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Abstract. We characterize invariant subspaces of Brownian shifts on vector-valued
Hardy spaces. We also solve the unitary equivalence problem for the invariant subspaces
of these shifts.
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1. Introduction

The computation of the lattices of invariant subspaces of bounded linear operators
acting on Hilbert spaces is a consistently fascinating problem. There are few operators for
which a complete description of the lattice of invariant subspaces is known [12, 13, 14, 19].
Among the known cases, one of the most notable is the shift operator S on H2(T) (where
T = ∂D and D = {z ∈ C : |z| < 1}). Here, H2(T) denotes the classical Hardy space of
analytic functions on the open unit disc D, and

Sf = zf,

for all f ∈ H2(T). Recall that H2(T) can also be viewed as a closed subspace of L2(T)
consisting of functions whose Fourier coefficients vanish at all negative indices.

The shift S is a typical example of a pure isometry; that is, an isometry that does not
have a unitary part. The invariant subspaces of S are precisely of the form

φH2(T),

where φ is an inner function [5]. Brownian shifts were introduced by Agler and Stankus
on H2(T) ⊕ C [3, Definition 5.5] in the context of m-isometries, and, along the lines of
Beurling, they characterized the invariant subspaces of such operators. The Brownian
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shift of covariance σ > 0 and angle θ ∈ [0, 2π) is the bounded linear operator Bσ,eiθ :
H2(T)⊕ C → H2(T)⊕ C, defined by

Bσ,eiθ =

[
S σ(1⊗ 1)
0 eiθ

]
,

where ((1 ⊗ 1)α)(z) = α for all α ∈ C and z ∈ T. Brownian shifts are connected to the
time-shift operators associated with Brownian motion processes [3]. Also, for a curious
statistical take on Brownian shifts, see [1, page 13].

On the other hand, we recall that shifts on vector-valued Hardy spaces are all examples
of pure isometries. Given a Hilbert space E (all Hilbert spaces in this paper are separable
and over C), denote by H2

E(T) the E-valued Hardy space over T. By SE, we refer to
the shift operator on H2

E(T). When E = C, we simply write H2
C(T) as H2(T), and SC

as S. In this case, the invariant subspaces of SE are parameterized by operator-valued
inner functions—a classical result known as the Beurling–Lax–Halmos theorem (cf. [11,
Theorem 2.1, p. 239]). This result lies within the framework of the invariant subspace
problem—where, instead of investigating the existence of invariant subspaces for general
operators, one fixes a natural operator and seeks a complete description of the lattice of
its invariant subspaces.

In this paper, we introduce Brownian shifts on vector-valued Hardy spaces and com-
pute the lattice of invariant subspaces for these operators. This work is inspired both
by the classification of invariant subspaces by Agler and Stankus and by the Beurl-
ing–Lax–Halmos theorem for shift-invariant subspaces on vector-valued Hardy spaces.
In particular, our result yields the lattice of invariant subspaces for the Brownian shifts
Bσ,eiθ studied by Agler and Stankus and provides a new proof of their structure.

The Brownian shift on H2
E(T) ⊕ E of covariance σ > 0 and angle θ ∈ [0, 2π) is the

bounded linear operator

BE
σ,eiθ =

[
SE σiE
0 eiθIE

]
: H2

E(T)⊕ E → H2
E(T)⊕ E,

where iE : E → H2
E(T) is the inclusion map defined by (iEx)(z) = x for all x ∈ E and

z ∈ T.
This is a particular class of Brownian unitaries with positive covariance, as introduced

by Agler and Stankus. Clearly, in the scalar case E = C, we have BC
σ,eiθ

= Bσ,eiθ . We

often refer to Bσ,eiθ as a Brownian shift on H2(T). Throughout the paper, E will denote
an arbitrary but fixed Hilbert space, with the possibility that E = C. One additional
motivation for introducing Brownian shifts on vector-valued Hardy spaces is that they
are unitarily equivalent to the Brownian shifts on H2(T) tensored with identity operators.
That is,

BE
σ,eiθ on H2

E(T)⊕ E ∼= Bσ,eiθ ⊗ IE on (H2(T)⊕ C)⊗ E,

where “∼=”denotes unitary equivalence between operators. This also aligns with the
unitary equivalence

SE on H2
E(T) ∼= S ⊗ IE on H2(T)⊗ E.

The invariant subspaces of SE, as described in the classical Beurling–Lax–Halmos the-
orem, now also suggest a similar investigation of the invariant subspaces of the Brownian
shifts BE

σ,eiθ
. In this paper, we do precisely that. To this end, we partition invariant

subspaces of Brownian shifts into two distinct types:
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Definition 1.1. Let M be a closed subspace of H2
E(T)⊕E that is invariant under BE

σ,eiθ
.

We say that:

(1) M is Type I if M ⊆ H2
E(T)⊕ {0}.

(2) M is Type II if M ⊈ H2
E(T)⊕ {0}.

To proceed, we first recall the basic and commonly used terminology: Given a Hilbert
space E∗, let H

∞
B(E∗,E)(T) denote the Banach space of B(E∗, E)-valued bounded analytic

functions on D, where B(E∗, E) is the space of bounded linear operators from E∗ to E
(we write H∞

B(E∗,E)(T) as H∞(T) whenever E∗ = E = C). Each Φ ∈ H∞
B(E∗,E)(T) induces

a multiplication operator MΦ ∈ B(H2
E∗(T), H

2
E(T)), defined by

MΦf = Φf,

for all f ∈ H2
E∗(T). It is important to note that

MΦSE∗ = SEMΦ.

A function Φ ∈ H∞
B(E∗,E)(T) is called inner if MΦ is an isometry. This is equivalent to the

condition that Φ(z) is an isometry from E∗ to E for almost every z ∈ T. Recall that for
an inner function Φ ∈ H∞

B(E∗,E)(T), the model space KΦ (cf. [18]) is defined by

KΦ := H2
E(T)⊖ ΦH2

E∗(T).

