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Abstract. Doubly commutativity of invariant subspaces of the Bergman
space and the Dirichlet space over the unit polydisc Dn (with n ≥ 2) is
investigated. We show that for any non-empty subset α = {α1, . . . , αk}
of {1, . . . , n} and doubly commuting invariant subspace S of the Bergman
space or the Dirichlet space over Dn, the tuple consists of restrictions
of co-ordinate multiplication operators Mα|S := (Mzα1

|S , . . . ,Mzαk
|S)

always possesses generating wandering subspace of the form

k∩
i=1

(S ⊖ zαiS).
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1. Introduction

A closed subspace W of a Hilbert space H is said to be generating wandering
subspace (following Halmos [5]) for an n-tuple T = (T1, . . . , Tn) (n ≥ 1) of
commuting bounded linear operators on H if

W ⊥ T l1
1 T l2

2 · · ·T ln
n W

for all (l1, . . . , ln) ∈ Nn \ {(0, . . . , 0)} and

H = span{T l1
1 T l2

2 · · ·T ln
n h : h ∈ W, l1, . . . , ln ∈ N}.

In this case, the tuple T is said to have the generating wandering subspace
property.

The main purpose of this paper is to investigate the following question:
Question: Let (T1, . . . , Tn) be a commuting n-tuple of bounded linear opera-
tors on a Hilbert space H. Does there exist a generating wandering subspace
W for (T1, . . . , Tn)?
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This question has an affirmative answer for the restriction of multipli-
cation operator by the co-ordinate function Mz, to an invariant subspace of
the Hardy space H2(D) (Beurlings theorem [3]) or the Bergman space A2(D)
(Aleman, Richter and Sundberg [2]) or the Dirichlet space D(D) (Richter
[8] ) over the unit disc D of the complex plane C. For n ≥ 2, existence of
generating wandering subspaces for general invariant subspaces of the Hardy
space H2(Dn) over the unit polydisc Dn rather fails spectacularly (cf. [9]).

Recall that the Hardy space over the unit polydisc Dn = {z = (z1, . . . , zn) ∈
Cn : |zi| < 1, i = 1, . . . , n} is denoted by H2(Dn) and defined by

H2(Dn) = {f ∈ O(Dn) : sup
0≤r<1

∫
Tn

|f(rz)|2dθ < ∞},

where dθ is the normalized Lebesgue measure on the torus Tn, the distin-
guished boundary of Dn, rz := (rz1, . . . , rzn) and O(Dn) denotes the set of
all holomorphic functions on Dn (cf. [9]).

In [3], A. Beurling characterize all closed Mz-invariant subspaces of
H2(D) in the following sense: Let S ̸= {0} be a closed subspace of H2(D).
Then S is Mz-invariant if and only if S = θH2(D) for some inner function
θ (that is, θ ∈ H∞(D) and |θ| = 1 a.e. on the unit circle T). In particular,
Beurlings theorem yields the generating wandering subspace property forMz-
invariant subspaces of H2(D) as follows: if S = θH2(D) is an Mz-invariant
subspace of H2(D) then

S =
∑
m≥0

⊕zmW, (1.1)

where W is the generating wandering subspace for Mz|S given by

W = S ⊖ zS = θH2(D)⊖ zθH2(D) = θC.
In [9], W. Rudin showed that there are invariant subspacesM ofH2(D2)

which do not contain any bounded analytic function. In particular, the Beurl-
ing like characterization of (Mz1 , . . . ,Mzn)-invariant subspaces of H

2(Dn), in
terms of inner functions on Dn is not possible.

On the other hand, the generating wandering subspace (and the Beurlings
theorem) for the shift invariant subspaces of the Hardy space H2(D) follows
directly from the classical Wold decomposition [12] theorem for isometries.
Indeed, for a closed Mz-invariant subspace S (̸= {0}) of H2(D),

∞∩
m=0

(Mz|S)mS =
∞∩

m=0

Mm
z S ⊆

∞∩
m=0

Mm
z H2(D) = {0}.

