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ABSTRACT. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be row contractions
on Hilbert spaces H1 and H2, respectively, and L be a contraction from DB =

ranDB to DA∗ = ranDA∗ where DB = (I − B∗B)
1
2 and DA∗ = (I − AA∗)

1
2 . Let

ΘT be the characteristic function of T =

[
A DA∗ LDB
0 B

]
. Then ΘT coincides

with the product of the characteristic function ΘA of A, the Julia-Halmos ma-
trix corresponding to L and the characteristic function ΘB of B. More precisely,
ΘT coincides with[

ΘB 0
0 I

]
(IΓ ⊗

[
L∗ (I − L∗L)

1
2

(I − LL∗)
1
2 −L

]
)

[
ΘA 0
0 I

]
,

where Γ is the full Fock space. Similar results hold for constrained row con-
tractions.
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INTRODUCTION

Let H be a Hilbert space and T be a contraction (that is, I − TT∗ ≥ 0) on
H. Suppose DT = (I − T∗T)

1
2 and DT∗ = (I − TT∗)

1
2 are the defect opera-

tors, and DT = ranDT and DT∗ = ranDT∗ are the defect spaces of T. Then
the characteristic function of T is an operator valued bounded analytic function
ΘT ∈ H∞

B(DT ,DT∗ )
(D) defined by

ΘT(z) = (−T + zDT∗(I − zT∗)−1DT)|DT (z ∈ D).
The notion of characteristic functions plays an important role in many areas of
operator theory and function theory (see [14]). In particular, characteristic func-
tions are one of the central objects of study in noncommutative operator theory
and noncommutative function theory (see Popescu [12] and references therein).
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On the other hand, the notion of Julia-Halmos matrix is important in the
construction of isometric and unitary dilation maps for contractions (cf. [14]).
Recall that the Julia-Halmos matrix corresponding to a contraction L from H to K
is the unitary matrix

JL =

[
L∗ (I − L∗L)

1
2

(I − LL∗)
1
2 −L

]
=

[
L∗ DL

DL∗ −L

]
.

This is also directly related to analytic or functional models for contractions in the
sense of Sz.-Nagy and Foias (see Timotin [15]). However, one of the most striking
results along these lines is due to Sz.-Nagy and Foias [13]:

Theorem (Sz.-Nagy and Foias): Let H1 and H2 be Hilbert spaces and T =

[
T1 X
0 T2

]
be a contraction on H1 ⊕H2. Then there exist a contraction L ∈ B(DT2 ,DT∗

1
) and

(canonical) unitary operators τ ∈ B(DT ,DT1 ⊕DL) and τ∗ ∈ B(DT∗ ,DT∗
2
⊕DL∗)

such that X = DT∗
1

LDT2 and

ΘT(z) = τ−1
∗

[
ΘT2(z) 0

0 IDL∗

] [
L∗ DL

DL∗ −L

] [
ΘT1(z) 0

0 IDL

]
τ (z ∈ D).

In this paper we first generalize the above factorization result to noncom-
muting tuples of row contractions. For the class of constrained row contractions,
we obtain a similar result to the main factorization result.

The paper is organized as follows: In Section 2 we give a brief introduction
of characteristic functions and multi-analytic functions in noncommutative set
up and fix some notations. In Section 3 we present the Sz.-Nagy and Foias type
factorization results for noncommuting tuples of row contractions. In the final
section we obtain similar factorization results for constrained row contractions.

1. PREPARATORY RESULTS

In this section we recall and study some basic tools of operator theory such
as characterizations of upper triangular operator matrices, characteristic func-
tions and multi-analytic functions which appear in all later investigation. A gen-
eral theory of characteristic operators and (multi-)analytic models for row con-
tractions on Hilbert spaces was developed by G. Popescu in [5], [6] and [9] (also
see [10] and references therein).

Let H be a Hilbert space and {Tj}n
j=1 ⊆ B(H) where B(H) is the algebra of

all bounded linear operators on H. Then the n-tuple T = (T1, . . . , Tn) is called a
row contraction if T :

⊕n
i=1 H → H is a contraction, that is, ∑n

j=1 TjT∗
j ≤ IH or,

equivalently, if ∥∑n
j=1 Tjhj∥2 ≤ ∑n

j=1 ∥hj∥2, h1, . . . , hn ∈ H.
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The defect operators and defect spaces of a row contraction T on H are given
by

DT = (I − T∗T)
1
2 ∈ B(⊕n

i=1H), DT∗ = (I − TT∗)
1
2 ∈ B(H),

and
DT = ranDT ⊆ ⊕n

i=1H DT∗ = ranDT∗ ⊆ H,

respectively.
The class of row contractions with which we are concerned has the follow-

ing characterization (see [13] or Lemma 2.1, Chapter IV in [4]):

THEOREM 1.1. (Sz.-Nagy and Foias) Let H1 and H2 be two Hilbert spaces and
A = (A1, . . . , An) ∈ B(⊕n

1H1,H1), B = (B1, . . . , Bn) ∈ B(⊕n
1H2,H2) and X =

(X1, . . . , Xn) ∈ B(⊕n
1H2,H1) are row operators. Then the row operator

T =

[
A X
0 B

]
∈ B((⊕n

1H1)⊕ (⊕n
1H2),H1 ⊕H2)

is a row contraction if and only if A and B are row contractions and

X = DA∗ LDB,

for some contraction L ∈ B(DB,DA∗).