Fix a Brownian shift BE
σ,eiθ

. Given an inner function Φ ∈ H∞
B(E∗,E)(T), we set

GΦ =

{[
g
y

]
∈ H2

E(T)⊕ E : y ∈ E, g =
Φx− σy

z − eiθ
∈ H2

E(T) for some x ∈ E∗

}
. (1.1)

This set exhibits some curious features of general interest. For instance, GΦ is a closed
subspace of H2

E(T)⊕ E (see Lemma 2.2).
In Theorems 2.1 and 2.6, we establish the following invariant subspace theorem for

Brownian shifts: Let M be a nonzero closed subspace of H2
E(T)⊕E. Then, the following

are true:

(1) M is a Type I invariant subspace of BE
σ,eiθ

if and only if

M = ΦH2
E1
(T)⊕ {0},

for some inner function Φ ∈ H∞
B(E1,E)(T) and nonzero Hilbert space E1.

(2) M is a Type II invariant subspace of BE
σ,eiθ

if and only if there exists an inner

function Φ ∈ H∞
B(E2,E)(T) for some nonzero Hilbert space E2, and a nonzero subset

G ⊆ GΦ such that

M = ⟨G⟩ ⊕
(
ΦH2

E2
(T)⊕ {0}

)
.

Given a set N in a Hilbert space, we denote by ⟨N⟩ the closed linear span of the
elements of N .

Definition 1.2. The representations of M in (1) and (2) above are referred to as the
canonical representations of Type I and Type II invariant subspaces of BE

σ,eiθ
, respectively.

The inner function Φ in the canonical representation given in part (2) also exhibits a
certain boundary behavior, similar to the scalar case studied by Agler and Stankus. We
refer the reader to Remark 2.4 for more details. See also Section 4 for a detailed analysis
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of how the full-length invariant subspace theorem of Agler and Stankus can be recovered
using the above result and Remark 2.4.

Following [8] (also see [9, 10]), we turn the above invariant subspace result to the
problem of unitary equivalence. Specifically, given a pair of closed subspaces M1 and
M2 of H2

E(T) ⊕ E that are invariant under the Brownian shifts BE
σ1,eiθ1

and BE
σ2,eiθ2

,

respectively, we consider the restriction operators BE
σ1,eiθ1

|M1 on M1 and BE
σ2,eiθ2

|M2 on

M2, and determine when they are unitarily equivalent. In Theorem 3.1, we prove: There
exists a unitary U : M1 → M2 such that

UBE
σ1,eiθ1

∣∣
M1

= BE
σ2,eiθ2

∣∣
M2
U,

if and only if any one of the following conditions is true:

(1) Both M1 and M2 are Type I, and if Mi = ΦiH
2
Ei
(T) ⊕ {0} for i = 1, 2, then

dimE1 = dimE2.
(2) Both M1 and M2 are Type II. Furthermore, θ1 = θ2, and if Mj = ⟨Gj⟩ ⊕

(ΦjH
2
Ej
(T) ⊕ {0}) is the canonical representation of Mj, j = 1, 2, then there

exist a pair of unitaries UG : ⟨G1⟩ → ⟨G2⟩ and UE : E1 → E2, such that

UEx
′
1 = x′2,

whenever

UG

[
g1
y1

]
=

[
g2
y2

]
,

where

[
gj
yj

]
∈ ⟨Gj⟩ with

gj =
Φjx

′
j − σjyj

z − eiθj
,

for some unique x′j ∈ Ej, j = 1, 2.

We refer to Theorem 4.2 for the scalar version of the above result (also see [8, Theorem
2.1]). We finally remark that Brownian shifts are integral components of 2-isometries,
which play an important role in understanding the general structure of linear operators
(cf. [4, 7, 16]).

In the context of function theory, linear operators, and the prediction problem for 2-
stationary processes, we refer the reader to the concluding part of the paper by Agler
and Stankus [2]. For the prediction of stationary processes, we recommend the excellent
monograph [6], particularly Chapter 2. See also [15, 17] for related work and possible
directions for future connections.

The remainder of the paper is organized as follows. In Section 2, we describe the
invariant subspaces of Brownian shifts. Section 3 determines when such pairs of invariant
subspaces are unitarily equivalent. Section 4 presents the results obtained this far in
the context of the scalar-valued Hardy space. In particular, it highlights the unitary
equivalence result for Brownian shifts on H2(T). Section 5 presents the structure of
reducing subspaces for BE

σ,eiθ
.
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2. Invariant subspaces

This section presents a complete description of the invariant subspaces of Brownian
shifts BE

σ,eiθ
on H2

E(T) ⊕ E. We begin with Type I invariant subspaces. Note that M ⊆
H2

E(T)⊕{0} is a nonzero closed subspace if and only if M = M0⊕{0} for some nonzero
closed subspace M0 of H2

E(T).

Theorem 2.1. Let M be a nonzero closed subspace of H2
E(T) ⊕ E. Assume that M ⊆

H2
E(T)⊕ {0}. Then BE

σ,eiθ
(M) ⊆ M if and only if

M = ΦH2
E1
(T)⊕ {0},

for some inner function Φ ∈ H∞
B(E1,E)(T) and nonzero Hilbert space E1.

Proof. We know that M = M0 ⊕ {0} for some nonzero closed subspace M0 ⊆ H2
E(T).

Since

BE
σ,eiθ

∣∣
H2

E(T)⊕{0} =

[
SE 0
0 0

]
,

the fact that M is invariant under BE
σ,eiθ

∣∣
H2

E(T)⊕{0} is equivalent to M0 being invariant

under SE on H2
E(T). The classical Beurling-Lax-Halmos theorem (cf. [11, Theorem 2.1,

p. 239]) guarantees that this is same as saying

M0 = ΦH2
E1
(T),

for some inner function Φ ∈ H∞
B(E1,E)(T) and nonzero Hilbert space E1. The converse

follows from the upper triangular representation of the Brownian shifts. □

We now proceed to the other type of invariant subspaces. For a fixed Brownian shift
BE

σ,eiθ
and an inner function Φ ∈ H∞

B(E2,E)(T), recall the construction of GΦ from (1.1):

GΦ =

{[
g
y

]
∈ H2

E(T)⊕ E : y ∈ E, g =
Φx− σy

z − eiθ
∈ H2

E(T) for some x ∈ E2

}
.

In the following, we prove that the set GΦ is special:

Lemma 2.2. Let Φ ∈ H∞
B(E2,E)(T) be an inner function. If

[
g
y

]
∈ GΦ is a nonzero element,

then g ∈ KΦ and y ̸= 0. Moreover, GΦ is a closed subspace of H2
E(T)⊕ E.