Consequently, by Wold decomposition theorem for the isometry Mz|S on S
we have

S =
∑
m≥0

⊕zmW ⊕ (
∞∩

m=0

(Mz|S)mS) =
∑
m≥0

⊕zmW,

where W = S ⊖ zS and hence, (1.1) follows. Therefore, the notion of gen-
erating wandering subspaces is stronger (as well as of independent interest)
than the Beurlings characterization of Mz-invariant subspaces of H

2(D).
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To proceed, we now recall the following definition: a commuting n-tuple
(n ≥ 2) of bounded linear operators (T1, . . . , Tn) on H is said to be doubly
commuting if TiT

∗
j = T ∗

j Ti for all 1 ≤ i < j ≤ n.

Natural examples of doubly commuting tuples of operators are the mul-
tiplication operators by the co-ordinate functions acting on the Hardy space
or the Bergman space or the Dirichlet space over the unit polydisc Dn (n ≥ 2).

Let H ⊆ O(Dn) be a reproducing kernel Hilbert space over Dn (see [1])
and multiplication operators {Mz1 , . . . ,Mzn} by co-ordinate functions are
bounded. Then a closed (Mz1 , . . . ,Mzn)-invariant subspace S of H is said to
be doubly commuting if the n-tuple (Mz1 |S , . . . ,Mzn |S) is doubly commuting,
that is, RiR

∗
j = R∗

jRi for all 1 ≤ i < j ≤ n, where Ri = Mzi |S .
In [11], third author and Sasane and Wick proved that any doubly

commuting invariant subspace of H2(Dn) (where n ≥ 2) has the generating
wandering subspace property (see [6] for n = 2). Also in [7], Redett and Tung
obtained the same conclusion for doubly commuting invariant subspaces of
the Bergman space A2(D2) over the bidisc D2.

In this paper we prove that doubly commuting invariant subspaces of the
Bergman space A2(Dn) and the Dirichlet space D(Dn) have the generating
wandering subspace property. Our result on the Bergman space over polydisc
is a generalization of the base case n = 2 in [7]. Our analysis is based on
the Wold-type decomposition result of S. Shimorin for operators closed to
isometries [10].

The paper is organized as follows: in Section 2, we obtain some general
results concerning the generating wandering subspaces of tuples of doubly
commuting operators. We obtain generating wandering subspaces for doubly
commuting shift invariant subspaces of the Bergman and Dirichlet spaces
over Dn in Section 3.

2. Generating wandering subspace for tuple of doubly
commuting operators

In this section we prove the multivariate version of the S. Shimorin’s result
for tuple of doubly commuting operators on a general Hilbert space. We show
that for a tuple of doubly commuting operators T = (T1, . . . , Tn) on a Hilbert
space H, if for any reducing subspace Si of Ti the subspace Si ⊖ TiSi is a

generating wandering subspace for Ti|Si , i = 1, . . . , n, then
n∩

i=1

(H ⊖ TiH) is

a generating wandering subspace for T . We fix for the rest of the paper a
natural number n ≥ 2 and set Λn := {1, . . . , n}.

For a closed subset K of a Hilbert space H, an n-tuple of commuting
operators T = (T1, . . . , Tn) on H and a non-empty subset α = {α1, . . . , αk} ⊆
Λn, we write [K]Tα to denote the smallest closed joint Tα := (Tα1 , . . . , Tαk

)-
invariant subspace of H containing K. In other words
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[K]Tα =
∞∨

l1,l2,...,lk=0

T l1
α1
T l2
α2

· · ·T lk
αk

(K). (2.1)

If α is a singleton set {i} then we simply write [K]Ti .
For a non-empty subset α = {α1, . . . , αk} ⊆ Λn, we also denote by Wα

the following subspace of H,

Wα =
k∩

i=1

(H⊖ Tαi
H). (2.2)

Again if α is a singleton set {i} then we simply write Wi. Thus with the
above notation Wα =

∩
αi∈α

Wαi .

