INVARIANT SUBSPACES OF BROWNIAN SHIFTS ON
VECTOR-VALUED HARDY SPACES
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ABSTRACT. We characterize invariant subspaces of Brownian shifts on vector-valued
Hardy spaces. We also solve the unitary equivalence problem for the invariant subspaces
of these shifts.
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1. INTRODUCTION

The computation of the lattices of invariant subspaces of bounded linear operators
acting on Hilbert spaces is a consistently fascinating problem. There are few operators for
which a complete description of the lattice of invariant subspaces is known [12, 13, 14, 19].
Among the known cases, one of the most notable is the shift operator S on H?(T) (where
T=0Dand D = {z € C: |z| < 1}). Here, H*(T) denotes the classical Hardy space of
analytic functions on the open unit disc D, and

Sf=zf,

for all f € H?(T). Recall that H?(T) can also be viewed as a closed subspace of L*(T)
consisting of functions whose Fourier coefficients vanish at all negative indices.

The shift S is a typical example of a pure isometry; that is, an isometry that does not
have a unitary part. The invariant subspaces of S are precisely of the form

H*(T),

where ¢ is an inner function [5]. Brownian shifts were introduced by Agler and Stankus
on H*(T) @ C [3, Definition 5.5] in the context of m-isometries, and, along the lines of
Beurling, they characterized the invariant subspaces of such operators. The Brownian
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shift of covariance ¢ > 0 and angle 6 € [0,27) is the bounded linear operator B, .o :

H?*(T)® C — H?*(T) @ C, defined by

S o(l®1
Ba’,ew: |:0 (eie ):|7

where ((1 ® 1)a)(2) = « for all @« € C and z € T. Brownian shifts are connected to the
time-shift operators associated with Brownian motion processes [3]. Also, for a curious
statistical take on Brownian shifts, see [1, page 13].

On the other hand, we recall that shifts on vector-valued Hardy spaces are all examples
of pure isometries. Given a Hilbert space E (all Hilbert spaces in this paper are separable
and over C), denote by H%(T) the E-valued Hardy space over T. By Sg, we refer to
the shift operator on H%(T). When E = C, we simply write H2(T) as H*(T), and S¢
as S. In this case, the invariant subspaces of Sg are parameterized by operator-valued
inner functions—a classical result known as the Beurling-Lax—Halmos theorem (cf. [11,
Theorem 2.1, p. 239]). This result lies within the framework of the invariant subspace
problem—where, instead of investigating the existence of invariant subspaces for general
operators, one fixes a natural operator and seeks a complete description of the lattice of
its invariant subspaces.

In this paper, we introduce Brownian shifts on vector-valued Hardy spaces and com-
pute the lattice of invariant subspaces for these operators. This work is inspired both
by the classification of invariant subspaces by Agler and Stankus and by the Beurl-
ing—Lax—Halmos theorem for shift-invariant subspaces on vector-valued Hardy spaces.
In particular, our result yields the lattice of invariant subspaces for the Brownian shifts
B, .o studied by Agler and Stankus and provides a new proof of their structure.

The Brownian shift on H%(T) & E of covariance o > 0 and angle § € [0,2n) is the
bounded linear operator

BP , = [SE L ] . HA(T) & E — Hi(T) & E,
g€ 0 (& IE
where ip : E — H#%(T) is the inclusion map defined by (igx)(z) = x for all x € F and
zeT.

This is a particular class of Brownian unitaries with positive covariance, as introduced

by Agler and Stankus. Clearly, in the scalar case £ = C, we have B(Sew = B, .. We

often refer to B, .i» as a Brownian shift on H 2(T). Throughout the paper, E will denote
an arbitrary but fixed Hilbert space, with the possibility that £ = C. One additional
motivation for introducing Brownian shifts on vector-valued Hardy spaces is that they
are unitarily equivalent to the Brownian shifts on H?(T) tensored with identity operators.
That is,
BY o on Hp(T) ® E = B, 0 @ Ip on (H*(T) & C) ® E,
where “2=7”denotes unitary equivalence between operators. This also aligns with the
unitary equivalence
Spon Hi(T) =2 S® Iz on H*(T)® E.

