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ABSTRACT. We consider a subclass of the Cowen-Douglas class in which the problem of deciding
whether two operators are similar becomes more manageable. A similarity criterion for Cowen-Douglas
operators is known to be dependent on the trace of the curvature of the corresponding eigenvector
bundles. Unless the given eignvector bundle is a line bundle, the computation of the curvature,
in general, is not so simple as one might hope. By using a structure theorem on Cowen-Douglas
operators, we reduce the problem of finding the trace of the curvature by looking at the curvatures
of the associated line bundles. Several questions related to the similarity problem are also taken into
account.

0. INTRODUCTION

Given a complex separable Hilbert space H, let £(#) denote the algebra of bounded linear operators
on H. The set of all n-dimensional subspaces of H, called the Grassmannian, will be denoted by
Gr(n,H). When dim H < oo, Gr(n,#H) is a complex manifold. Given a connected open subset 2 of
the complex plane C, M. J. Cowen and R. G. Douglas in [4], introduced a class of operators whose
point spectra contain the set 2. More specifically, the class of Cowen-Douglas operators of rank n,
denoted B, (12), is defined as follows:

Bo(Q)={TeL(H): (1
2
3

4

QCo(T):={weC:T—wis not invertible},
dim ker(T — w) = n for w € Q,

Ve ker(T —w) = H, and

ran(T — w) = H for w € Q}.

NSNS
— — —— —

It is proven in the same paper that for T € B, (f2), the mapping from Q to Gr(n,H) given by
w — ker(T — w) defines

Er ={(w,x) e A xH:x € ker(T —w)},
a Hermitian holomorphic vector bundle of rank n over £ with projection m(w,z) = w. A detailed
study of certain aspects of complex geometry is also carried out using the concepts given below.

Following the definition of M. J. Cowen and R. G. Douglas, the curvature function IC for a holo-
morphic bundle £ of rank n is given by

9 [, ,0h
’C(w)__aw<h aw>’

h(w) = ((v;(w), vi(w))), e »

where
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for w € Q, denotes the Gram matrix associated with a holomorphic frame {y1,72,- -+ ,7,} for £. In
the special case of a line bundle (a bundle of rank one), the curvature amounts to calculating

82
(0.1) K(w) = = 5 log | y(w)

where v denotes a non-vanishing holomorphic cross-section of the bundle £.
Given a C* bundle map ¢ on a holomorphic vector bundle £ and a holomorphic cross-section o of
&, we have

(1) ¢m(0) = 750(0), and
(2) $u(0) = 550(0) + (W' 55 h, &(0)].

Since the curvature can be regarded as a bundle map, we obtain the covariant partial derivatives
K yimi of the curvature IC by repeatedly using the formulas given above. It is also proven in [4] that
the curvature Kr and the covariant derivatives Kr iz of the eigenvector bundle & corresponding
to T' € B,(Q2) form a complete set of unitary invariants.

Theorem 0.1 ([4]). Let T and S be Cowen-Douglas operators with Hermitian holormorphic eigenvec-
tor bundles Er and Eg, respectively. Then T ~, S if and only if there exist an isometry V : Ep — Eg
and a number m dependent on Er and Eg such that

for every 0 <i,7 <m —1.

As pointed out by M. J. Cowen and R. G. Douglas, characterizing similarity is a much more intricate
issue than describing unitary equivalence. How to make use of the curvature to determine when two
Cowen-Douglas operators are similar is still not clear and there have been only some partial results.
In [21], H. Kwon and S. Treil gave a similarity theorem to decide when a contraction operator T is
similar to n copies of M}, the adjoint of the multiplication operator by z, on the Hardy space of the
unit disk D. For a contraction operator T' € B, (D), let P(w) denote the projection onto the fiber

n

ker(T' — w). Then it is proven that 7'~ s @ M} if and only if

2
[P ey < (),
w (1—|wl?) Jwow

for all w € D and for some bounded subharmonic function v defined on D. It is also pointed out
that for n = 1, HWH?{S’ the square of the Hilbert-Schmidt norm of 6P(w), is the negative of the
curvature Cr of the eigenvector bundle &r. Subsequently, the result was generalized from the Hardy
shift to some weighted Bergman shift cases by R. G. Douglas, H. Kwon, and S. Treil in [7]. Moreover,
in [10] and [16], HBP(w HHS is proven to be the trace of the curvature r when T € B, (2) and n is
an arbltrary posmve integer.

For any Cowen-Douglas operator T of rank greater than one, the curvature Cr and the corre-
sponding partial derivatives ,CT’wi@j are not easy to compute. It is, therefore, necessary to reduce the
number of invariants for Cowen-Douglas operators of higher rank to decide on unitary equivalence or
similarity. We first mention the following basic structure theorem proved in the book [18] that will
be relevant for our purpose:

Theorem 0.2 ([18]). For T' € B,(R?), there exist operators Ty, T, ..., Tn—1 € B1(Q) and bounded
linear operators S; j, 0 <i < j <n—1, such that

To Soqp So2 -+ Son—2 Somn-1
0 Tv Si2 -+ Sipn—2 Sip-t

0 0 To - Sopa2 Sop_i
(0.2) r=|. . . .

[ewNaw)
[ewNaw)
o
%ﬂ
—
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In [14] and [15], K. Ji, C. Jiang, D. K. Keshari, and G. Misra introduced a subclass F B, (Q2) of
the Cowen-Douglas class B, (£2). The class of operators FB,(2) is the collection of all T' € B, (2)
with the upper-triangular matrix form given by (0.2), where T;S; ;41 = S; i+1Ti+1 and S; ;41 # 0 for

0 < i <n — 2. Note that due to this intertwining property, each of the 2 x 2 block (% S:ﬁ’_i“) in the
41

decomposition of the operator T is in F By(2). Hence, by [8], the corresponding second fundamental
form 60; ;41 (T) of &7, in E7 is given by the formula

ICTZ' z)dz
(0.3) 0i,i+1(T)(z) = ltiv1(2)]2 ( ) 1/2°
(L _ ICT,(Z))
1S5, i+1ti+1(2)[1 i
where #;11 denotes a non-vanishing section of &r; . For any T, TcF B, () with K7, = Ki’ we have
~ Siiv1tiz1(2 Siititiii(z
0iiv1(T)(2) = 0;,i11(T)(2) & | Suiatia (2)] = H JAs +1 )H7
i1 (2)]l [tiv1(2)]]

1S, i41tita ()]l
tiv1(2)l
classification of operators in FB,(Q2) is given as follows in terms of the curvature and the second

fundamental forms of the corresponding line bundles:

so that one can also use in place of the second fundamental form 6;;11(7"). A unitary

Theorem 0.3 ([15)). For T, T € FB,(),
Kz, = K"’fz ~
T oy T { Oiin1(T) = 05,i41(T)
(Siji(ti)ote) _ (Si,j(ti).ti)
[ l1z:11?