We now recall the following result of Sz.-Nagy and Foias about unitary op-
erators between defect spaces (see [13] or Corollary 2.2, Chapter IV in [4]):

THEOREM 1.2. (Sz.-Nagy and Foias) In the setting of Theorem 1.1, let T be a row
contraction. Then there exist unitary operators σ : DT → DA ⊕DL and σ∗ : DT∗ →
DB∗ ⊕DL∗ such that

σDT =

[
DA −A∗LDB
0 DLDB

]
and σ∗DT∗ =

[
−BL∗DA∗ DB∗

DL∗DA∗ 0

]
.(1.1)

The full Fock space over Cn, denoted by Γ, is the Hilbert space

Γ :=
∞⊕

m=0
(Cn)⊗

m
= C⊕Cn ⊕ (Cn)⊗

2 ⊕ · · · ⊕ (Cn)⊗
m ⊕ · · · .

The vacuum vector 1 ⊕ 0 ⊕ · · · ∈ Γ is denoted by e∅. Let {e1, . . . , en} be the stan-
dard orthonormal basis of Cn and F+

n be the unital free semi-group with gener-
ators 1, . . . , n and the identity ∅. For α = α1 . . . αm ∈ F+

n we denote the vector
eα1 ⊗ . . . ⊗ eαm by eα. Then {eα : α ∈ F+

n } forms an orthonormal basis of Γ. For
each j = 1, . . . , n, the left creation operator Lj and the right creation operator Rj
on Γ are defined by

Lj f = ej ⊗ f , Rj f = f ⊗ ej ( f ∈ Γ),

respectively. Moreover, Rj = U∗LjU where U, defined by U(ei1 ⊗ ei2 ⊗ . . . ⊗
eim) = eim ⊗ . . . ⊗ ei2 ⊗ ei1 , is the flipping operator on Γ. The noncommutative disc
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algebra A∞
n is the norm closed algebra generated by {IΓ, L1, . . . , Ln} and the non-

commutative analytic Toeplitz algebra F∞
n is the WOT-closure of A∞

n (see Popescu
[8]).

Let E and E∗ be Hilbert spaces and M ∈ B(Γ ⊗ E , Γ ⊗ E∗). Then M is said
to be multi-analytic operator if

M(Lj ⊗ IE ) = (Lj ⊗ IE∗)M (j = 1, . . . , n).

In this case the bounded linear map θ ∈ B(E , Γ ⊗ E∗) defined by

θ(η) = M(e∅ ⊗ η) (η ∈ E),
is said to be the symbol of M and we denote M = Mθ . Moreover, define θα ∈
B(E , E∗), α ∈ F+

n by

⟨θαη, η∗⟩ := ⟨θη, eᾱ ⊗ η∗⟩ = ⟨M(e∅ ⊗ η), eᾱ ⊗ η∗⟩, (η ∈ E , η∗ ∈ E∗)
where ᾱ is the reverse of α. The Fourier type representation for multi-analytic
operators were considered first in [7] by Popescu and from this representation
we have a unique formal Fourier expansion

M ∼ ∑
α∈F+

n

Rα ⊗ θα,

and

M = SOT − lim
r→1−

∞

∑
k=0

∑
|α|=k

r|α|Rα ⊗ θα

where |α| is the length of α.
A multi-analytic operator Mθ ∈ B(Γ ⊗ E , Γ ⊗ E∗) is said to be purely con-

tractive if Mθ is a contraction and

∥Pe∅⊗E∗θη∥ < ∥η∥ (η ∈ E , η ̸= 0).

We say that Mθ coincides with a multi-analytic operator Mθ′ ∈ B(Γ ⊗
E ′, Γ ⊗ E ′

∗) if there exist unitary operators W : E → E ′ and W∗ : E∗ → E ′
∗ such

that
(IΓ ⊗ W∗)Mθ = Mθ′(IΓ ⊗ W).

Let H be a Hilbert space and T = (T1, . . . , Tn) be a row operator on H.
For simplicity of the notations we will denote by T̃ and R̃ the row operators (IΓ ⊗
T1, . . . , IΓ ⊗ Tn) and (R1 ⊗ IH, . . . , Rn ⊗ IH) on Γ ⊗H, respectively.

Among multi-analytic operators, characteristic functions [11] play an im-
portant role in multivariable operator theory and noncommutative function the-
ory (see [12] and other references therein). The characteristic function of a row
contraction T on H is a purely contractive multi-analytic operator ΘT ∈ B(Γ ⊗
DT , Γ ⊗DT∗) defined by

ΘT ∼ −T̃ + DT̃∗(IΓ⊗H − R̃T̃∗)−1R̃DT̃ .