Proof. Suppose g = Φx−σy
z−eiθ

∈ H2
E(T) for some x ∈ E2 and y ∈ E. We have zg + σy =

eiθg + Φx. Let {fj : j ≥ 1} be an orthonormal basis for E2. Then for any n ≥ 1 and
j ≥ 1, we have (note that Φ(0)∗ ∈ B(E,E2))

⟨y,Φ(znfj)⟩ = ⟨Φ(0)∗y, znfj⟩ = 0,

and similarly, we also have (note that x ∈ E2) ⟨Φx,Φ(znfj)⟩ = 0. Then

⟨zg + σy,Φ(znfj)⟩ = ⟨eiθg + Φx,Φ(znfj)⟩,
implies

⟨zg,Φ(znfj)⟩+ σ⟨y,Φ(znfj)⟩ = eiθ⟨g,Φ(znfj)⟩+ ⟨Φx,Φ(znfj)⟩,
which gives

⟨M∗
Φg, z

n−1fj⟩ = eiθ⟨M∗
Φg, z

nfj⟩. (2.1)
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Let

M∗
Φg =

∞∑
j=0

xjz
j,

where xj ∈ E2 for all j ≥ 0. If any one of these xj’s is nonzero, then by (2.1) we get

∥M∗
Φg∥ = ∞,

which is not possible. This shows that M∗
Φg = 0, thereby proving the claim that g ∈ KΦ.

Next, assume that y = 0. Then zg = Φx+ eiθg, which implies

∥zg∥2 = ∥Φx∥2 + ∥g∥2,

as g ∈ KΦ. As ∥zg∥ = ∥g∥ and ∥Φx∥ = ∥x∥, we conclude that x = 0, and consequently
g = 0.
Now we turn to prove that GΦ is a closed subspace. It is easy to see that GΦ is indeed a

subspace. To show that it is closed, we pick a sequence

{[
gn
yn

]}
∈ GΦ such that[

gn
yn

]
→
[
g
y

]
∈ H2

E(T)⊕ E.

Equivalently, gn → g in H2
E(T) and yn → y in E. Now for each gn, there is xn ∈ E2 such

that

zgn + σyn = Φxn + eiθgn,

which means {Φxn} is convergent, and this implies {xn} is a Cauchy sequence in E2.
Thus xn → x ∈ E2, and hence Φxn → Φx. From the above identity, by passing over to
the limit we see that

zg + σy = Φx+ eiθg,

that is, g = Φx−σy
z−eiθ

. This completes the proof of the lemma. □

Given a closed subspace M ⊆ H2
E(T)⊕ E, the defect space of M is defined by

DM = M⊖ (M∩ (H2
E(T)⊕ {0})).

Theorem 2.3. Let M be a nonzero closed subspace of H2
E(T) ⊕ E. Assume that M ⊈

H2
E(T)⊕{0}. If BE

σ,eiθ
(M) ⊆ M, then there exists an inner function Φ ∈ H∞

B(E2,E)(T) for
some nonzero Hilbert space E2, and a set G ⊆ GΦ such that

M = DM ⊕
(
ΦH2

E2
(T)⊕ {0}

)
,

and

DM = ⟨G⟩.

Moreover, if

[
g
y

]
∈ DM, then there exists unique x ∈ E2 with ∥x∥ = σ∥y∥ such that

g =
Φx− σy

z − eiθ
.
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Proof. Set

M0 := M∩ (H2
E(T)⊕ {0}),

and decompose M as

M = DM ⊕M0.

SinceM ⊈ H2
E(T)⊕{0}, DM ̸= {0}. We need to show thatM0 is also a nonzero subspace

of M. If possible, let M0 = {0}. By the assumption, there exists

F =

[
f
x′

]
∈ M

such that x′ ̸= 0. Let us observe that

BE
σ,eiθ

[
f
x′

]
− eiθ

[
f
x′

]
=

[
zf + σx′

eiθx′

]
− eiθ

[
f
x′

]
=

[
(z − eiθ)f + σx′

0

]
∈ M0.

As M0 = {0}, we have (z − eiθ)f + σx′ = 0, that is,

σ

eiθ − z
x′ = f ∈ H2

E(T),

which is a contradiction, as (eiθ − z)−1 is not square integrable over T. Thus, M0 ̸= {0}.
As BE

σ,eiθ
(M) ⊆ M and M0 ⊆ H2

E(T)⊕{0}, in view of the upper triangular block matrix

representation of BE
σ,eiθ

, it follows that

BE
σ,eiθ(M0) ⊆ M0.

Theorem 2.1 ensures the existence of a nonzero Hilbert space E2 and an inner function
Φ ∈ H∞

B(E2,E)(T) such that

M0 = ΦH2
E2
(T)⊕ {0}.

We can therefore rewrite M as

M = DM ⊕
(
ΦH2

E2
(T)⊕ {0}

)
.

Now for any nonzero

[
g
y

]
∈ DM, it is easy to check that g ∈ KΦ and y ̸= 0 in E. Moreover,

we have

BE
σ,eiθ

[
g
y

]
=

[
zg + σy
eiθy

]
= eiθ

[
g
y

]
⊕
[
(z − eiθ)g + σy

0

]
∈ M,

which, in particular, implies

(z − eiθ)g + σy ∈ ΦH2
E2
(T),

and hence, there exists a unique h ∈ H2
E2
(T) (note that Φ is an inner function) such that

zg + σy = eiθg + Φh. (2.2)

Let {fj : j ≥ 1} be an orthonormal basis for E2. Then for any n ≥ 1 and j ≥ 1, we have
(note that Φ(0)∗ ∈ B(E,E2))

⟨y,Φ(znfj)⟩ = ⟨Φ(0)∗y, znfj⟩ = 0,

and (note again that Φ is an inner function)

⟨Φh,Φ(znfj)⟩ = ⟨h, znfj⟩.
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By (2.2), we now have

⟨h, znfj⟩ = ⟨Φh,Φ(znfj)⟩
= ⟨(zg + σy)− eiθg,Φ(znfj)⟩
= ⟨zg,Φ(znfj)⟩ − eiθ⟨g,Φ(znfj)⟩
= ⟨g,Φ(zn−1fj)⟩ − eiθ⟨g,Φ(znfj)⟩
= 0,

as g ∈ KΦ. In other words, h ∈ E2. Let us rename h by x. Since y ∈ E, by (2.2), we have

∥g∥2 + σ2∥y∥2 = ∥g∥2 + ∥x∥2,

and consequently ∥x∥ = σ∥y∥. Finally, again by (2.2), we have g = Φx−σy
z−eiθ

, completing
the proof of the theorem. □

We emphasize that for a Type II invariant subspace M, as described in the above
theorem, both DM and ΦH2

E2
(T) are nonzero.