In this paper, we obtain a similarity theorem for operators in FB,(f2) involving the curvatures
of the associated line bundles. We first observe that the homogeneity of an operator T' € FB,(Q2)
is connected with the similarity problem, the trace of the curvature Kr can be written as the sum
of the curvature K7, of the line bundles &r,. Note that since it is shown in [15] that operators in
F By () are irreducible, such a decomposition is non-trivial. Moreover, the n-hypercontractivity
assumption on the 7T;, together with an identity that resembles the conditions given in Theorem 0.3
on the second fundamental forms make possible a similarity description in terms of the Kr7,. Further
results concerning positive definite kernels and the curvature of the tensor product of holomorphic
bundles are also presented.

1. The Base Case F By(f2)

We first consider the class F By(2) that will give us information on how to deal with the general
case. Let FBy(2) denote the set of all bounded linear operators 7" of the form 7" = (760 7‘?1 ), where

the two operators Tp and 77 are in the Cowen-Douglas class B;(§2) and the operator S is a non-zero
intertwiner between them, that is, 795 = ST}. It is obvious that if the operators Ty and 717 are defined
on separable complex Hilbert spaces Hg and Hi, respectively, then S is a non-zero bounded linear
operator from H; to Hy. The operator T is then defined on the Hilbert space Hy ® H1. Moreover, an
operator in F By (2) obviously belongs to the Cowen-Douglas class Ba(f2).

Let & be a holomorphic eigenvector bundle of T' € FBy(2) and as usual, let Hol(£2) denote the
space of holomorphic functions on 2. It can then be shown that there exists a holomorphic frame
{70,71} of Er such that

0
1= _
Yo(w) <8w70(w) i1 (w)> )
for all w € Q. In fact, given any non-zero cross-sections ¢y of &, and ¢; of &, one sets

Yo(w) := ¢(w)to(w),
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for ¢ € Hol(2) such that St;(w) = ¢(w)to(w) and
0
n(w) := 5 -70(w) — ti(w)
(see [14] for details).

Since we will be working with the curvature K7 of a vector bundle &7, we mention a related
definition.

Definition 1.1. Given a Hermitian holomorphic vector bundle £ over ) of rank n with m : &€ — §,
let
N(E) = [ N (w)),
weR
where 1 < r < n and for w € Q, N"(n~1(w)) denotes the exterior power space of the fiber 7= (w).
The space A" (7~ 1(E)) inherits a holomorphic and Hermitian structure from that of €& which makes it

a Hermitian holomorphic vector bundle over Q. When r =n, A"(E) is called the determinant bundle,
denoted det £.

Let {v1,72, -+ ,7n} be a holomorphic frame for a vector bundle £ on some open set U C 2. Then
the wedge product vy Aya A+ - A7, is a frame for det€ over U. If we denote by hgete the corresponding
Gram matrix, then

hget ¢ = dethg.
In particular, given a holomorphic frame o = {7y} of £ on , a holomorphic frame for the 1-jet bundle
J1(€) is given by

Ji(o) = {, 507}7
and the Gram matrix h(w) = (y(w),v(w)) for w € Q induces the following Gram matrix J;(h) for
Ji(€): )
Fi(h)w) = ( pwa) ), aw) )

h(w O p(w
= (g 2 ):
ow Owow
The relationship between the curvature of the determinant bundle £ and that of the vector bundle
€ is well-known (see [4] and [6]). Recently, D. K. Keshari give an elementary and detailed proof of
this relationship in [19].

Lemma 1.2 ([4],[6],[19]). Let & be a Hermitian holomorphic vector bundle over Q of rank n with
m:& — Q. Then for w € Q,
Kaet ¢(w) = trace Ke(w).

0 T
can be computed using the curvatures of the operators Ty and T7. Recall that the curvature of the
line bundles &7, and &, are easily found using expression (0.1). We start with a simple lemma.

We now investigate situations in which the trace of the curvature Krp for T = (TO SO’I) € FBy(2)

Lemma 1.3. For T = (7&0 STol’l) € FBy(Q2), let {70,771} be a holomorphic frame of Ep such that

00) L (o) = m(w))

Then for every w € €,
2

owow
where ho(w) = |Pyo(w)|[? and by (w) = | &0(w) — 7 (w)|.

trace Kr(w) = K, (w) — log (hl(w) — K, (w)ho(w)),
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Proof. Let hg be the Gram matrix of the frame {9, 1}, we have

_ ho(w) 2 ho(w) 0 0
hew) = <£Uho<w> a%iuho<w>>+<0 h1<w>)’

where ho(w) = ||yo(w)||? and hy(w) = H%fyo(w) — ’yl(w)HQ. Then we know from Lemma 1.2 that

log <h1(w) — K, (w)ho(w))-

2

traceKr(w) = Kgetr(w) = Kqy (w) — 50w

The following proposition is a direct consequence of Lemma 1.3:

Proposition 1.4. Let T = (TO S°’1> € FBy(Q). Then tracekr = Kg, + Ky, if and only if there

0 Ty
exists some ¢ € Hol(Q) with |¢p(w)| > 1 for all w € Q such that
K _ |¢’2 92 T
To — 1_ |¢’2 0,1( )

Proof. Consider the frame {—S 1, —%So,lt—i—t} for Er, where t is a cross-section of Er,. Let ho(w) =
| = So.1t(w)]|? and hy(w) = | — %So,lt +t||?. Then by Lemma 1.3, we have

2

0
tracelCr = K, — T log(h1 — Kzyho)-

If traceKr = Kg, + K7y, then obviously,

0?2 hi1 — Kz,ho
1 o = 0.
Jwow 08 < hy > 0

<h1 — /CToho)é
u = log 5
1

[

Since the function

is real-valued and harmonic, setting
¢ := " ¢ Hol(Q),
where v is the conjugate harmonic of u, it follows that
1
h1 — Kryho \ 2
U 0 )
ol = = (M
Notice that since K, (w) < 0 for all w € Q, |¢p(w)| > 1 and Kq, = (1 — ](]5\2)% Then by formula (0.3),

Oo1(T) = Kt K,

(Hsl(ljf!fuz_KTO)l/z - (}]'1L7(1)_KTO)1/2 - (W’CTO_KTo)l/?’

2
so that Kg, = 1Ez)|7|¢|26’871(T).

