beurling
[Beu49]. The Beurling-Lax-Halmos theorem was obtained by Lax [La59] and Hal-
mos [Ha61] as a generalization of Beurling’s theorem (see [NaFo70]). See also the
generalization by Ball and Helton in [BaHe83].
The simple proof of the Beurling-Lax-Halmos theorem presented here requires the
von Neumann-Wold decomposition theorem which appeared about two decades earlier
than Beurling’s classification result on invariant subspaces of H2(D).

(2) Let S ≠ {0} be a submodule of H2(D). Then the wandering subspace of S, S⊖zS, has
dimension one. However, in contrast with the Hardy module H2(D), the dimension
of the generating subspace S ⊖ zS of a submodule S of the Bergman module L2

a(D)
could be any number in the range 1, 2, . . . including∞. This follows from the dilation
theory developed by Apostol, Bercovici, Foias and Pearcy (see [ApBerFP85]).

(3) Beurling type theorem for the Bergman space, Theorem 5.6, is due to Aleman, Richter
and Sundberg. This result was further generalized by Shimorin [Sh01] in the context
of operators close to isometries. His results include the Dirichlet space on the unit
disc. A several variables analogue of the wandering subspace problem for the Bergman
space over Dn is proposed in [CDSaS14].

(4) See [III10] for a simple and ingenious proof of the Aleman-Richter-Sundberg theorem
concerning invariant subspaces of the Bergman space.

(5) The proof of Theorem 5.1 is from [Sa14c]. It is slightly simpler than the one in [NaFo70]
and [FoFr90]. Theorem 5.10 and Corollary 5.12 are due to the author. Theorem 5.7
is due to Douglas ([Do11]).

(6) Theorem 5.8 is due to McCollough and Trent [SMT00]. For more related results in one
variable, see the article by Jury [Ju05]. See [Sa13c] for a new approach to Theorem
5.8.

(7) One possible approach to solve the problem mentioned in the last subsection is to
consider first the finite dimension case, that is, E∗ = Ck for k > 1.

(8) Let S ̸= {0} be a closed subspace of H2
H2(Dn−1)(D). By Beurling-Lax-Halmos theorem,

that S is a submodule of H2
H2(Dn−1)(D) if and only if S = ΘH2

E∗(D), for some closed



30 JAYDEB SARKAR

subspace E∗ ⊆ H2(Dn−1) and inner function Θ ∈ H∞
L(E∗,H2(Dn−1))(D). Here one is

naturally led to formulate the following problem.
Problem: For which closed subspace E∗ ⊆ H2(Dn−1) and inner function Θ ∈ H∞

B(E∗,H2(Dn−1))(D)
the submodule ΘH2

E∗(D) of H
2
H2(Dn−1)(D), realized as a subspace of H2(Dn), is a sub-

module of H2(Dn)?
This problem is hard to tackle in general. However, see [Sa13a] for some partial results.

(9) The Beurling-Lax-Halmos theorem for submodules of vector-valued Hardy modules
can be restated by saying that the non-trivial submodules of H2

E∗(D) are the images of
vector-valued Hardy modules under partially isometric module maps (see [RaRo73]).
This classification result for C·0-contractive Hilbert modules over A(D) have also been
studied (see [Sa13b]).

Theorem 5.14. Let H be a C·0-contractive Hilbert module over A(D) and S be a non-
trivial closed subspace of H. Then S is a submodule of H if and only if there exists a
Hilbert space E and a partially isometric module map Π : H2

E(D)→ H such that

S = ran Π,

or equivalently,

PS = ΠΠ∗.

An analogous assertion is true also for Hilbert modules over C[z] (see [Sa13c]).
(10) Let E and E∗ be Hilbert spaces and m ∈ N. Let Θ ∈ M(H2

E(D), L2
a,m(D) ⊗ E∗) be a

partially isometric multiplier. It follows easily from the definition of multipliers that
ΘH2

E(D) is a submodule of L2
a,m(D) ⊗ E∗. The following converse was proved by Ball

and Bolotnikov in [BaBo13b] (see also [BaBo13a] and Olofsson [Ol06]).

Theorem 5.15. Let S be a non-trivial submodule of the vector-valued weighted Bergman
module L2

a,m(D)⊗E∗. Then there exists a Hilbert space E and partially isometric mul-

tiplier Θ ∈M(H2
E(D), L2

a,m(D)⊗ E∗) such that

S = ΘH2
E(D).

Another representation for S, a submodule of L2
a,m(D)⊗E∗, is based on the observation

that for any such S, the subspace zkS ⊖ zk+1S can be always represented as zkΘkUk
for an appropriate subspace Uk and an L2

a,m(D)⊗E∗-inner function zkΘk, k ≥ 0. This
observation leads to the orthogonal representation:

S = ⊕k≥0(z
kS ⊖ zk+1S) = ⊕k≥0z

kΘkUk,

of S in terms of a Bergman-inner family {Θk}k≥0 (see [BaBo13b] and [BaBo13a] for
more details).
More recently, Theorem 5.15 has been extended by the author [Sa13c], [Sa13b] to the
case of reproducing kernel Hilbert modules.
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6. Unitarily equivalent submodules

Let H ⊆ O(D,C) be a reproducing kernel Hilbert module and S1 and S2 be two non-zero
submodules of H.

(1) If H = H2(D), then S1 ∼= S2 (see Corollary 5.5).
(2) If H = L2

a(D) and S1 ∼= S2, then S1 = S2 (see [R88] or Corollary 8.5 in [Sa14a]).

Therefore, on the one hand every non-zero submodule is isometrically isomorphic to the
module itself while on the other hand, no proper submodule is.
Now let n > 1. For submodules of H2(Dn) over A(Dn), some are unitarily equivalent to
H2(Dn) and some are not (cf. [Ru69], [Ma85], [SaASW13]). For the Hardy module H2(∂Bn),
the existence of inner functions on Bn [Ale82] established the existence of proper submodules
of H2(∂Bn) that are unitarily equivalent to H2(Bn).