The description of invariant subspaces of Brownian shifts on H2(T) by Agler and
Stankus also includes a certain boundary property of the associated inner functions. A
similar result holds in the setting of vector-valued Hardy spaces. However, to establish
this, we need to use the identification of H2

E(T) with the Hardy space H2
E(D) of E-valued

square-summable analytic functions on D [18, Chapter V].

Remark 2.4. We remain with the setting of Theorem 2.3. We have

Φx− σy = (z − eiθ)g,

where g ∈ KΦ, y ∈ E \ {0}, and x ∈ E2. We treat g as an element of H2
E(D) and write

the power series expansion g(z) =
∑∞

n=0 xnz
n on D (note that xn ∈ E for all n). Then

∥g(z)∥ ≤
∞∑
n=0

∥xn∥|z|n ≤

(
∞∑
n=0

∥xn∥2
) 1

2
(

∞∑
n=0

|z|2n
) 1

2

= ∥g∥2
1√

1− |z|2
,

for all z ∈ D. Therefore, we have

∥Φ(z)x− σy∥ ≤ |z − eiθ| ∥g∥2√
1− |z|2

,

which after putting z = reiθ becomes

∥Φ(reiθ)x− σy∥ ≤ ∥g∥2
√

1− r

1 + r
.

Finally, letting r → 1− we get that Φ(eiθ)x := limr→1−Φ(reiθ)x exists and

Φ(eiθ)x = σy.

In particular, if E = C, then Φ(eiθ) refers to the existence of the radial limit value of Φ
at eiθ.

Recall the following observation from the setting of Lemma 2.2:

⟨G⟩ ⊥ ΦH2
E2
(T)⊕ {0},
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for all nonzero G ⊆ GΦ. Moreover, if

[
g
y

]
∈ G is nonzero, then y ̸= 0. In view of this, we

now present a converse to Theorem 2.3:

Theorem 2.5. Let Φ ∈ H∞
B(E2,E)(T) be an inner function. Then ⟨G⟩ ⊕

(
ΦH2

E2
(T)⊕ {0}

)
is a Type II invariant subspace of BE

σ,eiθ
for every nonzero subset G of GΦ.

Proof. For any f ∈ H2
E2
(T), we have

BE
σ,eiθ

[
Φf
0

]
=

[
Φzf
0

]
∈ ΦH2

E2
(T)⊕ {0},

and for

[
g
y

]
∈ G,

BE
σ,eiθ

[
g
y

]
=

[
zg + σy
eiθy

]
= eiθ

[
g
y

]
+

[
(z − eiθ)g + σy

0

]
= eiθ

[
g
y

]
+

[
Φx
0

]
,

for some x ∈ E2. Therefore,
BE

σ,eiθ(span(G)) ⊆ M.

Since BE
σ,eiθ

is a bounded linear operator, M is a closed subspace, we have BE
σ,eiθ

(⟨G⟩) ⊆
M. This proves that ⟨G⟩⊕

(
ΦH2

E2
(T)⊕ {0}

)
is a Type II invariant subspace of BE

σ,eiθ
. □

Summarizing Theorems 2.3 and 2.5, we obtain the following characterization of Type
II invariant subspaces of Brownian shifts:

Theorem 2.6. Let M ⊈ H2
E(T)⊕{0} be a nonzero closed subspace of H2

E(T)⊕E. Then
M is invariant under BE

σ,eiθ
if and only if there exists an inner function Φ ∈ H∞

B(E2,E)(T)
for some nonzero Hilbert space E2, and a nonzero subset G ⊆ GΦ such that

M = ⟨G⟩ ⊕
(
ΦH2

E2
(T)⊕ {0}

)
.

The results of this section, when specialized to the case E = C (that is, the scalar case),
recover the results of Agler and Stankus. We will elaborate on this in Section 4.

3. Equivalent invariant subspaces

By equivalent invariant subspaces, we mean unitarily equivalent invariant subspaces of
Brownian shifts. In other words, given a pair of nonzero invariant subspaces M1 and M2,
we consider the restriction operators BE

σ1,eiθ1

∣∣
M1

and BE
σ2,eiθ2

∣∣
M2

, and ask: when is

BE
σ1,eiθ1

∣∣
M1

∼= BE
σ2,eiθ2

∣∣
M2

?

The following theorem provides a concrete answer in terms of inner functions. At this
point, it is convenient to recall the definition of the canonical representations of invariant
subspaces of BE

σ,eiθ
, as given in Definition 1.2.

Theorem 3.1. Fix angles θ1, θ2 ∈ [0, 2π) and covariances σ1, σ2 > 0. Let M1 and M2 be
nonzero closed invariant subspaces of the Brownian shifts BE

σ1,eiθ1
and BE

σ2,eiθ2
, respectively.

Then
BE

σ1,eiθ1

∣∣
M1

∼= BE
σ2,eiθ2

∣∣
M2
,

if and only if any one of the following conditions is true:
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(1) Both M1 and M2 are Type I, and if Mi = ΦiH
2
Ei
(T) ⊕ {0} for i = 1, 2, then

dimE1 = dimE2.
(2) Both M1 and M2 are Type II. Furthermore, θ1 = θ2, and if Mj = ⟨Gj⟩ ⊕

(ΦjH
2
Ej
(T) ⊕ {0}) is the canonical representation of Mj, j = 1, 2, then there

exist a pair of unitaries UG : ⟨G1⟩ → ⟨G2⟩ and UE : E1 → E2, such that

UEx
′
1 = x′2,

whenever

UG

[
g1
y1

]
=

[
g2
y2

]
,

where

[
gj
yj

]
∈ ⟨Gj⟩ with

gj =
Φjx

′
j − σjyj

z − eiθj
,

for some unique x′j ∈ Ej, j = 1, 2.

