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Abstract. We represent and classify pairs of commuting isometries (V1, V2) acting on Hilbert spaces
that satisfy the condition

[V ∗
1 , V2] = compact and normal,

where [V ∗
1 , V2] := V ∗

1 V2 − V2V
∗
1 is the cross-commutator of (V1, V2). The precise description of

such pairs also gives a complete and concrete set of unitary invariants. The basic building blocks
of representations of such pairs consist of four distinguished pairs of commuting isometries. One
of them relies on some peculiar examples of invariant subspaces tracing back to Rudin’s intricate
constructions of analytic functions on the bidisc. Along the way, we present a rank formula for a
general pair of commuting isometries that looks to be the first of its kind.
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1. Introduction

A linear operator V on a Hilbert space H (all our Hilbert spaces are complex and separable) is
said to be an isometry if

∥V h∥ = ∥h∥ (h ∈ H).

Isometries are of essential importance in the field of linear analysis. In the context of infinite-
dimensional spaces and even in the realm of the basic theory of linear operators, they serve as a
building block for bounded linear operators as well as in the construction of elementary C∗-algebras.
The structure of isometries is simple; they are either shift operators or unitary operators or direct
sums of them. More specifically, the classical von Neumann-Wold decomposition theorem says
[vN29, Wol38]: If V is an isometry on H, then there exist unique V -reducing closed subspaces Hu

and Hs of H (one may be the zero space) such that

(1.1) H = Hu ⊕Hs,
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where V |Hu is a unitary and V |Hs is a shift. Therefore

V =

[
unitary 0

0 shift

]
,

on H = Hu ⊕ Hs. We recall that an isometry V is said to be a shift if V does not have a unitary
summand, equivalently

(1.2) SOT − lim
n→∞

V ∗n = 0.

It is now natural to look into the structure of pairs of commuting isometries. A pair of commuting
isometries, or simply an isometric pair, refers to isometries V1 and V2 acting on some Hilbert space
such that

V1V2 = V2V1.

We write this as (V1, V2). Despite the fact that this programme was initiated a long time ago, progress
on this problem has been rather sluggish, due in part to the vastly more convoluted structure of
such objects. In terms of situations, we note that the C∗-algebras generated by isometric pairs are
uncharted territory (however, see [BCL78, Dou72, JPS05, Muh72, Set04]). Second, the structure of
isometric pairs would also disclose the complex and mysterious structure of shift-invariant subspaces
of the Hardy space over the bidisc [Yang19, Theorem 3.1]. Finally, isometric pairs represent all
contractive linear operators on Hilbert spaces, which is a notoriously complex and year-old field
of research. Because of this, it is desirable to set conditions on isometric pairs and look into the
classification and computable invariants that can be found between them. In this paper, we identify
a large class of isometric pairs and then represent and classify them in terms of concrete (or model)
isometric pairs. The model also exhibits complete unitary invariants that are numerical in nature.

To demonstrate the conditions we will put on the isometric pairs under lookup, it is necessary to
explain one of the simplest examples of isometric pairs, namely, doubly commuting pairs. A doubly
commuting pair is an isometric pair (V1, V2) such that

[V ∗
1 , V2] = 0,

where
[V ∗

1 , V2] := V ∗
1 V2 − V2V

∗
1 ,

is the cross-commutator of the pair (V1, V2). These pairs are notably among the most accessible,
as a precise analogue of the Wold decomposition theorem is applicable to them: Let (V1, V2) be a
doubly commuting pair on H. Then there exist four closed subspaces {Hij}i,j=u,s of H (some of the
spaces might potentially be zero) such that

(1.3) H = Huu ⊕Hus ⊕Hsu ⊕Hss,

where Hij reduces Vk for all i, j = u, s, and k = 1, 2, and V1|Hpq is a shift if p = s and unitary if
p = u, and V2|Hpq is a shift if q = s and unitary if q = u. This result is due to S lociński [Slo80]
(also, see [JS14] for a more recent account). We will refer to this as the Wold decomposition for
doubly commuting pairs. Evidently, similar to the case of single isometries, the structure of doubly
commuting pairs is explicit and simple (compare (1.3) with (1.1)).

The objective of this paper is to examine the structure of the next-best isometric pairs that are
more nontrivial in nature. Particularly, we obtain explicit representations as well as a complete set
of unitary invariants (numerical in nature) of isometric pairs (V1, V2) for which

[V ∗
1 , V2] = compact and normal.

At this point it is worth mentioning that even the characterization of submodules M of the Hardy
space over the bidisc H2(D2), for which the cross-commutator

[
(Mz|M)∗,Mw|M

]
has rank one, is still

unknown and remains an open problem-let alone for cases involving finite rank or general compact
cross-commutators (see Problem 9 in [Yang19, Page 246]). In the process of our study, we acquire
precise surgery of the delicate structure of isometric pairs as well as many results of independent
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interest. The outcomes of this paper will not only provide a complete understanding of the above
class but also highlight the intricate nature of isometric pairs.

An immediate simplification of the aforementioned class of isometric pairs is achieved by assuming,
without any loss of generality, that the products of these pairs are shift operators (see the end of
Section 2 for justification). We note that Berger, Coburn, and Lebow [BCL78, BCL75] also looked
into such pairs in the context of Fredholm theory and C∗-algebras. We formalise the pairs examined
by them for future reference:

Definition 1.1. A BCL pair is an isometric pair (V1, V2) such that the product V1V2 is a shift
operator.

After this reduction, the following subcategory of isometric pairs emerges as especially compelling
in terms of representations and complete unitary invariants.

Definition 1.2. A compact normal pair is an isometric pair (V1, V2) such that

(1) (V1, V2) is a BCL pair, and
(2) [V ∗

2 , V1] = compact and normal.

In the above definition, we consider [V ∗
2 , V1] instead of [V ∗

1 , V2]. Without question, this is an
unimportant alteration. Our revised objective now is to represent and then compute a complete set
of unitary invariants of compact normal pairs. To that end, we show how compact normal pairs
are made up of four distinguished building blocks. Each of the four building blocks is non-unitarily
equivalent to the others. However, there is a common hallmark; they bear some connection to the
Hardy space over the bidisc. Denote by D = {z ∈ C : |z| < 1} the open unit disc in C. The Hardy
space H2(D2) over the bidisc D2 is defined by

H2(D2) = C[z, w]
L2(T2)

,

where T2 = ∂D2 is the distinguished boundary of D2. In view of radial limits, square-summable
analytic functions on D2 can be identified with functions in H2(D2). Moreover, the pair of multipli-
cation operators (Mz,Mw) by the coordinate functions z and w, respectively, on H2(D2) satisfy the
following key properties:

(1) (Mz,Mw) is a BCL pair.
(2) [M∗

w,Mz] = 0.
(3) Denote by PC the orthogonal projection onto the space of constant functions of H2(D2).

Then

I −MzM
∗
z −MwM

∗
w + MzMwM

∗
zM

∗
w = PC.

The first and second properties of (Mz,Mw) above already appeared in the definition of compact
normal pairs (see Definition 1.2). The final identity is also an inherent characteristic of (Mz,Mw)
and serves as the driving force behind the concept of defect operators [GY04]:

Definition 1.3. The defect operator of an isometric pair (V1, V2) is the operator C(V1, V2) defined
by

C(V1, V2) = I − V1V
∗
1 − V2V

∗
2 + V1V2V

∗
1 V

∗
2 .

We are now ready to elucidate the main results of this paper. Our first main result is rather
general and related to compact self-adjoint operators that are the differences of two projections.
This is a subject in its own right [DJS16]. Within this context, in Theorem 2.4, we prove the
following result, which is a substantial generalization of the central result of the paper by He et. al.
[HQY15, Theorem 4.3]. Given a bounded linear operator T on some Hilbert space, we denote by
σ(T ) the spectrum of T .
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Theorem 1.4. Let A be a compact self-adjoint contraction on a Hilbert space H. Suppose A is the
difference of two projections. If λ ∈ σ(A) \ {0,±1}, then

−λ ∈ σ(A),

and
dim ker(A− λIH) = dim ker(A + λIH).

Now we turn to a rank formula for isometric pairs. Let (V1, V2) be an isometric pair. We note
that, as a difference of two projections, C(V1, V2) is a self-adjoint contraction (see (2.2)). Let H0 be
generic part of C(V1, V2) (in the sense of Halmos [Hal69]; see Section 3 for more details). Then H0

is known to reduce C(V1, V2). Consider the spectral decomposition of C(V1, V2)|H0 as

C(V1, V2)|H0 =

∫
σ(C(V1,V2)|H0

)
λ dEλ,

where E denotes the spectral measure of C(V1, V2). The positive generic part of (V1, V2) is the closed
subspace K+ defined by (see Definition 3.3 for more details)

K+ = E[0, 1]H0.

Also, we define the eigenspaces E±1 by

E±1 = ker(C(V1, V2) ∓ IH).

Now we are ready to state the rank theorem (see Theorem 3.5).

Theorem 1.5. Let (V1, V2) be an isometric pair. Then

rankC(V1, V2) = rank[V ∗
2 , V1] + dimE1 + dimK+.

If, in addition, dimE−1 < ∞, then

rankC(V1, V2) = 2rank[V ∗
2 , V1] + dimE1 − dimE−1.

The above rank formula is at the centre of the paper and will be one of the most effective tools
for describing compact normal pairs. In fact, the above theorem will be mostly used for isometric
pairs with compact defect operators. And note that the condition

dimE−1 < ∞,

is automatically satisfied for isometric pairs with compact defects (see Corollary 3.6). Given that
the rank formula applies to any isometric pair, we believe that the above result is independently
relevant.

Now we turn to representations of compact normal pairs. Our strategy is to split a compact
normal pair into smaller pieces of distinguished building blocks. Unquestionably, and at the very
least, a distinguished building block must possess the property of irreducibility:

Definition 1.6. Let (T1, T2) be a pair of bounded linear operators on H, and let S ⊆ H be a closed
subspace. We say that S reduces (T1, T2) (or S is (T1, T2)-reducing) if

TiS, T ∗
i S ⊆ S (i = 1, 2).

We say that (T1, T2) is irreducible if there is no non-trivial (that is, nonzero and proper) (T1, T2)-
reducing subspace of H.

Our distinguished building blocks are irreducible (except for shift-unitary pairs; see Definition
1.9 below) and also compact normal pairs. They exhibit a correlation with property (3) from the
list that came before Definition 1.3, which concerns the finite rank of the defect operator. This
correlation also serves as a motivation to introduce the following class of isometric pairs:

Definition 1.7. Let n ∈ N. An n-finite pair is an isometric pair (V1, V2) acting on some Hilbert
space that meets the following conditions:
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(1) (V1, V2) is a compact normal pair, and
(2) rankC(V1, V2) = n.

We remark that the above definition and Definition 1.1 also have some bearing on some classical
theories as well as relatively contemporary results of independent interest. We will explain these
connections at the end of this section (see the discussion following Theorem 1.14).

We prove that irreducible n-finite pairs are the fundamental building blocks of compact normal
pairs. Even more strongly, the following is a fact (see Corollary 8.12):

Theorem 1.8. An irreducible n-finite pair is either 1, 2, or 3-finite.

Subsequently, irreducible n-finite pairs, n = 1, 2, 3, serve as the fundamental building blocks for
compact normal pairs. This observation, along with numerous others, is a result of the robust
rank formula that is found in Theorem 1.5. There will be, however, one more building block (not
necessarily irreducible) made up of a simpler class of doubly commuting pairs. To explain this, we
recall from (1.3) that there are four summands in the Wold decomposition of doubly commuting
pairs. In the present situation, there will be only two summands. More formally:

Definition 1.9. An isometric pair (V1, V2) on H is said to be shift-unitary if (V1, V2) is doubly
commuting and the Wold decomposition (1.3) of the pair reduces to

H = Hus ⊕Hsu.

In Remark 9.3, we argued that the shift-unitary pairs are indeed simple. There, we will also
observe that unitary operators fairly parameterize shift-unitary pairs.

Among n-finite pairs, invariant subspaces of H2(D2) will also play an important role. A closed
subspace S of H2(D2) is an invariant subspace if

(1.4) MzS,MwS ⊆ S.
Before delving into the representations of compact normal pairs, we note that the equality in the
category of isometric pairs that we observe will be unitary equivalent. Two isometric pairs (S1, S2)
on H1 and (T1, T2) on H2 are said to be unitarily equivalent if there exists a unitary operator
U : H1 → H2 such that USi = TiU for all i = 1, 2. We often denote this by

(1.5) (S1, S2) ∼= (T1, T2).

The following result yields concrete representations of compact normal pairs (see Theorem 8.11):

Theorem 1.10. Let (V1, V2) be a compact normal pair on H. Define

k := dim
[

ker
(
C(V1, V2) − IH

)]
∈ [0,∞].

Then there exist closed (V1, V2)-reducing subspaces {Hi}ki=0 of H such that

H =

k⊕
i=0

Hi.

If we define
(V1,j , V2,j) = (V1|Hj , V2|Hj ) (j = 0, 1, . . . , k),

then (V1,i, V2,i) on Hi is irreducible for all i = 1, . . . , k. Moreover, we have the following:

(1) (V1,0, V2,0) on H0 is a shift-unitary type.
(2) For each i = 1, . . . , k, the pair (V1,i, V2,i) on Hi is unitarily equivalent to one of the following

three pairs:
(a) (Mz,Mw) on H2(D2).
(b) (Mz, αMz) on H2(D) for some unimodular constant α.
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(c) (γMz|Sλ
,Mw|Sλ

) on Sλ, where

(1.6) Sλ = φ
(
H2(D2)

⊕( ∞⊕
j=0

zjspan
{ w̄

1 − λzw̄

}))
,

for some λ ∈ (0, 1), unimodular constant γ, and some inner function φ ∈ H∞(D2).

The pairs in (a), (b), and (c) in the above theorem represent irreducible n-finite pairs, for n = 1, 2,
and 3, respectively. First, we comment on irreducible 3-finite pairs. The invariant subspace Sλ

mentioned in part (c) above is attributed to Izuchi and Izuchi [II06]. This particular invariant
subspace leans more towards the existential than the construction. In this case, the inner function
φ, which solely depends on λ, is derived from Rudin’s construction [Rud69, Theorem 5.4.5]. We
prove that pairs of type (c) above, that is, the Izuchi-Izuchi-Ohno examples, are all irreducible
3-finite pairs (see Theorem 4.9 as well as Theorem 5.6):

Theorem 1.11. Let (V1, V2) be an irreducible 3-finite pair on a Hilbert space H. Then the following
hold:

(1) There exists λ ∈ (0, 1) such that

σ(C(V1, V2)) ∩ (0, 1) = {λ}.
(2) There exists a unimodular constant γ such that

σ([V ∗
2 , V1]) \ {0} = {γλ}.

(3) There exists an inner function φ ∈ H∞(D2) (depending on λ) such that

(V1, V2) ∼= (γMz|Sλ
,Mw|Sλ

),

where Sλ is the invariant subspace of H2(D2) as in (1.6).

In this case, one can prove that (see Proposition 4.3)

dimE1(C(V1, V2)) = 1,

and
dimE−1(C(V1, V2)) = 0,

and hence, Theorem 1.5 implies that

rank[V ∗
2 , V1] = 1.

Moreover, part (2) of the above theorem says that

β := γλ,

is the unique nonzero eigenvalue of the cross-commutator [V ∗
2 , V1]. Clearly

0 < |β| < 1.

We prove that this number is a complete unitary invariant (see Theorem 5.3): Let (V1, V2) on H and

(Ṽ1, Ṽ2) on H̃ be irreducible 3-finite pairs. Then

(V1, V2) ∼= (Ṽ1, Ṽ2),

if and only if
β = β̃,

where β and β̃ are the unique nonzero eigenvalues of [V ∗
2 , V1] and [Ṽ ∗

2 , Ṽ1], respectively.
Next, we turn to irreducible 2-finite pairs. As in the 3-finite case, here also we have precise spectral

synthesis and a complete representation (see Theorem 6.3):

Theorem 1.12. Let (V1, V2) be an irreducible 2-finite pair. Then the following hold:

(1) {±1} are the only nonzero eigenvalues of C(V1, V2).
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(2) rank[V ∗
2 , V1] = 1.

(3) There exists a unimodular constant α such that

σ([V ∗
2 , V1]) \ {0} = {α}.

(4) (V1, V2) ∼= (Mz, αMz).