A bounded linear operator T on a Hilbert spaceH is analytic if
∞∩

n=0
TnH =

{0} and it is concave if it satisfies the following inequality

∥T 2x∥2 + ∥x∥2 ≤ 2∥Tx∥2 (x ∈ H).

Multiplication by co-ordinate functions on the Dirichlet space over the unit
polydisc are concave operators as we show in the next section.

For a single bounded operator T on a Hilbert space H, the following re-
sult ensures the existence of the generating wandering subspace under certain
conditions (see [8], [10]).

Theorem 2.1. (Richter, Shimorin). Let T be an analytic operator on a Hilbert
space H which satisfies one of the following properties:
(i) ∥ Tx+ y ∥2≤ 2(∥ x ∥2 + ∥ Ty ∥2) (x, y ∈ H),
(ii) T is concave.
Then H⊖ TH is a generating wandering subspace for T , that is,

H = [H⊖ TH]T .

The following proposition is essential in order to generalize the above
result for certain tuples of commuting operators.

Proposition 2.2. Let T = (T1, . . . , Tn) be a doubly commuting tuple of opera-
tors on H. Then Wα is Tj-reducing subspace for all non-empty subset α ⊆ Λn

and j /∈ α, where Wα is as in (2.2).

Proof. Let α = {α1, . . . , αk} be a non-empty subset of Λn and j /∈ α. First

note that Wl = KerT ∗
l for all 1 ≤ l ≤ n and therefore Wα =

k∩
i=1

KerT ∗
αi
. Let

x ∈ Wα, αi ∈ α and y ∈ H. By doubly commutativity of T we have,

⟨Tjx, Tαiy⟩ = ⟨T ∗
αi
Tjx, y⟩ = ⟨TjT

∗
αi
x, y⟩ = 0.

Therefore, TjWα ⊥ Tαi
H and hence TjWα ⊆ Wαi

for all αi ∈ α. Thus Wα

is an invariant subspace for Tj . Also, by commutativity of T we have

⟨T ∗
j x, Tαiy⟩ = ⟨T ∗

αi
T ∗
j x, y⟩ = ⟨T ∗

j T
∗
αi
x, y⟩ = 0,
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for all αi ∈ α and y ∈ H. This implies T ∗
j Wα ⊥ TαiH and then T ∗

j Wα ⊆ Wαi

for all αi ∈ α . This completes the proof. �
Now we prove the main theorem in the general Hilbert space operator

setting. Below for a set α, we denote by #α the cardinality of α.

Theorem 2.3. Let T = (T1, . . . , Tn) be a doubly commuting tuple of operators
on H such that for any reducing subspace Si of Ti, the subspace

Si ⊖ TiSi

is a generating wandering subspace for Ti|Si , i = 1, . . . , n. Then for each
non-empty subset α = {α1, . . . , αk} ⊆ Λn, the tuple Tα = (Tα1 , . . . , Tαk

)
has the generating wandering subspace property. Moreover, the corresponding
generating wandering subspace is given by

Wα =

k∩
i=1

(H⊖ TαiH).

Proof. First note that we only need to show H = [Wα]Tα for any non-empty
subset α of Λn as the orthogonal property for wandering subspace is im-
mediate. Now for a singleton set α the result follows form the assumption
that Wi is a generating wandering subspace for Ti, i = 1, . . . , n. Now for
#α ≥ 2, it suffices to show that [Wα]Tαi

= Wα\{αi} for any αi ∈ α. Because
for αi, αj ∈ α, one can repeat the procedure to get

[Wα]T{αi,αj}
= [[Wα]Tαi

]Tαj
= Wα\{αi,αj},

and continue this process until the set α \ {αi, αj} becomes a singleton set
and finally apply the assumption for singleton set.