On the other hand, suppose that Kr, = %H%’l(T ). Then since

h
K, = (1 - ’(MQ)}T;’

we have )
traceKy = Kg, — 525 log(h1 — Kz, ho)
= Kr, — ggw log(|¢h1)
= ICTO + ICTl-
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The following result characterizes homogeneous operators in F By (D). Recall that a bounded op-
erator T is said to be homogeneous if for all linear fractional transformations ¢ from ID onto D that
are analytic on o(7T), ¢(T") is unitarily equivalent to 7.

0T
(1) Ty and Ty are homogeneous operators,
(2) Kny(w) = Kqy(w) + Kp=(w) for every w € D, where B denotes the Bergman shift operator,
and
(3) There exist non-vanishing holomorphic cross-sections to and ty for Er, and Er,, respectively,
a constant a > 0, and an o € N such that |[to(w)]]? = W, It1(w)|? = W, and

SO,ltl (w) = ato(w).

Given a homogeneous operator T € F Ba(D), we can assume by Lemma 1.5 that

1
——and ¢t =0
(1 — zw) and () (1 — zw)et2’

for some a € N, and that Tj is the backward shift operator M} on the Hilbert space of analytic
functions f on D such that

Lemma 1.5 ([15]). An operator T = (TO S‘“) € FBy(D) is homogeneous if and only if

to(w) =

S 1
kZ—O \f(/f)\gwl;z_l) < 00.
The operator T can also be viewed as M on a related Hilbert space. Since a holomorphic frame of
Er is also given by

Y = to

m o= %to - 14,
one can even consider a more general operator 7' € F Bo(ID) whose eigenvector bundle Ep possesses a
holomorphic frame of the form

Y = to
m o= Zto+dt,
for some to(w) = W and t(w) = W, where ap + 2 > a1 > «p, and for some ¢ €

GL(H*(D)). GL(H*(D)) as usual, stands for the general linear group over the space of bounded
analytic functions on ID. These kinds of operators are said to be quasi-homogeneous.

We next show that for a homogeneous operator 7" in F By (D), it becomes a simple matter to find
trace/Crp.

Proposition 1.6. Let T = (7(30 S;f) € FBy(D) be a homogeneous operator. Then

tracelr = Kg, + K.

Proof. Since T is homogeneous, there exist constants ¢ > 0 and o € N such that
1

70 = Aaw)e
_ ) 1 1
o= Ay (l—zw)"‘)_(l—zw)Och27

form a frame for &p. Then

h(w) = ( fro(w) g lo(w) ) |

Dho(w) 5ho(w) + h(w)
where h;(w) = ||v;(w)|*(i = 1,2). Since traceKr(w) = Kgerr(w) = —%, the proof is complete.
]

By using the methods similar to the ones used in [19], we can generalize Proposition 1.6 to ho-
mogeneous operators that belong to FBs(ID). The proof is omitted since we have not been able to
generalize the computations involved in this particular case. We infer that the result holds for every
n € N.
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Proposition 1.7. For T' € FBs(D) that is a homogeneous operator, we have for all w € D,
traceKr(w) = K, (w) + K1y (w) + Kp, (w).
Conjecture 1.8. Let T € FB,(D) be a homogeneous operator, then for all w € D,
traceKr(w) = K, (w) + Ky (w) + -+« + K7, (w).

Remark 1.9. By combining Propositions 1.4 and 1.6, we see that for a homogeneous operator T' =
(TO So’l) € FBy(Q), there exists a ¢ € Hol(2) with

0 T1
s

g

In fact, one can take ¢ to be the constant function

K

98,1(T)-

1
¢(w) = (1+alal?)?.

‘We now show that the condition
traceKr = K1, + K1,

can also be used to say something about the similarity of operators in F By(ID). The following lemma
is well-known, and can be found in [9], for instance.

Lemma 1.10. Let f € Hol(Q) be a function on Q taking values in a Hilbert space. If || f(w)]|*> = 1
for all w € Q, then f is a constant function.

Proposition 1.11. Let T = <T0° Sj(lil) € FBy(Q) be a homogeneous operator. If T = <T00 5%1) €
1

F Bo(2) is such that traceKz = K, + Ky, then T ~s T
Proof. Let {ty, a%to + t1} be a holomorphic frame for &7 with Sp 11 = —to. Notice that
Soat1 = —t,

for some 1 € Hol(Q2) and that tracelr = traceKz = Kg, + Kry. Then by Remark 1.9, there exist
constant functions ¢ and ¢ on € with |p(w)]?, |(w)|? > 1 such that

e o eP L s
Kr, = 1— |42 01(T) = . |$’290,1<T)-

This implies that (1—]¢|2)% = (1—|$|2)W}‘LT1%, where as before, h;(w) = ||t;(w)]|?. If we set ¢ = 1—|¢|?,
then

ch(w)? + [3(w) 2 = 1,
for all w € D. Applying 8% to both sides, we have cw(w)a%@(w) + &(w)a%qg(w) = 0. Then the
ii
meromorphic function % is equal to the anti-meromorphic function —f’aig, so that % is a constant.

ow ¥ _
It follows that 1 is also a constant, and by Lemma 1.5, we conclude that T is homogeneous.
Now define a bundle map ® : &, — &7, as

O(t1(w)) = Pta(w),

for each w € . Since 1 # 0 is a constant, the map ® induces an invertible operator in the commutant
{T1} of Ty and we denote this operator by X;. Then since

So1 X1t1(w) = So.1 (Y1 (w)) = —to(w) = So1t1(w),
for all w € €,
So,1 = So,1X1.
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Now setting X = (é )?1 ), we conclude that X is invertible and that
I 0 To 50,1 _ [ To So,1 I 0
0 Xy o7y ) \0 T 0X1 )"
]

Remark 1.12. The homogeneity of an operator is preserved under a unitary transformation and thus,

T = (%0 ST‘“) € FBy(R) is unitarily equivalent to a homogeneous operator if and only if T itself is
1

homogeneous.

We now give several equivalent statements to the condition traceXCr = K, + Kr,.

Theorem 1.13. Let T = (TD S, 1> € FBy(D) and suppose that f € Hol(D) takes values in a Hilbert

space H. Let o and 1 be the non-vanishing holomorphic cross-sections of £r, and Er,, respectively,
such that vo(w) L (%’yg(w) —y1(w)). Set hi(w) = ||vi(w)|? as before and suppose that for all w € D,
one of the following conditions hold:

(1) = (K2 ) (w) = IF @)%, or

@ = (n o) @) = 1A ond T )] = .
Then tracelCr = K, + K1y if and only if for some X > 0, hy = A(—Kg,ho).
Proof. If h denotes the Gram matrix

ho(w) a5 ho(w) )
%ho(w) 8w8w h()( ) + hl(w) ’
by Lemma 1.3, we have

tracelCr(w) = Kqy(w) —

g 08 (a0 = Ko w)ho() )

If traceKr = K7, + K1y, then 3%2)10 log (h17§f° ho) = 0, and therefore, there exists ¢ € Hol(D) such

that Tt — g2,
We ﬁrst consider the condition — (’CTO%)> (w) = || f(w)]|?, which implies
L+ [ f(w)]* = ¢(w)[,

and hence, ||f'(w)||> = ¢’ (w)¢' (w). If ¢’ = 0, then ¢ is a constant function. If not, we assume that
¢ (w) # 0 by considering the open set {w € D : ¢(w) # 0} instead of I. We then have ‘

It follows using Lemma 1.10 that (];:Eiﬂvg = ¢, for a constant ¢ of length 1. Then f(w) = cgb( ) + d for

some d € H and therefore,
0 = 1+eg(w)+d|*—|op(w)*
L+ e’ |g(w)|* + p(w){e,d) + d(w)(d, c) + [|d]|* — |¢(w)[?
= 1+ ¢(w){c,d) + d(w){d, c) +[|d]|*.