Conversely, if α is unimodular constant, then (Mz, αMz) on H2(D) is an irreducible 2-finite pair
with {±1} as the only nonzero eigenvalues of C(Mz, αMz).

As in the case of 3-finite pairs, the nonzero eigenvalue α in part (3) above is also a complete

unitary invariant. More specifically, if (Ṽ1, Ṽ2) on H̃ is another irreducible 2-finite pair, then

(V1, V2) ∼= (Ṽ1, Ṽ2),

if and only if
α = α̃,

where α̃ is the unique nonzero eigenvalue of [Ṽ2
∗
, Ṽ1] (see Theorem 6.4).

Finally, we discuss irreducible 1-finite pairs. This class, in contrast to irreducible 3 and 2-finite
pairs, is relatively simple and precisely one in nature (see Theorem 7.1):

Theorem 1.13. Let (V1, V2) be an irreducible isometric pair. Then (V1, V2) is 1-finite if and only if

(V1, V2) ∼= (Mz,Mw) on H2(D2).

In this case, it is trivial that
rank[V ∗

2 , V1] = 0,

because (V1, V2) in particular is a doubly commuting pair.
As pointed out in Theorem 1.8, this exhausts the inventory of irreducible n-finite pairs. The

representations of all irreducible n-finite pairs also yield an explicit set of unitary invariants for
compact normal pairs: Let (V1, V2) on H be a compact normal pair. For simplicity, assume that

k := dimE1(C(V1, V2)) > 0.

We follow the outcome of Theorem 1.10 and call the pair (V1,0, V2,0) on H0 obtained there the
shift-unitary part of (V1, V2). We show that (see, for instance, Section 9) for each i = 1, . . . , k, the
cross-commutator [V ∗

2,i, V1,i] is normal and has rank 0 or 1. We define the fundamental sequence

corresponding to the pair (V1, V2) to be the sequence of scalars {αi}ki=1 constructed as follows:

αi :=

{
0 if rank[V ∗

2,i, V1,i] = 0

σ([V ∗
2,i, V1,i]) \ {0} if rank[V ∗

2,i, V1,i] = 1.

In Theorem 9.2, we prove that the above sequence, along with the shift-unitary part (which is simple;
see Remark 9.3), is essentially a complete set of unitary invariants. In fact, we prove much more
(see Theorem 9.2 for more details and the complete version):

Theorem 1.14. Let (V1, V2) be a compact normal pair on H with (V1,0, V2,0) on H0 as the shift-
unitary part. We have the following:

(i) (V1|H⊥
0
, V2|H⊥

0
) ∼= M1⊕M2⊕M3, where Mi is a direct sum of irreducible i-finite pairs, i = 1, 2, 3.

(ii) Let (Ṽ1, Ṽ2) on H̃ be another compact normal pair with the shift-unitary part (Ṽ1,0, Ṽ2,0) on

H̃0. Suppose {α̃i}k̃i=1 is the associated fundamental sequence with

k̃ = dimE1(C(Ṽ1, Ṽ2)) > 0.

Then the following are equivalent:

(1) (V1, V2) ∼= (Ṽ1, Ṽ2).

(2) (V1,0, V2,0) ∼= (Ṽ1,0, Ṽ2,0), and [V ∗
2 , V1]|H0

⊥ ∼= [Ṽ ∗
2 , Ṽ1]|H̃⊥

0
.
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(3) (V1,0, V2,0) ∼= (Ṽ1,0, Ṽ2,0), k = k̃, and there exists a permutation σ of {1, 2, · · · , k} such that

αi = α̃σ(i) (i = 1, 2, · · · , k).

Let us comment on part (3) above. The verification of the unitary equivalence of the shift-
unitary part is simple to do (cf. Remark 9.3). Hence, the determination of the numerical invariant,
specifically the fundamental sequence, constitutes the most intricate aspect of the complete unitary
invariant.

Now we provide an analysis of the historical context and relevant connections that also underpin
the assumptions of n-finite pairs and compact normal pairs. As pointed out prior to Definition
1.1, BCL pairs were studied by Berger, Coburn, and Lebow [BCL78] in the context of C∗-algebras
generated by isometric pairs. One of the keys to their approach was identifying BCL pairs with
triples

(E , U, P ),

where E is a Hilbert space, U is a unitary, and P is a projection on E . The work pointed out the
difficulties of the structure of isometric pairs while answering a number of questions along the lines of
C∗-algebras. While unitary and projection operators are individually among the simplest operators
and lack direct interdependence, their interplay gives rise to considerable generality. As such, the
structural challenges inherent in isometric pairs persist, though in a transformed guise. Classifying
isometric pairs and figuring out computable invariants can still be done with the Berger, Coburn,
and Lebow model, but it does so by delving considerably deeper into the realm of linear operator
theory and function theory. In this paper, we specifically do so.

Condition (2) in Definition 1.2 bears some historical resonance. Let Lz and Lw denote (following
Laurent operators) the multiplication by the coordinate functions z and w on L2(T2), respectively.
As in (1.4), an invariant subspace of L2(T2) is a closed subspace M ⊆ L2(T2) that is invariant under
both Lz and Lw. Let M be an invariant subspace of L2(T2). Clearly, (Lz|M, Lw|M) is an isometric
pair on M. Nakazi speculated in [Nak94] that

[(Lw|M)∗, Lz|M] = [(Lw|M)∗, Lz|M]∗,

if and only if

[(Lw|M)∗, Lz|M] = 0.

However, in [IO94], Izuchi and Ohno provided concrete examples (and hence repudiate Nakazi’s
conjecture) of invariant subspaces M of L2(T2) for which

[(Lw|M)∗, Lz|M] = [(Lw|M)∗, Lz|M]∗ ̸= 0.

In fact, they fully characterized invariant subspaces of L2(T2) with these characteristics in the same
paper. Then Nakazi restricted his question to the analytic part of L2(T2). This time, M is an
invariant subspace of H2(D2) (see Definition 1.4 for the notion of invariant subspaces). Set

(1.7) Rz = Mz|M and Rw = Mw|M.

Then (Rz, Rw) is a BCL pair on M (see the closing remark in Section 3). Nakazi refined his question
in terms of the existence of invariant subspaces M of H2(D2) for which

[R∗
w, Rz] = [R∗

w, Rz]
∗ ̸= 0.

Eventually, K. J. Izuchi and K. H. Izuchi showed intricate examples of such invariant subspaces
in [II06]. Their construction relied heavily on Rudin’s description of a specific class of inner func-
tions [Rud69, Theorem 5.4.5]. Curiously, all of the cross-commutators provided as examples by
Izuchi-Ohno and Izuchi-Izuchi are rank one. In our case, condition (2) is more broad; it needs the
cross-commutator to be compact normal rather than rank-one self-adjoint. On the other hand, as
demonstrated in Theorem 1.10, the representations of irreducible 3-finite pairs and the construction
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of examples by Izuchi and Izuchi serve as one of the fundamental building blocks in the representa-
tion of compact normal pairs. For more on not-so-standard invariant subspaces of H2(D2), we refer
the reader to [ACD86, AC70, Rud85].

We now make some remarks about defect operators (see Definition 1.3). In the context of isometric
dilations for pairs of commuting contractions, defect operators were studied decades ago. However,
in the context of Beurling-type properties of invariant subspaces of H2(D2) this was analyzed more
closely in [GY04]. Defect operators have been a useful tool in the theory of invariant subspaces of
H2(D2). However, see [ACD86] for some deviations.

The remaining part of the paper is organized as follows: Section 2 collects some well-known results
and fixes notations for future uses of the paper. In this section, we briefly recall the analytic models
of BCL pairs. The model that is presented here [MSS19], which will also be extensively used, differs
slightly from the original model of Berger, Coburn, and Lebow. The present model is more explicit
and, hence, more useful. Here we also prove a result concerning the eigenspaces of compact self-
adjoint contractions that are the differences of two projections. This yields a generalization of one
of the main results of [HQY15]. Section 3 is the heart of this paper, in which we establish a very
useful rank formula for isometric pairs.

As previously mentioned, there are only three irreducible n-finite pairs: n = 1, 2, and 3. Out
of all the pairs, irreducible 3-finite pairs are the most complex. Section 4 presents an overview of
the characteristics of irreducible 3-finite pairs. This encompasses an extensive spectral synthesis
of irreducible 3-finite pairs. In Section 5, we proceed with irreducible 3-finite pairs and explicitly
represent them by using the results from the previous section, coupled with additional observations.
We also point out that a certain scalar, namely, the unique nonzero eigenvalue of the pairs’ cross-
commutator, is the complete unitary invariant of 3-finite pairs. In Section 6, we represent and
classify irreducible 2-finite pairs. The representation of irreducible 1-finite pairs is the easiest, and
that has been completely explored in the short section, namely Section 7.

Section 8 provides an in-depth description of compact normal pairs. This section compiles all of the
machinery developed in previous sections and creates the building blocks required for constructing
compact normal pairs. The representation also requires some structural results that have also been
developed in this section. Section 9 uses the representations of compact normal pairs obtained in
the preceding section to present a complete set of unitary invariants. This section, and hence the
paper, concludes with some natural questions for future investigation.

2. Preliminaries

This section serves to establish some notation and refresh the reader’s memory of some well-known
results that will be applied throughout the remainder of the paper. Along the way, in Theorem 2.4,
we prove a result concerning the eigenspace of certain compact self-adjoint operators that generalizes
a result earlier proved in [HQY15, Theorem 4.3]. We begin with the analytic representations of shift
operators. The defect operator of an isometry T acting on some Hilbert space is defined by the
operator I − TT ∗. Observe that the defect operator of T is a measure of T not being unitary. Let
T be an isometry on H. The wandering subspace of T is defined by

E := kerT ∗.

Clearly, E = ran(I − TT ∗). It is easy to see that

TnE ⊥ TmE ,

for all m ̸= n, m,n ∈ Z+. If, in addition, T is a shift (that is, T ∗m → 0 in SOT; cf. (1.2)), then we
have the orthogonal decomposition of H as

(2.1) H =

∞⊕
n=0

TnE .
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This amounts to saying that T is unitarily equivalent to Mz on H2
E(D), where Mz is the operator

of multiplication by the coordinate function z, and H2
E(D) denotes the E-valued Hardy space over

D. We will often identify H2
E(D) with the Hilbert space tensor product H2(D) ⊗ E . Bearing this in

mind, we will also often identify Mz on H2
E(D) with Mz ⊗ IE on H2(D) ⊗ E .

Now we turn to isometric pairs. Given an isometric pair (V1, V2) on H, we will use the following
notational convention throughout this paper:

V = V1V2,

and

Wi = kerV ∗
i ,

for all i = 1, 2. We also set

W = kerV ∗.

Therefore, W and Wi are wandering subspaces corresponding to the isometries V and Vi, i = 1, 2,
respectively. Recall that the defect operator is defined by (see Definition 1.3)

C(V1, V2) = I − V1V
∗
1 − V2V

∗
2 + V1V2V

∗
1 V

∗
2 .

Since the right side of the above equals

(I − V1V
∗
1 ) − V2(I − V1V

∗
1 )V ∗

2 = (I − V2V
∗
2 ) − V1(I − V2V

∗
2 )V ∗

1 ,

it follows that

(2.2) C(V1, V2) = PW1 − PV2W1 = PW2 − PV1W2 .

Given a Hilbert space K and a closed subspace S, denote by PS the orthogonal projection onto S.
It is useful to note that C(V1, V2) is a self-adjoint operator, that is

C(V1, V2)
∗ = C(V1, V2).

Furthermore, as a difference of projections, it is readily apparent that C(V1, V2) is a contraction.
We will now discuss the analytic structure of BCL pairs (see Definition 1.1). We start with a

definition:

Definition 2.1. A BCL triple is an ordered triple (E , U, P ) consisting of a Hilbert space E, and a
unitary U and a projection P acting on E.

BCL pairs and BCL triples are interchangeable; the explanation is as follows: Let (E , U, P ) be a
BCL triple. Consider Toeplitz operators MΦ1 and MΦ2 with polynomial analytic symbols

Φ1(z) = (P⊥ + zP )U∗, and Φ2(z) = U(P + zP⊥) (z ∈ D),

where P⊥ := I −P . It is easy to see that (MΦ1 ,MΦ2) is a BCL pair on H2
E(D). Since, up to unitary

equivalence, a shift operator is the multiplication operator Mz on some vector-valued Hardy space
(see (2.1) above), an application of the Beurling-Lax-Halmos theorem yields the converse of the
above construction. That is, if (V1, V2) is a BCL pair on H, then there exist a BCL triple (E , U, P )
and a unitary η : H → H2

E(D) such that ηVi = MΦiη for all i = 1, 2. The notation for this is (see
(1.5))

(V1, V2) ∼= (MΦ1 ,MΦ2).

This provides an analytic representation of the class of BCL pairs (see [BCL78] for complete details).

Theorem 2.2. Up to joint unitary equivalence, BCL pairs are of the form (MΦ1 ,MΦ2) on H2
E(D)

for BCL triples (E , U, P ).

Given a BCL pair, following [MSS19], one can construct the corresponding BCL triple more
explicitly. The analytic model of BCL pairs presented below is an explicit reformulation of the
original result of Berger, Coburn, and Lebow, which will play an influential role in our analysis.
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Theorem 2.3. [MSS19, Lemma 3.1 and Theorem 3.3] Let (V1, V2) be an isometric pair. Then

W = W1 ⊕ V1W2 = W2 ⊕ V2W1,

and the operator

U =

[
V2|W1

V ∗
1 |V1W2

]
: W1 ⊕ V1W2 → V2W1 ⊕W2,

defines a unitary on W. Moreover, if (V1, V2) is a BCL pair, then (W, U, PW1) is the BCL triple
corresponding to (V1, V2). In particular, (V1, V2, V1V2) on H and (MΦ1 ,MΦ2 ,Mz) on H2

W(D) are
unitarily equivalent, where

Φ1(z) = (P⊥
W1

+ zPW1)U∗, and Φ2(z) = U(PW1 + zP⊥
W1

) (z ∈ D).

Because of this, in what follows, given a BCL pair (V1, V2), we will use the representation
(MΦ1 ,MΦ2) of (V1, V2), which corresponds to the BCL triple (W, U, PW1).

Let (V1, V2) = (MΦ1 ,MΦ2) be a BCL pair on H2
W(D). A simple computation yields

I −MΦ1M
∗
Φ1

= PC ⊗ PW1 ,

and
I −MΦ2M

∗
Φ2

= PC ⊗ UP⊥
W1

U∗.

With respect to the orthogonal decomposition H2
W(D) = W ⊕ zH2

W(D), it also follows that

C(V1, V2) = C(MΦ1 ,MΦ2) =

[
PW1 − UPW1U

∗ 0
0 0

]
.

Consequently
(kerC(V1, V2))

⊥ ⊆ W,

and hence, it suffices to study C(V1, V2) only on W.
At this moment, we need to pause and relook at (2.2), which says that the defect operator of an

isometric pair is a difference of two projections. We also pointed out that the defect operator is a
contraction and a self-adjoint operator. This viewpoint was employed in [HQY15, Theorem 4.3] to
examine the eigenspace structure of defect operators of isometric pairs. With this as motivation, we
now explore the eigenspace structure of compact self-adjoint contractions that can be represented
as a difference of pairs of projections. First, we set up a notation for eigenspace. For each µ ∈ C
and bounded linear operator X on some Hilbert space K, we define the eigenspace

(2.3) Eµ(X) := ker
(
X − µIK

)
.

Suppose A is a self-adjoint contraction acting on a Hilbert space H. Then kerA, E1(A), and E−1(A)
reduce A, and hence there exists a closed A-reducing subspace H0 ⊆ H such that [Hal69]

(2.4) H = kerA⊕ E1(A) ⊕ E−1(A) ⊕H0.

The part A0 := A|H0 is known as the generic part of A (see Halmos [Hal69] for more details). Let
E denote the spectral measure of A. Then

A0 =

∫
σ(A0)

λdEλ,

is the spectral representation of A0. Define closed A0-reducing subspaces K+ and K− by

K+ = E[0, 1]H0,

and
K− = E[−1, 0]H0.

Now, we prove the eigenspace property for A by assuming that it is the difference of two projections.
Although this result is a consequence of [DJS16, Proposition 2.1], we provide a proof here for the sake
of completeness and readers convenience. The spectral theorem of compact self-adjoint operators,
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certain projection methods from [DJS16], and the above-mentioned Halmos constructions provide
the foundation of the proof.