The invariant subspaces of Sg, as described in the classical Beurling—Lax—Halmos the-
orem, now also suggest a similar investigation of the invariant subspaces of the Brownian
shifts Bfeig. In this paper, we do precisely that. To this end, we partition invariant
subspaceé of Brownian shifts into two distinct types:
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Definition 1.1. Let M be a closed subspace of Hz(T) & E that is invariant under B .
We say that:

(1) M is Type Iif M C HZ(T) & {0}.

(2) M is Type ITif M & H%(T) & {0}.

To proceed, we first recall the basic and commonly used terminology: Given a Hilbert
space E,, let Hyy p)(T) denote the Banach space of B(E,, E)-valued bounded analytic
functions on D, where B(FE,, E) is the space of bounded linear operators from F, to E
(we write Hyp ) (T) as H*(T) whenever E, = £ = C). Each ® € Hyjp, )(T) induces
a multiplication operator Mg € B(Hj, (T), Hz(T)), defined by

M@f = ch?
for all f € Hf, (T). It is important to note that
Mq;SE* = SEMq,

A function ® € Hip 5)(T) is called inner if My is an isometry. This is equivalent to the
condition that ®(z) is an isometry from F, to E for almost every z € T. Recall that for
an inner function ® € Hyy 1) (T), the model space Ko (cf. [18]) is defined by

Ks = Hp(T) & ®Hz (T).
Fix a Brownian shift Bfew. Given an inner function € H B(F..F) (T), we set

dxr — oy

o = { B] CHL(TOFE:ye B, g= ~ 0 € H;(T) for some x € E*} . (1)

This set exhibits some curious features of general interest. For instance, Gg is a closed
subspace of Hz(T) @ E (see Lemma 2.2).

In Theorems 2.1 and 2.6, we establish the following invariant subspace theorem for
Brownian shifts: Let M be a nonzero closed subspace of Hz(T) @ E. Then, the following
are true:

(1) M is a Type I invariant subspace of Bfew if and only if
M = @H;}, (T) @ {0},
for some inner function ® € Hgp 5 (T) and nonzero Hilbert space Ej.
(2) M is a Type II invariant subspace of B , if and only if there exists an inner

function ® € Hy E)(']T) for some nonzero Hilbert space E,, and a nonzero subset
G C G such that

M= (G) & (PHE,(T) & {0}) .

Given a set N in a Hilbert space, we denote by (N) the closed linear span of the
elements of N

Definition 1.2. The representations of M in (1) and (2) above are referred to as the
canonical representations of Type I and Type II invariant subspaces of Bfew, respectively.

The inner function ¢ in the canonical representation given in part (2) also exhibits a
certain boundary behavior, similar to the scalar case studied by Agler and Stankus. We
refer the reader to Remark 2.4 for more details. See also Section 4 for a detailed analysis
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of how the full-length invariant subspace theorem of Agler and Stankus can be recovered
using the above result and Remark 2.4.

Following [8] (also see [9, 10]), we turn the above invariant subspace result to the
problem of unitary equivalence. Specifically, given a pair of closed subspaces M; and
M, of HL(T) @ E that are invariant under the Brownian shifts Bfl 0 and Bi itz

respectively, we consider the restriction operators Bfl 2oy lmy on My and BfQ Jitn | Mo O
M, and determine when they are unitarily equivalent. In Theorem 3.1, we prove: There
exists a unitary U : M; — M such that

UB»

1,e%01 }Ml = BE 02 ‘MQU’

02,€

if and only if any one of the following conditions is true:

(1) Both M; and M, are Type I, and if M; = ®;HE (T) & {0} for i = 1,2, then

(2) Both M; and M, are Type II. Furthermore, ¢; = 6,, and if M; = (G;) &
(CIDJ-H%],(T) @ {0}) is the canonical representation of M;, j = 1,2, then there
exist a pair of unitaries Ug : (G1) — (G2) and Ug : E; — Es, such that

/ /

whenever

J

where Bﬂ € (G,) with

/
g = ®jr; — 0,y;
/ z — e
for some unique z; € Ej, j = 1,2.