Proof. Let us start with the proof of the “if” part. Provided that condition (1) holds, we
assume Mi = ΦiH

2
Ei
(T) ⊕ {0} for some inner functions Φi ∈ H∞

B(Ei,E)(T), i = 1, 2, with

dimE1 = dimE2. Then there exists a unitary operator Û between E1 and E2. Consider
the operator U : M1 → M2, defined by

U

[
Φ1h
0

]
=

[
Φ2Ũh
0

]
for all h ∈ H2

E1
(T), where Ũ : H2

E1
(T) → H2

E2
(T) is the unitary operator induced by Û ,

acting on h as follows:

Ũ h̃ =
∞∑
n=0

znÛ x̃n, (3.1)

for all h̃ =
∑∞

n=0 x̃nz
n ∈ H2

E1
(T). Note that

zkŨh = Ũzkh,

for all k ≥ 0. It is clear from the construction that U is a surjective isometry between
M1 and M2 and therefore, is unitary. Moreover,

BE
σ2,eiθ2

U

[
Φ1h
0

]
=

[
zΦ2Ũh

0

]
=

[
Φ2Ũ(zh)

0

]
= U

[
Φ1zh
0

]
= UBE

σ1,eiθ1

[
Φ1h
0

]
,

which implies BE
σ1,eiθ1

∣∣
M1

∼= BE
σ2,eiθ2

∣∣
M2

. Next, we assume that (2) is true. Set

θ = θ1 = θ2.

Define a linear operator U : M1 → M2 by

U

([
Φ1h
0

]
+

[
g1
y1

])
=

[
Φ2ŨEh

0

]
+ UG

[
g1
y1

]
,
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for h ∈ H2
E1
(T) and

[
g1
y1

]
∈ ⟨G1⟩, where ŨE is the unitary operator fromH2

E1
(T) toH2

E2
(T),

induced by UE in the same way as in (3.1). It is evident from the construction that U is

surjective. In addition, since UG

[
g1
y1

]
∈ ⟨G2⟩, we have

∥∥∥∥[Φ2ŨEh
0

]
+ UG

[
g1
y1

]∥∥∥∥2 = ∥h∥2 + ∥g1∥2 + ∥y1∥2 =
∥∥∥∥[Φ1h

0

]
+

[
g1
y1

]∥∥∥∥2 .
This implies that U is an isometry, and therefore, is a unitary operator as well. For
notational simplicity, set

F =

[
Φ1h
0

]
+

[
g1
y1

]
.

Assuming UG

[
g1
y1

]
=

[
g2
y2

]
, we observe that

BE
σ2,eiθ

UF = BE
σ2,eiθ

([
Φ2ŨEh

0

]
+

[
g2
y2

])
=

[
zΦ2ŨEh

0

]
+

[
zg2 + σ2y2
eiθy2

]
.

At this point, we recall that gj(z) =
Φjx

′
j−σjyj

z−eiθj
for a unique x′j ∈ Ej, j = 1, 2. This yields

zgj + σjyj = eiθgj + Φjx
′
j,

for j = 1, 2. Therefore, recalling that ŨEx
′
1 = UEx

′
1 = x′2 whenever UG

[
g1
y1

]
=

[
g2
y2

]
, and

that zkŨEh = ŨEz
kh for any k ≥ 0, we have

BE
σ2,eiθ

UF =

[
zΦ2ŨEh

0

]
+

[
zg2 + σ2y2
eiθy2

]
= U

([
Φ1zh
0

]
+ eiθ

[
g1
y1

])
+

[
Φ2ŨEx

′
1

0

]
= U

([
Φ1zh
0

]
+ eiθ

[
g1
y1

]
+

[
Φ1x

′
1

0

])
= U

([
zΦ1h
0

]
+

[
zg1 + σ1y1
eiθy1

])
= UBE

σ1,eiθ

([
Φ1h
0

]
+

[
g1
y1

])
,

that is,

BE
σ2,eiθ

UF = UBE
σ1,eiθ

F,

which again ensures that BE
σ1,eiθ1

∣∣
M1

∼= BE
σ2,eiθ2

∣∣
M2

. We now turn to the converse. For

simplicity, we divide the proof into three parts:
Step 1: We claim that if we assume, without loss of generality, thatM1 = ΦH2

E′(T)⊕{0}
is of Type I, and M2 = ⟨G⟩ ⊕ (ΨH2

E′′(T)⊕ {0}) is of Type II, for certain inner functions



12 DAS, DAS, AND SARKAR

Φ and Ψ, then BE
σ1,eiθ1

∣∣
M1

and BE
σ2,eiθ2

∣∣
M2

are not unitarily equivalent. Indeed, if it is not

true, then, in particular, we will have the norm identity∥∥∥BE
σ1,eiθ1

∣∣
M1

∥∥∥ =
∥∥∥BE

σ2,eiθ2

∣∣
M2

∥∥∥ .
However, for any h ∈ H2

E′(T), we have∥∥∥∥BE
σ1,eiθ1

[
Φh
0

]∥∥∥∥ =

∥∥∥∥[zΦh0
]∥∥∥∥ =

∥∥∥∥[Φh0
]∥∥∥∥ ,

that is,
∥∥∥BE

σ1,eiθ1

∣∣
M1

∥∥∥ = 1. On the other hand, we have∥∥∥∥BE
σ2,eiθ2

[
g
y

]∥∥∥∥2 = ∥∥∥∥[zg + σ2y
eiθ2y

]∥∥∥∥2 = ∥y∥2 + ∥g∥2 + σ2
2∥y∥2 =

∥∥∥∥[gy
]∥∥∥∥2 + σ2

2∥y∥2 >
∥∥∥∥[gy

]∥∥∥∥2 ,
for any nonzero

[
g
y

]
∈ ⟨G⟩ (recall that y ̸= 0 in this case), and hence∥∥∥BE

σ2,eiθ2

∣∣
M2

∥∥∥ > 1,

which leads to a contradiction. Therefore, M1 and M2 must be of same type.
Step 2: Suppose both of them are Type I with the canonical decomposition