Theorem 2.4. Let A be a compact self-adjoint contraction on a Hilbert space H. Suppose A is the
difference of two projections. If λ ∈ σ(A) \ {0,±1}, then

−λ ∈ σ(A),

and
dimEλ(A) = dimE−λ(A).

Proof. We proceed with the orthogonal decomposition of H, the spectral representation of A, and
the notations K+ and K− introduced prior to stating this theorem. Define the restriction operators{

A0+ = A0|K+

A0− = −A0|K− .

Observe that A0+ and A0− are the positive and negative parts of A0, respectively. We have the
matrix representation

A0 =

[
A0+

−A0−

]
,

on
H0 = K+ ⊕K−.

Suppose further that A is a difference of two projections. By [DJS16, Proposition 2.1] and [DJS16,
Remark 3.1], there is a unitary operator u : K+ → K− such that

A0− = uA0+u
∗.

We also define Hilbert spaces

H+ = kerA⊕ E1(A) ⊕ E−1(A) ⊕K+ ⊕K+,

and
H− = kerA⊕ E1(A) ⊕ E−1(A) ⊕K+ ⊕K−.

Then
U := IkerA ⊕ IE1(A) ⊕ IE−1(A) ⊕ IK+ ⊕ u,

defines a unitary operator U : H+ → H−. Therefore, the operator

Ã := U∗AU : H+ → H+,

admits the following block-diagonal operator matrix representation

(2.5) Ã =


0

I
−I

A0+

−A0+

 .

Since A is compact, it then follows from the spectral theorem for compact self-adjoint operators that
the spectrum

σ(A) ⊆ [−1, 1],

is a countable set, and
σ(A0) = σ(A) ∩ (−1, 1) \ {0}.

From the definitions of K+ and K−, it follows that

K+ =
⊕

λ∈σ(A0)∩(0,1)

Eλ(A0),
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and
K− =

⊕
λ∈σ(A0)∩(−1,0)

Eλ(A0).

Therefore
K+ =

⊕
λ∈σ(A)∩(0,1)

Eλ(A),

and
K− =

⊕
λ∈σ(A)∩(−1,0)

Eλ(A).

Also, it follows from the unitary equivalence of A0+ on K+ and A0− on K− that

σ(A0+) = σ(A0−),

and consequently

σ(A0) = σ(A0|K+) ∪ σ(A0|K−)

= σ(A0+) ∪ σ(−A0−)

= σ(A0+) ∪ −σ(A0−)

= σ(A0+) ∪ −σ(A0+).

We conclude that

(2.6) λ ∈ σ(A0) if and only if − λ ∈ σ(A0).

Moreover, for each λ ∈ σ(A0+), the unitary equivalence of A0+ on K+ and A0− on K− yields

dimEλ(A0+) = dimEλ(A0−).

Therefore, for λ ∈ σ(A0+), we have

dimEλ(A) = dimEλ(A0+)

= dimEλ(A0−)

= dimEλ(−A0|K−)

= dimE−λ(A0|K−)

= dimE−λ(A).

This completes the proof of the theorem. □

Note that using (2.6), we also have that

(2.7) K+ = ⊕
λ∈σ(A)∩(0,1)

Eλ(A)

and

(2.8) K− = ⊕
λ∈σ(A)∩(0,1)

E−λ(A).

Theorem 2.4 significantly unifies a result previously established in [HQY15, Theorem 4.3] within
the framework of isometric pairs. Since we will be needing the particular version of [HQY15, Theorem
4.3], we elaborate on it in full detail. Let (V1, V2) be a BCL pair on H. Assume, in addition, that
C(V1, V2) is a compact operator. Note that C(V1, V2) is a self-adjoint contraction since it is the
difference of two projections (see the remarks following (2.2)). Therefore, as observed earlier

σ(C(V1, V2)) ⊆ [−1, 1].

Recall from (2.3), for a bounded linear operator X on a Hilbert space K, the eigenspace corresponding
to µ ∈ C is denoted by

Eµ(X) := ker
(
X − µIK

)
.
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In the case of our isometric pair (V1, V2), we simplify the notation as

(2.9) Eµ := Eµ(C(V1, V2)) = ker
(
C(V1, V2) − µI

)
.

Set

Λ = σ(C(V1, V2)) ∩ (0, 1).

Note that Λ is at most a countable set. Let λ ∈ (0, 1). By Theorem 2.4, it follows that if λ ∈ Λ,
then −λ ∈ σ(C(V1, V2)), and

dimEλ = dimE−λ.

Since C(V1, V2) is a compact self-adjoint operator, this implies

(2.10) (kerC(V1, V2))
⊥ = E1

⊕
λ∈Λ

Eλ

⊕
E−1

⊕
λ∈Λ

E−λ,

and C(V1, V2)|(kerC(V1,V2))⊥ is unitarily equivalent to the diagonal block matrix:

(2.11) C(V1, V2)|(kerC(V1,V2))⊥
∼=


ICl1 0 0 0

0 D 0 0
0 0 −ICl−1 0
0 0 0 −D

 ,

where l1 = dimE1, l−1 = dimE−1, D =
⊕

λ λICkλ , and

kλ = dimEλ = dimE−λ.

Note that l1, l−1 ∈ Z+. Combining the results mentioned above yields the following, which recovers
[HQY15, Theorem 4.3]. This result will be another important tool for what we do in the next
sections.

Theorem 2.5. Let (V1, V2) be a BCL pair with a compact defect operator. Then for each

λ ∈ σ(C(V1, V2)) \ {0,±1},

we have −λ ∈ σ(C(V1, V2)), and

dimEλ = dimE−λ.

Moreover, the nonzero part of the defect operator C(V1, V2) is unitarily equivalent to a block diagonal
matrix of the form (2.11).

We conclude this section by elucidating the rationale behind the study of BCL pairs among the
set of isometric pairs. In fact, the primary obstacle to the characterization problem of isometric
pairs is the characterization of BCL pairs. For if (V1, V2) is an isometric pair on H, then applying
the von Neumann-Wold theorem to

V := V1V2,

one finds unique orthogonal decomposition (see (1.1))

H = Hu ⊕Hs,

where Hu and Hs are closed V -reducing subspaces, and V |Hu is a unitary, and V |Hs is a shift. One
can easily show that Hu and Hs are (V1, V2)-reducing subspaces [MSS19, Lemma 6.1]. Therefore,
(V1|Hu , V2|Hu) is a commuting pair of unitaries and (V1|Hs , V2|Hs) is a BCL pair. As we have a
fair understanding of pairs of commuting unitaries (like a definite spectral theorem for tuples of
commuting unitaries or even normal operators), it is natural to shift our attention solely to the
category of BCL pairs.
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3. A rank formula

The goal of this section is to link the ranks of defect operators and cross-commutators of isometric
pairs. This result will be extensively used thereafter. The rank result might be interesting by itself.

First, we again consider the problem of representing self-adjoint contractions, which are the differ-
ences of two projections. Recall from the proof of Theorem 2.4 that if A is a self-adjoint contraction
on a Hilbert space H, which is the difference of two projections, then up to unitary equivalence, H
admits the orthogonal decomposition

H = kerA⊕ ker(A− I) ⊕ ker(A + I) ⊕K ⊕K,

for some closed subspace K of H, and with respect to this decomposition of H, A admits the block-
diagonal operator matrix representation (see (2.5))

A =


0

I
−I

D
−D

 ,

where D is a positive contraction on K. In other words, the operator A is an example of an operator
that can be represented as the difference of pairs of projections. Moreover, the pair of projections
can be completely parameterized. More specifically [DJS16, Theorem 3.2]:

Theorem 3.1. With notations as above, the diagonal operator A is a difference of two projections.
Moreover, if A = P − Q for some projections P and Q, then there exist a projection R defined on
kerA and a unitary U on K commuting with D on K such that

P = R⊕ I ⊕ 0 ⊕ PU and Q = R⊕ 0 ⊕ I ⊕QU ,

where PU and QU are projections on K ⊕K defined by

PU =
1

2

[
I + D U(I −D2)

1
2

U∗(I −D2)
1
2 I −D

]
,

and

QU =
1

2

[
I −D U(I −D2)

1
2

U∗(I −D2)
1
2 I + D

]
.

The above result is one of the tools that will be utilized for proving the rank formula. We also
need to compute the ranks of PU and QU that we do in the following lemma. Part of the proof of
the lemma is motivated by [DSPS24, Theorem 3.3].

Lemma 3.2. In the setting of Theorem 3.1, we have the following identity:

rank PU = rank QU = dimK.

Proof. For each x ∈ K, the representations of PU and QU imply

PU (x⊕ 0) =
I + D

2
x⊕ U∗ (I −D2)

1
2

2
x,

and

QU (0 ⊕ x) = U
(I −D2)

1
2

2
x⊕ I + D

2
x.

Note that D is a positive contraction, and hence

x = 0,
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whenever

PU (x⊕ 0) = 0,

or

QU (0 ⊕ x) = 0.

Consequently

PU |K⊕{0} : K ⊕ {0} → K ⊕K,

and

QU |{0}⊕K : {0} ⊕ K → K⊕K,

are injective operators. Therefore, if

dimK = ∞,

we clearly have

rank PU = rank QU = dimK(= ∞).

Now assume that

dimK < ∞.

In this case, D as well as I −D are positive and invertible operators. If x ∈ K, then, as in the first
part of the proof of this lemma, we compute

PU (x⊕ 0) =
I + D

2
x⊕ U∗ (I −D2)

1
2

2
x

= PU

(
0 ⊕ U∗

√
I + D

I −D
x
)
,

and by duality

QU (0 ⊕ x) = U
(I −D2)

1
2

2
x⊕ I + D

2
x

= QU

(
U

√
I + D

I −D
x⊕ 0

)
.

So we find

ranPU = {PU (x⊕ 0) : x ∈ K},
and

ranQU = {QU (0 ⊕ x) : x ∈ K}.
Moreover, the vectors on the right-hand sides of PU (x ⊕ 0) and QU (0 ⊕ x) in the above pair of
equalities readily imply that τ : ranPU → ranQU defined by

τ(PU (x⊕ 0)) = QU (0 ⊕ x) (x ∈ K),

is a linear isomorphism. In particular

rankPU = rankQU .

Also, the map

K ∋ x 7→ PU (x⊕ 0) ∈ ranPU ,

is clearly a linear isomorphism, which yields

dimK = rankPU .

Thus, we have proved that dimK = rankPU = rankQU . This completes the proof of the lemma. □
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Now we return to isometric pairs. Let (V1, V2) be an isometric pair on H. In the upcoming
discussion, we will closely adhere to the strategy laid out in the proof of Theorem 2.4. Additionally,
we will use all the notations that were presented at the outset of Section 2 for isometric pairs. As
an example, recall that W = ker(V1V2)

∗. Let

N = W ⊖
(

kerC(V1, V2)
)⊥

,

and also set

H0 = W ⊖
(
N ⊕ E1 ⊕ E−1

)
.

Therefore

W = N ⊕ E1 ⊕ E−1 ⊕H0.

This decomposition is comparable with (2.4). Therefore, following the discussion preceding Theorem
2.4, we recognize that C(V1, V2)|H0 is the generic part of C(V1, V2), and then we consider the spectral
decomposition of C(V1, V2)|H0 as

C(V1, V2)|H0 =

∫
σ
(
C(V1,V2)|H0

) λdEλ.

Similarly, we also set

K+ = E[0, 1]H0,

and

K− = E[−1, 0]H0.

We take a brief break in order to offer a definition for later usage.

Definition 3.3. Let (V1, V2) be an isometric pair. The positive generic part of (V1, V2) is the closed
subspace K+ defined by

K+ = E[0, 1]H0.

In other words, the generic part of (V1, V2) is the closed subspace corresponding to the positive
part of the generic part of C(V1, V2).

Returning to our setting of isometric pair (V1, V2), we therefore have

(3.1) W = N ⊕ E1 ⊕ E−1 ⊕K+ ⊕K−.

With respect to this decomposition, we represent C(V1, V2)|W as

(3.2) C(V1, V2)|W =


0N

IE1

−IE−1

C(V1, V2)|K+

C(V1, V2)|K−

 .

As C(V1, V2) is a difference of two projections, as in the proof of Theorem 2.4, there is a unitary
u : K+ → K− such that

(3.3) uC(V1, V2)|K+u
∗ = −C(V1, V2)|K− .

Define

(3.4) Ẽ := N ⊕ E1 ⊕ E−1 ⊕K+ ⊕K+.

Consequently, we have the unitary operator (recall the representation of W in (3.1))

(3.5) U := IN ⊕ IE1 ⊕ IE−1 ⊕ IK+ ⊕ u : Ẽ −→ W.

Set

C̃ := U∗C(V1, V2)U : Ẽ → Ẽ .
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With respect to the decomposition of Ẽ as in (3.4), we have

C̃ =


0N

IE1

−IE−1

D
−D


where

D = C(V1, V2)|K+ .

Now, by (2.2), we know that C(V1, V2) can be expressed as a difference of projections:

C(V1, V2) = PW1 − PV2W1 = PW2 − PV1W2 ,

and hence
C̃ = U∗PW1U − U∗PV2W1U = U∗PW2U − U∗PV1W2U.

By the difference of projection formulae, Theorem 3.1, there exist a projection R on N and a unitary
w on K+ that commutes with D such that

(3.6) U∗PW1U = R⊕ IE1 ⊕ 0 ⊕

[
I+D
2

√
I−D2

2 w

w∗
√
I−D2

2
I−D
2

]
,

and

(3.7) U∗PV2W1U = R⊕ 0 ⊕ IE−1 ⊕

[
I−D
2

√
I−D2

2 w

w∗
√
I−D2

2
I+D
2

]
.

Using the definition of the unitary U in (3.5), we also obtain from the above that:

(3.8) PW1 = R⊕ IE1 ⊕ 0 ⊕

[
I+D
2

√
I−D2

2 wu∗

uw∗
√
I−D2

2 u I−D
2 u∗

]
,

and

(3.9) PV2W1 = R⊕ 0 ⊕ IE−1 ⊕

[
I−D
2

√
I−D2

2 wu∗

uw∗
√
I−D2

2 u I+D
2 u∗

]
.

Moreover, since W = W1 ⊕ V1W2, we have that IW = PW1 + PV1W2 , and hence U∗PV1W2U =
IẼ − U∗PW1U . Similarly, U∗PW2U = IẼ − U∗PV2W1U . Therefore, we conclude, by using (3.6) and
(3.7), that

(3.10) U∗PV1W2U = R⊥ ⊕ 0 ⊕ IE−1 ⊕

[
I−D
2 −

√
I−D2

2 w

−w∗
√
I−D2

2
I+D
2

]
,

and

(3.11) U∗PW2U = R⊥ ⊕ IE1 ⊕ 0 ⊕

[
I+D
2 −

√
I−D2

2 w

−w∗
√
I−D2

2
I−D
2

]
.

Remark 3.4. Particular attention must be paid to isometric pairs with compact defect operators, as
they will be utilized frequently in the subsequent sections. Let (V1, V2) be an isometric pair. Suppose
that C(V1, V2) is compact. By (2.7) and (2.8), it follows that

K+ = ⊕
λ∈σ(C(V1,V2))∩(0,1)

Eλ,

and
K− = ⊕

λ∈σ(C(V1,V2))∩(0,1)
E−λ.



COMPACT AND NORMAL ISOMETRIC PAIRS 19

Consequently

D =
⊕

λ∈σ(C(V1,V2))∩(0,1)

λIEλ
.

Moreover, in this case, it is evident from the description of the unitary u : K+ → K− (see (3.3))
that

u(Eλ) = E−λ

for all λ ∈ σ(C(V1, V2)) ∩ (0, 1).

We are now ready to establish the desired relation between the rank of C(V1, V2) and the rank of
the cross-commutator [V ∗

2 , V1] (see (2.9) for the definition of E±1 and Definition 3.3 for the meaning
of K+).

Theorem 3.5. If (V1, V2) is an isometric pair, then

rankC(V1, V2) = rank[V ∗
2 , V1] + dimE1 + dimK+,

where K+ ⊆ H is the positive generic part of (V1, V2). If, in addition

dimE−1 < ∞,

then

rankC(V1, V2) = 2rank[V ∗
2 , V1] + dimE1 − dimE−1.