We refer to Theorem 4.2 for the scalar version of the above result (also see [8, Theorem
2.1]). We finally remark that Brownian shifts are integral components of 2-isometries,
which play an important role in understanding the general structure of linear operators
(cf. [4, 7, 16]).

In the context of function theory, linear operators, and the prediction problem for 2-
stationary processes, we refer the reader to the concluding part of the paper by Agler
and Stankus [2]. For the prediction of stationary processes, we recommend the excellent
monograph [6], particularly Chapter 2. See also [15, 17] for related work and possible
directions for future connections.

The remainder of the paper is organized as follows. In Section 2, we describe the
invariant subspaces of Brownian shifts. Section 3 determines when such pairs of invariant
subspaces are unitarily equivalent. Section 4 presents the results obtained this far in
the context of the scalar-valued Hardy space. In particular, it highlights the unitary
equivalence result for Brownian shifts on H?*(T). Section 5 presents the structure of
reducing subspaces for Bfeie.
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2. INVARIANT SUBSPACES

This section presents a complete description of the invariant subspaces of Brownian
shifts Bf,ew on H%(T) ® E. We begin with Type I invariant subspaces. Note that M C
HZ%(T) & {0} is a nonzero closed subspace if and only if M = My ® {0} for some nonzero
closed subspace M of H%(T).

Theorem 2.1. Let M be a nonzero closed subspace of Ha(T) & E. Assume that M C
HZ(T) @ {0}. Then BY ,,(M) C M if and only if

M = ®H}, (T) @ {0},

for some inner function ® € Hg‘thE)(T) and nonzero Hilbert space E.

Proof. We know that M = M, @ {0} for some nonzero closed subspace My C Hz(T).
Since
_|Se 0
HpMa{0} | 0 0]’
. . . E
the fact that M is invariant under Bayeig H2(T)5{0}

under Sg on H%(T). The classical Beurling-Lax-Halmos theorem (cf. [11, Theorem 2.1,
p. 239]) guarantees that this is same as saying

Moy = ®H} (T),

for some inner function ® € Hyy 5 (T) and nonzero Hilbert space Ey. The converse
follows from the upper triangular representation of the Brownian shifts. O

BE

0,ei0

is equivalent to My being invariant

We now proceed to the other type of invariant subspaces. For a fixed Brownian shift
BE ,, and an inner function ® € H B(5,,m)(T), recall the construction of Gg from (1.1):

dxr — oy

g(b:{[z} EH?E(T)@E;ygE,g:Z—,eH]%;(’]I‘)forsome:ceEQ}.

_ 619

In the following, we prove that the set Gg is special:

Lemma 2.2. Let ® € Hgp, g (T) be an inner function. If B} € Gg is a nonzero element,
then g € Ko and y # 0. Moreover, G is a closed subspace of H=(T) @ E.
Proof. Suppose g = 22=% ¢ HZ(T) for some = € Ey and y € E. We have zg + oy =

z—etf
e’g + ®x. Let {f; : j > 1} be an orthonormal basis for Fy. Then for any n > 1 and
j > 1, we have (note that ®(0)* € B(E, E»))
(y, ®(2"f;)) = (®(0)7y, 2" f3) = O,
and similarly, we also have (note that x € Ey) (®x, ®(2"f;)) = 0. Then
(29 + 0y, B(z"f;)) = (g + Qz, (2" f;)),
implies
<Zg7 (D(an]>> + O-<ya (I)(an]» = 619<g’ (I)(an]» + <CI):E7 (p(znfj»a

which gives

(Mgg. 2" 71 f;) = " (Mgg, 2" f;). (2.1)
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Let
M&;g = Z szja
§=0
where z; € E, for all j > 0. If any one of these z;’s is nonzero, then by (2.1) we get
[Mzgl| = oo,
which is not possible. This shows that Mgg = 0, thereby proving the claim that g € Kes.
Next, assume that y = 0. Then zg = ®z + ¢, which implies
leg? = [z]? + 9],

as g € Ko. As ||zg]| = ||g|| and ||®z|| = ||z||, we conclude that z = 0, and consequently
g = 0.
Now we turn to prove that Gs is a closed subspace. It is easy to see that Gg is indeed a

n

subspace. To show that it is closed, we pick a sequence { L‘q/n} } € Gg such that

Bﬂ — m € HX(T) @ E.