To this end, let α ⊆ Λn,#α ≥ 2 and αi ∈ α. Consider the set F =
Wα\{αi} ⊖ Tαi

(Wα\{αi}). Now by Proposition 2.2, Wα\{αi} is a reducing
subspace for Tαi and therefore

F = {x ∈ Wα\{αi} : x ∈ KerT ∗
αi
}

= Wα\{αi} ∩Wαi

= Wα.

On the other hand, since Wα\{αi} is a reducing subspace for Tαi then by
assumption F = Wα is a wandering subspace for Tαi . Thus

[Wα]Tαi
= Wα\{αi}.

This completes the proof. �
Combining Theorem 2.1 with the above theorem we have the following

result, which is the case of our main interest.

Corollary 2.4. Let T = (T1, . . . , Tn) be a commuting tuple of analytic opera-
tors on H such that T is doubly commuting and satisfies one of the following
properties:
(a) Ti is concave for each i = 1, . . . , n,
(b) ∥Tix+ y∥2 ≤ 2(∥x∥2 + ∥Tiy∥2) (x, y ∈ H, i = 1, 2, . . . , n).
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Then for any non-empty subset α = {α1, . . . , αk} ⊆ Λn, Wα is a generating
wandering subspace for Tα = (Tα1 , . . . , Tαk

), where Wα is as in (2.2).

Proof. Note that if T satisfies condition (a) or (b) then for any 1 ≤ i ≤ n and
reducing subspace Si of Ti, Ti|Si also satisfies condition (a) or (b) respectively.
Thus by Theorem 2.1, T satisfies the hypothesis of the above theorem and
the proof follows. �

We end this section by proving kind of converse of the above result and
part of which is a generalization of [7], Theorem 3.

Theorem 2.5. Let T = (T1, . . . , Tn) be an n-tuple of commuting operators on
H with the property

∥Tix+ y∥2 ≤ 2(∥x∥2 + ∥Tiy∥2) (x, y ∈ H, i = 1, 2, . . . , n)

or Ti is concave for all i = 1, . . . , n. Then,
(i) T is doubly commuting on H, and
(ii) Ti is analytic for all i = 1, 2, . . . , n
if and only if
(a) for any non-empty subset α = {α1, . . . , αk} ⊆ Λn, Wα is a generat-
ing wandering subspace for Tα = (Tα1 , . . . , Tαk

) and for k ≥ 2, [Wα]Tαi
=

Wα\{αi} for all αi ∈ α,
(b) Ti commutes with T ∗

j Tj for all 1 ≤ i < j ≤ n.

Proof. The forward direction follows from Theorem 2.3.
For the converse, suppose that (a) and (b) hold. To show (i), let 1 ≤

i ≤ n be fixed. By assumption (a), Wi = [W{i,j}]Tj for all 1 ≤ i ̸= j ≤ n.
This shows that Wi is Tj invariant subspace for all 1 ≤ j ̸= i ≤ n. Let x ∈ H.
Since [Wi]Ti = H then there exists a sequence xk converging to x such that

xk =

Nk∑
m=0

Tm
i xm,k,

where each Nk is a nonnegative integer and xm,k is a member of Wi. Now
for any 1 ≤ j ̸= i ≤ n we have,

T ∗
i Tjxk =

Nk∑
m=0

T ∗
i TjT

m
i xm,k =

Nk∑
m=1

T ∗
i TjT

m
i xm,k.

On the other hand,

TjT
∗
i xk =

Nk∑
m=0

TjT
∗
i T

m
i xm,k =

Nk∑
m=1

TjT
∗
i T

m
i xm,k =

Nk∑
m=1

T ∗
i TjT

m
i xm,k,

where the last equality follows from (b). So T ∗
i Tjxk = TjT

∗
i xk and by taking

limit T ∗
i Tjx = TjT

∗
i x. Thus we have (i).