Applying % to the above, we have (c,d) = 0, and hence ||d||? + 1 = 0, which is a contradiction Thus
¢(w) is a constant function, also making ||f(w)||? = |¢(w)|?> — 1 constant. Letting A = ||f( e > 0
we have hy = A(—Kq,ho).

We now consider the second condition of the theorem. If tracer = Kq, +K7, and — (lCTO Z—‘;) (w) =

1f ()] 72, we get || f(w)]|7* = [¢(w)[* — 1> 0 and

e 1 _ 1 1 _ Lo
I1f (w)] B =1 o) (1_|¢(w)|2> |¢(w)’27§¢(w)|2"'




A SUBCLASS OF THE COWEN-DOUGLAS CLASS AND SIMILARITY 9

Let f(w) = ﬁ (ni() M€"> , where {e,, }°° is an orthonormal basis of . Then since \wl\igif |f(w)|?> =
OO7
lim |(w)[* = lim [|f(w)]7+1=1,
|w|—1— |w|—1~
and it follows that since |¢(w)| > 1 for all w € I, the function ¢ is constant. If we let \™! = |¢|>—1 > 0,
then h; = )\(_ICTohO)-

Conversely, if h1 = A=K, ho) for some A > 0, then 8@8(2%; log(hl_ffoho) = 0. Since tracer =
Ky — g2 log(hi — Kryho), we know that traceKe = Ky + Kry O

Corollary 1.14. Let T = (7[;0 S;il) € FBy(D). Suppose that T; ~,, (M}, Hg,), where the Hilbert

space Hy, has a reproducing kernel of the form K;(z,w) =
Kr, + K1, if and only if \1 = Mo + 2.

(17 for some \; € N. Then traceKr =

Proof. Since K;(z,w) = and K, (w) = Then

1 S -
(1—lw[2)%i? - le )?

h —
- <ICT0h(1)> (w) = Ao(1 — \w|2)h (M+2).

and therefore by Theorem 1.13, traceKr = Kg, + K7, if and only if —ICTOZ—? is a constant, that is,
A1 = Ao+ 2. O

1
(1—zw)ri?

2. ON THE EQUATION 32— log K (z,w) = [K(z,w)]”

In Theorem 1.13, we encountered the condition ||y (w)]|? = Al|~yo(w )||2(T6w log [|70(w)||?. An asso-
ciated question that has been raised by G. Misra is as follows:

Let K : D x D — C be a sesqui-analytic function. When is the function K (z, w)% log K(z,w) a
positive definite kernel?

One can come up with several counterexamples to show that K (z, w)% log K (z,w) need not be a
positive definite kernel. A simple case giving an affirmative answer occurs when one sets K = K*K?,
where both K and K*? are positive definite kernels. We give a necessary and sufficient condition for
the equation % log K (z,w) = [K(z,w)]P for some p € N to hold for a diagonal reproducing kernel.
At this point, we note that K (z,w)% log K(z,w) is a positive definite kernel, and give a special
sufficient condition for the open question raised by G. Misra. We first start with a necessary condition
for K(z, w)% log K (z,w) to be a positive definite kernel.

0 . .
Proposition 2.1. Given a positive definite kernel K(z,w) =1+ Y a;2'w" on D x D, if

=1

K(z, w)% log K (z,w) is a positive definite kernel, then for any n € N,

n+1l ¢

2
An+1 > _(71“‘11)2 le Ap41— zaz+z2§ k 1% Z An+1—3 Hal
i i

Z lj=i

Proof. Setting
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oo
we have awaij)w log K (w,w) = 3 n?b,|w|*™=Y. Then
n=1

K (w,0) 55 log K (w,w) - = (1 + > ai|w|2i> <Z n2bn|w2(n—1)>

=1 n=1
00 k
= b+ <(k‘ + 1%y + ) izak-i-l—ibi) jw[?".
k=1 i=1
Note that for n > 1, the coefficient of |w|?" is given by

n

(n + 1)2bn+1 + Z i2an+1_ibi

=1
2 |-t £ 2 ' k—11 i
= (n+1)7 | 2 (=) > (ITay) || + X @ant—i | 2 (1) ¢ (IT ar;)
k=1 k 7=1 =1 k=1 k 7j=1
> ij=n+1 > =i
Jj=1 j=1
2 5 | k—11 k
= (41 anp+(n+1)7 | X (D" ¢ > (I ay)
k=2 k j=1
Z Z'j:n+1
j=1
. -2 d k—11 k
+ 2 Can— | (D g [ 2 (I ayy)
i=1 k=1 k j=1
> li=i
j=1

Assuming ag = 1, without loss of generality, we have

pt1 > (n+11)2<(”+1)2 %1(1)]6_1/1;( > (ﬁaia‘))
7=1

k=2

)
zkj lj=1 !
j=1
1 n o n+l 1 12 k
= T 12 > Fappi—ai + >0 > (1) (IT ai;)ant1—
=1 =2 k=2 K j=1
> =i
j=1

O

To answer the question when % log K(z,w) = [K(z,w)]P for some p € N to hold, we need one
more result.

Lemma 2.2. For any n € N,

i(—l)k_l,lf S (41 (1) | =2

n
k=1 k
> ij=n
j=1
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Proof. Since log (ﬁ)Q = —2log(1 —z) = log [1 + (ﬁ - 1)] for |z| < 1,

One now considers the coefficient of ™ to get the result. O
m . .

Theorem 2.3. Let K(z,w) = 1+ > a;z"w" be a positive definite kernel on D x D. For p € N,
i=1

_2
% log K (z,w) = [K(z,w)? if and only if K(z,w) = ( - @) .

_2
. s e - p2W P
Proof. First, it is easy to see that for K(z,w) = (1 — T) )

0? 2 92 PZW PZW —2
log K =—— 1 1—-— ) =(1-— =K P,
9200 ° (z,0) p 020w i < 2 ) ( 2 > Kz w)]

o0 L p 0 ..