These observations raise a number of interesting questions concerning Hilbert modules with
unitarily equivalent submodules. The purpose of this section is to investigate and classify a
class of Hilbert modules with proper submodules unitarily equivalent to the original.

6.1. Isometric module maps. This subsection begins with a simple observation concerning
unitarily equivalent submodules of Hilbert modules. Let H be a Hilbert module over A(Ω)
and S be a non-trivial submodule of H. Then S is unitarily equivalent to H if and only if
S = UH for some isometric module map U on H.

Now let UH be a submodule of H for some isometric module map U . Then UH is said to
be pure unitarily equivalent submodule of H if

∞∩
k≥0

UkH = {0}.

Proposition 6.1. Let H be a Hilbert module over A(Ω) for which there exists an isometric

module map U satisfying
∞∩
k=0

UkH = (0). Then there exists an isomorphism Ψ: H2
W(D)→ H

with W = H ⊖ UH and a commuting n-tuple of functions {φi} in H∞
B(W)(D) so that U =

ΨMzΨ
∗ and Mi = ΨMφi

Ψ∗ for i = 1, 2, . . . , n.

Proof. By Corollary 5.2, there is a canonical isomorphism Ψ: H2
W(D) → H such that

ΨTz = UΨ where W = H ⊖ UH. Further, Xi = Ψ∗MiΨ is an operator on H2
E(D) which

commutes with Tz. Hence, there exists a function φi in H∞
L(W)(D) such that Xi = Mφi

.

Moreover, since the {Mi} commute, so do the {Xi} and hence the functions {φi} commute
pointwise a.e. on T.

6.2. Hilbert-Samuel Polynomial. AHilbert moduleH over C[z] is said to be semi-Fredholm
at w ∈ Cn if

dim[H/Iw · H] <∞.
In particular, note that H semi-Fredholm at w implies that Iw · H is a closed submodule of
H and

dim[Ikw · H/Ik+1
w · H] <∞,
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for all k ∈ N. In this case the direct sum

gr(H) :=
⊕
k≥0

Ikw · H/Ik+1
w · H,

can be turned into a graded finitely generated C[z]-module. It is a fundamental result of
commutative algebra that to any such module there is a polynomial hwH ∈ Q[x] of degree not
greater than n, the Hilbert-Samuel polynomial, with

hwH(k) = dim[Ikw · H/Ik+1
w · H],

for all k ≥ NH for some positive integer NH (see [DoYa93]).
In some cases it is possible to calculate the Hilbert-Samuel polynomial for a Hilbert module

directly. For example (see [Fa03]), let Ω be a Reinhardt domain in Cn and H ⊆ O(Ω,C) be a
reproducing kernel Hilbert module. Let S be a singly generated submodule of H and w ∈ Ω.
Then

hwS (k) =

(
n+ k − 1

n

)
.

In general, it is difficult to compute the Hilbert-Samuel polynomial directly.
The following result demonstrates that the Hilbert-Samuel polynomial does not depend on

the choice of a quasi-free Hilbert module.

Theorem 6.2. If R and R̃ be a pair of rank m quasi-free Hilbert modules over A(Ω). If both

R and R̃ are semi-Fredholm at w ∈ Ω then hωωωR ≡ hωωωR̃.

Proof. Consider rank m quasi-free Hilbert modules R and R̃ over A(Ω) with 1 ≤ m < ∞.
Following Lemma 1 in [DoMi05], construct the rank m quasi-free Hilbert module ∆, which

is the graph of a closed densely defined module map from R to R̃ obtained as the closure

of the set {φfi ⊕ φgi : φ ∈ A(Ω)}, where {fi}mi=1 and {gi}mi=1 are generators for R and R̃,
respectively. Then the module map X : ∆→ R defined by fi⊕gi → fi is bounded, one-to-one
and has dense range. Note that for fixed w0 in Ω,

X∗(Iw0 · R)⊥ ⊂ (Iw0 ·∆)⊥.

Since the rank of ∆ is also k, this map is an isomorphism. Let {γi(w0)} be anti-holomorphic
functions from a neighborhood Ω0 of w0 to R such that {γi(w)} spans (Iw · R)⊥ for w ∈ Ω0.
Then

{ ∂
k

∂zk
γi(w)}|k|<k,

forms a basis for (Ikw · R)⊥ for k = 0, 1, 2, . . ., using the same argument as in Section 4 in
[CuSal84] and Section 4 in [DoMiVa00]. Similarly, since {X∗γi(w)} is a basis for (Iw ·∆)⊥,
it follows that X∗ takes (Ikw · R)⊥ onto (Ikw ·∆)⊥ for k = 0, 1, 2, . . . . Therefore

dim(Ikw · R)⊥ = dim(Ikw ·∆)⊥,

for all k. Hence
hwR = hw∆. (w ∈ Ω)

The result now follows by interchanging the roles of R and R̃.
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In particular, one can calculate the Hilbert-Samuel polynomial by considering only the
Bergman module over A(Ω) since

hwR⊗Ck ≡ khwR,

for all finite integers k. To accomplish that one can reduce to the case of a ball as follows.

Theorem 6.3. If R is a quasi-free Hilbert module over A(Ω) for Ω ⊂ Cn which is semi-
Fredholm for w in a neighborhood of w0 in Ω with constant codimension, then hw0

R has degree
n.

Proof. Let Bε(w0) be a ball with radius ε centered at w0, whose closure is contained in Ω.
An easy argument shows that the map X : L2

a(Ω)→ L2
a(Bε(w0)) defined by

Xf ≡ f |Bε(w0), (f ∈ L2
a(Ω))

is bounded, one-to-one and has dense range. Moreover, by a similar argument to the one used
in Theorem 6.2 for w ∈ Bε(w0), it follows that

hwL2
a(Ω) ≡ hwBε(w).

The proof is completed by considering the Hilbert–Samuel polynomials at w0 of the Bergman
module for the ball Bε(w0) for some ε > 0 which is centered at w0. This calculation reduces
to that of the module C[z] over the algebra C[zzz] since the monomials in L2

a(Bε(w0)) are
orthogonal. Hence

hw0

L2
a(Bε(w0))

(k) =

(
n+ k − 1

n

)
.