Hence
ΘT = SOT − lim

r→1
ΘT(rR),
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where for each r ∈ [0, 1),

ΘT(rR) := −T̃ + DT̃∗(IΓ⊗H − rR̃T̃∗)−1rR̃DT̃ .

Therefore

ΘT = SOT − lim
r→1

ΘT(rR) = SOT − lim
r→1

[
− T̃ + DT̃∗(IΓ⊗H − rR̃T̃∗)−1rR̃DT̃

]
.

(1.2)

2. FACTORIZATIONS OF CHARACTERISTIC FUNCTIONS OF NONCOMMUTING TUPLES

In this section we prove the main theorem on factorizations of characteristic
functions of upper triangular operator matrices. We begin with the following
simple lemma.

LEMMA 2.1. Let T be a row contraction on H. Then for each r ∈ [0, 1)

ΘT(rR)DT̃ = DT̃∗(I − rR̃T̃∗)−1(rR̃ − T̃) and

I + ΘT(rR)T̃∗ = DT̃∗(I − rR̃T̃∗)−1DT̃∗ .

Proof. Let r ∈ [0, 1). Since T̃DT̃ = DT̃∗ T̃ (see equation (3.4) in Chapter I, [14]), we
have

ΘT(rR)DT̃ =
[
− T̃ + DT̃∗(I − rR̃T̃∗)−1rR̃DT̃

]
DT̃

= −DT̃∗ T̃ + DT̃∗(I − rR̃T̃∗)−1rR̃D2
T̃

= DT̃∗(I − rR̃T̃∗)−1(−(I − rR̃T̃∗)T̃ + rR̃D2
T̃)

= DT̃∗(I − rR̃T̃∗)−1(rR̃ − T̃).

For the second equality we compute

DT̃∗(I − rR̃T̃∗)−1DT̃∗ = DT̃∗(I + (I − rR̃T̃∗)−1rR̃T̃∗)DT̃∗

= D2
T̃∗ + DT̃∗(I − rR̃T̃∗)−1rR̃T̃∗DT̃∗

= I − T̃T̃∗ + DT̃∗(I − rR̃T̃∗)−1rR̃DT̃ T̃∗

= I + (−T̃ + DT̃∗(I − rR̃T̃∗)−1rR̃DT̃)T̃
∗

= I + ΘT(rR)T̃∗.

This completes the proof.

We are now ready to prove the main result of this section.

THEOREM 2.2. Let H1 and H2 be two Hilbert spaces and

T =

[
A DA∗ LDB
0 B

]
: (⊕n

1H1)⊕ (⊕n
1H2) → H1 ⊕H2,
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be a row contraction on H1 ⊕H2 where A = (A1, . . . , An) on H1 and B = (B1, . . . , Bn)
on H2 are row contractions and L ∈ B(DB,DA∗) is a contraction. Then

ΘT = (IΓ ⊗ σ−1
∗ )

[
ΘB 0
0 IΓ⊗DL∗

]
(IΓ ⊗ JL)

[
ΘA 0
0 IΓ⊗DL

]
(IΓ ⊗ σ),

where σ ∈ B(DT ,DA ⊕DL) and σ∗ ∈ B(DT∗ ,DB∗ ⊕DL∗) are unitary operators as in
Theorem 1.2 and JL is the Julia-Halmos matrix corresponding to L.

Proof. For each r ∈ [0, 1), Theorem 1.2, Lemma 2.1 and the fact that (IΓ ⊗
σ∗)DT̃∗ = IΓ ⊗ σ∗DT∗ yield

(IΓ ⊗ σ∗)ΘT(rR)DT̃ =

[
−B̃L̃∗DÃ∗ DB̃∗

DL̃∗DÃ∗ 0

]
(IΓ⊗H − rR̃T̃∗)−1(rR̃ − T̃).

Now setting X = DA∗ LDB, we get

(IΓ⊗H − rR̃T̃∗)−1

=

( [
IΓ⊗H1 0

0 IΓ⊗H2

]
− r

[
R̃ 0
0 R̃

] [
Ã∗ 0
X̃∗ B̃∗

] )−1

=

[
IΓ⊗H1 − rR̃Ã∗ 0

−rR̃X̃∗ IΓ⊗H2 − rR̃B̃∗

]−1

=

[
(IΓ⊗H1 − rR̃Ã∗)−1 0

(IΓ⊗H2 − rR̃B̃∗)−1(rR̃X̃∗)(IΓ⊗H1 − rR̃Ã∗)−1 (IΓ⊗H2 − rR̃B̃∗)−1

]
=

[
F 0
G H

]
,

where F = (IΓ⊗H1 − rR̃Ã∗)−1, H = (IΓ⊗H2 − rR̃B̃∗)−1 and G = H(rR̃X̃∗)F =

(IΓ⊗H2 − rR̃B̃∗)−1(rR̃X̃∗)(IΓ⊗H1 − rR̃Ã∗)−1. Therefore

(IΓ ⊗ σ∗)ΘT(rR)DT̃ =

[
−B̃L̃∗DÃ∗ DB̃∗

DL̃∗DÃ∗ 0

] [
F 0
G H

] [
rR̃ − Ã −X̃

0 rR̃ − B̃

]
=

[
−B̃L̃∗DÃ∗ DB̃∗

DL̃∗DÃ∗ 0

] [
F(rR̃ − Ã) −FX̃
G(rR̃ − Ã) −GX̃ + H(rR̃ − B̃)