For the other direction, let L(z,w) := (K (z,w))? = (1 + > aizzwz> =14 Y biz'w". One of the
j i=1

steps in the proof of Proposition 2.1 showed that

& 1 - e
828w10gL2w Zn z_; kl < Z ]1_[11J> ! L

Z ij=n
j=1

Note that % log K (z,w) = [K(z,w)]P is equivalent to % log L(z,w) = pL(z,w), that is,

Zn Z "”11( Z ﬁ ) 2" "1—p+p;bz

=1 j=1
Z ij=n

Obviously, by = p, by = 2%]72, and by = %p?’. We will show that for all ¢ > 1,

i+1

bi: 9i D .

This amounts to showing that the b; = 2;1 p' for 1 < i < n satisfy

k
2 Z k 11 Z (Hblj) :pbn,b

k=1 ! j=1
> ij=n

j=1
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which is equivalent to

n_n_ _ .2 k—11 (i14+1)p't (i2+1)p"2 (ix+1)p'®
p on—1 - n Z (_1) E Z 27;1 2i2 e Qik

k
> ij=n
j=1

= 20 | S0 S (D)) et )

k=1 K
> ij=n
j=1
By Lemma 2.2,

i k11 Z (i1 4 D(ig+1)--- (i +1) = =

k=1 k
> ij=n
j=1

and hence, b; = Z;Ql p' for all i > 1. It then follows that

—2
L(z,w) = (K(z,w))’ =1+ Z nt 1p"z”*” = <1 = pz2w> ,

n=1

and therefore,

3. SIMILARITY OF OPERATORS IN FB,(Q2)

The following lemma states that the operator establishing the similarity between two operators in
FBp(R2) is of a special form:

Lemma 3.1 ([15]). If X is an invertible operator that intertwines operators in F By (2), then X and
X1 are upper triangular.

Recall that any homogeneous operator 1" € Bj(D) can be expressed as M}, the adjoint of the
operator of multiplication on the analytic function space Hx_, with reproducing kernel K, (z,w) =
ﬁ for some a € N (see [24] for details). At times, the similarity of operators in FBa(ID) can be
determined exclusively by considering the related operators in B;(ID) in the decomposition (0.2).
Theorem 3.2. LetT = (7(;0 S:%1>, S = (Sg; Sgﬁ) € FBy(D), where Sf ~y, (M}, Hk,) and K;(z,w) =
W for some k; € N. Suppose that the following statements hold:

(1) Each T; € L(H;) is a ki-hypercontraction, and
(2) There ezist t1(w) € ker(Th — w) and a function ¢ € GL(H>*(D)) such that for all w € D,

So.t1(w)|? (S Ki(., @)

el )
) e K\ (1, w)

Then T ~4 S if and only if
82

L

Ks: —Kny <

for some bounded subharmonic function vy on D.
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Remark 3.3. Assumption (2) of Theorem 3.2 has a nice geometric interpretation. Note that for

¢ € Hol(DD),
A 2 [Soata(w)[* | _ 9° [t1 (w)[I?
Jwow log <|¢( ) ”50 K )”2) © Owow log Ki(w,w)’

is equivalent to
Kss = Kny = Ksy — Ky
Hence, one can state Theorem 3.2 with the condition
82

Ksy —Kn < 5055

¥,

instead.

Proof. Recall that for an operator A that is an n-hypercontraction, the defect operators are defined

for 1 <m <n by
1
m 3
_ k[T gk gk
Dm,A_@ ve(7)a A>

We begin by defining the operators Vy : Hg — Mg and V7 : H1 — M1 by

o Zn
= Z ”ZnH2 ® Dki,Tij—;nw?
n=0 ?

for x € H;, where M, :=ran V; and ||2"||; denotes the norm of z" on the space Hg,. Then using J.
Agler’s result in [2], we see that each V; is a unitary operator satisfying V;T; = M|, Vi.

Suppose that to(w) € ker(Tp — w) and t;(w) € ker(T7 — w) are such that Sp1t1(w) = to(w) for
w € D. We then have

o0
Voto(w) = Z ”ZZW ® Dko,ToT(?tO(w)

= Z ||z”||2 ®Dk0,Tot0(w)

= Ko(z w) ®Dk07T0t0(w)7
for w € D. Analogously, one can show that

Viti1(w) = K3 (Z,W) ® Dy, 1t (w).
Now since S € FBy(D), StSo1 = S015% and there exists a function y € Hol(D) such that
Ko(-,m) = x(w)Sp1 K1 (-, W),

for all w € D. If we set
e(w) = X('w)Dko,TgSO,ltl(w) € Ho,

then
[So.1t1(w)[|> = || Ko(, @) @ Dy 1, S0,1t1 (w)||?
= [Ix(w)So,1K1(-,@) @ Dy1, So1t1 (w)]*
= [[S0,1 K1 (-, W) ® e(w)|?
= S0 1 K1 (- w) |1 [le(w) >
Similarly,
[t1(w)]|? = K1(w,w)|| Dy, tr(w)]?,
and since

b (w)? 150,181 (w)]|? _ S0 K1 (-, w)|2

[[£1(w)][? K1 (w, w)
for some ¢ € GL(H*> (D)), we have
[t (w)|* = |¢(w)[* K1 (w, w) | e(w)]|*.
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By the Rigidity Theorem given in [4], we next define the isometries Wy and W by
WoSoat1(w) = So1K1(-, W) ® e(w), and
Witi(w) == ¢(w) K1 (-, 0) ® e(w),

for w € D. Setting N; = ran W;, the isometries W; € L(H;, ;) become unitary operators and
(3.1)

(WO 0 )(To So7l> (W(f 0 ) _ (WOVO*M;\MOVOWJ WoSo, 1 W5 ) _ (MJINO WoSo 1 Wy

0 W 0 Wy

From this, we deduce that

0 Ty 0 lel*M:|M1V1W1* 0 MZ*‘NI
Moreover, by a result in [22], we have for w € D,

ker (M |n, —w) = \/ So1K1(-, W) ® e(w) and ker(M; |y, —w) = \/ K1(-0) @ e(w).
weD weD

We now prove that the condition Kgr — Kpy < %d) is sufficient for the similarity between T" and
S. Since Tj ~,, M}|y;, we have

82
=Ksp = (Ksp + Ke) = —Ke < 550,
where £ denotes the bundle with fiber £(w) := \/ e(w). Under this condition, it is shown in [21] that
there exist invertible operators Xy € L(Hk,,No) and X1 € L(Hx,,N1) such that

Kss — Ky = Ksi — Kry = K — Kage

Iy

It then follows for every w € D that
X0S0.1 K, (-, @) = MNw)So 1 K1 (-, W) ® e(w),
and
XlKl('7E) = )‘(w)gz)(w)Kl(aw) ® 8(’[0),
for some A(w) € Hol(ID). Moreover,
WoSoa Wi X1 K (w) = WoSoa Wi (Mw)e(w)Ki (-, 1) ® e(w))
WoSo,1 (A(w)tr (w))
(

AMw)So1 K1 (-, @) ® e(w)
XoSo1 K1 (-, @),

so that B
(8 -0 e )
0 Xy/\0 5§ 0 M |n 0 Xi/
Combining this result with (3.1), we finally conclude that 7"~ S.