Mi = ΦiH
2
Ei
(T)⊕ {0},

for some inner function Φi ∈ H∞
B(Ei,E)(T), i = 1, 2. Now according to our hypothesis, there

exists a unitary operator U : M1 → M2 such that UBE
σ1,eiθ1

∣∣
M1

= BE
σ2,eiθ2

∣∣
M2
U . First,

let us observe that for h1 ∈ H2
E1
(T), if

U

[
Φ1h1
0

]
=

[
Φ2h2
0

]
,

for some h2 ∈ H2
E2
(T), then

U

[
znΦ1h1

0

]
= U

(
BE

σ1,eiθ1

)n [Φ1h1
0

]
=
(
BE

σ2,eiθ2

)n
U

[
Φ1h1
0

]
=
(
BE

σ2,eiθ2

)n [Φ2h2
0

]
,

that is,

U

[
znΦ1h1

0

]
=

[
znΦ2h2

0

]
,

for all n ≥ 0. Now, we take any x′′1 ∈ E1, and assume that

U

[
Φ1x

′′
1

0

]
=

[
Φ2h

′

0

]
,

for some h′(z) =
∑∞

n=0 z
nx̃′n ∈ H2

E2
(T). Suppose x̃′k ̸= 0 for some k ≥ 1, and also suppose

U

[
Φ1gk
0

]
=

[
Φ2x̃

′
k

0

]
for some gk ∈ H2

E1
(T). Therefore, ∥x̃′k∥2 = ⟨Φ2h

′,Φ2z
kx̃′k⟩ implies

∥x̃′k∥2 =
〈[

Φ2h
′

0

]
,

[
zkΦ2x̃

′
k

0

]〉
=

〈
U

[
Φ1x

′′
1

0

]
, U

[
zkΦ1gk

0

]〉
=

〈[
Φ1x

′′
1

0

]
,

[
Φ1z

kgk
0

]〉
,
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and hence ∥x̃′k∥2 = ⟨x′′1, zkgk⟩ = 0 for any k ≥ 1, which ensures that h′ ∈ E2. On the
other hand, given x′′2 ∈ E2, there exists h(z) =

∑∞
n=0 z

nx̃n ∈ H2
E1
(T) such that

U

[
Φ1h
0

]
=

[
Φ2x

′′
2

0

]
.

If x̃k ̸= 0 for some k ≥ 1, and if U

[
Φ1x̃k
0

]
=

[
Φ2h

′′

0

]
for some h′′ ∈ H2

E2
(T), then

∥x̃k∥2 = ⟨Φ1h,Φ1z
kx̃k⟩ implies

∥x̃k∥2 =
〈
U

[
Φ1h
0

]
, U

[
zkΦ1x̃k

0

]〉
=

〈[
Φ2x

′′
2

0

]
,

[
zkΦ2h

′′

0

]〉
= ⟨x′′2, zkh′′⟩ = 0,

thereby implying h ∈ E1. The above information allows us to define U1 : E1 → E2 by

U1x1 = x2,

whenever

U

[
Φ1x1
0

]
=

[
Φ2x2
0

]
.

It is easy to check that U1 is a well-defined, surjective as well as isometric linear map
between E1 and E2, and therefore, is unitary. Thus, dimE1 = dimE2.

Step 3: Let us now assume that both M1 and M2 are Type II, with the canonical
representations Mj = ⟨Gj⟩ ⊕ (ΦjH

2
Ej
(T) ⊕ {0}), j = 1, 2, as described in the statement

of this theorem, and, like in the previous part of the proof, U : M1 → M2 is the unitary
operator satisfying the intertwining relation UBE

σ1,eiθ1

∣∣
M1

= BE
σ2,eiθ2

∣∣
M2
U . Suppose now

for a given h1 ∈ H2
E1
(T),

U

[
Φ1h1
0

]
=

[
Φ2h2
0

]
+

[
g′2
y′2

]
for some h2 ∈ H2

E2
(T) and

[
g′2
y′2

]
∈ ⟨G2⟩. In particular, we have

∥h1∥2 = ∥h2∥2 + ∥g′2∥2 + ∥y′2∥2.
At the same time, we have

U

[
zΦ1h1

0

]
= UBE

σ1,eiθ1

[
Φ1h1
0

]
= BE

σ2,eiθ2
U

[
Φ1h1
0

]
=

[
zΦ2h2

0

]
+

[
zg′2 + σ2y

′
2

eiθ2y′2

]
,

and consequently,

∥h1∥2 = ∥h2∥2 + ∥g′2∥2 + ∥y′2∥2 + σ2
2∥y′2∥2.

Therefore, y′2 = 0, and then[
g′2
y′2

]
∈ M2 ∩ (H2

E2
(T)⊕ {0}) = Φ2H

2
E2
(T)⊕ {0},

forcing g′2 = 0 as well. Therefore,

U(Φ1H
2
E1
(T)⊕ {0}) ⊆ Φ2H

2
E2
(T)⊕ {0}.

Using exactly similar lines of argument for U∗, we get

U∗(Φ2H
2
E2
(T)⊕ {0}) ⊆ Φ1H

2
E1
(T)⊕ {0},
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and hence U is a unitary mapping between Φ1H
2
E1
(T) ⊕ {0} and Φ2H

2
E2
(T) ⊕ {0}, such

that
UBE

σ1,eiθ1

∣∣
Φ1H2

E1
(T)⊕{0} = BE

σ2,eiθ2

∣∣
Φ2H2

E2
(T)⊕{0}U.

Looking at the Step 2, where M1 and M2 both are taken to be Type I, it readily follows

that for any x1 ∈ E1, U

[
Φ1x1
0

]
=

[
Φ2x2
0

]
for some x2 ∈ E2, and conversely, for any

x2 ∈ E2 there exists x1 ∈ E1 such that the above equality holds. This now guarantees
the existence of a unitary map UE : E1 → E2, defined as follows:

UE(x1) = x2,

whenever

U

[
Φ1x1
0

]
=

[
Φ2x2
0

]
,

for x1 ∈ E1, x2 ∈ E2. For a given

[
g
y

]
∈ ⟨G1⟩, suppose now

U

[
g
y

]
=

[
Φ2h

′

0

]
+

[
g′

y′

]
,

for some h′ ∈ H2
E2
(T) and

[
g′

y′

]
∈ ⟨G2⟩. This implies

∥g∥2 + ∥y∥2 = ∥h′∥2 + ∥g′∥2 + ∥y′∥2. (3.2)

Now there exists h ∈ H2
E1
(T) such that U

[
Φ1h
0

]
=

[
Φ2h

′

0

]
. As a result,

U

[
g
y

]
= U

[
Φ1h
0

]
+

[
g′

y′

]
,

that is,

U

[
g − Φ1h

y

]
=

[
g′

y′

]
.