Proof. Observe that

[V ∗
2 , V1]V1V2 = V ∗

2 V1V1V2 − V1V
∗
2 V2V1

= 0,

and similarly

V ∗
1 V

∗
2 [V ∗

2 , V1] = 0.

Since V = V1V2, we conclude that

[V ∗
2 , V1] = 0 on ranV,

and

ran[V ∗
2 , V1] ⊆ W.

Since (ranV )⊥ = W, it follows that

rank[V ∗
2 , V1] = rank[V ∗

2 , V1]
∣∣
W .

By Theorem 2.3, W = W2 ⊕ V2W1, and hence

ran
(

[V ∗
2 , V1]

∣∣
W

)
= [V ∗

2 , V1](W)

= [V ∗
2 , V1](W2 ⊕ V2W1)

= V ∗
2 V1(W2)

= ran
(
V ∗
2 PV1W2

)
,

so that

rank
(

[V ∗
2 , V1]

∣∣
W

)
= rank

(
V ∗
2 PV1W2

)
.

Since V2 is an isometry, it is clear that

rank
(
V ∗
2 PV1W2

)
= rank

(
V2V

∗
2 PV1W2

)
= rank

(
PranV2PV1W2

)
.
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Again, by Theorem 2.3, we know that W = W2 ⊕ V2W1, and hence

V2V
∗
2 W = V2V

∗
2 (W2 ⊕ V2W1)

= V2W1,

so that
rank(V ∗

2 PV1W2) = rank(PV2W1PV1W2).

On one hand, by (3.7) and (3.10), we have(
U∗PV2W1U

)(
U∗PV1W2U

)
=

(
R⊕ 0 ⊕ IE−1 ⊕

[
I−D
2

√
I−D2

2 w

w∗
√
I−D2

2
I+D
2

])
×
(
R⊥ ⊕ 0 ⊕ IE−1 ⊕

[
I−D
2 −

√
I−D2

2 w

−w∗
√
I−D2

2
I+D
2

])
= 0 ⊕ 0 ⊕ IE−1 ⊕

[
D 0
0 D

] [
−I 0
0 I

]
×

[
I−D
2 −

√
I−D2

2 w

−w∗
√
I−D2

2
I+D
2

]
.

Since D is injective, it follows that

rank
((

U∗PV2W1U
)(
U∗PV1W2U

))
= dimE−1 + rank

[
I−D
2 −

√
I−D2

2 w

−w∗
√
I−D2

2
I+D
2

]
.

On the other hand, we know that C̃ = U∗PW2U − U∗PV1W2U . Then (3.10) and (3.11) yield

C̃ =
(
R⊥ ⊕ IE1 ⊕ 0 ⊕

[
I+D
2 −

√
I−D2

2 w

−w∗
√
I−D2

2
I−D
2

])
−
(
R⊥ ⊕ 0 ⊕ IE−1 ⊕

[
I−D
2 −

√
I−D2

2 w

−w∗
√
I−D2

2
I+D
2

])
.

This leads us to the setting of Theorem 3.1, and hence by Lemma 3.2, we conclude

dimK+ = rank

[
I−D
2 −

√
I−D2

2 w

−w∗
√
I−D2

2
I+D
2

]
.

Therefore

rank[V ∗
2 , V1] = rank

(
PV2W1PV1W2

)
= rank

((
U∗PV2W1U

)(
U∗PV1W2U

))
= dimE−1 + dimK+,

and hence

(3.12) rank[V ∗
2 , V1] = dimE−1 + dimK+.

Since C(V1, V2)|K+ and C(V1, V2)|K− are injective, in view of the representation of C(V1, V2) as in
(3.2), we have

rankC(V1, V2) = dimE1 + dimE−1 + dimK+ + dimK−.

As K+ and K− are unitarily equivalent (see the remark preceding (3.3)), we have

dimK+ = dimK−,

and hence

(3.13) rankC(V1, V2) = dimE1 + dimE−1 + 2 dimK+.
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It now follows immediately from (3.12) that

rankC(V1, V2) = rank[V ∗
2 , V1] + dimE1 + dimK+.

This completes the proof of the first part of the theorem. Suppose further that

dimE−1 < ∞.

From (3.12), it follows that

2rank[V ∗
2 , V1] = 2 dimE−1 + 2 dimK+,

and hence
2rank[V ∗

2 , V1] − dimE−1 = dimE−1 + 2 dimK+.

Finally, it follows from (3.13) that, by substituting the value of dimE−1 + 2 dimK+ obtained above

rankC(V1, V2) = 2rank[V ∗
2 , V1] + dimE1 − dimE−1.

This completes the proof of the theorem. □

From the spectral theorem for compact self-adjoint operators and the second part of the preceding
theorem, it follows immediately that:

Corollary 3.6. Let (V1, V2) be an isometric pair such that C(V1, V2) is compact. Then

rankC(V1, V2) = 2rank[V ∗
2 , V1] + dimE1 − dimE−1.

We will apply this particular version of the rank formula in the upcoming analysis. As an imme-
diate consequence of the above theorem, we also obtain that:

Corollary 3.7. Let (V1, V2) be an isometric pair such that

dimE1(C(V1, V2)) < ∞.

Assume that [V ∗
2 , V1] is a finite-rank operator. Then C(V1, V2) is a finite-rank operator.

Proof. Since rank[V ∗
2 , V1] < ∞, it follows from (3.12) that

dimE−1, dimK+ < ∞.

Moreover, since, by assumption, dimE1 < ∞, it follows from Theorem 3.5 that

rankC(V1, V2) = rank[V ∗
2 , V1] + dimE1 + dimK+ < ∞,

which completes the proof of the corollary. □

We conclude the section with a dimension formula that is of independent interest.

Proposition 3.8. Let (V1, V2) be an isometric pair. Suppose(
kerC(V1, V2)

)⊥
= W.

Then

dimW1 = dimW2

where Wi = kerV ∗
i for i = 1, 2. In particular, if W is finite-dimensional, then dimW is even.

Proof. As
(

kerC(V1, V2)
)⊥

= W, we have that N = W ⊖
(

kerC(V1, V2)
)⊥

= 0, and consequently,
by (3.6) and (3.11), it follows that

U∗PW2U = IE1 ⊕ 0 ⊕

[
I+D
2 −

√
I−D2

2 w

−w∗
√
I−D2

2
I−D
2

]
,

and

U∗PW1U = IE1 ⊕ 0 ⊕

[
I+D
2

√
I−D2

2 w

w∗
√
I−D2

2
I−D
2

]
,
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where w is a unitary on K+ that commutes with D. By Lemma 3.2, we have

dimK+ = rank

[
I+D
2

√
I−D2

2 w

w∗
√
I−D2

2
I−D
2

]

= rank

[
I+D
2 −

√
I−D2

2 w

−w∗
√
I−D2

2
I−D
2

]
,

and hence

dimW1 = rank(U∗PW1U)

= dimE1 + dimK+

= rank(U∗PW2U)

= dimW2.

In particular, if dimW < ∞, then

dimW = dimW1 + dimW2

= 2 × dimW1

= 2 × dimW2,

which completes the proof of the proposition. □

The challenge of formulating rank identities for invariant subspaces is well recognized as a com-
plex and difficult field of study. It not only reveals the structure of invariant subspaces but also
entails identities involving numbers. We anticipate that the rank formula established in Theorem 3.5
possesses inherent value and will be applicable in various different contexts. For instance, consider
a closed invariant subspace M of H2(D2) (see (1.4)). As in (1.7), define the restriction operators

Rz = Mz|M and Rw = Mw|M.

Clearly, (Rz, Rw) is an isometric pair on M. Moreover

RzRw = MzMw|M,

and hence (Rz, Rw) is a BCL pair on M. Consequently, Theorem 3.5 applies to M and hence
invariant subspaces of H2(D2). In the present context, the rank formula in Theorem 3.5 should be
compared with the rank formula of Yang [Yang05, Theorem 2.7].

In the literature, there appear to be very intricate rank formulae for Hilbert-Schmidt invariant
(as well as co-invariant) subspaces of H2(D2) (see [CDS14] and references therein).

4. On 3-finite pairs

The purpose of this section is to isolate key properties of irreducible 3-finite pairs. Some of
the results do not require all the assumptions of 3-finite pairs, and we will point out the needed
properties for such results. For the convenience of the subsequent discussion, we shall include an
additional stratum of notation: Given a separable Hilbert space H, denote by BH the set of all
ordered orthonormal bases of H. That is

BH = {{ej : j ∈ Λ} : {ej : j ∈ Λ} is an orthonormal basis of H},

where Λ denotes a countable set. Let (V1, V2) be an isometric pair. For the reader’s convenience, we
recall that V = V1V2, and

W = kerV ∗ and Wi = kerV ∗
i ,

for i = 1, 2. Recall also that

Eλ := {f ∈ H : C(V1, V2)f = λf},
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for all λ ∈ C (see (2.9)). We begin with a useful property of BCL pairs, stated in the following
well-known lemma (see, for instance, [HQY15, Proposition 4.1] for a proof).

Lemma 4.1. Let (V1, V2) be a BCL pair. Then

W1 ∩W2 = E1.

The following lemma, in particular, shows that the range of [V ∗
2 , V1] is contained in W1 ∩ W2

whenever [V ∗
2 , V1] is normal.

Lemma 4.2. Let (V1, V2) be a BCL pair. If [V ∗
2 , V1] is normal, then

ran [V ∗
2 , V1] = ran [V ∗

1 , V2] ⊆ E1,

and

[V ∗
2 , V1]|E⊥

1
= [V ∗

1 , V2]|E⊥
1

= 0.

Proof. The normality of [V ∗
2 , V1] yields

ran[V ∗
2 , V1] = ran[V ∗

2 , V1]
∗ = ran[V ∗

1 , V2].

Observe that

V ∗
2 (V ∗

1 V2 − V2V
∗
1 ) = 0 = V ∗

1 (V ∗
2 V1 − V1V

∗
2 ),

that is

V ∗
2 [V ∗

1 , V2] = 0 = V ∗
1 [V ∗

2 , V1].

Clearly ran[V ∗
2 , V1] ⊆ W1 and ran[V ∗

1 , V2] ⊆ W2, and hence, by Lemma 4.1, we conclude that

ran[V ∗
2 , V1] = ran[V ∗

1 , V2] ⊆ W1 ∩W2 = E1.

For the second assertion, suppose g ∈ E⊥
1 and set

h = [V ∗
2 , V1]g.

Note that

||h||2 = ⟨[V ∗
1 , V2][V

∗
2 , V1]g, g⟩.

But by the first assertion of this lemma, it is clear that

[V ∗
1 , V2][V

∗
2 , V1]g ∈ E1,

and consequently, ||h||2 = 0, that is, h = 0. This completes the proof of the lemma. □

From now on, throughout the section, we will deal with irreducible 3-finite pairs (see Definition
1.6 for irreducible pairs).

Proposition 4.3. Let (V1, V2) be an irreducible 3-finite pair. Then

dimE1 = 1 and dimE−1 = 0.

Proof. By virtue of Lemmas 4.1 and 4.2, we already know that

ran[V ∗
2 , V1] = ran[V ∗

1 , V2] ⊆ W1 ∩W2 = E1,

and

[V ∗
2 , V1]|E⊥

1
= [V ∗

2 , V1]
∗|E⊥

1
= 0.

In particular, [V ∗
2 , V1]|E1 is a normal operator on E1. If possible, let

dimE1 > 1,

and let {f, g} be an orthonormal set in E1 consisting of eigen vectors of the normal operator
[V ∗

2 , V1]|E1 . Set

S = span{V m
1 V n

2 f : m,n ≥ 0}.
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We claim that S reduces (V1, V2). This would contradict the fact that (V1, V2) is irreducible. Clearly,
S is invariant under V1 and V2. Therefore, to prove the claim, it suffices to show that

V ∗
1 V

n
2 f, V ∗

2 V
n
1 f ∈ S,

for all n ≥ 1. We only prove that V ∗
2 V

n
1 f ∈ S for all n ≥ 1 (the proof of the remaining case is

similar). We prove this by induction. For n = 1, since f ∈ W1 ∩ W2 and f is an eigen vector of
[V ∗

2 , V1], it follows that

V ∗
2 V1f = [V ∗

2 , V1]f = αf,

for some scalar α, and hence V ∗
2 V1f ∈ S. Thus, the result is true for n = 1. Now, suppose that the

result is true for m ≥ 1, that is, V ∗
2 V

m
1 f ∈ S. Write

V ∗
2 V

m+1
1 f = [V ∗

2 , V1]V
m
1 f + V1V

∗
2 V

m
1 f.

Since m ≥ 1, it is clear, in particular, that V m
1 f ∈ (W1 ∩W2)

⊥. Note that Lemma 4.2 also implies
that

[V ∗
2 , V1]|(W1∩W2)⊥ = 0.

Therefore, [V ∗
2 , V1]V

m
1 f = 0, and hence

(4.1) V ∗
2 V

m+1
1 f = V1V

∗
2 V

m
1 f.

Since S is invariant under V1, and by the induction hypothesis V ∗
2 V

m
1 f ∈ S, it follows that

V1V
∗
2 V

m
1 f ∈ S,

that is,

V ∗
2 V

m+1
1 f ∈ S.

Thus, the result is true for n = m + 1. Hence, by the principle of mathematical induction, the
result is true for all n ≥ 1. This proves the claim and then the fact that dimE1 ≤ 1. Since
rankC(V1, V2) = 3, the desired equality dimE1 = 1 follows immediately by an appeal to Lemma 4.2
and the rank formula in Corollary 3.6.
Now we prove that dimE−1 = 0. Since dimE1 = 1 and ran[V ∗

2 , V1] ⊆ E1, it follows that

rank[V ∗
2 , V1] ≤ 1.

As rankC(V1, V2) = 3, it follows by the rank formula in Corollary 3.6 that

3 = rankC(V1, V2)

= 2rank[V ∗
2 , V1] + dimE1 − E−1

≤ 2 + 1 − dimE−1

= 3 − dimE−1.

This proves that dimE−1 = 0. □

The following observation is now straight:

Corollary 4.4. Let (V1, V2) be an irreducible 3-finite pair. Then

rank[V ∗
2 , V1] = 1.

In particular, ran[V ∗
2 , V1] = E1.

We continue with an irreducible 3-finite pair (V1, V2). Recall that the symbol ∼= stands for unitary
equivalance of operators.
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Proposition 4.5. Let (V1, V2) be an irreducible 3-finite pair. Then there is a unique λ(V1,V2) ∈ (0, 1)
such that

σ(C(V1, V2)) ∩ (0, 1) = {λ(V1,V2)}.
Moreover

C(V1, V2)|(kerC(V1,V2))⊥
∼= Dλ(V1,V2)

,

where Dλ(V1,V2)
is the diagonal matrix

Dλ(V1,V2)
=

1
λ(V1,V2)

−λ(V1,V2)

 .

Proof. By Proposition 4.3, we know that dimE1 = 1,dimE−1 = 0. Since rankC(V1, V2) = 3, it is
evident from Theorem 2.5 that there exists λ(V1,V2) ∈ (0, 1) such that

σ(C(V1, V2)) ∩ (0, 1) = {λ(V1,V2)},
and C(V1, V2)|(kerC(V1,V2))⊥ is unitarily equivalent to Dλ(V1,V2)

. □

Let (V1, V2) be an irreducible 3-finite pair. Then

ker(C(V1, V2))
⊥ = E1 ⊕ Eλ(V1,V2)

⊕ E−λ(V1,V2)
,

where σ(C(V1, V2)) ∩ (0, 1) = {λ(V1,V2)}. As usual, we set

N = W ⊖ ker(C(V1, V2))
⊥.

Then
W = E1 ⊕ Eλ(V1,V2)

⊕ E−λ(V1,V2)
⊕N ,

and with respect to this decomposition, we have

C(V1, V2)|W = PW1 − PV2W1 =


1

λ(V1,V2)

−λ(V1,V2)

0N

 .

On the other hand, since [V ∗
2 , V1] is normal, and by Corollary 4.4, rank[V ∗

2 , V1] = 1 with ran[V ∗
2 , V1] =

E1, there exist a nonzero scalar β(V1,V2) such that

σ([V ∗
2 , V1]) \ {0} = {β(V1,V2)},

and
[V ∗

2 , V1]f = β(V1,V2)f (f ∈ E1).