]
=

[
C11(r) C12(r)
C21(r) C22(r)

]
∈ B((Γ ⊗H1)⊕ (Γ ⊗H2)),

where C11(r) = −B̃L̃∗DÃ∗ F(rR̃ − Ã) + DB̃∗G(rR̃ − Ã), C12(r) = B̃L̃∗DÃ∗ FX̃ −
DB̃∗GX̃+DB̃∗ H(rR̃− B̃), C21(r) = DL̃∗DÃ∗ F(rR̃− Ã) and C22(r) = −DL̃∗DÃ∗ FX̃.
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Further, we compute

C11(r) = −B̃L̃∗DÃ∗ F(rR̃ − Ã) + DB̃∗(HrR̃X̃∗F)(rR̃ − Ã)

= −B̃L̃∗DÃ∗ F(rR̃ − Ã) + DB̃∗ H(rR̃X̃∗)F(rR̃ − Ã)

= −B̃L̃∗DÃ∗ F(rR̃ − Ã) + DB̃∗ H(rR̃DB̃ L̃∗DÃ∗)F(rR̃ − Ã)

= [−B̃ + DB̃∗ H(rR̃DB̃)]L̃
∗DÃ∗ F(rR̃ − Ã)

= [−B̃ + DB̃∗(IΓ⊗H2 − rR̃B̃∗)−1rR̃DB̃]L̃
∗DÃ∗ F(rR̃ − Ã)

= ΘB(rR)L̃∗DÃ∗ F(rR̃ − Ã)

= ΘB(rR)L̃∗DÃ∗(IΓ⊗H1 − rR̃Ã∗)−1(rR̃ − Ã)

= ΘB(rR)L̃∗ΘA(rR)DÃ,

where the last equality follows from Lemma 2.1. Also

C12(r) = B̃L̃∗DÃ∗ FX̃ − DB̃∗GX̃ + DB̃∗ H(rR̃ − B̃)

= B̃L̃∗DÃ∗ FX̃ − DB̃∗ H(rR̃X̃∗)FX̃ + DB̃∗ H(rR̃ − B̃)

= B̃L̃∗DÃ∗ FX̃ − DB̃∗ H(rR̃DB̃ L̃∗DÃ∗)FX̃ + DB̃∗ H(rR̃ − B̃)

= −[−B̃ + DB̃∗ HrR̃DB̃]L̃
∗DÃ∗ FX̃ + DB̃∗ H(rR̃ − B̃)

= −[−B̃ + DB̃∗(IΓ⊗H2 − rR̃B̃∗)−1rR̃DB̃]L̃
∗DÃ∗ FX̃ + DB̃∗ H(rR̃ − B̃)

= −ΘB(rR)L̃∗DÃ∗ FDÃ∗ L̃DB̃ + DB̃∗(IΓ⊗H2 − rR̃B̃∗)−1(rR̃ − B̃)

= −ΘB(rR)L̃∗DÃ∗ FDÃ∗ L̃DB̃ + ΘB(rR)DB̃ (by Lemma 2.1)

= ΘB(rR)[−L̃∗(DÃ∗ FDÃ∗)L̃ + IDB̃
]DB̃

= ΘB(rR)[−L̃∗(DÃ∗(IΓ⊗H1 − rR̃Ã∗)−1DÃ∗)L̃ + IDB̃
]DB̃

= ΘB(rR)[−L̃∗(IΓ⊗H1 + ΘA(rR)Ã∗)L̃ + IDB̃
]DB̃ (by Lemma 2.1)

= ΘB(rR)(−L̃∗ΘA(rR)Ã∗ L̃ + D2
L̃)DB̃,

and

C21(r) = DL̃∗DÃ∗ F(rR̃ − Ã)

= DL̃∗DÃ∗(IΓ⊗H1 − rR̃Ã∗)−1(rR̃ − Ã) = DL̃∗ΘA(rR)DÃ,

and finally

C22(r) = −DL̃∗DÃ∗ FX̃ = −DL̃∗DÃ∗(IΓ⊗H1 − rR̃Ã∗)−1DÃ∗ L̃DB̃

= −DL̃∗ [IΓ⊗H1 + ΘA(rR)Ã∗]L̃DB̃ (by Lemma 2.1)

= −DL̃∗ΘA(rR)Ã∗ L̃DB̃ − DL̃∗ L̃DB̃

= −DL̃∗ΘA(rR)Ã∗ L̃DB̃ − L̃DL̃DB̃.
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This implies that

(IΓ ⊗ σ∗)ΘT(rR)DT̃

=

[
ΘB(rR)L̃∗ΘA(rR)DÃ ΘB(rR)(−L̃∗ΘA(rR)Ã∗ L̃ + D2

L̃)DB̃
DL̃∗ΘA(rR)DÃ −DL̃∗ΘA(rR)Ã∗ L̃DB̃ − L̃DL̃DB̃

]
=

[
ΘB(rR)L̃∗ΘA(rR) ΘB(rR)DL̃

DL̃∗ΘA(rR) −L̃

] [
DÃ −Ã∗ L̃DB̃
0 DL̃DB̃

]
=

[
ΘB(rR)L̃∗ΘA(rR) ΘB(rR)DL̃

DL̃∗ΘA(rR) −L̃

]
(IΓ ⊗ σ)DT̃ (by Theorem 1.2),

and we conclude that

(IΓ ⊗ σ∗)ΘT(rR) =
[

ΘB(rR)L̃∗ΘA(rR) ΘB(rR)DL̃
DL̃∗ΘA(rR) −L̃

]
(IΓ ⊗ σ).