Consequently,

∥g∥2 + ∥h∥2 + ∥y∥2 =
∥∥∥∥U [g − Φ1h

y

]∥∥∥∥2 = ∥∥∥∥[g′y′
]∥∥∥∥2 = ∥g′∥2 + ∥y′∥2,

which, combined with (3.2) yields h = h′ = 0. In other words, U(⟨G1⟩) ⊆ ⟨G2⟩. Imitating
this argument line by line with U replaced by U∗, it immediately follows that U∗(⟨G2⟩) ⊆
⟨G1⟩. We therefore conclude that there exists a unitary map UG = U

∣∣
⟨G1⟩

between ⟨G1⟩

and ⟨G2⟩. Now consider any

[
gj
yj

]
∈ ⟨Gj⟩, j = 1, 2, such that U

[
g1
y1

]
=

[
g2
y2

]
, and recall

that
zgj + σjyj = eiθjgj + Φjx

′
j, (3.3)

for a unique x′j ∈ Ej. Then〈
BE

σ1,eiθ1

[
g1
y1

]
, U∗

[
g2
y2

]〉
=

〈
BE

σ2,eiθ2
U

[
g1
y1

]
,

[
g2
y2

]〉
.



BROWNIAN SHIFTS ON VECTOR-VALUED HARDY SPACES 15

The above identity implies〈[
zg1 + σ1y1
eiθ1y1

]
,

[
g1
y1

]〉
=

〈[
zg2 + σ2y2
eiθ2y2

]
,

[
g2
y2

]〉
,

or, equivalently,〈
eiθ1
[
g1
y1

]
+

[
Φ1x

′
1

0

]
,

[
g1
y1

]〉
=

〈
eiθ2
[
g2
y2

]
+

[
Φ2x

′
2

0

]
,

[
g2
y2

]〉
,

and so

eiθ1
∥∥∥∥[g1y1

]∥∥∥∥2 = eiθ1
∥∥∥∥U [g1y1

]∥∥∥∥2 = eiθ2
∥∥∥∥[g2y2

]∥∥∥∥2 .
It follows that eiθ1 = eiθ2 . Since θ1, θ2 ∈ [0, 2π), we conclude that θ1 = θ2. Let us set
again θ = θ1 = θ2. Using this information and (3.3), we finally observe that

U

[
Φ1x

′
1

0

]
+ eiθU

[
g1
y1

]
= U

[
zg1 + σ1y1
eiθy1

]
= UBE

σ1,eiθ

[
g1
y1

]
= BE

σ2,eiθ

[
g2
y2

]
.

As

BE
σ2,eiθ

[
g2
y2

]
=

[
zg2 + σ2y2
eiθy2

]
=

[
Φ2x

′
2

0

]
+ eiθ

[
g2
y2

]
,

it follows that U

[
Φ1x

′
1

0

]
=

[
Φ2x

′
2

0

]
. As a consequence, UEx

′
1 = x′2. This completes the

proof. □

In the following section, we illustrate this theorem in the case E = C.

4. The scalar case

The purpose of this section is to recover the representations of invariant subspaces of
Brownian shifts on H2(T), as obtained by Agler and Stankus (see [3, pp. 21-24]). More
specifically, in the particular case of E = C, by using Theorem 2.1 and combining Theo-
rems 2.3 and 2.5 with Remark 2.4, we retrieve the representations of invariant subspaces
of Agler and Stankus:

Theorem 4.1. Let M be a nonzero closed subspace of H2(T)⊕C. Then M is invariant
under Bσ,eiθ if and only if it admits one of the following representations:

M = φH2(T)⊕ {0},

for some inner function φ ∈ H∞(T), or

M = C
[
g
1

]
⊕
(
ψH2(T)⊕ {0}

)
,

where ψ ∈ H∞(T) is an inner function with the condition that ψ(eiθ) exists, and

g = σ

(
ψ(eiθ)ψ − 1

z − eiθ

)
∈ H2(T).
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Proof. We start with the proof of “only if” part. Suppose M ⊆ H2(T) ⊕ {0}. If
Bσ,eiθ(M) ⊆ M, then setting E = C in Theorem 2.1, we find that E1 = C (note that
M ≠ {0}), and

M = φH2(T)⊕ {0},
for some inner function φ ∈ H∞(T). Next, assume that M ⊈ H2(T) ⊕ {0}. Under the
assumption E = C, Theorem 2.3 asserts that

M = DM ⊕ (ψH2(T)⊕ {0}),
for some inner function ψ ∈ H∞(T), where

DM = M⊖ (M∩ (H2(T)⊕ {0})) ̸= {0}.

It now remains to show that any element of DM is a scalar multiple of

[
g
1

]
, g as given in

the statement of the theorem. Making use of Theorem 2.3 and Remark 2.4, we see that

for any nonzero

[
g1
β

]
∈ DM, there exists unique α ∈ C with |α| = σ|β| > 0 such that

g1 =
ψα− σβ

z − eiθ
, (4.1)

and

lim
r→1−

ψ(reiθ)α = σβ.

Since |α| = σ|β| > 0, |ψ(eiθ)| = 1. As a result,

α = σψ(eiθ)β.

Using this value of α in (4.1), we deduce that

g1 = βσ

(
ψ(eiθ)ψ − 1

z − eiθ

)
,

which means

[
g1
β

]
= β

[
g
1

]
. The “if” part follows trivially from Theorems 2.1 and 2.5. □

In the scalar case, the unitary equivalence of invariant subspaces established in Theorem
3.1 takes the following form:

Theorem 4.2. Fix angles θ1, θ2 ∈ [0, 2π) and covariances σ1, σ2 > 0. Let M1 and
M2 be nonzero closed invariant subspaces of the Brownian shifts Bσ1,eiθ1 and Bσ2,eiθ2 in
H2(T)⊕ C, respectively. Then

Bσ1,eiθ1

∣∣
M1

∼= Bσ2,eiθ2

∣∣
M2
,

if and only if any one of the following conditions is true:

(1) Both M1 and M2 are Type I.
(2) Both M1 and M2 are Type II, along with the facts that

θ1 = θ2,

and

σ2
2(1 + ∥g1∥2) = σ2

1(1 + ∥g2∥2),
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where Mj = C
[
gj
1

]
⊕(φjH

2(T)⊕ {0}) is the canonical representation of Mj, and

gj = σj

(
φj(e

iθj )φj−1

z−eiθj

)
for j = 1, 2.