Finally, by Theorem 3.6 of [10] we have that

H = [Wi]Ti
⊕

∞∩
m=1

Tm
i H,
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for all 1 ≤ i ≤ n. By part (a), [Wi]Ti = H for all 1 ≤ i ≤ n. Thus
∞∩

m=1
Tm
i H =

{0} for all 1 ≤ i ≤ n and this completes the proof. �

3. Generating wandering subspaces for invariant subspaces of
A2(Dn) and D(Dn)

In this section we apply the general theorem proved in the previous sec-
tion to obtain generating wandering subspaces for invariant subspaces of the
Bergman space and the Dirichlet space over polydisc.

The Bergman space over Dn is denoted by A2(Dn) and defined by

A2(Dn) = {f ∈ O(Dn) :

∫
Dn

|f(z)|2dA(z) < ∞},

where dA is the product area measure on Dn.

Below for any invariant subspace S of A2(Dn) and non-empty set α =
{α1, . . . , αk} ⊆ Λn, we denote by WS

α the following set:

WS
α :=

k∩
i=1

(S ⊖ zαiS).

We denote by M = (Mz1 , . . . ,Mzn) the n-tuple of co-ordinate multiplication
operators on A2(Dn).

Theorem 3.1. Suppose S is a closed joint M -invariant subspace of A2(Dn).
If S is doubly commuting then for any non-empty subset α = {α1, . . . , αk} of
Λn, WS

α is a generating wandering subspace for Mα|S = (Mzα1
|S , . . . ,Mzαk

|S).

The proof of the above theorem follows if we show the tuple of operators

(Mz1 |S , . . . ,Mzn |S)

on S satisfies all the hypothesis of Corollary 2.4. First note that by analyticity
of A2(Dn), all the co-ordinate multiplication operators Mzi , i = 1, . . . , n, on
A2(Dn) are analytic. Then Mzi |S is also analytic for all i = 1, . . . , n. Thus
the only hypothesis which remains to verify is either condition (a) or (b)
of Corollary 2.4. In the next lemma we show that the tuple (Mz1 , . . . ,Mzn)
satisfies condition (b) and therefore so does (Mz1 |S , . . . ,Mzn |S).

Lemma 3.2. For 1 ≤ i ≤ n, the operator

Mzi : A
2(Dn) → A2(Dn), f 7→ zif,

satisfies

∥Mzif + g∥2A2(Dn) ≤ 2
(
∥f∥2A2(Dn) + ∥Mzig∥2A2(Dn)

)
,

for all f, g ∈ A2(Dn).
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Before we prove this lemma, we recall a well known fact regarding the
norm of a function in A2(Dn) and prove an inequality. If f is in A2(Dn) with
the following power series expansion corresponding to i-th variable:

f(z1, · · · , zn) =
∞∑
k=0

akz
k
i ,

where ak ∈ A2(Dn−1) for all k ∈ N, then

∥f∥2A2(Dn) =

∞∑
k=0

∥ak∥2A2(Dn−1)

(k + 1)
.

Next we prove the following inequality (can be found in [4], page 277,
we include the proof for completeness) for any z, w ∈ C and k ∈ N \ {0},

|z + w|2

k + 1
≤ 2

(
|z|2

k
+

|w|2

k + 2

)
. (3.1)

To this end, note that 2k(k+2)Re(zw̄) ≤ (k+2)2|z|2+k2|w|2, which follows
from the inequality |(k + 2)z − kw|2 ≥ 0. Now

|z + w|2

k + 1
=

|z|2 + |w|2 + 2Re(zw̄)

k + 1

≤ |z|2 + |w|2

k + 1
+

|z|2(k + 2)/k + |w|2k/(k + 2)

k + 1

= 2

(
|z|2

k
+

|w|2

k + 2

)
.

Now we prove the lemma.

Proof. Let 1 ≤ i ≤ n be fixed. Let f(z1, · · · , zn) =
∞∑
k=0

akz
k
i and g(z1, · · · , zn) =

∞∑
k=0

bkz
k
i be the power series expansions of two functions f, g ∈ A2(Dn) with

respect to zi-th variable, where ak,bk ∈ A2(Dn−1) for all k ∈ N. Then

(Mzif + g) =
∞∑
k=0

akz
k+1
i +

∞∑
k=0

bkz
k
i = b0 +

∞∑
k=1

(ak−1 + bk)z
k
i .