We may rewrite this as

(IΓ ⊗ σ∗)ΘT(rR)(IΓ ⊗ σ−1) =

[
ΘB(rR)L̃∗ΘA(rR) ΘB(rR)DL̃

DL̃∗ΘA(rR) −L̃

]
.

Finally, we observe that[
ΘB(rR)L̃∗ΘA(rR) ΘB(rR)DL̃

DL̃∗ΘA(rR) −L̃

]
=

[
ΘB(rR) 0

0 IDL̃∗

] [
L̃∗ DL̃

DL̃∗ −L̃

] [
ΘA(rR) 0

0 IDL̃

]
=

[
ΘB(rR) 0

0 IΓ⊗DL∗

] (
IΓ ⊗ JL)

[
ΘA(rR) 0

0 IΓ⊗DL

]
,

so that the resulting formula is

ΘT(rR) = (IΓ ⊗ σ−1
∗ )

[
ΘB(rR) 0

0 IΓ⊗DL∗

]
(IΓ ⊗ JL)

[
ΘA(rR) 0

0 IΓ⊗DL

]
(IΓ ⊗ σ).

The result now follows by passing to the strong operator topology limit as r →
1.

In the following, we prove that the Julia-Halmos matrix factor JL in the fac-
torization of the above theorem is canonical. The proof is similar to the one for
n = 1 case by Sz.-Nagy and Foias (see Theorem 3, page 209-212, [13]). We only
sketch the main ideas and refer to [13] for full proof details.

THEOREM 2.3. Let H1,H2,F and F∗ be Hilbert spaces and A = (A1, . . . , An)
and B = (B1, . . . , Bn) be row contractions on H1 and H2, respectively. Let w ∈
B(DA∗ ⊕F ,DB ⊕F∗) be a unitary operator and

Θ =

[
ΘB 0
0 IΓ⊗F∗

]
(IΓ ⊗ w)

[
ΘA 0
0 IΓ⊗F

]
: Γ ⊗ (DA ⊕F ) → Γ ⊗ (DB∗ ⊕F∗)
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be a purely contractive multi-analytic operator. Then Θ and ΘT coincide where

T =

[
A DA∗(PDA∗ w∗|DB)DB
0 B

]
: (⊕n

1H1)⊕ (⊕n
1H2) → H1 ⊕H2.

Proof. Let w∗ =

[
L M
N K

]
where L = PDA∗ w∗|DB ∈ B(DB,DA∗), M ∈ B(F∗,DA∗),

N ∈ B(DB,F ) and K ∈ B(F∗,F ) are contractions. Define F ′ := F ⊖ NDB and
F ′
∗ := F∗ ⊖ M∗DA∗ . Following the same line of argument as in the proof of the

first part of Theorem 3 in [13] we have

wF ′ = F ′
∗.

In particular, for each f ′ ∈ F ′(⊂ F ) we have w f ′ ∈ F ′
∗(⊂ F∗) and

Θ(e∅ ⊗ f ′) =
[

ΘB 0
0 IΓ⊗F∗

]
(IΓ ⊗ w)

[
ΘA 0
0 IΓ⊗F

] (
e∅ ⊗ (0 ⊕ f ′)

)
=

[
ΘB 0
0 IΓ⊗F∗

]
(e∅ ⊗ (0 ⊕ w f ′))

= 0 ⊕ (e∅ ⊗ w f ′).

Then ∥Pe∅⊗(DB∗⊕F∗)Θ(e∅ ⊗ f ′)∥2 = ∥e∅ ⊗ w f ′∥2 = ∥ f ′∥2. Since Θ is purely con-
tractive, f ′ = 0, that is, F ′ = {0} and hence F ′

∗ = {0}. Hence NDB = F and
M∗DA∗ = F∗. Consequently, U ∈ B(F ,DL) and V ∈ B(F∗,DL∗) defined by

U(Nx) = DLx and V(M∗y) = DL∗y (x ∈ DB, y ∈ DA∗),

are unitary operators. Also
N∗ = DL|DL U.

Then

w =

[
L∗ N∗

M∗ K∗

]
=

[
L∗ DL|DL U
M∗ V∗K1U

]
= v∗ Ju,

where K1 = VK∗U∗ ∈ B(DL,DL∗), u =

[
IDA∗ 0

0 U

]
, v =

[
IDB 0
0 V

]
and J =[

L∗ DL|DL
DL∗ K1

]
.