Proof. It is clear that we can now assume E1 = E2 = C and G1 = C
[
g1
1

]
, G2 = C

[
g2
1

]
in

the statement of Theorem 3.1. All we have to verify is that condition (2) of Theorem 3.1
becomes equivalent to condition (2) of this theorem for E = C. In both cases θ1 = θ2 is
common in condition (2), so we only need to concentrate on the rest. Suppose

UG

[
g1
1

]
= α

[
g2
1

]
for some α ∈ C. It is evident that 1 + ∥g1∥2 = |α|2(1 + ∥g2∥2), and at the same time,
according to condition (2) of Theorem 3.1

UE

(
σ1φ1(eiθ)

)
= ασ2φ2(eiθ),

which gives |α| = σ1/σ2. As a result,

σ2
2(1 + ∥g1∥2) = σ2

1(1 + ∥g2∥2). (4.2)

Conversely, if we start by assuming (4.2), then it is immediately seen that

UG

[
g1
1

]
=
σ1
σ2

[
g2
1

]
,

and

UE

(
φ1(eiθ)

)
= φ2(eiθ)

define surjective isometries ⟨G1⟩ → ⟨G2⟩ and E1 → E2, respectively, and therefore, they
are unitaries. Our proof is therefore done. □

This result was previously obtained in [8, Theorem 2.1].

5. Reducing subspaces

Given a bounded linear operator A on a Hilbert space H, a closed subspace S ⊆ H is
said to be reducing for A (or A-reducing) if S is invariant under both A and A∗. Our goal
here is to classify all reducing subspaces of Brownian shifts.

Recall that a closed subspace M of H2
E(T) is reducing for SE if and only if there exists a

closed subspace F ⊆ E such that M = H2
F (T) (cf. [19, Theorem 3.22]). For the question

of reducing subspaces of a Brownian shift BE
σ,eiθ

on H2
E(T)⊕ E, the answer is as follows:

Theorem 5.1. Let M be a closed subspace of H2
E(T)⊕E. Then M is a reducing subspace

for BE
σ,eiθ

if and only if there exists a closed subspace G of E such that

M = H2
G(T)⊕G.
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Proof. Given the adjoint operator
(
BE

σ,eiθ

)∗
=

[
S∗
E 0

σi∗E e−iθIE

]
, the sufficiency is straight-

forward. Suppose M is a reducing subspace for BE
σ,eiθ

. Let

[
f
x

]
∈ M. Then[

f
σ2x+ x

]
=
(
BE

σ,eiθ

)∗
BE

σ,eiθ

[
f
x

]
∈ M,

and hence [
0
σ2x

]
=

[
f

σ2x+ x

]
−
[
f
x

]
∈ M.

As σ > 0, this implies

[
0
x

]
∈ M. On the other hand, since BE

σ,eiθ

[
0
x

]
=

[
σx
eiθx

]
∈ M, it

follows that [
σx
eiθx

]
− eiθ

[
0
x

]
= σ

[
x
0

]
∈ M,

and hence,

[
x
0

]
∈ M, and also,

[
f
0

]
=

[
f
x

]
−
[
0
x

]
∈ M. Therefore, for each

[
f
x

]
∈ M,

we have {[
x
0

]
,

[
0
x

]
,

[
f
0

]}
⊆ M. (5.1)

Write f =
∑∞

n=0 f̂(n)z
n, where f̂(n) ∈ E for all n ≥ 0. Then(

BE
σ,eiθ

)∗ [f
0

]
=

[
S∗
Ef

σf̂(0)

]
∈ M,

and hence (5.1) implies
{[

f̂(0)
0

]
,

[
0

f̂(0)

]
,

[
S∗
Ef
0

]}
⊆ M. Assuming that

{[
f̂(m− 1)

0

]
,

[
0

f̂(m− 1)

]
,

[
S∗
E
mf
0

]}
⊆ M

for any m ≥ 1, we observe that
(
BE

σ,eiθ

)∗ [S∗
E
mf
0

]
=

[
S∗
E
m+1f

σf̂(m)

]
∈ M, and again from

(5.1), it follows that {[
f̂(m)
0

]
,

[
0

f̂(m)

]
,

[
S∗
E
m+1f
0

]}
⊆ M.

The principle of mathematical induction now yields{[
f̂(n)
0

]
,

[
0

f̂(n)

]
: n ≥ 0

}
⊆ M.

Set G = ⟨G0⟩, where

G0 =

{
x, f̂(n) :

[
f
x

]
∈ M, n ≥ 0

}
.

Therefore, G is a closed subspace of E. Moreover, we let

G1 =

{[
0
x

]
,

[
0

f̂(n)

]
:

[
f
x

]
∈ M, n ≥ 0

}
,
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and

G2 =

{[
x
0

]
,

[
f̂(n)
0

]
:

[
f
x

]
∈ M, n ≥ 0

}
.

Then ⟨G1⟩ = {0} ⊕G and ⟨G2⟩ = G⊕ {0}. Now ⟨G2⟩ ⊆ M implies H2
G(T)⊕ {0} ⊆ M.

This and {0} ⊕G = ⟨G1⟩ ⊆ M yields

H2
G(T)⊕G ⊆ M.

For the reverse inclusion, we pick

[
f
x

]
∈ M, and assume

[
f
x

]
⊥ (H2

G(T) ⊕ G). In

particular,

[
f
x

]
⊥ {0} ⊕ G implies x = 0. Similarly,

[
f̂(n)
0

]
⊥ G ⊕ {0} for all n ≥ 0

implies that f = 0. This proves H2
G(T)⊕G = M. □

Recall that a bounded linear operator A on H is irreducible if there is no nontrivial
closed subspace of H that reduces A. The following is now straightforward: Bσ,eiθ on
H2(T)⊕C is irreducible for all angle θ ∈ [0, 2π) and covariance σ > 0. This was previously
observed in [8, Proposition 4.3].

We conclude this paper with a remark: Let T be a contraction on a Hilbert space H.
We say that T ∈ C·0 if

SOT − lim
m→∞

T ∗m = 0.

The contraction T is said to satisfy the C00-property if both T and T ∗ are in C·0. In this
case, we simply write T ∈ C00. In [8, Theorem 3.2] we proved that 1

∥B
σ,eiθ

∥Bσ,eiθ ∈ C00

for all covariance σ > 0 and angle θ ∈ [0, 2π). A similar technique establishes in the
vector-valued case:

1

∥BE
σ,eiθ

∥
BE

σ,eiθ ∈ C00.

This result is also comparable to the asymptotic properties observed in [7]. Finally, we
remark that, following the computation of [8, Section 3], one concludes that BE

σ,eiθ
is not

similar to a contraction.
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[11] C. Foiaş, A. Frazho, The commutant lifting approach to interpolation problems, Oper. Theory Adv.
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