This completes the proof.

6.3. On complex dimension. The purpose of this subsection is to show that the complex
dimension of the domain Ω is one, that is n = 1, whenever H is quasi-free, semi-Fredholm
and dimH/UH <∞.

The following result relates pure isometrically isomorphic submodules of finite codimension
and linear Hilbert-Samuel polynomials.

Theorem 6.4. If H is semi-Fredholm at w0 in Ω and S is a pure isometrically isomorphic
submodule of H having finite codimension in H, then hw0

H has degree at most one.

Proof. As in the proof of Proposition 6.1, the existence of S inH yields a module isomorphism
Ψ of H with H2

W(D) for W = H ⊖ S. Assume that w0 = 0 for simplicity and note that the
assumption that H is semi-Fredholm at w0 = 0 implies that

Mz1 · H + · · ·+Mzn · H,
has finite codimension in H. Hence

S̃ =Mφ1 ·H2
W(D) + · · ·+Mφn ·H2

W(D),

has finite codimension in H2
W(D), where Mzi = ΨMφi

Ψ∗. Moreover, S̃ is invariant under
the action of Mz. Therefore, by the Beurling–Lax–Halmos Theorem, Theorem 5.3, there

is an inner function Θ in H∞
B(W)(D) for which S̃ = ΘH2

W(D). Further, since S̃ has finite

codimension in H2
W(D) and the dimension of W is finite, it follows that the matrix entries of
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Θ are rational functions with poles outside the closed unit disk and Θ(eit) is unitary for eit

in T (cf. [NaFo70], Chapter VI, Section 4).
Now the determinant, detΘ, is a scalar-valued rational inner function in H∞(D) and hence

is a finite Blaschke product. Using Cramer’s Rule one can show that (cf. [He64], Theorem
11)

(detΘ)H2
W(D) ⊆ ΘH2

W(D),
which implies that

dimCH
2
W(D)/ΘH2

W(D) ≤ dimCH
2
W(D)/(detΘ)H2

W(D).

Continuing, we have

Ψ(I2w0
· H) = Ψ

(
n∨

i,j=1

MziMzjH

)
=

n∨
i,j=1

Mφi
Mφj

H2
W(D) =

n∨
i=1

Mφi
(ΘH2

W(D))

⊇
n∨

i=1

Mφi
(detΘ)H2

W(D) ⊇
n∨

i=1

detΘ(Mφi
H2

W(D)) = (detΘ)ΘH2
W(D)

⊇ (detΘ)2H2
W(D).

Therefore

dim(H/I2w0
· H) ≤ dimH2

W(D)/(detΘ)2H2
W(D).

Proceeding by induction, one arrives at

dim(H/Ikw0
· H) ≤ dimH2

W(D)/(detΘ)kH2
W(D),

for each positive integer k. Also

hw0
H (k) ≤ dimH2

W(D)/(detΘ)kH2
W(D) = kd dimW for k ≥ NH,

where d is the dimension of H2/(detΘ)H2. Hence, the degree of hw0
H is at most one.

Combining this theorem with Theorem 6.3 yields the following result.

Theorem 6.5. If R is a semi-Fredholm, quasi-free Hilbert module over A(Ω) with Ω ⊂ Cn

having a pure isometrically isomorphic submodule of finite codimension, then n = 1.

6.4. Hilbert modules over A(D). By virtue of Theorem 6.5, one can immediately reduce
to the case of domains Ω in C if there exists a pure isometrically isomorphic submodule of
finite codimension.

The purpose of this subsection is to prove that for a quasi-free Hilbert module R over A(D),
the existence of a pure unitarily equivalent submodule of finite codimension implies that R
is unitarily equivalent to H2

E(D) with dim E = rankR.

Theorem 6.6. Let R be a finite rank, quasi-free Hilbert module over A(D) which is semi-
Fredholm for ω in D. Assume there exists a pure module isometry U such that dimR/UR < ∞.
Then R and H2

E(D) are A(D)-module isomorphic where E is a Hilbert space with dim E equal
to the multiplicity of R.
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Proof. As in Proposition 6.1, without loss of generality one can assume that R ∼= H2
W(D),

whereW = R⊖UR with dimW <∞ and U corresponds toMz. LetMφ denote the operator
on H2

W(D) unitarily equivalent to module multiplication by z on R, where φ is in H∞
B(W)(D)

with ∥φ(z)∥ ≤ 1 for all z in D.
Since the operator Mφ is defined by module multiplication on H2

W(D) and the corresponding
A(D)-module has finite rank, it is enough to show that φ is inner. Hence Mφ would be a pure
isometry so that H2

W(D) and H2(D) would be A(D)-module isomorphic.
Since the range of Mφ − wI has finite codimension in H2

W(D), it follows that the operator
Mφ − wI has closed range for each w ∈ D. Now ker(Mφ − wI) = {0}, by Lemma 1.1
in [DoSa08], implies that Mφ − wI is bounded below. Then by Lemma 2.1 in [DoSa08],
(Lφ − wI) is bounded below on L2

E(D), where Lφ is the Laurent operators with symbol φ.
For each w in D and k in N, define

Ew
k = {eit : dist(σ(φ(eit)), w) <

1

k
},

where σ(φ(eit)) denotes the spectrum of the matrix φ(eit).
Then either σ(φ(eit)) ⊂ T a.e or there exists a w0 in D such that m(Ew0

k ) > 0 for all k ∈ N. In
the latter case, one can find a sequence of functions {fk} in L2

E(T) such that fk is supported
on Ew0

k , ∥fk(eit)∥ = 1 for eit in Eω0
k and

∥φ(eit)fk(eit)− w0fk(e
it)∥ ≤ 1

k
.

It then follows that

∥(Lφ − w0)fk∥ ≤
1

k
∥fk∥

for all k in N, which contradicts the fact that Lφ−w0I is bounded below. Hence, σ(φ(eit)) ⊂ T,
a.e. and hence φ(eit) is unitary a.e. Therefore, Tφ is a pure isometry and the Hilbert module
H2

E(D) determined by Tφ is A(D)-module isomorphic with H2
E(D).