Fix a unit vector f(V1,V2) ∈ E1. Clearly

{f(V1,V2)} ∈ BE1 .

Thus, in summary, we have the following:
σ(C(V1, V2)) ∩ (0, 1) = {λ(V1,V2)}
σ([V ∗

2 , V1]) \ {0} = {β(V1,V2)}
{f(V1,V2)} ∈ BE1 .

At this juncture, we standardize some notation that will be used throughout the rest of the paper.
Given an irreducible 3-finite pair (V1, V2), we set

(4.2)


β(V1,V2) = unique nonzero eigenvalue of [V ∗

2 , V1]

λ(V1,V2) = unique eigenvalue of C(V1, V2) in (0, 1)

f(V1,V2) = a unit vector in E1.
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Furthermore, for notational convenience, if the pair (V1, V2) is clear from the context, then we simply
write

(4.3) λ = λ(V1,V2), β = β(V1,V2), and f = f(V1,V2).

Also, for any g, h in H, we denote by g ⊗ h the rank one operator on H where

(g ⊗ h)(k) = ⟨k, h⟩g (k ∈ H).

Thus, in the case of the present scenario, we can write

[V ∗
2 , V1] = βf ⊗ f,

and hence

(4.4) [V ∗
1 , V2] = β̄f ⊗ f.

Thus, we have

[V ∗
2 , V1]f = V ∗

2 V1f = βf,

and

[V ∗
1 , V2]f = V ∗

1 V2f = β̄f.

Therefore

(4.5)

{
V ∗
2 V1f = βf

V ∗
1 V2f = β̄f.

Since f ∈ W1 ∩W2, it follows that C(V1, V2)f = f , and hence,

{f, eλ, e−λ} ∈ BE1⊕Eλ⊕E−λ
,

where

{eλ} ∈ BEλ
and {e−λ} ∈ BE−λ

.

Set

Eλ = Eλ ⊕ E−λ.

Now we follow the construction as given in Section 3. By applying Remark 3.4, in this particular
situation, we find

K± = E±λ,

and

D = λIEλ
.

Therefore, following the representation of W as in (3.1), we have

W = E1 ⊕ Eλ ⊕N ,

and so, by (3.8) and (3.9), it follows that

PW1 = IE1 ⊕

[
I+D
2

√
I−D2

2 wu∗

uw∗
√
I−D2

2 u I−D
2 u∗

]
⊕Q,

and

PV2W1 = 0 ⊕

[
I−D
2

√
I−D2

2 wu∗

uw∗
√
I−D2

2 u I+D
2 u∗

]
⊕Q,

where u : Eλ → E−λ and w : Eλ → Eλ are unitary operators, and Q : N → N is a projection.
Consequently

wu∗ : E−λ → Eλ,

is a unitary, and so, there exists a unimodular constant α such that

wu∗(e−λ) = αeλ.
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Define

Qλ =

[
I+D
2

√
I−D2

2 wu∗

uw∗
√
I−D2

2 u I−D
2 u∗

]
,

and

Q̃λ =

[
I−D
2

√
I−D2

2 wu∗

uw∗
√
I−D2

2 u I+D
2 u∗

]
.

Therefore, Qλ and Q̃λ are projections defined on Eλ. The matrix representations of Qλ and Q̃λ with
respect to

{eλ, e−λ} ∈ BEλ ,

are given by

Qλ =
1

2

[
1 + λ α(1 − λ2)

1
2

ᾱ(1 − λ2)
1
2 1 − λ

]
,

and

Q̃λ =
1

2

[
1 − λ α(1 − λ2)

1
2

ᾱ(1 − λ2)
1
2 1 + λ

]
.

Thus, with respect to the decomposition W = E1 ⊕ Eλ ⊕N , we have

(4.6) PW1 =

IE1

Qλ

Q

 and PV2W1 =

0

Q̃λ

Q

 ,

where Qλ and Q̃λ are given as above. As

W = W1 ⊕ V1W2 = W2 ⊕ V2W1,

it follows that PW2 = IW − PV2W1 and PV1W2 = IW − PW1 , and hence,

(4.7) PW2 =

IE1

Q̃⊥
λ

Q⊥

 and PV1W2 =

0
Q⊥

λ

Q⊥

 .

Finally, to find a suitable orthonormal basis of Eλ, we define

(4.8) f1 =

√
1 + λ

2
eλ + ᾱ

√
1 − λ

2
e−λ and f4 =

√
1 + λ

2
eλ − ᾱ

√
1 − λ

2
e−λ,

and

f2 =
f1 − λf4√

1 − λ2
and f3 =

f4 − λf1√
1 − λ2

.

Then, as easy computation reveals that

(4.9)

 f2 =
√

1−λ
2 eλ + ᾱ

√
1+λ
2 e−λ

f3 =
√

1−λ
2 eλ − ᾱ

√
1+λ
2 e−λ.

At this point, we recall the following useful result concerning the orthonormal basis of the range
of projections of our interest (see [DSPS24, Lemma 3.2]):

Lemma 4.6. Let H and K be Hilbert spaces, U : H → K a unitary operator, and let λ ∈ [−1, 1].
Define the projection P : H⊕K → H⊕K by

P =

[
1+λ
2 IH

√
1−λ2

2 U∗
√
1−λ2

2 U 1−λ
2 IK

]
.
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If {ei : i ∈ Λ} ∈ BH, then
{√

1+λ
2 ei ⊕

√
1−λ
2 Uei : i ∈ Λ

}
∈ BranP .

Returning to our setting, in particular, we have the following:

Corollary 4.7. Let {fi}4i=1 be as in (4.8) and (4.9). Then

ranQλ = Cf1, ranQ̃λ = Cf2, ranQ⊥
λ = Cf3, and ranQ̃⊥

λ = Cf4.
In particular

{f1, f3}, {f2, f4} ∈ BEλ .

By Theorem 2.3, we know that (W, U, PW1) is a BCL triple associated to (V1, V2), where the
unitary U on W is given by

(4.10) U =

[
V2|W1

V ∗
1 |V1W2

]
: W1 ⊕ V1W2 → V2W1 ⊕W2.

Our goal is now to reveal the action of U on a basis of W. We need some preparatory calculations.
It follows immediately from the representations of PWi and PVjWi , i ̸= j, i, j = 1, 2 (see (4.6) and
(4.7)) that

W1 = E1 ⊕ ranQλ ⊕ ranQ, V2W1 = ranQ̃λ ⊕ ranQ,

and
W2 = E1 ⊕ ranQ̃⊥

λ ⊕ ranQ⊥, V1W2 = ranQ⊥
λ ⊕ ranQ⊥.

Consequently, by Corollary 4.7, we have

(4.11)

W1 = E1 ⊕ Cf1 ⊕ ranQ,

V2W1 = Cf2 ⊕ ranQ,

W2 = E1 ⊕ Cf4 ⊕ ranQ⊥,

V1W2 = Cf3 ⊕ ranQ⊥.

Now we are ready to explore the action of the unitary U on W.

Lemma 4.8. Let (V1, V2) be an irreducible 3-finite pair. With notations as above, we have the
following:

(a) Uf3 ∈ Cf ,
(b) Uf ∈ Cf2,
(c) Uf1 ∈ ranQ,
(d) U∗f4 ∈ ranQ⊥,
(e) U∗(ranQ⊥) ⊂ ranQ⊥, and U

(
ranQ

)
⊂ ranQ.

Proof. First, we prove part (a). Since f ∈ W1, it follows that

Uf = V2f ∈ V2W1.

By (4.11), we know that V2W1 = Cf2 ⊕ ranQ, and hence, there exists g ∈ ranQ such that

V2f = ⟨V2f, f2⟩f2 + g.

As ranQ ⊂ W1, applying V ∗
1 to both sides of the preceding equation and then using (4.5), we see

that
β̄f = ⟨V2f, f2⟩V ∗

1 f2.

Now we compute V ∗
1 f2. By Corollary 4.7, we know that {f1, f3} ∈ BEλ . As f2 ∈ Eλ(= Eλ ⊕ E−λ),

we have
f2 = ⟨f2, f1⟩f1 + ⟨f2, f3⟩f3.

By (4.11), we know that f1 ∈ W1. Applying V ∗
1 to both sides of the preceding identity we obtain

that
V ∗
1 f2 = ⟨f2, f3⟩V ∗

1 f3.
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Since f3 ∈ V1W2 (see (4.11)), the definition of U as given by (4.10) yields

V ∗
1 f2 = ⟨f2, f3⟩Uf3,

and hence

β̄f = ⟨V2f, f2⟩⟨f2, f3⟩Uf3.

It is clear from (4.9) and the fact that α is a unimodular constant that ⟨f2, f3⟩ = −λ. Finally, by
the definition of U , it follows that V2f = Uf and hence

Uf3 = − β̄

λ⟨Uf, f2⟩
f.

For (b), we observe, similarly, that U∗f = V1f ∈ V1W2. By (4.11), we know that

V1W2 = Cf3 ⊕ ranQ⊥,

and hence, there exists h ∈ ranQ⊥ such that

V1f = ⟨V1f, f3⟩f3 + h.

Now we follow the steps in (a) precisely to conclude that

(4.12) U∗f2 = − β

λ⟨U∗f, f3⟩
f.

Next, we proceed to prove (c). As E1(= Cf) and ranQλ(= Cf1) are orthogonal, we have that
⟨f, f1⟩ = 0. Therefore

⟨Uf,Uf1⟩ = 0.

Since Uf ∈ Cf2 (see part (b)), it follows that ⟨Uf1, f2⟩ = 0. As f1 ∈ W1, (4.10) together with (4.11)
imply

Uf1 ∈ V2W1 = Cf2 ⊕ ranQ.

Therefore, ⟨Uf1, f2⟩ = 0 implies that Uf1 ∈ ranQ. Since the proof of (d) is analogous to that of (c),
the specifics are omitted. Finally, we turn to (e). Clearly (4.11) implies E1(= Cf) and ranQ⊥ are
orthogonal subspaces of W2. Consequently

U∗f ⊥ U∗(ranQ⊥).

By part (a), U∗f ∈ Cf3 and hence

f3 ⊥ U∗(ranQ⊥).

The definition of U as in (4.10) together with (4.11) yield that

U∗(ranQ⊥) ⊆ U∗W2 = V1W2 = Cf3 ⊕ ranQ⊥,

and consequently, U∗(ran Q⊥) ⊆ ranQ⊥. The proof of U(ran Q) ⊆ ranQ is similar. □

The following theorem provides a summary of the major findings concerning irreducible 3-finite
pairs of isometries so far. The final claim is an addition that states that the absolute value of the
nonzero eigenvalue of the cross-commutator is same as the second largest eigenvalue of the defect
operator.

Theorem 4.9. Let (V1, V2) be an irreducible 3-finite pair of isometries. Then

(1) rank[V ∗
2 , V1] = 1 and ran[V ∗

2 , V1] = E1.
(2) E−1 = {0}.
(3) There exist unique β(V1,V2) ∈ C \ {0} and a unit vector f(V1,V2) ∈ E1 such that

E1 = Cf(V1,V2),

and

[V ∗
2 , V1]f(V1,V2) = β(V1,V2)f(V1,V2).
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(4) There is a unique λ(V1,V2) ∈ (0, 1) such that

σ(C(V1, V2)) ∩ (0, 1) = {λ(V1,V2)},
and

C(V1, V2)|(kerC(V1,V2))⊥
∼=

1
λ(V1,V2)

−λ(V1,V2)

 .

(5) |β(V1,V2)| = λ(V1,V2).

Proof. We only need to prove (5). Keeping the foregoing notational convention, we use λ, β, and
f for λ(V1,V2), β(V1,V2), and f(V1,V2) respectively. It follows from (4.5) that

V ∗
2 V1f = βf.

Since f is a unit vector in E1, we have

β = ⟨βf, f⟩
= ⟨V ∗

2 V1f, f⟩
= ⟨U∗f, Uf⟩,

where the last equality follows from the definition of U . By parts (a) and (b) of Lemma 4.8, we then
have

β =
〈
⟨U∗f, f3⟩f3, ⟨Uf, f2⟩f2

〉
= −⟨U∗f, f3⟩⟨f2, Uf⟩λ,

as ⟨f3, f2⟩ = −λ. The result now follows from the fact that ⟨U∗f, f3⟩ and ⟨f2, Uf⟩ are unimodular
constants. □

We record the following particular but useful fact for convenient future retrieval:

(4.13) ran[V ∗
2 , V1] = E1 = Cf(V1,V2) = W1 ∩W2,

where E1 = ker(C(V1, V2) − IH). The final equality is a consequence of Lemma 4.1.

5. Classification of 3-finite pairs

The purpose of this section is to present a complete classification of irreducible 3-finite pairs in
terms of computable unitary invariants. The structural results of the preceding section will be used
thoroughly. Therefore, we continue with (V1, V2), an irreducible 3-finite pair on H. We adhere to
the notational convention established in Section 4 (more specifically, see (4.2) and (4.3)):

β = β(V1,V2) = unique nonzero eigenvalue of [V ∗
2 , V1],

λ = λ(V1,V2) = unique eigenvalue of C(V1, V2) in (0, 1),

f = f(V1,V2) = a unit vector in E1.

Recall that the unitary U of the corresponding BCL triple (W, U, PW1) is given by (see Theorem 2.3
or (4.10))

U =

[
V2|W1

V ∗
1 |V1W2

]
: W1 ⊕ V1W2 → V2W1 ⊕W2.

Also recall from Theorem 4.9 (or see (4.13)) that

ran[V ∗
2 , V1] = E1 = Cf = W1 ∩W2,

and [V ∗
2 , V1]f = βf . For all i = 1, 2, 3, 4, set

(5.1) gi =
1

⟨f3, U∗f⟩
fi.
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By (4.12) and the fact ⟨f3, U∗f⟩ is a unimodular constant, we have

(5.2) ⟨U∗f, g3⟩ = 1 and ⟨U∗g2, f⟩ = −β

λ
.

By Corollary 4.7, we also have
{g1, g3}, {g2, g4} ∈ BEλ .

Further, it follows from Lemma 4.8 that

Umf1 ∈ ranQ,

and
U∗mf4 ∈ ranQ⊥,

for all m ≥ 1. Set

W̃ = span{f, Umf1, U
∗mf4 : m ≥ 0}.

We show that:

Lemma 5.1. W̃ reduces (U,PW1).

Proof. Clearly, f, f1, f4 ∈ W̃. Recall that {e±λ} ∈ BEλ⊕E−λ
, and then (4.8) implies

f1 ± f4 = a scalar multiple of e±λ,

and consequently
Eλ ⊕ E−λ = span{f1 ± f4}.

Thus
E1 ⊕ Eλ ⊕ E−λ ⊂ W̃.

First, we claim that W̃ reduces U . We know by Lemma 4.8 that Uf ∈ span{f2} and U∗f ∈
span{f3}, and hence, by Corollary 4.7 we conclude that

Uf,U∗f ∈ Eλ ⊕ E−λ.

Therefore, Uf,U∗f ∈ W̃. It just remains to show that U∗f1, Uf4 ∈ W̃. To this end, observe that
Corollary 4.7 implies

f1 ∈ ranQλ ⊂ Eλ ⊕ E−λ = span{f2, f4},
and consequently, it follows from Lemma 4.8 that

U∗f1 ∈ span{U∗f2, U
∗f4} = span{f, U∗f4} ⊂ W̃.

Similarly, by Corollary 4.7, we have

f4 ∈ Eλ ⊕ E−λ = span{f1, f3}.
By Lemma 4.8, we have

Uf4 ∈ span{Uf1, Uf3} = span{Uf1, f} ⊂ W̃.

We have thus proved that W̃ reduces U .

We now show that W̃ reduces PW1 . As f ∈ W1, we have PW1(f) = f . One easily observes from
(4.11) and Lemma 4.8 that

Umf1 ∈ W1,

and hence,
PW1(Umf1) = Umf1,

for all m ≥ 0. By (4.11) and Lemma 4.8

U∗mf4 ∈ ranQ⊥ ⊆ V1W2,

and consequently
PW1(U∗mf4) = 0,
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for all m ≥ 1. Finally, since

f4 ∈ Eλ ⊕ E−λ = span{f1, f3},
and f3 ∈ V1W2 (by Equation (4.11)), we have that

PW1f3 = 0,

and therefore

PW1f4 ∈ Cf1 ⊂ W̃.