For the necessity, assume that XT = SX for some invertible operator X. Then by Lemma 3.1,

_  Xo Xo,1
X = 0 X3

X;T; = SFX;. Now, since T is a kj-hypercontraction, by [7], there exists a bounded subharmonic
function v defined on D such that

) and since X! is also upper-triangular, both X and X; are invertible. Moreover,

62

Ksp =K < Owow

AP
]

The following example shows that the condition ¢ € GL(H*(D)) in Theorem 3.2 is not an unrea-
sonable assumption:

).
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Example 3.4. Let S = (503 gg;l) € FBy(D) and let Sy = (S ¢(S; 501) for some ¢ € H>®(D)
1

1
(note that Sy € fBg( ) as well). Suppose that S} ~, (M}, Hk,) with the reproducing kernel given

by Ki(z,w) = m for some k; € N. Note that the opemtors Sy and ST can then be viewed as

o
weighted shift operators with weight sequences { ntl } .
e

. . P I:[ Vv "nj’vll . . . .
It is shown in [13] that if lim m2">——— = oo, then an invertible operator X that intertwines S
m—reo H W’L,Lﬁ»klo

and Sg should be diagonal. Since Stzrlmg s formula gives

o n—+1 1—kg m n+1 1—ky
I[O\/nwco (m™=") an Tno\/nJrkl (m=="),

this is true when k1 — kg > 2. Then,

X055 = S5 Xo,
S~ Sy e XaST=51X,
X0S0,1 = ¢(S5)S0,1X1,

for some invertible operators Xo € L(Hk,) and X1 € L(Hk,). Since {S}} = H>®(D), there exist
¢0,¢1 € GL(H*®(D)) such that X; = ¢;(S;). Then by the equation X0So1 = ¢(S5)S0,1X1, we have

$0(S5)S0,1 = B(S5)b1(S5)So0,1-

Since it is known that So has dense range (see [15]), it follows that ¢o(S%) = (S%)p1(SE), and
therefore, $ € GL(H>(D)).

Once an additional intertwining condition is imposed, Theorem 3.2 can be generalized to operators
in the class 7B, (D):

To So1 So2 -+ Son—2 So,n—1 Sy Sor So2 o+ Son—2 So,n—1

0 Ty Si2 o+ Sin-2 Sin—1 0 Sy S12 o+ Sin-2 S1n—1

0 0 T s San-2 S2,n—1 0 0 S5 coo Sapoo Sa,n—1
Theorem 3.5. LetT = | . . o . . and S =

0 0 0 e Th—2  Sn-—2mn-1 0 0 0 . S%_ o Sn_amoa

0o 0 0o .- 0 Ty o 0 0 5 5"

both be in FB,(D), where S} = (M}, Hk,) and K;(z,w) =
0<i<n—1. Suppose that the following conditions hold:

(1) Each T; € L(H;) is a k; hypercontmction for0<i<n-—1,
(2) There exist functions {¢;}'~y C GL(H™(D)) such that for all 0 < i < j <n —1 and for all

(17)}“ for some k; € N and for all

w e D,
H| o ()2 Siats @) BN _ (i E (w), Kiw))
145 (w)]? | K (w)||? ’
where t,_1(w) € ker (Tp_1 —w), Kn_1(w) = Kp_1(-, ), and the other terms are inductively
deﬁned as tn—i( ) = Sn—z,n—z+1tn—i+l(w) and Kn z( ) =Sy in— z+1Kn H—l( )for2 <i<mn,
and

(3) T3Sij = Si;Tj and S;S; ;= S;;8; for all0<i<j<n-—1.

Then T ~g S if and only if
2

- Bwﬁw

for some bounded subharmonic function ¢ defined on D.

Ks: . —Kr, =Y,
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Proof. As in the proof of Theorem 3.2, there exists a holomorphic Hermitian vector bundle £ over D
with fiber £(w) = \/ e(w) such that for 0 <i <n —2,

[£:(w) 1> = 1Ssirativa(W)]* = 1901 Kipr (w) [ [le(w) || = 1K (w)][*[le(w)]]?,
where t;(w) € ker(T; — w), tit1(w) € ker(Tj11 — w), and S; j+1tir1(w) = t;(w) for w € D. Now let

j =1+ 1 in assumption (2) to obtain

i) ]2 lti(w)> | Ki(w)]?

[tir1 (W) || K (w)])2
from which it follows for 1 < i <n — 1 that

It:(w)|* = Hlm P (w) P lle(w)]*

We next define the isometries W; as Woto(w) = Ko(w) ® e(w) and for 1 < i <n — 1,

i—1
= [ or(w)Ki(w) @ e(w).
k=0
Then
To Sou1 Soz -+ Som—2  Som_1 MIIng  WoSo WP  WoSo W3 - WoSon—2Wy_, WoSo,n-1Wy_y
0 T Si2 -+ Sin-2 Simn—1 0 M7 |y W1S1,2W5 - WiSin2W,_, WiS1n—1W)_,
0 0 T -+ Son-_o So.n—1 0 0 M Ny s WaSa oW, W2Sa n—1 W) _;
: : : ~u : . : :
0 0 Th_2 Sn—2,n-1 0 0 0 M N, _s Wi—28n—2n-1Wy_,
0 0 0 0 Th-1 0 0 0 0 ]\/I Ij\/’

N; = ranW, for 0 <i < n — 1. Proceeding again as in the proof of Theorem 3.2, there exist invertible
operators X; € L(Hg,, N;) for 0 < i <n — 1 such that

X;S; = M |n X
Furthermore, there exists some A\(w) € Hol(D) satisfying
XoSo4;(w) = Aw) S Kj(w) ® e(w),
and for 1 <j<n-—1,

j—1
XK (w) = Aw) [ ] éx(w)K;(w)  e(w).
k=0
It can also be checked through direct calculation that for 0 < i <n — 2,
Xigi,i—&-l = WiSiiriWi 1 Xig1.
To prove that T is similar to .S, we need only check that for 0 <i < j<n-—1,
XS = WiSi ;Wi X;

Note that since T;S; ; = S; ;7 and S;‘gi,j = §i7j5;, there exist functions 1; ;, QZU € Hol(ID) such that
Si,jtj = wi,jti and gi,jkj = 1,/\)/7;7]'.[?1'. Thenfor1 <i<j<n-—1,

XiSi i Kj(w) = Xi(h; j(w) Ki(w)) = Aw)hi j(w H 1 (w ® e(w)
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and
WiSi Wi X, Kj(w) = Wz‘Sz‘,jo‘< (w )H 1 (w) K (w )®e(w)>
= Mw)W;S;;t;j(w)
= ( ) (@ijj( )tz( ))
= AMw)j(w )H(ka( VEKi(w) @ e(w).