Since J ∈ B(DA∗ ⊕DL,DB ⊕DL∗) is a unitary operator we have (see page 211 in

[13]) K1 = −L|DL . Now for u′ :=
[

IDA 0
0 U

]
and v′ :=

[
IDB∗ 0

0 V

]
, we have

(IΓ ⊗ v′)
[

ΘB 0
0 IΓ⊗F∗

]
=

[
ΘB 0
0 IΓ⊗DL∗

]
(IΓ ⊗ v),

and

(IΓ ⊗ u)
[

ΘA 0
0 IΓ⊗F

]
=

[
ΘA 0
0 IΓ⊗DL

]
(IΓ ⊗ u′).

This implies that
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(IΓ ⊗ v′)Θ(IΓ ⊗ u′∗) = (IΓ ⊗ v′)
[

ΘB 0
0 IΓ⊗F∗

]
(IΓ ⊗ w)

[
ΘA 0
0 IΓ⊗F

]
(IΓ ⊗ u′∗)

=

[
ΘB 0
0 IΓ⊗DL∗

]
(IΓ ⊗ v)(IΓ ⊗ w)(IΓ ⊗ u∗)

[
ΘA 0
0 IΓ⊗DL

]
=

[
ΘB 0
0 IΓ⊗DL∗

]
(IΓ ⊗ J)

[
ΘA 0
0 IΓ⊗DL

]
.

Since L = PDA∗ w∗|DB is a contraction, Theorem 1.1 shows that the n-tuple T

defined by T =

[
A DA∗ LDB
0 B

]
is a row contraction on H1 ⊕H2 and Theorem 2.2

implies that

(IΓ ⊗ σ∗)ΘT(IΓ ⊗ σ−1) =

[
ΘB 0
0 IΓ⊗DL∗

]
(IΓ ⊗ JL)

[
ΘA 0
0 IΓ⊗DL

]
where σ : DT → DA ⊕DL and σ∗ : DT∗ → DB∗ ⊕DL∗ are unitary operators as
in Theorem 1.2. Therefore, (IΓ ⊗ v′)Θ(IΓ ⊗ u′∗) = (IΓ ⊗ σ∗)ΘT(IΓ ⊗ σ−1), that is,
ΘT coincides with Θ.

3. FACTORIZATIONS OF CHARACTERISTIC FUNCTIONS OF CONSTRAINED ROW CONTRAC-
TIONS

The main objective of this section is to study factorizations of characteris-
tic functions of row contractions in noncommutative varieties. The notion of a
noncommutative variety was introduced by G. Popescu in [10].

We first recollect some basic definitions, notations, and results that will be
used subsequently. For details, we refer to [10], [12] and references therein. Let
PJ ⊂ F∞

n be a family of noncommutative polynomials and J be the WOT-closed
two sided ideal of F∞

n generated by PJ . In what follows, we always assume that
J ̸= F∞

n . Then

MJ := span{ϕ ⊗ ψ : ϕ ∈ J, ψ ∈ Γ} and NJ := Γ ⊖MJ ,

are proper joint (L1, . . . , Ln) and (L∗
1 , . . . , L∗

n) invariant subspaces of Γ, respec-
tively. Define constrained left creation operators and constrained right creation
operators on NJ by

Vj := PNJ Lj|NJ and Wj := PNJ Rj|NJ (j = 1, . . . , n),

respectively.
Let E and E∗ be Hilbert spaces and M ∈ B(NJ ⊗ E ,NJ ⊗ E∗). Then M is

said to be constrained multi-analytic operator if

M(Vj ⊗ IE ) = (Vj ⊗ IE∗)M (j = 1, . . . , n).
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We say that M ∈ B(NJ ⊗E ,NJ ⊗E∗) is purely contractive if M is a contraction and
e∅ ∈ NJ and

∥Pe∅⊗E∗ M(e∅ ⊗ η)∥ < ∥η∥ (η ̸= 0, η ∈ E).
It has been shown by Popescu [10] that the set of all constrained multi-analytic
operators in B(NJ ⊗ E ,NJ ⊗ E∗) coincides with

W(W1, . . . , Wn) ⊗̄ B(E , E∗) = PNJ⊗E∗ [R
∞
n ⊗̄ B(E , E∗)]|NJ⊗E .

where W(W1, . . . , Wn) is the WOT-closed algebra generated by {I, W1, . . . , Wn}
and R∞

n = U∗F∞
n U and U is the flipping operator.

A row contraction T = (T1, . . . , Tn) on H is said to be J-constrained row con-
traction, or simply constrained row contraction if J is clear from the context, if

p(T1, . . . , Tn) = 0 (p ∈ PJ).

The constrained characteristic function (see Popescu [10]) of a constrained row
contraction T = (T1, . . . , Tn) on H is the constrained multi-analytic operator
ΘJ,T : NJ ⊗DT → NJ ⊗DT∗ defined by

ΘJ,T = PNJ⊗DT∗ ΘT |NJ⊗DT .