This result can not be extended to the case in which U is not pure. For example, for
R = H2(D)⊕ L2

a(D), one could take U =Mz ⊕ I.
Further results and comments:

(1) All of the material in this section is taken from [DoSa08].
(2) For the Bergman modules over the unit ball, one can show (cf. [XCGu03, P94, R88])

that no proper submodule is unitarily equivalent to the Bergman module itself. These
issues are thoroughly discussed in [Sa14a].

(3) In a sense, the existence of a Hilbert module with unitarily equivalent submodules is a
rare phenomenon. The following example shows that the problem is more complicated
even in the sense of quasi-similarity.
Example: The Hardy module H2(D2) is not quasi-similar to the submodule H2(D2)0 =
{f ∈ H2(D2) : f(0) = 0} of H2(D2). Suppose X and Y define a quasi-affinity between
H2(D2) and H2(D2)0. Then the localized maps X0 and Y0 are isomorphisms between
C0 and C0 ⊕ C0 (see Section 4) which is impossible.

(4) Theorem 6.6 can be extended to the case of a finitely-connected domain Ω with a nice
boundary, that is, Ω for which ∂Ω is the finite union of simple closed curves. Here
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it is convenient to recall the notion of the bundle shift H2
α(Ω) for Ω determined by

the unitary representation α of the fundamental group π1(Ω) of Ω. The bundle shift
H2

α(Ω) is the Hardy space of holomorphic sections of the flat unitary bundle over Ω
determined by α (see [AbDo76], [Ba79]). The reader is referred to ([DoSa08], Theorem
2.8) for a proof of the following theorem.

Theorem 6.7. Let R be a finite rank, quasi-free Hilbert module over A(Ω), where Ω
is a finitely-connected domain in C with nice boundary, which is semi-Fredholm for ω
in Ω. Let U be a pure module isometry such that dimR/UR < ∞. Then there is a
unitary representation α of π1(Ω) on some finite dimensional Hilbert space such that
R and the bundle shift H2

α(Ω), are A(Ω)-module isomorphic.

(5) In [Do11], Douglas proved the following result on rank one quasi-free Hilbert modules.

Theorem 6.8. Let R be a rank one quasi-free Hilbert module over A(Ω), where Ω = Bn

or Dn. Suppose each submodule S of R is isometrically isomorphic to R. Then n = 1
and R ∼= H2(D) and the module map M on R is the Toeplitz operator Mφ, where φ
is a conformal self map of D onto itself.

(6) The notion of Hilbert-Samuel polynomials for Hilbert modules is a relatively new
concept and was introduced by Douglas and Yan in 1993 [DoYa93]. Because of its
strong interaction with commutative algebra and complex analytic geometry, Hilbert
module approach to Hilbert-Samuel polynomial and Samuel multiplicity has had a
spectacular development since its origin. The reader is referred to the recent work by
Eschmeier [Es08a], [Es08b], [Es07b], [Es07a] and Fang [Fa06], [Fa08], [Fa09].

7. Corona condition and Fredholm Hilbert modules

The purpose of this section is to apply techniques from Taylor’s theory, in terms of Koszul
complex, Berezin transforms and reproducing kernel method to quasi-free Hilbert modules
and obtain a connection between Fredholm theory and corona condition.

7.1. Koszul complex and Taylor invertibility. In this subsection, the notion of Taylor’s
invertibility (see [Ta70a], [Ta70b]) for commuting tuples of operators on Hilbert spaces will
be discussed.

Let En be the exterior algebra generated by n symbols {e1, . . . , en} along with identity e0,
that is, En is the algebra of forms in {e1, . . . , en} with complex coefficients and ei∧ej = −ej∧ei
for all 1 ≤ i, j ≤ n. Let Enk be the vector subspace of En generated by the basis

{ei1 ∧ · · · ∧ eik : 1 ≤ i1 < . . . < ik ≤ n}.
In particular,

Eni ∧ Enj ⊆ Eni+j,

and
En = Ce1 ∧ · · · ∧ en.

Moreover

dim Enk =

(
n

k

)
,
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that is, Enk is isomorphic to C(
n
k) as a vector space over C. Also note that En is graded:

En =
∞∑
k=0

Enk .

Define the creation operator Ei : En → En, for each 1 ≤ i ≤ n, by Eiη = ei ∧ η and E0η = η
for all η ∈ En. In particular, note that En is a finite dimensional vector space. Then the
anticommutation relation follows easily:

EiEj = −EjEi and E∗
iEj + EjE

∗
i = δijE0.

Now let T = (T1, . . . , Tn) be a commuting tuple of operators on H. Let En(T ) = H⊗C En
and Enk (T ) = H⊗C Enk ⊂ En(T ) and define ∂T ∈ B(En(T )) by

∂T =
n∑

i=1

Ti ⊗ Ei.

It follows easily from the anticommutation relationship that ∂2T = 0. The Koszul complex
K(T ) is now defined to be the (chain) complex

K(T ) : 0 −→ En0 (T )
∂1,H−→ En1 (T )

∂2,H−→ · · ·
∂n−1,H−→ Enn−1(T )

∂n,H−→ Enn (T ) −→ 0,

where Enk (T ) is the collection of all k-forms in En(T ) and ∂k,T , the differential, is defined by

∂k,T = ∂T |En
k−1(T ) : Enk−1(T )→ Enk (T ). (k = 1, . . . , n)

For each k = 0, . . . , n the cohomology vector space associated to the Koszul complex K(T )
at k-th stage is the vector space

Hk(T ) = ker ∂k+1,T/ran∂k,T .