In addition, for 0 < j <n —1,

X050, K (w) = Mw)o ;(w)Ko(w) ® e(w),
and
WoSo Wi XK (w) = Mw)oj(w)Ko(w) @ e(w).

It now remains to prove that for 0 <i < j<n—1,¢;; = @Zw Note that

H|¢ It W) _ [ Ki(w)]?

Ht W | K;(w))?

implies that |v; ;| = ]{/;”\ Since wz‘,jy%‘,j € Hol(D), we conclude that 1; ; = 1;” This finishes the
proof of the sufficiency. The proof of the necessity parallels that of Theorem 3.2.
O

4. OPERATOR THEORETIC REALIZATION AND SIMILARITY

The realization of Hermitian holomorphic bundles gives natural operations between Cowen-Douglas
operators. A related question then is the following: Given a Hermitian holomorphic bundle E, when
can one find a Cowen-Douglas operator 7" such that &7 = E7 It is known that at least for £ = &, ®&r,
with 71 € B,(Q) and Ty € By, (), such a Cowen-Douglas operator T exists. In [22], Q. Lin proved
the existence of a Cowen-Douglas operator “T} 1" defined on the space \/ ker(T} —w)®ker(Ts —w)

we

such that & ., = &, ® Ep,. However, for tensor products of holomorphic bundles in general, the
answer to this question is still unknown. For example, we can consider the following question:

Question For any Hermitian holomorphic bundle £ with rank m and a Cowen-Douglas operator
T € B,(Q), does there exists an operator S such that E¢ = Er ® £7

Note that the problem is also related to the similarity of Cowen-Douglas operators. According to
the work initiated by the second author and S. Treil, an operator model theorem plays a key role
in the similarity problem. If 737 is a Cowen-Douglas operator of index one, an operator 1T similar
to T7' is assumed to have a holomorphic bundle &7 with a tensor product structure. When T} is
M7, the adjoint of the multiplication operator on a weighted Bergman space, this kind of geometric
structure of the operator T' can be naturally obtained for T that is an n-hypercontraction. In this
case, &r is unitarily equivalent to &7, ® £ for some holomorphic bundle €. Since T' is similar to 77,
this bundle £ cannot have any Cowen-Douglas operator theoretical realization. This means that Er
cannot be equal to &7, ® &7, for any Cowen-Douglas operator 7. Now, when 77 is a Cowen-Douglas
operator with index n, the problem of determining similarity does not have a clear solution. To give
a sufficient condition for the similarity of irreducible Cowen-Douglas operators without an operator
model theorem, we need the following result on operator theoretical realization. This theorem also
gives a positive answer to the above question in a special case.

Denote by Hol(£2, C™) the space of all C"-valued holomorphic functions defined on a domain €. Let
T € B,(2) be such that T' ~,, (M}, Hk), where K(z,w) = (K; j(2,w))mxm and Hx C Hol(Q2, C™).

Theorem 4.1. Let e;(w),1 < i < n, be n holomorphic functions on Q and let
e(w) = (el(w)762(w)7 T )em(w)) € Cm7 w € .
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If £ is a line bundle with
E(w) = \/ {e(w
we

then for any operator T € B, (), there exists an operator S such that Eg = Er @ &

", be an orthonormal basis for C™. Then for w € €,

ker(T — w) \/K

1<i<n

Proof. Let {o;}"

Now set
M= \/{K(,w)o; ® e(w),1 < i < n},
we

which is an invariant subspace of T'® I,,, and let
S:=(T® Ln)|m

We need only prove that for w € €,
ker(S —w) = K(,w)o;®e(w) = (Er @ E)(w).

1<i<n

Note that for any K(-,w)o; ® e(w) € M, we have
S(K(w)o; @e(w)) = (T ® In,)(K(-,w)o; ® e(w)) =
and hence, (&7 @ &)(w) C ker(S — w) for w € . For the converse, we first consider the following

T(K(,w)o;) ®@e(w) =wK(-,w)o; ® e(w),

lemma:
Lemma 4.2. The orthogonal complement M~ of M can be represented as

ME = (x1,@2,++ ,Tm) € @HK : Zq(w)x?(@) =0for1<i<ny,

where x; = (x},x?, e j) € Hol(Q,C™).

Proof. Note that for w € Q,
K(-,w)o; ® e(w) = (K(-,w)oier1(w), K(-,w)oea(w), - -

n
It then follows that M C € Hx, and therefore for any = = (x1, z2,
i=1
Lt al)T € Hol(Q,C™).

S K(w)oien(w)) .

X)) € M,

Moreover, we also have

(skCmo) = (@ o) KCo)oew), K@) )

_ ]§< zi K (- m)aies( >>
_ S o
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For any t = (t1,t2,-+ ,tm) € ker(S — w), we have ¢; € ker(T' — w). Then there exist functions
{aj i, € Hol(Q2) such that for 1 <i <mn,

n
ti=>_ ai(w)K(,m)o;.
i=1
It follows that for any = = (21,22, ,Zp) € M,

<,I,t> — (xlaxZa"' 7xm),(t1>t23"' 7tm)>
n

= (331, Lo, - ,I’m), (Z ai(w)K('vw)Jh i Oéé(lU)K(',@)G’Q, ) Z O‘}m(w)K(7w)O—m> >
AT =1 =1 =1

= X X ai(w)z(w)
j=1i=1

= 0.