Since NJ is a joint (R∗
1 ⊗ IDT∗ , . . . , R∗

n ⊗ IDT∗ ) invariant subspace and

Wj = PNJ Rj|NJ , j = 1, . . . , n,

it follows that (see [10])

Θ∗
T(NJ ⊗DT∗) ⊂ NJ ⊗DT and ΘT(MJ ⊗DT) ⊂ MJ ⊗DT∗ .(3.1)

From here onwards to maintain simplicity of notations, we often omit the sub-

script J.
Now we are ready to prove a factorization of constrained characteristic

functions corresponding to upper triangular constrained row contractions.

THEOREM 3.1. Let T =

[
A DA∗ LDB
0 B

]
be a constrained row contraction on

H1 ⊕H2 where A = (A1, . . . , An) on H1 and B = (B1, . . . , Bn) on H2 are row con-
tractions and L ∈ B(DB,DA∗) is a contraction. Then A and B are also constrained row
contractions and

ΘJ,T = (IN ⊗ σ−1
∗ )

[
ΘJ,B 0

0 IN⊗DL∗

]
(IN ⊗ JL)

[
ΘJ,A 0

0 IN⊗DL

]
(IN ⊗ σ)

where σ ∈ B(DT ,DA ⊕DL) and σ∗ ∈ B(DT∗ ,DB∗ ⊕DL∗) are unitary operators as in
Theorem 1.1.

Proof. It is straightforward to verify that A and B are constrained row contrac-
tions. For the remaining part, first we observe that

ΘJ,T = PN⊗DT∗ (IΓ ⊗ σ−1
∗ )

[
ΘB 0
0 IΓ⊗DL∗

]
(IΓ ⊗ JL)

[
ΘA 0
0 IΓ⊗DL

]
(IΓ ⊗ σ)|N⊗DT .
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Since PN⊗DT∗ (IΓ ⊗ σ−1
∗ ) = (IN ⊗ σ−1

∗ )PN⊗(DB∗⊕DL∗ )
and

PN⊗(DB∗⊕DL∗ )

[
ΘB 0
0 IΓ⊗DL∗

]
= PN⊗(DB∗⊕DL∗ )

[
ΘB 0
0 IN⊗DL∗

]
PN⊗(DB⊕DL∗ )

,

and PN⊗(DB⊕DL∗ )
(IΓ ⊗ JL) = IN ⊗ JL = (IN ⊗ JL)PN⊗(DA∗⊕DL)

, and

PN⊗(DA∗⊕DL)

[
ΘA 0
0 IΓ⊗DL

]
= PN⊗(DA∗⊕DL)

[
ΘA 0
0 IN⊗DL

]
PN⊗(DA⊕DL)

,

we have the required equality.

We now state a similar result to Theorem 2.3 for constrained row contrac-
tions. We omit the proof, which uses similar techniques to the proof of Theorem
2.3 (and Theorem 3 in [13]).

THEOREM 3.2. Let H1,H2,F and F∗ be Hilbert spaces and A = (A1, . . . , An)
and B = (B1, . . . , Bn) be constrained row contractions on H1 and H2, respectively,
and e∅ ∈ N . Let w ∈ B(DA∗ ⊕ F ,DB ⊕ F∗) be a unitary operator and T =[

A DA∗(PDA∗ w∗|DB)DB
0 B

]
be a constrained row contraction and

Θ =

[
ΘJ,B 0

0 IN⊗F∗

]
(IN ⊗ w)

[
ΘJ,A 0

0 IN⊗F

]
be a purely contractive constrained multi-analytic operator. Then Θ coincides with ΘJ,T .

A particularly important example of noncommutative variety is the one
given by PJc = {LiLj − LjLi : i, j = 1, . . . , n}. In this case NJc = Γs is the sym-
metric Fock space, Vj = PΓs Lj|Γs , j = 1, . . . , n, are the creation operators on Γs (see
[3], [10]). Moreover, one can identify (V1, . . . , Vn) on Γs with the multiplication
operator tuple (Mz1 , . . . , Mzn) on the Drury-Arveson space H2

n [1]. Recall that the
Drury-Arveson space is a reproducing kernel Hilbert space with kernel function
k : Bn ×Bn → C defined by

k(z, w) = (1 − ⟨z, w⟩Cn)−1 (z, w ∈ Bn).

Under this identification, the set of constrained multi-analytic operators PΓsF∞
n |Γs

corresponds to the multiplier algebra of H2
n.

Note too that a row contraction T = (T1, . . . , Tn) on H is a constrained row con-
traction if and only if T is a commuting row contraction, that is, TiTj = TjTi,
i, j = 1, . . . , n. In this case, we can identify the constrained characteristic function
ΘJc ,T = PNJc⊗DT∗ ΘT |NJc⊗DT with the bounded operator-valued analytic function
θT on Bn defined by (see [10], [3] and [2])

θT(z) = −T + DT∗(IH − ZT∗)−1ZDT (z ∈ Bn),

where Z = (z1 IH, . . . , zn IH), z ∈ Bn.
In this setting, Theorems 3.1 and 3.2 can be stated as follows:
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THEOREM 3.3. Let T =

[
A DA∗ LDB
0 B

]
be a commuting row contraction on

H1 ⊕H2 where A and B are commuting row contractions on H1 and H2, respectively,
and L ∈ B(DB,DA∗) is a contraction. Then θT coincides with[

θB 0
0 IH2

n⊗DL∗

]
(IH2

n
⊗ JL)

[
θA 0
0 IH2

n⊗DL

]
.