Here ∂0,T and ∂n+1,T are the zero map. A commuting tuple of operators T on H is said to be
invertible if K(T ) is exact. The Taylor spectrum of T is defined as

σTay(T ) = {w ∈ Cn : K(T −wIH) is not exact }.
The tuple T is said to be a Fredholm tuple if

dim
[
Hk(T )

]
<∞, (k = 0, 1, . . . , n)

and semi-Fredholm tuple if the last cohomology group,

Hn(T ) = H/
n∑

i=1

TiH,

of its Koszul complex in finite dimensional.
If T is a Fredholm tuple, then the index of T is

indT :=
n∑

k=0

(−1)kdim
[
Hk(T )

]
.

The tuple T is said to be Fredholm (or semi-Fredholm) at w ∈ Cn if the tuple T −wIH is
Fredholm (or semi-Fredholm).
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Viewing the tuple T as a Hilbert module over C[z], it follows that T is semi-Fredholm at
w if and only if

dim[H/Iw · H] <∞.
In particular, note that H semi-Fredholm at w implies that IwH is a closed submodule of H.

7.2. Weak corona property. Let {φ1, . . . , φk} ⊆ H∞
B(E)(Bn) be a k-tuple of commuting

B(E)-valued functions where E is a Hilbert space. Then the tuple is said to have the weak
corona property if there exists an ϵ > 0 and 1 > δ > 0 such that

k∑
i=1

φi(z)φi(z)
∗ ≥ ϵIE ,

for all z satisfying 1 > ∥z∥ ≥ 1− δ.
The tuple {φ1, . . . , φk} is said to have the corona property if

k∑
i=1

φi(z)φi(z)
∗ ≥ ϵIE ,

for all z ∈ Bn.
For n=l and E = C, the Carleson’s corona theorem (see [Car62]) asserts that:

Theorem 7.1. (Carleson) A set {φ1, . . . , φk} in H∞(D) satisfies
∑k

i=1 |φi(z)| ≥ ϵ for all z in
D for some ϵ > 0 if and only if there exist {ψ1, . . . , ψk} ⊂ H∞(D) such that

k∑
i=1

φiψi = 1.

Also one has the following fundamental result of Taylor (see [Ta70b], Lemma 1):

Lemma 7.2. Let (T1, . . . , Tk) be in the center of an algebra A contained in L(H) such that there

exists (S1, . . . , Sk) in A satisfying
∑k

i=1 TiSi = IH. Then the Koszul complex for (T1, . . . , Tk)
is exact.

Now consider a contractive quasi-free Hilbert module R over A(D) of multiplicity one,
which therefore has H∞(D) as the multiplier algebra.

Proposition 7.3. Let R be a contractive quasi-free Hilbert module over A(D) of multiplic-
ity one and {φ1, . . . , φk} be a subset of H∞(D). Then the Koszul complex for the k-tuple
(Mφ1 , . . . ,Mφk

) on R is exact if and only if {φ1, . . . , φk} satisfies the corona property.

Proof. If
∑k

i=1 φiψi = 1 for some {ψ1, . . . , ψk} ⊂ H∞(D), then the fact that MΦ is Taylor
invertible follows from Lemma 7.2. On the other hand, the last group of the Koszul complex
is {0} if and only if the row operator Mφ in B(Rk,R) is bounded below which, as before,

shows that
∑k

i=1 |φi(z)| is bounded below on D. This completes the proof.
The missing step to extend the result from D to the open unit ball Bn is the fact that it

is unknown if the corona condition for {φ1, . . . , φk} in H∞(Bn) is equivalent to the Corona
property.
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7.3. Semi-Fredholm implies weak corona. Let HK be a scalar-valued reproducing kernel
Hilbert space over Ω and F ∈ B(HK). Then the Berezin transform (see [DaDo05]) of F is

denoted by F̂ and defined by

F̂ (z) = ⟨F K(·, z)
∥K(·, z)∥

,
K(·,z)
∥K(·,z)∥

⟩. (z ∈ Ω)

Note that the multiplier space of a rank one quasi-free Hilbert module R over A(Bn) is
precisely H∞(Bn), since R is the completion of A(Bn), by definition (see Proposition 5.2 in
[DaDo05]).

Theorem 7.4. Let R be a contractive quasi-free Hilbert module over A(Bn) of multiplicity
one and {φ1, . . . , φk} be a subset of H∞(Bn). If (Mφ1 , . . . ,Mφk

) is a semi-Fredholm tuple,
then {φ1, . . . , φk} satisfies the weak corona condition.

Proof. Let K : Bn × Bn → C be the kernel function for the quasi-free Hilbert module R. By
the assumption, the range of the row operator MΦ = (Mφ1 , . . . ,Mφk

) : Rk → R in R has
finite co-dimension, that is,

dim[R/(Mφ1R+ . . .+Mφk
R)] <∞,

and, in particular, MΦ has closed range. Consequently, there is a finite rank projection F in
B(R) such that

MΦM
∗
Φ + F =

k∑
i=1

Mφi
M∗

φi
+ F : R→ R

is bounded below. Therefore, there exists a c > 0 such that

⟨FK(·, z), K(·, z)⟩+ ⟨
k∑

i=1

Mφi
M∗

φi
K(·, z), K(·,z)⟩ ≥ c∥K(·,z)∥2,

for all z ∈ Bn. Therefore,

∥K(·, z)∥2F̂ (z) + ∥K(·,z)∥2
( k∑

i=1

φi(z)φ
∗
i (z)

)
≥ c∥K(·, z)∥2,

and so

F̂ (z) +
k∑

i=1

φi(zzz)φi(zzz)
∗ ≥ c,

for all zzz in Bn. Using the known boundary behavior of the Berezin transform (see Theorem 3.2

in [DaDo05]), since F is finite rank we have that |F̂ (z)| ≤ c
2
for all z such that 1 > ∥z∥ > 1−δ

for some 1 > δ > 0 depending on c. Hence

k∑
i=1

φi(z)φi(z)
∗ ≥ c

2
,

for all z such that 1 > ∥z∥ > 1− δ > 0, which completes the proof.
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The key step in this proof is the vanishing of the Berezin transform at the boundary of

Bn for a compact operator. The proof of this statement depends on the fact that K(·,z)
∥K(·,z)∥

converges weakly to zero as z approaches the boundary which rests on the fact that R is
contractive.