In particular, if one sets 2 = 2} = - -

. m .
Recall from before that the z also satisfy 231 ej(w)z;(w) = 0. Hence for any i1 and iz, if one sets
j:

x;-l (W) = —eiy(w), a;;? (w) = e, (w), and x;(@) = 0 for 4 different from i; and is, then 2 € M=,

Moreover, oz;-l (w)eg, (w) = oz;'-2 (w)e;, (w). Without loss of generality, we assume that for all w € Q and

1 <i<m, ej(w)#0. Then for each 1 < i < n, there exist m holomorphic functions

that are equal to one another. Thus,

(nta ) = (£ 04K 3 ahw)K (w3 b w)K (o) )
nz:l =1 =1
= = (all(w)K( 7w)aiv' 705371(11})](( ,w)az)
= ém,w)az@(aa(w),aa(w), ad, (w))
= émw)ff( W) ® (€1 (w), ea(w), -, em(w)
_ ékz(w)K(-,w)azé@e(w),

where k; := %zl This means that for w € Q, ker(S —w) C (§7 ® £)(w) and the proof is complete. [

Before moving onto the next theorem, we need a few more notations and lemmas. Let T' € B, (Q2)
n
be an operator defined on H such that for w € §, ker(T'—w) = \/ e;(w) for some holomorphic e;(w).
i=1
If we define an operator-valued function v : Q — L(C",H) as

a(w)(wy, wy, -+ ,wy) = Zwiei(w),
=1

then the Gram matrix h is related to a by
h(w) = a(w)*a(w),
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for w € Q. Then Pyey(r—w), the projection from H onto ker(T — w), can be written as
Pker(T—w) = a(w)h_l(w)a*(w)'

When no confusion arises, we will also use the notation P(w) to denote Pier(r—w)- This projection
formula first appeared in the work of R. Curto and N. Salinas in [5]. See also the references [11] and
[16] for further generalization. In particular, we mention below the result due to the first author given
n [11]. We first start with some relevant definitions and results.

Definition 4.3. For a unital C*-algebra i, p is called a projection (or an orthogonal projection) in
L whenever p?> = p = p*. The set of all projections in 8 is called the Grassmann manifold of $l and is
denoted by P(Lh). For a connected open set Q@ C C, P : Q — P(L) is said to be a holomorphic curve
on P(L) if it is a real-analytic U-valued map satisfying a%PP =0.

Lemma 4.4 ([23]). For a holomorphic curve P on P(L), we have for all positive integers I and J,

o7 ol

——PP=P—P=0.

07w oMw
Definition 4.5. Let © C C be a connected open set and suppose U is a unital C*-algebra. Given
a holomorhic curve P : Q — P(L), the curvature and the corresponding covariant derivatives of the

holomorphic curve P, denoted IC; ;(P) for i,j > 0, are defined as

0 0
,C(P) = ICO’O(P) = %P%P,
0
]Ci+1,j(P) = P%(’Ci,j<P))a and
0
Kij1(P) := 5= (Ki;(P))P.

Lemma 4.6 ([11]). Let P(w) = a(w) (o*(w)a(w)) ™" o (w) be the projection onto ker(T —w) defined
above. Then the curvature and its covariant derivatives IC; ;(P) : @ — L(H) for 0 < i,j < n, satisfy
the identity

for all w € Q.
Based on these lemmas, we can prove the following result:

Theorem 4.7. Let & and & be Hermitian holomorphic vector bundles over Q. Set H; = \/ &i(w).
we
If the P;j(w) denote the projection from H; onto &;(w), then

Kij(PL® Py) =K;j(P1)® P+ P ® K ;(P).
Proof. We prove by induction on ¢ and j and consider the case ¢ = j = 0 first. Notice that
KPL@P) = 2(PeP)2(PoP)
= (P @ P+ P 0 &) (4P @ P+ P & Py)
= (ZPLP@P+PL@ ZP P+ 42PiP @ Py Py + PLilPi @ 2 PoPy).
By Lemma 4.4, %PlPl = %PQPQ = 0 and hence,

0 0 0 0
K(P® P) = %H%H QP+ P ® %PQ%PZ =K(P1) @ P+ P, @ K(P).

Now assume that the conclusion holds for all 0 < 4,5 < k, that is,
Kij(PL®P) =Ki;(P1) @ P+ Py @K ;(Ps).
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Then,
Kit1;(PL@P) = (P1® Py)i(Kij(P® Py))
= (PL® Py) 2% (Kij(P) ® P+ Py @ Ki j(P2))
= Pl%(lcm(Pl)) QP+ PllCi,j(Pl) & PQ%PQ + P %Pl X PQ’CZ'J‘(PQ) +P® PQ%(ICM

Notice that since PQ%PQ =P %Pl = 0, Definition 4.5 gives
Kit1j(PL@Py) = Pigh(Kij(P1) ® Py + Pr @ Pygh(Kij(Py))
= Kit1,;(P1) @ o+ PL @ Kig1,5(P).
One shows in the same manner that
Kijr1(Pr® P2) = K j1(P1) @ P+ PL @ K j1(F2),

and therefore, the conclusion also holds in the case of 0 < 4,5 < k + 1.
O

Corollary 4.8. Let & and & be Hermitian holomorphic bundles over 1 of rank n and m, respectively.
Fori,7 >0,
,Cgl®g2’zi5j = Kgl’zigj QI+ I, ® IC£2’Z1'5]'.

Proof. Let Pi(w) and Py(w) be the orthogonal projections onto & and &, respectively. By Theorem
4.7, we have ICi,j(Pl & PQ) = ICi,j(Pl) QP+ P ® ’CiJ(PQ). Suppose that

and
ag(w)(wy, wa, -+ ,wm) = Y weef (w),
t=1
for all w €  and for some w,, wy € C. Now let {o;}"; be an orthonormal basis for C". Then for any
el(w) ® e2(w) € & (w) ® E(w), we have

(Kij(P1)(w) ® Po(w))(e(w) ® e (w)) = Kij(P1)(w)eg(w) ® ef (w)

I
£
g

|
e
o

Similarly, we also have
(Pr(w) ® Kij(Po)(w))(e5(w) @ ef(w)) = e5(w) @ as(w)(=Ke, iz (w)) (o)

When K; j(P1 ® P») is viewed as a bundle map on £ ® &, the corresponding matrix representation
under the basis {el ®e? : 1 < s <n,1 <t <m}is Ke 06,21z~ From the calculation above, we see
that it can also be represented as K¢, iz ® Iy + I, ® Kg, iz and this finishes the proof. O

Corollary 4.9. Let & and & be as in Corollary 4.8. If & is a line bundle, then
traceke, gg, »izi — traceke, Lizi = Kg, iz

By using Theorem 4.1 and Corollary 4.8, we arrive at the following main theorem of the section:
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Theorem 4.10. Let T, S € B, () and let T' ~,, (M}, Hxk). Suppose that there exist an isometry V

and functions {e1, ez, , ey} C Hol(QY) such that for every 0 < i,j <n,
giti+2
VK&g@ﬂﬂ“—K&wwjIzgﬁagﬁj£¢®lm
where 1 is the function with the property that
m
expp(w) =Y Jei(w)|*.
i=1

Then there exists an M} & I,-invariant subspace M of Hx @ C™ such that
S~y (MZ @ In)|m-

Moreover, when v is bounded on €2, S is similar to T.
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