This shows that W̃ reduces PW1 . □

Note that a BCL pair (V1, V2) on H is irreducible if and only if (U,PW1) is irreducible [DSPS24,
Corollary 2.2]. From the above lemma, we obtain:

Corollary 5.2. {f, f1, f3, Umf1, U
∗mf4 : m ≥ 1} ∈ BW .

Proof. As (V1, V2) is irreducible, there is no non-trivial closed (U,PW1)-reducing subspace of W and
hence, it follows immediately from the above lemma that

W̃ = W.

Since f ∈ E1, and

span{f1, f4} = Eλ ⊕ E−λ = span{f1, f3},
and Umf1 ∈ ranQ, U∗mf4 ∈ ranQ⊥ for all m ≥ 1, it follows that {f, f1, f3, Umf1, U

∗mf4 : m ≥ 1} is
an orthonormal basis for W. □

We are now ready to prove the main result of this section, which serves as a foundational com-
ponent of the article’s overall contribution. Recall (see Theorem 4.9) again that for an irreducible
3-finite pair (V1, V2),

β(V1,V2) = unique nonzero eigenvalue of [V ∗
2 , V1].

Theorem 5.3. Let (V1, V2) on H and (Ṽ1, Ṽ2) on H̃ be irreducible 3-finite pairs. Then (V1, V2) and

(Ṽ1, Ṽ2) are jointly unitarily equivalent if and only if

β(V1,V2) = β(Ṽ1,Ṽ2)
.

Proof. If (V1, V2) and (Ṽ1, Ṽ2) are unitarily equivalent, then clearly β(V1,V2) = β(Ṽ1,Ṽ2)
. For the

non-trivial direction, assume that

β := β(V1,V2) = β(Ṽ1,Ṽ2)
.

As usual, we define

W = ker(V1V2)
∗, Wi = kerV ∗

i ,

and

W̃ = ker(Ṽ1Ṽ2)
∗, W̃i = ker Ṽ ∗

i ,

for all i = 1, 2. Define

λ := |β|.
By Theorem 4.9, we have

σ(C(V1, V2)) ∩ (0, 1) = σ(C(Ṽ1, Ṽ2)) ∩ (0, 1) = {λ}.

In view of Theorem 2.3, we consider the BCL triples (W, U, PW1) and (W̃, Ũ , PW̃1
), where U is the

unitary on W given by

U =

[
V2|W1

V ∗
1 |V1W2

]
: W1 ⊕ V1W2 → V2W1 ⊕W2,
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and Ũ is the unitary on W̃ given by

Ũ =

[
Ṽ2|W̃1

Ṽ ∗
1 |Ṽ1W̃2

]
: W̃1 ⊕ Ṽ1W̃2 → Ṽ2W̃1 ⊕ W̃2.

It suffices to show that the triples (W, U, PW1) and (W̃, Ũ , PW̃1
) are unitarily equivalent, that is, we

claim that there is a unitary Π : W → W̃ such that

ΠUΠ−1 = Ũ and ΠPW1Π−1 = PW̃1
.

We recall that Eµ := ker(C(V1, V2) − µIH) for a scalar µ (see (2.9)). Set

Ẽµ = ker(C(Ṽ1, Ṽ2) − µIH̃).

We know (see (4.13) or Theorem 4.9) that

ran[V ∗
2 , V1] = E1 = Cf(V1,V2) = W1 ∩W2,

and
ran[Ṽ ∗

2 , Ṽ1] = Ẽ1 = Cf(Ṽ1,Ṽ2)
= W̃1 ∩ W̃2.

As in the construction of Section 4, suppose

{e±λ} ∈ BEλ⊕E−λ
and {ẽ±λ} ∈ BẼλ⊕Ẽ−λ

.

Also, as in Corollary 4.7 (or see (4.8) and (4.9)), define

f1 =

√
1 + λ

2
eλ + ᾱ

√
1 − λ

2
e−λ, f4 =

√
1 + λ

2
eλ − ᾱ

√
1 − λ

2
e−λ,

and

f2 =
f1 − λf4√

1 − λ2
, and f3 =

f4 − λf1√
1 − λ2

,

for some unimodular constant α. Clearly, fi ∈ W, i = 1, 2, 3, 4. Following (5.1), define

gi :=
1

⟨f3, U∗f(V1,V2)⟩
fi,

for all i = 1, 2, 3, 4. By (a) and (b) of Lemma 4.8 and (5.2), we conclude that

(5.3)

{
Uf(V1,V2) = − β̄

λg2,

Ug3 = f(V1,V2),

where the first equality follows from the fact that

Uf(V1,V2) = ⟨Uf(V1,V2), g2⟩g2.
Corollary 5.2 yields

{f(V1,V2), g1, g3, U
mg1, U

∗mg4 : m ≥ 1} ∈ BW .

Similarly, we have the vectors f̃i ∈ W̃, i = 1, 2, 3, 4, defined by

f̃1 =

√
1 + λ

2
ẽλ + ¯̃α

√
1 − λ

2
ẽ−λ, f̃4 =

√
1 + λ

2
ẽλ − ¯̃α

√
1 − λ

2
ẽ−λ,

and

f̃2 =
f̃1 − λf̃4√

1 − λ2
, and f̃3 =

f̃4 − λf̃1√
1 − λ2

,

for some unimodular constant α̃. Also, define

g̃i :=
1

⟨f̃3, Ũ∗f(Ṽ1,Ṽ2)
⟩
f̃i,
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for all i = 1, 2, 3, 4. As above, we again have

(5.4)

{
Ũf(Ṽ1,Ṽ2)

= − β̄
λ g̃2

Ũ g̃3 = f(Ṽ1,Ṽ2)
,

and

{f(Ṽ1,Ṽ2)
, g̃1, g̃3, Ũ

mg̃1, Ũ
∗mg̃4 : m ≥ 1} ∈ BW̃ .

A simple computation shows that

(5.5)

{
g4 = (

√
1 − λ2)g3 + λg1

g̃4 = (
√

1 − λ2)g̃3 + λg̃1.

Define the unitary Π : W → W̃ by

Πf(V1,V2) = f(Ṽ1,Ṽ2)
,

and

Πf =


g̃j if f = gj for j = 1, 3

Ũmg̃1 if f = Umg1

Ũ∗mg̃4 if f = U∗mg4,

for m ≥ 1. It is clear from the definition of Π and the identity (5.5) that

Πg4 = g̃4,

and consequently

Πg2 = Π
(g1 − λg4√

1 − λ2

)
=

g̃1 − λg̃4√
1 − λ2

,

that is,

(5.6) Πg2 = g̃2.

It is now easy to see that

(ΠUΠ−1)g̃1 = Ũ g̃1.

Moreover

(ΠUΠ−1)g̃3 = ΠUg3 = Πf(V1,V2) = f(Ṽ1,Ṽ2)
= Ũ g̃3,

where the second and fourth equalities follow by an appeal to (5.3) and (5.4) respectively. For all
m ≥ 1, we also have

(ΠUΠ−1)
(
Ũmg̃1

)
= (ΠU)

(
Umg1

)
= Π

(
Um+1g1

)
= (Ũ)m+1g̃1 = Ũ

(
Ũmg̃1

)
,

and similarly,

(ΠUΠ−1)
(
Ũ∗mg̃4

)
= Ũ∗(m−1)g̃4 = Ũ(Ũ∗mg̃4).

Finally, by (5.3), (5.6), and (5.4), it follows that

(ΠUΠ−1)f(Ṽ1,Ṽ2)
= ΠUf(V1,V2) = Π

(
− β̄

λ
g2
)

= − β̄

λ
g̃2 = Ũf(Ṽ1,Ṽ2)

.

This proves that ΠUΠ−1 = Ũ . The verification of ΠPW1Π−1 = PW̃1
is easy and is left to the reader.

This completes the proof of the theorem. □



COMPACT AND NORMAL ISOMETRIC PAIRS 35

Now it is important to furnish explicit examples of irreducible 3-finite pairs. We start with
invariant subspaces of L2(T2). For each nonzero r in (−1, 1) and unimodular function φ ∈ L∞(T2),
define

Lφ,r = φ
(
H2(D2)

⊕( ∞⊕
j=0

zjspan
{ w̄

1 − rzw̄

}))
Then Lφ,r is (jointly) invariant under (Lz, Lw), and

[(Lw|Lφ,r)∗, Lz|Lφ,r ] = [(Lw|Lφ,r)∗, Lz|Lφ,r ]∗ ̸= 0.

In fact, Izuchi and Ohno proved that Lφ,r are the only invariant subspaces of L2(T2) that satisfies
the above self-adjoint condition (see [IO94, Theorem 1 ]). This observation was one of the keys to
the construction of invariant subspaces of H2(D2) with self-adjoint and nonzero cross-commutators
[II06].

Example 5.4. For each nonzero r in (−1, 1), there exists an inner function φ ∈ H∞(D2) such that
[II06, Theorem 2]

(5.7) Sr = φ
(
H2(D2)

⊕( ∞⊕
j=0

zjspan
{ w̄

1 − rzw̄

}))
.

is an invariant subspace of H2(D2) (see (1.4) for the definition of invariant subspaces of H2(D2))
and

[(Mw|Sr)∗,Mz|Sr ]∗ = [(Mw|Sr)∗,Mz|Sr ] ̸= 0,

and
rank[(Mw|Sr)∗,Mz|Sr ] = 1.

A simple computation reveals that (see [II06, proof of Theorem 3]) r is the only nonzero eigenvalue
of [(Mw|Sr)∗,Mz|Sr ]. Moreover, the pair (Mz|Sr ,Mw|Sr) is an irreducible 3-finite pair (See [Yang19,
Example 8.9, Page 246], and

σ(C(Mz|Sr ,Mw|Sr)) ∩ (0, 1) = {|r|}.
That is, |r| is the unique eigenvalue of the defect operator of (Mz|Sr ,Mw|Sr) lying in (0, 1).

Example 5.5. Let γ be a unimodular constant and let r be a nonzero real number in (−1, 1).
Consider the submodule Sr as in (5.7), and then, consider the isometric pair (γMz|Sr ,Mw|Sr) on
Sr. It is easy to see that

C
(
γMz|Sr ,Mw|Sr

)
= C(Mz|Sr ,Mw|Sr),

and
[(Mw|Sr)∗, γMz|Sr ] = γ[(Mw|Sr)∗,Mz|Sr ].

It follows immediately from the discussion of Example 5.4 that (γMz|Sr ,Mw|Sr) is an irreducible
3-finite pair with

σ(C(γMz|Sr ,Mw|Sr)) ∩ (0, 1) = {|r|},
and

σ([(Mw|Sr)∗, γMz|Sr ]) ∩ (0, 1) = {γr}.

The above example, together with Theorem 5.3, immediately yields a complete characterization
of irreducible 3-finite pairs.

Theorem 5.6. Let (V1, V2) be an irreducible 3-finite pair on a Hilbert space H. Then there exist
λ ∈ (0, 1), a unimodular constant γ, and an inner function φ ∈ H∞(D2) (depending on λ) such that

σ(C(V1, V2)) ∩ (0, 1) = {λ},
and

σ([V ∗
2 , V1]) \ {0} = {γλ},



36 DE, SARKAR, SHANKAR AND SANKAR

and

(V1, V2) ∼= (γMz|Sλ
,Mw|Sλ

)

where Sλ is the invariant subspace of H2(D2) of the form

Sλ = φ
(
H2(D2)

⊕( ∞⊕
j=0

zjspan
{ w̄

1 − λzw̄

}))
.

Proof. The existence of λ and γ follow from Theorem 4.9. Here, note that

[V ∗
2 , V1]f = βf,

and γ is the unique unimodular constant such that β = γλ (compare with (3) and (5) of Theorem
4.9). With this particular λ and γ, we now apply Example 5.5 to conclude that

(V1, V2) ∼= (γMz|Sλ
,Mw|Sλ

),

for some inner function φ ∈ H∞(D2). This completes the proof of the theorem. □

The following intriguing and direct ramifications of Theorem 5.3 and Example 5.5 are worth
highlighting: Let γ1 and γ2 be unimodular constants, and let r be a nonzero number in (−1, 1).
Consider the invariant subspace Sr of H2(D2) as defined in (5.7). Then:

(1) (γ1Mz|Sλ
,Mw|Sλ

) ∼= (γ2Mz|Sλ
,Mw|Sλ

) if and only if γ1 = γ2.
(2) (γ1Mz|Sλ

,Mw|Sλ
) ∼= (Mz|Sλ

, γ2Mw|Sλ
) if and only if γ1 = γ̄2.

6. Classification of 2-finite pairs

The focus of this section is a complete characterization of irreducible 2-finite pairs. Let (V1, V2)
be an irreducible 2-finite pair on H. First, we claim the following crucial spectral property:

σ(C(V1, V2)) \ {0} = {±1}.
Indeed, an argument similar to the proof of Proposition 4.3 yields that, in this case also

dimE1 = 1.

Since rankC(V1, V2) = 2, it follows immediately from Theorem 2.5 that

dimE−1 = 1.

We conclude that the only nonzero eigenvalues of C(V1, V2) are {±1}, and

dimE1 = 1 = dimE−1.

Therefore

(kerC(V1, V2))
⊥ = E1 ⊕ E−1.

Let e1 and e−1 denote unit vectors in E1 and E−1 respectively. Then Corollary 3.6 and Lemmas 4.1
and 4.2 imply that

rank[V ∗
2 , V1] = dimE1 = 1,

and

ran[V ∗
2 , V1] = E1,

and

[V ∗
2 , V1]|E⊥

1
= 0.

In particular, there exists a nonzero scalar α such that

[V ∗
2 , V1] = αe1 ⊗ e1.

Same computation as in Section 4 (see, in particular, the equality (4.5)) yields that

V ∗
2 V1e1 = αe1, and V ∗

1 V2e1 = αe1.
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Let
N = W ⊖ (kerC(V1, V2))

⊥.

Clearly, with respect to the decomposition W = E1 ⊕ E−1 ⊕N , we have

C(V1, V2)|W =

IE1

−IE−1

0

 .

Recall that C(V1, V2)|W = PW1 − PV2W1 . Hence

PW1 − PV2W1 =

IE1

−IE−1

0

 .

Thus, Theorem 3.1 implies

PW1 =

IE1

0
Q

 ,

and

PV2W1 =

0
IE−1

Q

 ,

where Q : N → N is a projection. Then

PW2 = IW − PV2W1 =

IE1

0
Q⊥

 ,

and

PV1W2 = IW − PW1 =

0
IE−1

Q⊥

 .

Consider the unitary U on W as given by Theorem 2.3:

W = W1 ⊕ V1W2 = W2 ⊕ V2W1,

and

U =

[
V2|W1

V ∗
1 |V1W2

]
: W1 ⊕ V1W2 → V2W1 ⊕W2.

Since
W1 = E1 ⊕ ranQ,

and
V2W1 = E−1 ⊕ ranQ,

and since U = V2 on W1, it follows that

V2e1 = Ue1 = ⟨Ue1, e−1⟩e−1 + g,

for some g ∈ ranQ. Since ranQ ⊂ W1, applying V ∗
1 on both sides of the preceding equation and

then using the definition of U , we obtain that

αe1 = V ∗
1 V2e1

= ⟨Ue1, e−1⟩V ∗
1 e−1

= ⟨Ue1, e−1⟩Ue−1.

This shows that
U(E−1) = E1.
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Moreover, since ⟨Ue1, e−1⟩ is a unimodular constant, we have

|α| = 1.

As
W2 = E1 ⊕ ranQ⊥, V1W2 = E−1 ⊕ ranQ⊥,

and U∗ = V1 on W2, there exists h ∈ ranQ⊥ such that

V1e1 = U∗e1 = ⟨U∗e1, e−1⟩e−1 + h.

As before, since ranQ⊥ ⊂ W2, by applying V ∗
2 on both sides of the preceding equality and then

using the definition of U we find that

αe1 = V ∗
2 V1e1

= ⟨U∗e1, e−1⟩V ∗
2 e−1

= ⟨U∗e1, e−1⟩U∗e−1.

This shows that
U∗(E−1) = E1,

and hence, E1 ⊕ E−1 reduces U . On the other hand, we know that E1 ⊂ W1 and E−1(⊂ V1W2) is
orthogonal to W1. It is now obvious that E1 ⊕ E−1 reduces PW1 . In other words, E1 ⊕ E−1 ⊆ W
reduces (U,PW1). But (V1, V2) and equivalently (U,PW1) is irreducible. Therefore,

W = E1 ⊕ E−1.