Now

∥Mzif + g∥2A2(Dn) = ∥b0∥2A2(Dn−1) +
∞∑
k=1

∥ak−1 + bk∥2A2(Dn−1)

(k + 1)

≤ ∥b0∥2A2(Dn−1) + 2
∞∑
k=1

(
∥ak−1∥2A2(Dn−1)

k
+

∥bk∥2A2(Dn−1)

k + 2

)
( by (3.1))

= 2

( ∞∑
k=0

∥ak∥2A2(Dn−1)

k + 1
+

∞∑
k=1

∥bk−1∥2A2(Dn−1)

k + 1

)
= 2

(
∥f∥2A2(Dn) + ∥Mzig∥2A2(Dn)

)
.
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The proof follows. �

Now we turn our attention to the Dirichlet space over polydisc. The
Dirichlet space over D is denoted by D(D) and defined by

D(D) := {f ∈ O(D) : f ′ ∈ A2(D)}.

For any f =
∞∑
k=0

akz
k ∈ D(D), ∥f∥2D =

∞∑
k=0

(k + 1)|ak|2. The Dirichlet space

over Dn is denoted by D(Dn) and defined by

D(Dn) := D(D)⊗ · · · ⊗ D(D)︸ ︷︷ ︸
n-times

.

Another way of expressing D(Dn) is the following

D(Dn) := {f ∈ O
(
D;D(Dn−1)

)
: f =

∞∑
k=0

akz
k,

∞∑
k=0

(k + 1)∥ak∥2D(Dn−1) < ∞}.

In the above, ak ∈ D(Dn−1) for all k ∈ N. The co-ordinate multiplication
operators on D(Dn) are also denoted by Mzi , i = 1, . . . , n. Since D(Dn)
contains holomorphic functions on Dn thenMzi is analytic for all i = 1, . . . , n.

Let 1 ≤ i ≤ n be fixed. Now for f ∈ D(Dn), let f =
∞∑
k=0

akz
k
i be the Taylor

expansion of f corresponding to zi-th variable, where ak ∈ D(Dn−1) for all

k ∈ N. Then ∥f∥2 =
∞∑
k=0

(k + 1)∥ak∥2D(Dn−1) and

∥M2
zif∥

2 + ∥f∥2 =
∞∑
k=2

(k + 1)∥ak−2∥2D(Dn−1) +
∞∑
k=0

(k + 1)∥ak∥2D(Dn−1)

=

∞∑
k=0

(k − 1)∥ak∥2D(Dn−1) +

∞∑
k=0

(k + 1)∥ak∥2D(Dn−1)

= 2
∞∑
k=1

k∥ak∥2D(Dn−1)

= 2∥Mzif∥2.

Therefore Mzi is concave for all i = 1, . . . , n. Thus again by Corollary 2.4,
we have proved the following result of generating wandering subspaces for
invariant subspaces of Dirichlet space over polydisc.

Theorem 3.3. Suppose S is a closed joint (Mz1 , . . . ,Mzn)-invariant subspace
of D(Dn). If S is doubly commuting then for any non-empty subset α =
{α1, . . . , αk} of Λn, WS

α is a generating wandering subspace for Mα|S =
(Mzα1

|S , . . . ,Mzαk
|S), where

WS
α =

k∩
i=1

(S ⊖ zαiS).
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We conclude the paper with the remark that since the tuple of co-
ordinate multiplication operators (Mz1 , . . . ,Mzn) on the Bergman space or
the Dirichlet space over polydisc satisfies the hypothesis of Theorem 2.5, the
same conclusion as in Theorem 2.5 holds for invariant subspaces of Bergman
space or Dirichlet space over polydisc.
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