Moreover, if T̂ =

[
A DA∗(PDA∗ w∗|DB)DB
0 B

]
is a commuting row contraction for some

unitary operator w ∈ B(DA∗ ⊕F ,DB ⊕F∗) and Hilbert spaces F and F∗, and if

θ =

[
θB 0
0 IH2

n⊗F∗

]
(IH2

n
⊗ w)

[
θA 0
0 IH2

n⊗F

]
is a purely contractive multiplier then θ coincides with θT̂ .

Now let H1 be a closed subspace of a Hilbert space H and T = (T1, . . . , Tn)
be an n-tuple on H. Let H1 be a joint T invariant subspace of H (that is, TiH1 ⊆
H1 for all i = 1, . . . , n) and H2 = H⊖H1. Then we can represent, with respect to
H = H1 ⊕H2, Tj as an upper triangular operator matrix

Tj =

[
Aj Xj
0 Bj

]
,

where Aj = Tj|H1 ∈ B(H1), Bj = PH2 Tj|H2 ∈ B(H2) and Xj = PH1 Tj|H2 ∈
B(H2,H1), j = 1, . . . , n. In other words

(3.2) T =

[
A X
0 B

]
: (⊕n

1H1)⊕ (⊕n
1H2) → H1 ⊕H2,

where A = (A1, . . . , An) ∈ B(⊕n
1H1,H1), B = (B1, . . . , Bn) ∈ B(⊕n

1H2,H2) and
X = (X1, . . . , Xn) ∈ B(⊕n

1H2,H1).
Conversely, let T be a row operator on H and H1 and H2 be closed sub-

spaces of H. If T admits an upper triangular representation as in (3.2) for some
row operators

A = (A1, . . . , An) ∈ B(⊕n
1H1,H1), B = (B1, . . . , Bn) ∈ B(⊕n

1H2,H2) and

X = (X1, . . . , Xn) ∈ B(⊕n
1H2,H1),

then H1 is a joint T-invariant subspace of H. In other words, T has a non-trivial
joint invariant subspace if and only if T admits an upper triangular representation
as in (3.2). This is also equivalent to the regular factorizations of the characteristic
function ΘT in terms of ΘA and ΘB (see Sz.-Nagy and Foias [14] for n = 1 case
and Popescu [11] for general case). It is not known, in the general case, how one
relates regular factorizations of characteristic functions and the one obtained in
this paper. We do not know the answer even if n = 1.



114 KALPESH J. HARIA, AMIT MAJI, AND JAYDEB SARKAR

Acknowledgements. The first author’s research work is supported by DST-INSPIRE
Faculty Fellowship No. DST/INSPIRE/04/2014/002624. The second author’s research
work is supported by NBHM Post Doctoral Fellowship No. 2/40(50)/2015/ R & D -
II/11569. The third author is supported in part by NBHM (National Board of Higher
Mathematics, India) grant NBHM/R.P.64/2014.

REFERENCES

[1] W. ARVESON, Subalgebras of C∗-algebras III: Multivariable operator theory, Acta
Math., 181 (1998), 159-228.

[2] T. BHATTACHARYYA, J. ESCHMEIER AND J. SARKAR, Characteristic function of a pure
commuting contractive tuple, Integral Equations Operator Theory 53 (2005), 23-32.

[3] C. BENHIDA AND D. TIMOTIN, Characteristic functions for multicontractions and
automorphisms of the unit ball, Integral Equations Operator Theory, 57 (2007), 153-166.

[4] C. FOIAS AND A. FRAZHO, The commutant lifting approach to interpolation problems,
Operator Theory: Advances and Applications, vol. 44, Birkhäuser Verlag, Basel, 1990.

[5] G. POPESCU, Characteristic functions for infinite sequences of noncommuting opera-
tors, J. Operator Theory, 22 (1989), 51-71.

[6] G. POPESCU, Multi-analytic operators and some factorization theorems, Indiana Univ.
Math. J., 38 (1989), 693-710.

[7] G. POPESCU, Multi-analytic operators on Fock spaces, Math. Ann., 303 (1995), 31-46.

[8] G. POPESCU, Functional calculus for noncommuting operators, Michigan Math. J., 42
(1995), 345-356.

[9] G. POPESCU, Poisson transforms on some C∗-algebras generated by isometries, J.
Funct. Anal., 161 (1999), 27-61.

[10] G. POPESCU, Operator theory on noncommutative varieties, Indiana Univ. Math. J., 55
(2006), 389-442.

[11] G. POPESCU, Characteristic functions and joint invariant subspaces, J. Funct. Anal.,
237 (2006), 277-320.

[12] G. POPESCU, Operator theory on noncommutative domains, Mem. Amer. Math. Soc.,
205 (2010), vi+124.
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