Then N = {0} and hence
W1 = E1 = W2.

At this point, we recall the following result from Bercovici, Douglas, and Foias [BDF06, Corollary
4.3]:

Theorem 6.1. Let (T1, T2) be an irreducbible isometric pair. Suppose

dim(kerT ∗
i ) < ∞ (i = 1, 2).

Then each Ti, i = 1, 2, is either shift, or a constant multiple of the identity.

Returning to our context, we immediately have the following:

Corollary 6.2. V1 and V2 are unilateral shifts.

Since
W1 = kerV ∗

1 = span{e1},
we conclude that V1 is a unilateral shift of multiplicity one, that is, V1

∼= Mz on H2(D). More
specifically

W (V n
1 e1) = zn (n ≥ 0),

defines a unitary W : H → H2(D) such that

WV1 = MzW.

Then (V1, V2) on H is jointly unitarily equivalent to (Mz,WV2W
∗) on H2(D). As WV2W

∗ commutes
with Mz, there exists an inner function θ ∈ H∞(D) such that

WV2W
∗ = Mθ.

Again it follows from

dim(kerM∗
θ ) = dim(kerWV ∗

2 W
∗)

= dim(kerV ∗
2 )

= dimW2

= 1,
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that

θ(z) = c
z − a

1 − āz
(z ∈ D),

for some a ∈ D and unimodular constant c. Consequently,

kerM∗
θ = span{ka},

where

ka(z) =
1

1 − āz
(z ∈ D),

is the Szegö kernel on D. But

W1 = W2,

implies that

C = kerM∗
z = kerM∗

θ = span {ka},
which forces that a = 0. We have thus proved that:

(V1, V2) on H ∼= (Mz, cMz) on H2(D),

for some unimodular constant c. Consequently

α = nonzero eigenvalue of the cross-commutator [V ∗
2 , V1] on H

= nonzero eigenvalue of the cross-commutator [(cMz)∗,Mz] on H2(D)

= c̄.

The summary of the above observations provides a complete classification of irreducible 2-finite
pairs:

Theorem 6.3. Let (V1, V2) be an irreducible 2-finite pair. Then {±1} are the only nonzero eigen-
values of C(V1, V2). Moreover

rank[V ∗
2 , V1] = 1,

and there exists a unimodular constant α such that

σ([V ∗
2 , V1]) \ {0} = {α}.

Moreover

(V1, V2) ∼= (Mz, ᾱMz).

Conversely, if α is unimodular constant, then (Mz, ᾱMz) on H2(D) is an irreducible 2-finite pair
with {±1} as the only nonzero eigenvalues of C(Mz, ᾱMz).

Note that the pair (Mz, ᾱMz) is acting on the Hardy space H2(D). The details of the converse
part of the above result are routine, and we leave the details to the reader.

The following result, which is an immediate consequence of Theorem 6.3, says that for a 2-finite
pair, the nonzero eigenvalue of the cross-commutator is a complete invariant.

Theorem 6.4. Let (V1, V2) on H and (Ṽ1, Ṽ2) on H̃ be irreducible 2-finite pairs. Let

σ([V ∗
2 , V1]) \ {0} = {α},

and

σ([Ṽ2
∗
, Ṽ1]) \ {0} = {α̃}.

Then

(V1, V2) ∼= (Ṽ1, Ṽ2),

if and only if

α = α̃.
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7. Classification of 1-finite pairs

This short section classifies irreducible 1-finite pairs. In contrast to 3 and 2-finite pairs, this class
is simple, and the structure can be easily derived. Indeed, this is simply the pair of shifts on H2(D2):

Theorem 7.1. Let (V1, V2) be an irreducible isometric pair on a Hilbert space H. Then (V1, V2) is
1-finite if and only if

(V1, V2) ∼= (Mz,Mw) on H2(D2).

Proof. It is a standard fact that (Mz,Mw) is irreducible. Moreover, (Mz,Mw) is doubly commuting,
that is, [M∗

w,Mz] = 0, and also (see the identity (3) preceding Definition 1.3)

C(Mz,Mw) = PC.

Therefore, (Mz,Mw) on H2(D2) is an irreducible 1-finite pair. For the reverse direction, consider an
1-finite irreducible isometric pair (V1, V2) on a Hilbert space H. We again recall that

(1) E1 = kerV ∗
1 ∩ kerV ∗

2 (see Lemma 4.1),
(2) [V ∗

2 , V1]|E⊥
1

= 0, and ran[V ∗
2 , V1] ⊆ E1 (see Lemma 4.2), and

(3) rankC(V1, V2) = 2rank[V ∗
2 , V1] + dimE1 − dimE−1 (see Corollary 3.6).

By assumption, rankC(V1, V2) = 1. Then, in view of Theorem 2.5, we know that either 1 or −1 is
the only nonzero eigenvalue of C(V1, V2). If −1 is the only nonzero eigenvalue of C(V1, V2), then

dimE1 = 0.

Therefore

rank[V ∗
2 , V1] = 0,

and hence, by the rank identity (3) above, we have

rankC(V1, V2) = 2 × 0 + 0 − 1

= −1,

an impossibility. Therefore, 1 is the only nonzero eigenvalue of C(V1, V2). Then

E−1 = {0}.

Since rankC(V1, V2) = 1, the rank identity in (3) above again forces that

[V ∗
2 , V1] = 0,

that is, (V1, V2) is a doubly commuting pair on H. The Wold decomposition of doubly commuting
pairs (1.3) yields the orthogonal decomposition into reducing subspaces

H = Huu ⊕Hus ⊕Hsu ⊕Hss,

where V1|Hij is a shift if i = s and unitary if i = u, and V2|Hij is a shift if j = s and unitary if
j = u. Nevertheless, due to the irreducibility of (V1, V2), precisely one summand will survive. We
claim that Hss is the one who will last. Indeed, if (W1,W2) is an isometric pair such that at least
one of W1 and W2 is unitary, then an easy computation reveals that

C(W1,W2) = 0.

Consequently, in the present situation, we have that

C(V1|Hij , V2|Hij ) = 0,

whenever at least one of i, j is u. Therefore

H = Hss ̸= {0}.
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The representation of shift part of the Wold decomposition for doubly commuting pairs [JS14,
Theorem 3.1] yields

Hss =
⊕

m,n≥0

V m
1 V n

2

(
ker(V1|Hss)

∗ ∩ ker(V2|Hss)
∗
)
.

However, we know from (1) above that

E1 = ker(V1|Hss)
∗ ∩ ker(V2|Hss)

∗.

Since dimE1 = 1, there exists unit vector f ∈ H such that

E1 = Cf.
Therefore, there exists a unitary U : Hss → H2(D2) such that

U(V m
1 V n

2 f) = zmwn (m,n ≥ 0).

Moreover, UV1 = MzU and UV2 = MwU (see [JS14] for more details), that is, (V1, V2) ∼= (Mz,Mw).
This completes the proof of the theorem. □

With this, we now have a thorough understanding of irreducible n-finite pairings for all n = 1, 2, 3.
In the following section aims to show that irreducible 1, 2, and 3-finite pairs are all irreducible n-finite
pairs.

8. Compact normal pairs

In this section, we obtain complete representations of compact normal pairs. As we will see,
aggregating all previously learned results will archive this. Indeed, we will see that along with the
3 and 2 and 1-finite pairs obtained before, shift-unitary pairs (see Definition 1.9) will also serve as
the fundamental building blocks of compact normal pairs.

We fix a compact normal pair (V1, V2) on H. As usual, following (2.9), we write

Eλ := Eλ(C(V1, V2)) (λ ∈ R).

Recall from Lemmas 4.1 and 4.2 that

ran[V ∗
2 , V1] = ran[V ∗

2 , V1]
∗ ⊆ E1 = W1 ∩W2,

where Wi = kerV ∗
i , i = 1, 2, and

[V ∗
2 , V1]|E⊥

1
= [V ∗

1 , V2]|E⊥
1

= 0.

We first consider the case when dimE1 ≥ 1. The case when E1 = {0} is easy and will be discussed
later in Remark 8.8. Let

dimE1 := k ∈ N ∪ {∞},
and suppose {f1, . . . , fk} is an orthonormal basis of E1 consisting of eigen vectors of [V ∗

2 , V1] (by
treating [V ∗

2 , V1]|E1 on E1 as a normal operator). There exist scalars {λ1, . . . , λk} (possibly repeated)
such that

[V ∗
2 , V1]fi = λifi,

for i = 1, 2, . . . , k. Finally, for each i = 1, . . . , k, we define a closed subspace Hi of H as

Hi := span{V m
1 V n

2 fi : m,n ≥ 0}.
These spaces are of interest, which we now analyze thoroughly. First, we prove that these spaces
are jointly reducing (see Definition 1.6).

Lemma 8.1. Hi reduces (V1, V2) for all i = 1, 2, . . . , k.

Proof. The proof is exactly the same as the proof of the reducibility of S in Proposition 4.3. □

Moreover, we claim that:
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Lemma 8.2. (V1|Hi , V2|Hi) is irreducible for all i = 1, 2, . . . , k.

Proof. Fix an i. Note that
C(V1|Hi , V2|Hi) = C(V1, V2)|Hi .

By the definition of Hi, we have

E1

(
C(V1|Hi , V2|Hi)

)
= Cfi.

Suppose K is a nonzero closed subspace of Hi. Assume that K reduces (V1, V2). Since

dimE1

(
C(V1|Hi , V2|Hi)

)
= 1,

an easy consequence of the spectral theorem for compact and self-adjoint operators (cf. [DSPS24,
Lemma 2.6]) implies that fi ∈ K, and consequently, K = Hi. This completes the proof. □

The following orthogonality relation will be useful in what follows.

Lemma 8.3.
〈
V m
2 fi, V

n
1 fj

〉
= 0 for i ̸= j and m,n ∈ Z+.

Proof. Since fj ∈ W1 ∩W2, it follows that

V ∗
2 V1fj = [V ∗

2 , V1]fj + V1V
∗
2 fj

= λjfj .

Then, similar computation as in the proof of Proposition 4.3 (or, see (4.1)) yields that (note that
V ∗
2 V

n
1 fj = V n−1

1 V ∗
2 V1fj)

V ∗
2 V

n
1 fj = V n−1

1 V ∗
2 V1fj = λjV

n−1
1 fj ,

for all n ≥ 1. Repeated application of the above yields

V ∗m
2 V n

1 fj =

{
λm
j V n−m

1 fj if m ≤ n

0 if m > n,

where the final equality is due to the fact that V
∗(m−n)
2 fj = 0 for m > n. Then the above equality

implies 〈
V m
2 fi, V

n
1 fj

〉
=

〈
fi, V

∗m
2 V n

1 fj
〉

=

{〈
fi, λ

m
j V n−m

1 fj
〉

if m ≤ n,

0 if m > n.

= 0,

and completes the proof of the lemma. □

It is now natural to expect that:

Lemma 8.4. Hi ⊥ Hj for all i ̸= j.

Proof. Suppose i ̸= j. It is enough to show that

{V m
1 V n

2 fi : m,n ≥ 0} ⊥ {V m
1 V n

2 fj : m,n ≥ 0}.
Let m1, n1,m2, n2 ≥ 0. Since fi, fj ∈ W1 ∩W2, it follows that〈

V m1
1 V n1

2 fi, V
m2
1 V n2

2 fj
〉

= 0,

whenever m1 ≥ m2, n1 ≥ n2 or m1 ≤ m2, n1 ≤ n2. If m1 < m2 and n1 > n2, then Lemma 8.3
implies 〈

V m1
1 V n1

2 fi, V
m2
1 V n2

2 fj
〉

=
〈
V n1−n2
2 fi, V

m2−m1
1 fj

〉
= 0.

The remaining case when m1 > m2 and n1 < n2 is treated in a similar manner and is left to the
reader. □
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The nonzero part of the defect operator is contained in the direct sum of Hi’s. More specifically:

Lemma 8.5.
(

kerC(V1, V2)
)⊥ ⊆ ⊕k

i=1Hi.

Proof. Let
H0 = H⊖

(
⊕k

i=1 Hi

)
.

Then H0 reduces (V1, V2), and consequently, (V1|H0 , V2|H0) is a BCL pair on H0. Clearly

C(V1|H0 , V2|H0) = C(V1, V2)|H0 ,

and
[(V2|H0)∗, V1|H0 ] = [V ∗

2 , V1]|H0 .

By the definition of Hi’s, we have

E1 ⊂ ⊕k
i=1Hi.

Since [V ∗
2 , V1] = 0 on E⊥

1 , we conclude that

[(V2|H0)∗, V1|H0 ] = 0,

and
dimE1(C(V1|H0 , V2|H0)) = 0.

Therefore, it follows from Corollary 3.7 that C(V1|H0 , V2|H0) has finite rank, and consequently,
Corollary 3.6 implies

rank C(V1|H0 , V2|H0) = 2rank [(V2|H0)∗, V1|H0 ] + dimE1(C(V1|H0 , V2|H0))

− dimE−1(C(V1|H0 , V2|H0))

= −dimE−1(C(V1|H0 , V2|H0)).

Therefore,
C(V1|H0 , V2|H0) = 0,

which completes the proof. □

Before we proceed to the final lemma of this section, we fix some notations. Set

(8.1) H0 := H⊖ (

k⊕
i=1

Hi),

and for each i = 0, . . . , k, define

(V1,i, V2,i) := (V1|Hi , V2|Hi).

Clearly, (V1,i, V2,i) is a BCL pair on Hi, i = 0, 1, . . . , k. We have the following (see Definition 1.9 for
the notion of shift-unitary pairs):

Lemma 8.6. (V1,0, V2,0) is a shift-unitary pair.

Proof. By Lemma 8.5,
C(V1,0, V2,0) = 0,

which implies that (V1,0, V2,0) is a doubly commuting BCL pair on H0 [MSS19, Theorem 6.5]. By
(1.3), the Wold decomposition for doubly commuting pairs, there is a unique orthogonal decompo-
sition of H0 into (V1,0, V2,0)-reducing subspaces

H0 = Huu ⊕Hus ⊕Hsu ⊕Hss,

where V1,0 on Hij is a shift (respectively, unitary) if i = s (respectively, i = u) and V2,0 on Hij is
a shift (respectively, unitary) if j = s (respectively, j = u). As (V1,0, V2,0) is a BCL pair, we must
have that

Huu = {0}.
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By the construction of Hss [JS14, Theorem 3.1], it follows that

Hss =
⊕

m,n≥0

V m
1,0V

n
2,0

(
kerV ∗

1,0 ∩ kerV ∗
2,0

)
.

On the other hand, Lemma 4.1 implies

E1(C(V1,0, V2,0)) = kerV ∗
1,0 ∩ kerV ∗

2,0.

Then
Hss =

⊕
m,n≥0

V m
1,0V

n
2,0E1(C(V1,0, V2,0)).

Observe that
E1(C(V1,0, V2,0)) = E1(C(V1, V2)|H0) = {0},

and hence
Hss = {0}.

Thus
Huu = Hss = {0}.

Hence, H0 = Hus ⊕Hsu and the result follows. □

Let us establish one terminology for the purpose of future reference.

Definition 8.7. Let (V1, V2) on H be a compact normal pair. Let H0 be as in (8.1). The shift-unitary
part of (V1, V2) is the pair (V1,0, V2,0) defined by

(V1,0, V2,0) = (V1|H0 , V2|H0).

Remark 8.8. Let (V1, V2) on H be a compact normal pair. Assume that E1 = {0}. By Lemma 4.2,
we know

[V ∗
2 , V1] = 0,

and so, by Corollary 3.7, C(V1, V2) has finite rank, and consequently, it follows from Corollary 3.6
that

C(V1, V2) = 0.

Therefore, in this case, H = H0 and consequently

(V1, V2) = (V1,0, V2,0).

An appeal to Lemma 8.6 immediately yields that (V1, V2) on H is a shift-unitary pair.

The following theorem highlights all of the results achieved so far in this section:

Theorem 8.9. Let (V1, V2) be a compact normal pair on H. Define

k := dimE1(C(V1, V2)) ∈ [0,∞].