7.4. A Sufficient condition.

Theorem 7.5. Let R be a contractive quasi-free Hilbert module over A(D) of multiplicity
one, which is semi-Fredholm at each point z in D. If {φ1, . . . , φk} is a subset of H∞(D), then
the k-tuple MΦ = (Mφ1 , . . . ,Mφk

) is semi-Fredholm if and only if it is Fredholm if and only
if (φ1, . . . , φk) satisfies the weak corona condition.

Proof. If MΦ is semi-Fredholm, then by Proposition 7.4 there exist ϵ > 0 and 1 > δ > 0 such
that

k∑
i=1

|φi(z)|2 ≥ ϵ,

for all z such that 1 > |z| > 1− δ > 0. Let Z be the set

Z = {z ∈ D : φi(z) = 0 for all i = 1, . . . , k}.
Since the functions {φi}ki=1 can not all vanish for z satisfying 1 > |z| > 1− δ, it follows that
the cardinality of the set Z := N is finite. Let

Z = {z1, z2, . . . , zN}
and lj be the smallest order of the zero at zj for all φj and 1 ≤ j ≤ k. Let B(z) be
the finite Blaschke product with zero set precisely Z counting the multiplicities. Note that
ξi :=

φi

B
∈ H∞(D) for all i = 1, . . . , k. Since {φ1, . . . , φk} satisfies the weak corona property,

it follows that
∑k

i=1 |ξi(z)|2 ≥ ϵ for all z such that 1 > |z| > 1−δ. Note that {ξ1, . . . , ξn} does
not have any common zero and so

∑k
i=1 |ξi(z)|2 ≥ ϵ, for all z in D. Therefore, {ξ1, . . . , ξk}

satisfies the corona property and hence there exists {η1, . . . , ηk}, a subset of H∞(D), such
that

k∑
i=1

ξi(z)ηi(z) = 1,

for all z in D. Thus,
k∑

i=1

φi(z)ηi(z) = B,

for all z in D. This implies
∑k

i=1Mφi
Mηi = MB, and consequently,

∑k
i=1Mφi

Mηi = MB,

where Mφi
is the image of Mφi

in the Calkin algebra, Q(R) = B(R)/K(R). But the as-
sumption that Mz−w is Fredholm for all w in D yields that MB is Fredholm. Therefore,

X =
∑k

i=1Mφi
Mηi is invertible. Moreover, since X commutes with the set

{Mφ1 , . . . ,Mφk
,Mη1 , . . . ,Mηk},

it follows that (Mφ1 , . . . ,Mφk
) is a Fredholm tuple, which completes the proof.
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Further results and comments:

(1) In Theorem 8.2.6 in [EsP96], a version of Theorem 7.4 is established in case R is the
Bergman module on Bn.

(2) The converse of Theorem 7.4 is known for the Bergman space for certain domains in
Cn (see Theorem 8.2.4 in [EsP96] and pages 241-242). A necessary condition for the
converse to hold for the situation in Theorem 7.4 is for the n-tuple of co-ordinate mul-
tiplication operators to have essential spectrum equal to ∂Bn, which is not automatic,
but is true for the classical spaces.

(3) One prime reason to establish a converse, in Theorem 7.5, is that one can represent
the zero variety of the ideal generated by the functions in terms of a single function,
the finite Blaschke product (or polynomial). This is not surprising since C[z] is a
principal ideal domain.

(4) As pointed out in the monograph by Eschmeier and Putinar, the relation between
corona problem and the Taylor spectrum is not new (cf. [Ho67], [Wol97]).

(5) This section is mainly based on [DoSa10b] and closely related to [DoEs12] and [DoSa10a].
(6) In [Ve72], Venugopalkrishna developed a Fredholm theory and index theory for the

Hardy module over strongly pseudoconvex domains in Cn.
(7) An excellent source of information concerning Taylor spectrum is the monograph by

Muller [Mu07]. See also the paper [Cu81] and the survey [Cu88] by Curto and the
book by Eschmeier and Putinar [EsP96].

8. Co-spherically contractive Hilbert modules

A Hilbert module over C[z] is said to be co-spherically contractive, or define a row contrac-
tion, if

∥
n∑

i=1

Mihi∥2 ≤
n∑

i=1

∥hi∥2, (h1, . . . , hn ∈ H),

or, equivalently, if
∑n

i=1MiM
∗
i ≤ IH. Define the defect operator and the defect space of H as

D∗H = (IH −
n∑

i=1

MiM
∗
i )

1
2 ∈ L(H),

and
D∗H = ranD∗H,

respectively. We denote D∗H and D∗H by D∗ and D∗ respectively, if H is clear from the
context.

If n = 1 then H is a contractive Hilbert module over A(D) (see Section 4).

8.1. Drury-Arveson Module. Natural examples of co-spherically contractive Hilbert mod-
ules over C[z] are the Drury-Arveson module, the Hardy module and the Bergman module,
all defined on Bn.

One can identify the Hilbert tensor productH2
n⊗E with the E-valuedH2

n spaceH2
n(E) or the

B(E)-valued reproducing kernel Hilbert space with kernel function (z,w) 7→ (1−
n∑

i=1

ziw̄i)
−1IE .
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Then

H2
n(E) = {f ∈ O(Bn, E) : f(z) =

∑
k∈Nn

akz
k, ak ∈ E , ∥f∥2 :=

∑
k∈Nn

∥ak∥2

γk
<∞},

where γk = (k1+···+kn)!
k1!···kn! are the multinomial coefficients and k ∈ Nn.

Given a co-spherically contractive Hilbert module H, define the completely positive map
PH : L(H)→ L(H) by

PH(X) =
n∑

i=1

MiXM
∗
i ,

for all X ∈ L(H). Note that

IH ≥ PH(IH) ≥ P 2
H(IH) ≥ · · · ≥ P l

H(IH) ≥ · · · ≥ 0.

In particular,

P∞(H) := SOT− lim
l→∞

P l
H(IH)

exists and 0 ≤ P∞(H) ≤ IH. The Hilbert module H is said to be pure if

P∞(H) = 0.

Examples of pure co-spherically contractive Hilbert modules over C[z] includes the submod-
ules and quotient modules of vector-valued Drury-Arveson module.

8.2. Quotient modules of H2
n(E). First recall a standard result from algebra: Any module

is isomorphic to a quotient of a free module. The purpose of this subsection is to prove
an analogous result for co-spherically contractive Hilbert modules: any pure co-spherically
contractive Hilbert module is isomorphic to a quotient module of the Drury-Arveson module
with some multiplicity.

Theorem 8.1. Let H be a co-spherically contractive Hilbert module over C[z]. Then there
exists a unique co-module map ΠH : H → H2

n(D∗) such that

(ΠHh)(w) = D∗(IH −
n∑

i=1

wiM
∗
i )

−1h, (w ∈ Bn, h ∈ H)

and Π∗
HΠH = IH − P∞(H). Moreover, Π∗

H(kn(·,w)η) = (IH −
∑n

i=1 w̄iMi)
−1D∗η for w ∈ Bn

and η ∈ D∗.

Proof. First, note that for each w ∈ Bn that

∥
n∑

i=1

wiM
∗
i ∥ = ∥(w1IH, . . . , wnIH)

∗(M1, . . . ,Mn)∥ ≤ ∥(w1IH, . . . , wnIH)
∗∥∥(M1, . . . ,Mn)∥

= (
n∑

i=1

|wi|2)
1
2∥

n∑
i=1

MiM
∗
i ∥

1
2 = ∥w∥Cn∥

n∑
i=1

MiM
∗
i ∥

1
2 < 1.
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Therefore, ΠH : H → H2
n(D∗) defined by

(ΠHh)(z) := D∗(IH −
n∑

i=1

ziM
∗
i )

−1h =
∑
k∈Nn

(γkD∗M
∗kh)zk,

for all h ∈ H and z ∈ Bn, is a bounded linear map. Also the equalities

∥ΠHh∥2 = ∥
∑
k∈Nn

(γkD∗M
∗kh)zk∥2 =

∑
k∈Nn

γ2k∥D∗M
∗kh∥2∥zk∥2 =

∑
k∈Nn

γ2k∥D∗M
∗kh∥2 1

γk

=
∑
k∈Nn

γk∥D∗M
∗kh∥2 =

∞∑
l=0

∑
|k|=l

γk∥D∗M
∗kh∥2 =

∞∑
l=0

∑
|k|=l

γk⟨MkD2
∗M

∗kh, h⟩

=
∞∑
l=0

⟨
∑
|k|=l

γkM
kD2

∗M
∗kh, h⟩ =

∞∑
l=0

⟨P l
H(D

2
∗)h, h⟩ =

∞∑
l=0

⟨P l
H(IH − PH(IH))h, h⟩

=
∞∑
l=0

⟨(P l
H(IH)− P l+1

H (IH))h, h⟩ =
∞∑
l=0

(⟨P l
H(IH)h, h⟩ − ⟨P l+1

H (IH)h, h⟩)

= ∥h∥2 − ⟨P∞(H)h, h⟩,

holds for all h ∈ H, where the last equality follows from the fact that {P l
H(IH)}∞l=0 is a

decreasing sequence of positive operators and that P 0
H(IH) = IH and P∞(H) = liml→∞ P l

H(IH).
Therefore, ΠH is a bounded linear operator and

Π∗
HΠH = IH − P∞(H).

On the other hand, for all h ∈ H and w ∈ Bn and η ∈ D∗, it follows that

⟨Π∗
H(kn(·,w)η), h⟩H = ⟨kn(·,w)η,D∗(IH −

n∑
i=1

wiM
∗
i )

−1h⟩H2
n(D∗)

= ⟨
∑
k∈Nn

(γkw̄
kη)zk,

∑
k∈Nn

(γkD∗M
∗kh)zk⟩H2

n(D∗) =
∑
k∈Nn

γkw̄
k⟨MkD∗η, h⟩H

= ⟨(IH −
n∑

i=1

w̄iMi)
−1D∗η, h⟩H,

that is,

Π∗
H(kn(·,w)η) = (IH −

n∑
i=1

w̄iMi)
−1D∗η.

Also for all η ∈ D∗ and l ∈ Nn,

⟨Π∗
H(z

lη), h⟩ = ⟨zlη,
∑
k∈Nn

(γkD∗M
∗kh)zk⟩ = γl∥zl∥2⟨η,D∗M

∗lh⟩ = ⟨M lD∗η, h⟩,

and hence ΠH is a co-module map. Finally, uniqueness of ΠH follows from the fact that
{zkη : k ∈ Nn, η ∈ D∗} is a total set of H2

n(D∗). This completes the proof.
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It is an immediate consequence of this result that if H is a pure co-spherical contractive
Hilbert module over C[z], then P∞(H) = 0. Equivalently, that ΠH is an isometry. This yields
the dilation result for pure co-spherical contractive Hilbert modules over C[z].

Corollary 8.2. Let H be a pure co-spherical contractive Hilbert module over C[z]. Then

H ∼= Q,

for some quotient module Q of H2
n(D∗).

Proof. By Theorem 8.1, the co-module map ΠH : H → H2
n(D∗) is an isometry. In particular,

Q = ΠHH is a quotient module of H2
n(D∗). This completes the proof.

A Hilbert moduleH over C[z] is said to be spherical Hilbert module ifMi is normal operator
for each 1 ≤ i ≤ n and

n∑
i=1

MiM
∗
i = IH.

Given a spherical Hilbert module H over C[z], there exists a unique unital ∗-representation
π : C∗(∂Bn)→ B(H) such that π(zi) =Mi and vice versa (see [At90], [At92], [Arv98]).

The following dilation theorem is due to Arveson [Arv98].