Then the following holds:

(1) There exist k + 1 closed (V1, V2)-reducing subspaces {Hj}kj=0 such that

H =

k⊕
j=0

Hj ,

where
Hj := span{V m

1 V n
2 fj : m,n ≥ 0} (j = 1, . . . , k),

and

H0 = H⊖ (

k⊕
j=1

Hj),
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and {fi}ki=1 is an orthonormal basis of E1(C(V1, V2)) consisting of eigenvectors of the cross-
commutator [V ∗

2 , V1].
(2) (V1,i, V2,i) on Hi is irreducible, where

(V1,i, V2,i) := (V1|Hi , V2|Hi),

for all i = 1, . . . , k.
(3) (V1,0, V2,0) on H0 is a shift-unitary pair, where

(V1,0, V2,0) = (V1|H0 , V2|H0).

We continue with the assumptions and conclusion of the previous theorem. Our aim is to analyze
the structure of the irreducible pair (V1,i, V2,i) on Hi for i = 1, 2, · · · , k. Note that the structure of
(V1,0, V2,0) is clear from part (3) of the preceding theorem.

We fix an i ∈ {1, · · · , k}, and set

E1,i := E1

(
C(V1,i, V2,i)

)
.

It is clear from the definition of the space Hi and Lemma 4.1 that

(8.2) E1,i = kerV ∗
1,i ∩ kerV ∗

2,i = Cfi.
Then

[V ∗
2,i, V1,i]|Hi⊖E1,i = 0.

Moreover, [V ∗
2,i, V1,i]fi = λifi implies that

rank[V ∗
2,i, V1,i] =

{
0 if λi = 0

1 if λi ̸= 0.

We first consider the case when λi = 0. In this case, [V ∗
2,i, V1,i] = 0 and hence, (V1,i, V2,i) on Hi is

doubly commuting. By [MSS19, Theorem 6.5], C(V1,i, V2,i) ≥ 0 and therefore

dimE−1

(
C(V1,i, V2,i)

)
= 0.

Consequently, by the second part of Theorem 3.5, we have

rankC(V1,i, V2,i) = dimE1,i = 1.

Then
ker

(
C(V1,i, V2,i)

)⊥
= E1,i,

and hence
Wi := ker(V1,iV2,i)

∗ = E1,i ⊕ (Wi ⊖ E1,i).

With respect to this decomposition of Wi, we write

C(V1,i, V2,i)|Wi =

[
IE1,i

0

]
.

As (V1,i, V2,i) is an irreducible doubly commuting BCL pair on Hi with nonzero defect operator,
it follows directly from the construction of Wold decomposition for doubly commuting pairs [JS14,
Theorem 3.1] that

Hi =
⊕

m,n≥0

V m
1,iV

n
2,iE1,i,

and V1,i and V2,i are unilateral shifts. More specifically

(V1,i, V2,i) ∼= (Mz,Mw) on H2(D2).

Now we consider the case when λi ̸= 0. Since rank[V ∗
2,i, V1,i] = 1, an appeal to Corollary 3.7 yields

that
rankC(V1,i, V2,i) < ∞,
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and consequently, Corollary 3.6 implies

(8.3) rankC(V1,i, V2,i) = 3 − dimE−1,i,

where

E−1,i := E−1(C(V1,i, V2,i)).

Clearly

dimE−1,i ≤ 3.

If dimE−1,i = 3, then (8.3) implies C(V1,i, V2,i) = 0, a contradiction. Therefore,

dimE−1,i ∈ {0, 1, 2}.
We now consider three separate cases:

(i) Suppose dimE−1,i = 2. Since dimE1,i = 1 (see (8.2)), it follows that

rankC(V1,i, V2,i) ≥ 3.

On the other hand, it follows from (8.3) that, in this case

rankC(V1,i, V2,i) = 1,

a contradiction. Therefore

dimE−1,i ̸= 2.

(ii) Suppose dimE−1,i = 1. We know, by (8.3), that

rankC(V1,i, V2,i) = 2.

Thus, (V1,i, V2,i) is an irreducible 2-finite pair. This class of pairs was classified earlier in
Theorem 6.3, leading us to conclude the existence of a unimodular constant α such that

σ([V ∗
2,i, V1,i]) \ {0} = {α}.

(iii) Finally, if dimE−1,i = 0, then (8.3) again implies that

rankC(V1,i, V2,i) = 3.

Therefore, in this case, (V1,i, V2,i) is an irreducible 3-finite pair on Hi, which was classified
in Theorem 5.6. Consequently, there exist λ ∈ (0, 1) and unimodular constant γ such that

σ(C(V1,i, V2,i)) ∩ (0, 1) = {λ},
and

σ([V ∗
2,i, V1,i]) \ {0} = {γλ}.

Summarizing the foregoing discussion, we have:

Proposition 8.10. In the setting of Theorem 8.9, fix i ∈ {1, . . . , k}. Then

rank[V ∗
2,i, V1,i] ∈ {0, 1},

and we have the following:

(1) If rank[V ∗
2,i, V1,i] = 0, then

(V1,i, V2,i) ∼= (Mz,Mw) on H2(D2).

(2) If rank[V ∗
2,i, V1,i] = 1, then

rankC(V1,i, V2,i) ∈ {2, 3}.
(a) If rankC(V1,i, V2,i) = 2, then (V1,i, V2,i) is an irreducible 2-finite pair, and

σ(C(V1,i, V2,i)) \ {0} = {±1}, and σ([V ∗
2,i, V1,i]) \ {0} = {α}

for some unimodular constant α.
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(b) If rankC(V1,i, V2,i) = 3, then (V1,i, V2,i) is an irreducible 3-finite pair, and there exist
λ ∈ (0, 1), and a unimodular constant γ such that

σ(C(V1,i, V2,i)) ∩ (0, 1) = {λ},
and

σ([V ∗
2,i, V1,i]) \ {0} = {λγ}.

In view of this, the main result concerning a complete description of compact normal pairs can
now be stated. In essence, the description is a summary of all the major outcomes in this paper so
far, specifically Theorem 5.6, and Theorem 6.3, Theorem 8.9, and Proposition 8.10.

Theorem 8.11. Let (V1, V2) be a compact normal pair on H. Define

k := dimE1

(
C(V1, V2)

)
∈ [0,∞].

Then there exist k + 1 closed (V1, V2)-reducing subspaces {Hi}ki=0 of H such that

H =

k⊕
i=0

Hi.

Set
(V1,i, V2,i) = (V1|Hi , V2|Hi),

for all i = 0, 1, . . . , k. Then, we have the following:

(1) (V1,0, V2,0) on H0 is a shift-unitary pair.
(2) For each i = 1, . . . , k, the pair (V1,i, V2,i) on Hi is irreducible and is unitarily equivalent to

one of the following three pairs:
(a) (Mz,Mw) on H2(D2).
(b) (Mz, αMz) on H2(D) for some unimodular constant α.
(c) (γMz|Sλ

,Mw|Sλ
) on Sλ where Sλ is the invariant subspace of H2(D2) given by

Sλ = φ
(
H2(D2)

⊕( ∞⊕
j=0

zjspan
{ w̄

1 − λzw̄

}))
,

for some λ ∈ (0, 1), unimodular constant γ and inner function φ ∈ H∞(D2).

In the following section, we use this result to explain a complete set of unitary invariants for
compact normal pairs. The discourse that precedes Proposition 8.10 also gives, in particular, that

rankC(V1,i, V2,i) = 1, 2, or 3,

for all i = 1, . . . , k. This yields the complete list of irreducible n-finite pairs. More specifically:

Corollary 8.12. An irreducible n-finite pair is either 1-finite, 2-finite, or 3-finite.

Keep in mind that n-finite pairs with n > 3 still exist, but irreducible n-finite pairs for n = 1, 2,
and 3 will build them up. In particular, n-finite pairs, n > 3, are always reducible.

9. Complete unitary invariants

In this section, we analyze the main results in terms of unitary invariants. First, we note, as
already pointed out in the results obtained so far (see Theorem 5.6, Theorem 6.3, Theorem 8.9, and
Proposition 8.10), that the decomposition in Theorem 8.11 is unique (up to unitary equivalence)
and canonical. In order to be more specific, let us continue with the assumptions and outcomes of
Theorem 8.11. Recall that {f1, . . . , fk} was assumed to be an orthonormal basis of E1

(
C(V1, V2)

)
consisting of eigen vectors of [V ∗

2 , V1], where

k = dimE1(C(V1, V2)) ∈ [0,∞].
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Then
Hi := span{V m

1 V n
2 fi : m,n ≥ 0},

reduces (V1, V2) for all i = 1, . . . , k. Moreover, we have the remaining space

H0 := H⊖ (
k⊕

i=1

Hi).

Recall
(V1,i, V2,i) := (V1|Hi , V2|Hi),

for all i = 0, 1, . . . , k, where (V1,0, V2,0) on H0 is a shift-unitary pair, and for each i ∈ {1, . . . , k}, the
pair (V1,i, V2,i) on Hi satisfies the following properties:

(1) (V1,i, V2,i) is an irreducible 1-finite pair if and only if

(V1,i, V2,i) ∼= (Mz,Mw) on H2(D2).

Moreover, in this case
rank[V ∗

2,i, V1,i] = 0.

(2) (V1,i, V2,i) is an irreducible 2-finite pair if and only if there exists unimodular constant α such
that

(V1,i, V2,i) ∼= (Mz, αMz) on H2(D).

Moreover, in this case
rank[V ∗

2,i, V1,i] = 1,

and
σ([V ∗

2,i, V1,i]) \ {0} = {ᾱ}.
(3) (V1,i, V2,i) is an irreducible 3-finite pair if and only if there exist λ ∈ (0, 1) and a unimodular

constant γ such that

(V1,i, V2,i) ∼= (γMz|Sλ
,Mw|Sλ

) on Sλ.

Moreover, in this case
rank[V ∗

2,i, V1,i] = 1,

and
σ([V ∗

2,i, V1,i]) \ {0} = {λγ}.
Now we turn to the problem of computing complete unitary invariants. We fix a compact normal

pair (V1, V2) on a Hilbert space H. We adhere to the conclusion and the identical notation as
presented in the preceding discussion and Theorem 8.11. Recall the notation that

k = dimE1(C(V1, V2)).

Suppose
k > 0.

We construct a sequence
α(V1,V2) = {αi}ki=1 ⊆ C,

as follows:

αi :=

{
0 if rank[V ∗

2,i, V1,i] = 0

σ([V ∗
2,i, V1,i]) \ {0} if rank[V ∗

2,i, V1,i] = 1.

If
k = 0,

then we define
α(V1,V2) = empty sequence.

The cardinality of the sequence {αi} is the number k = dimE1(C(V1, V2)).
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Definition 9.1. The sequence

α(V1,V2) = {αi}ki=1 ⊆ C,
is referred to as the fundamental sequence associated to the isometric pair (V1, V2).

The term “fundamental sequence” finds its rationale in the fact that this sequence is determined
by the action of the cross-commutator on the fundamental building blocks consisting of irreducible
n-finite pairs, n = 1, 2, 3. In terms of fundamental sequence, the discussion at the beginning of this
section results in the following:

(1) αi = 0 if and only if

(V1,i, V2,i) ∼= (Mz,Mw) on H2(D2).

(2) |αi| = 1 if and only if

(V1,i, V2,i) ∼= (Mz, ᾱiMz) on H2(D).

(3) 0 < |αi| < 1 if and only if

(V1,i, V2,i) on Hi
∼= (γMz|Sλ

,Mw|Sλ
) on H2(D2),

where λ ∈ (0, 1), and γ is a unimodular constant such that λγ = αi.

Therefore, we have the following:

(V1|H⊥
0
, V2|H⊥

0
) ∼= M1 ⊕M2 ⊕M3,

where

M1 =
⊕

{i:αi=0}

(Mz,Mw),

and

M2 =
⊕

{i:|αi|=1}

(Mz, ᾱiMz),

and

M3 =
⊕

{i:0<|αi|<1 with αi=λiγi,
λi∈(0,1),|γi|=1}

(γiMz|Sλi
,Mw|Sλi

).

In summary of the above discussion, the shift-unitary part, along with the fundamental sequence,
serves as a complete unitary invariant for compact normal pairs. More formally:

Theorem 9.2. Let (V1, V2) be a compact normal pair on H. Let

α(V1,V2) = {αi}ki=1,

denote the fundamental sequence associated to (V1, V2) with cardinality k ∈ [0,∞]. Also, let (V1,0, V2,0)
on H0 denote the shift-unitary part of (V1, V2).

(i) Then

(V1|H⊥
0
, V2|H⊥

0
) ∼= M1 ⊕M2 ⊕M3,

where Mi, i = 1, 2, 3, are defined as above.

(ii) Let (Ṽ1, Ṽ2) on H̃ be another compact normal pair. Suppose α̃(Ṽ1,Ṽ2)
= {α̃i}k̃i=1 is the associated

fundamental sequence with cardinality k̃ ∈ [0,∞]. Assume that (Ṽ1,0, Ṽ2,0) on H̃0 denotes the shift-

unitary part of (Ṽ1, Ṽ2). Then the following are equivalent:

(1) (V1, V2) ∼= (Ṽ1, Ṽ2).

(2) (V1,0, V2,0) ∼= (Ṽ1,0, Ṽ2,0), and [V ∗
2 , V1]|H0

⊥ ∼= [Ṽ2
∗
, Ṽ1]|H̃0

⊥.

(3) (V1,0, V2,0) ∼= (Ṽ1,0, Ṽ2,0), k = k̃, and there exists a permutation σ of {1, 2, · · · , k} such that

αi = α̃σ(i) (i = 1, 2, · · · , k).
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Our aim in the following remark is to examine the unitary equivalence of the shift-unitary parts
of compact normal pairs (more specifically, the first part of (3) of the above theorem). We assert
that this part is the simplest of the entire equivalence problem.

Remark 9.3. Let (V1, V2) be a shift-unitary pair on a Hilbert space H. First we write the two
summands of reducing subspaces as (see Definition 1.9)

H = Hus ⊕Hsu.

By symmetry, it is now evident to explore unitary equivalence of (V1|Hsu , V2|Hsu). More generally,
we consider a commuting pair (W1,W2) on a Hilbert space K such that W1 is a shift and W2 is a
unitary. Therefore, there exist a Hilbert space W and a unitary U : K → H2

W(D) such that (refer to
the discourse given at the outset of Section 2)

UW1 = MzU.

Since W2 is a unitary commuting and ∗-commuting with the shift W1, it follows that a constant
function yields the analytic Toeplitz representation of W2 on H2

W(D). In other words, there exists a
unitary operator W ∈ B(W) such that

UW2 = (IH2(D) ⊗W )U.

Therefore, the pair {W,W} is a complete set of unitary invariants for shift-unitary pairs of the above
type.

Given the outcomes of this paper, we are compelled to pose the following natural question:

Question 1. Classify isometric pairs (V1, V2) acting on Hilbert spaces such that

[V ∗
2 , V1] = compact.

It perhaps necessitates different methodologies. As far as the present methodology is concerned,
our approach involved identifying a complete list of irreducible compact normal pairs and thereafter
representing a typical compact normal pair as a direct sum of them. In the present paper, the
irreducible n-finite pairs, where n is equal to 1, 2, and 3, as well as the shift-unitary pairs, have
served as distinguished building blocks.

An essential step in answering the question might include identifying certain irreducible pairs of
isometries that satisfy the above compactness condition. A further strategy could involve incorpo-
rating the defect operator of isometric pairs, as was demonstrated in this paper. Defect operators are
indeed very significant; however, they alone do not provide substantial information about pairs. For
instance, consider the pairs (Mz,Mz) and (Mz, γMz) on the Hardy space H2(D), where

γ ∈ T \ {1},
is a fixed scalar. An easy computation yields

C(Mz,Mz) = C(Mz, γMz).

However, it is easy to see that (Mz,Mz) and (Mz, γMz) are not jointly unitarily equivalent. As
observed earlier, these are the examples of 2-finite pairs. Some of the results of the present paper
could also be helpful in answering the above question. For instance, Theorem 3.5 is true for all
isometric pairs.

Question 1 has an n-variable analogy, n > 2. It is important to note, nevertheless, that operator
and function theory depart considerably when n rises from two to three or even larger.

Question 2. Classify n-tuples, n > 2, of commuting isometries (V1, . . . , Vn) acting on Hilbert spaces
such that

[V ∗
i , Vj ] = compact,

or
[V ∗

i , Vj ] = compact and normal,



COMPACT AND NORMAL ISOMETRIC PAIRS 51

for all i ̸= j.
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