Theorem 8.3. Let H be a co-spherical contractive Hilbert module over C[z]. Then there exists
a spherical Hilbert module S over C[z] such that H2

n(D∗)⊕S is a dilation of H. Equivalently,
there exists a spherical Hilbert module S over C[z] and a co-module isometry U : H →
H2

n(D∗)⊕ S. In particular,

H ∼= Q,
for some quotient module Q of H2

n(D∗)⊕ S. Moreover, the minimal dilation is unique.

8.3. Curvature Inequality. The purpose of this subsection is to compare the curvatures of
the bundles E∗

Q associated with a quotient module Q = H ⊗ E/S ∈ B∗
m(Ω) and E

∗
H, where

H ∈ B∗
1(Ω) and E , a coefficient Hilbert space. First, we need to recall some results from

complex geometry concerning curvatures of sub-bundles and quotient bundles (cf. [GH94],
pp. 78-79).

Let E be a Hermitian anti-holomorphic bundle over Ω (possibly infinite rank) and F be an
anti-holomorphic sub-bundle of E such that the quotient Q = E/F is also anti-holomorphic.
Let ▽E denote the Chern connection on E and KE the corresponding curvature form. There
are two canonical connections that we can define on F and the quotient bundle Q. The
first ones are the Chern connections ▽F and ▽Q on F and Q, respectively. To obtain the
second connections, let P denote the projection-valued bundle map of E so that P (z) is the
orthogonal projection of E(z) onto F (z). Then

▽PE = P▽EP and ▽P⊥E = P⊥▽EP
⊥,

define connections on F and Q, respectively, where P⊥ = I −P and Q is identified fiber wise
with P⊥E. The following result from complex geometry relates the curvatures for these pairs
of connections.
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Theorem 8.4. If F is an anti-holomorphic sub-bundle of the anti-holomorphic bundle E
over Ω such that E/F is anti-holomorphic, then the curvature functions for the connections
▽F , ▽PE, ▽Q and ▽P⊥E satisfy

KF (w) ≥ KPE(w) and KQ(w) ≤ KP⊥E(w). (w ∈ Ω).

The proof is essentially a matrix calculation involving the off-diagonal entries of ▽E, one of
which is the second fundamental form and the other its dual (cf. [GH94]). (Note in [GH94],
E is finite rank but the proof extends to the more general case.)

An application of this result to Hilbert modules yields the following:

Theorem 8.5. Let H ∈ B∗
1(Ω) be a Hilbert module over A(Ω) (or over C[z]) and S be a

submodule of H ⊗ E for a Hilbert space E such that the quotient module Q = (H ⊗ E)/S is
in B∗

m(Ω). If E
∗
H and E∗

Q are the corresponding Hermitian anti-holomorphic bundles over Ω,
then

P⊥(w)(KE∗
H
(w)⊗ IE)P⊥(w) ≥ KE∗

Q
(w). (w ∈ Ω)

Proof. The result follows from the previous theorem by setting E = E∗
H ⊗ E , F = E∗

S and
Q = E∗

Q.
In particular, one has the following extremal property of the curvature functions.

Theorem 8.6. Let H ∈ B∗
m(Ω) be a Hilbert module over A(Ω). If H is dilatable to R⊗E for

some Hilbert space E, then
KE∗

R
(w)⊗ IE ≥ KE∗

H
(w). (w ∈ Ω)

The following factorization result is a special case of Arveson’s dilation result (see Corollary
2 in [DoMiSa12] for a proof).

Theorem 8.7. Let Hk be a reproducing kernel Hilbert module over C[z] with kernel func-
tion k over Bn. Then Hk is co-spherically contractive if and only if the function (1 −∑n

i=1 ziw̄i)k(z,w) is positive definite.

The following statement is now an easy consequence of Theorem 8.7.

Corollary 8.8. Let Hk be a co-spherically contractive reproducing kernel Hilbert module
over Bn. Then

KE∗
H2
n

−KE∗
Hk
≥ 0.

Further results and comments:

(1) The Drury-Arveson space has been used, first in connection with the models for com-
muting contractions by Lubin in 1976 [Lu76] (see also [Lu77]), and then by Drury
in 1978 in connection with the von Neumann inequality for commuting contractive
tuples. However, the Drury-Arveson space has been popularized by Arveson in 1998
[Arv98].

(2) The proof of Theorem 8.1 is a classic example of technique introduced by Rota [Ro60]
in the context of similarity problem for strict contractions. In [Ba77], J. Ball obtained
a several-variables analogue of Rota’s model. In connection with Rota’s model, see
also the work by Curto and Herrero [CuHe85].
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(3) The converse of Theorem 8.8 is false in general. A converse of Theorem 8.8 is related
to the notion of infinite divisibility (see [BKMi13]).

(4) Theorem 8.8 is from [DoMiSa12]. For n = 1, this result was obtained by Misra in
[Mi84] and was further generalized by Uchiyama in [Uc90].

(5) Theorem 8.3 was proved independently by many authors (see [MuVa93], [Po99]). Most
probably, the existence of dilation was proved for the first time by Jewell and Lubin
in [JeLu79] and [Lu76]. However, the uniqueness part of the minimal dilation is due
to Arveson.

(6) The inequality in Theorem 8.8 shows in view of Theorem 8.6 that the module H2
n

is an extremal element in the set of co-spherically contractive Hilbert modules over
the algebra C[z]. Similarly, for the polydisk Dn, the Hardy module is an extremal
element in the set of those modules over the algebra A(Dn) which admit a dilation to
the Hardy space H2(Dn)⊗ E .

(7) We refer the reader to Athavale [At92], [At90] for an analytic approach and Attele
and Lubin [AtLu96] for a geometric approach to the (regular unitary) dilation theory.
In particular, Athavale proved that a spherical isometry must be subnormal. Other
related work concerning dilation of commuting tuples of operators appears in [RSu10],
[CuVa93], [CuVa95].

(8) Motivated by the Gauss-Bonnet theorem and the curvature of a Riemannian manifold,
in [Arv00] Arveson introduced a notion of curvature which is a numerical invariant.
His notion of curvature is related to the Samuel multiplicity [Fa03], Euler characteristic
[Arv00] and Fredholm index [GRSu02].
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