Equivalently, g, — ¢ in H%(T) and y, — y in E. Now for each g,, there is x,, € Fy such
that

Z0n + OYn = CI)ZL’n + ewgn’

which means {®x,} is convergent, and this implies {z,} is a Cauchy sequence in E.
Thus x, — x € E5, and hence ®x,, — ®x. From the above identity, by passing over to
the limit we see that

2g+ oy = dx + €y,

Pr—oy

that is, g = ——". This completes the proof of the lemma. 0

Given a closed subspace M C Hz(T) @ E, the defect space of M is defined by
Dy = ME (MM (HE(T) &{0})).

Theorem 2.3. Let M be a nonzero closed subspace of HE(T) & E. Assume that M ¢
Hi(T) @& {0}. If B ,,(M) C M, then there exists an inner function ® € HE g, ) (T) for
some nonzero Hilbert space Ey, and a set G C Gg such that
M =Dy ® (PHE,(T) @ {0}),
and
Dy = (G).

Moreover, if B} € Dy, then there ezists unique x € Ey with ||z|| = ol|y|| such that

dxr — oy
9=—__w -
z—e
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Proof. Set
Mo = M N (HE(T) & {0}),
and decompose M as
M =Dy & M,.

Since M € HZ(T)®{0}, Dy # {0}. We need to show that M, is also a nonzero subspace
of M. If possible, let My = {0}. By the assumption, there exists

such that =’ # 0. Let us observe that

o[- - P[] o

o,eif T eiex/ T 0
As My = {0}, we have (z — €?) f + o2’ = 0, that is,
2’ = f e Hy(T),

o0
which is a contradiction, as (e? — 2)~! is not square integrable over T. Thus, Mg # {0}.
As BY ,(M) € M and M, C H%(T) & {0}, in view of the upper triangular block matrix
representation of Bfew, it follows that

B ,(Mgy) C M,.

0,eif
Theorem 2.1 ensures the existence of a nonzero Hilbert space Fy and an inner function
® € Hgp, p)(T) such that

My = @Hib(’]l") @ {0}.

We can therefore rewrite M as

M =Dy @ (PHE,(T) @ {0}).

Now for any nonzero {‘Z] € D, it is easy to check that g € K¢ and y # 0 in E. Moreover,

we have

> ly ey y 0
which, in particular, implies

BP m _ [zgjLay] _ it H . [(2 - €i9)9+0’y] e M.

(2 —€”)g + oy € PHE,(T),
and hence, there exists a unique h € Hz, (T) (note that ® is an inner function) such that
2g+ oy = €g + D, (2.2)

Let {f; : 7 > 1} be an orthonormal basis for E,. Then for any n > 1 and j > 1, we have
(note that ®(0)* € B(E, E»))

(y, ®(2" f;)) = (®(0)"y, 2" f;) =0,

and (note again that @ is an inner function)
(®h, B(2" ;) = (h, 2" f3)-



8 DAS, DAS, AND SARKAR

By (2.2), we now have

(h, 2" f;) = (Bh, (2" f;))
(29 +oy) — e’g,0("f;))
(29, ®(2"f;)) — (g, D(2" f;))
(g, @(z""1f)) — (g, ®(="[;))
0,

as g € Kg. In other words, h € F5. Let us rename h by x. Since y € E, by (2.2), we have
lgll* + o [lyl1* = llgll* + [|=[%,

and consequently ||z|| = o|jy||. Finally, again by (2.2), we have g = 2%  completing

the proof of the theorem. O

We emphasize that for a Type II invariant subspace M, as described in the above
theorem, both Dy and ®HE, (T) are nonzero.

The description of invariant subspaces of Brownian shifts on H?*(T) by Agler and
Stankus also includes a certain boundary property of the associated inner functions. A
similar result holds in the setting of vector-valued Hardy spaces. However, to establish
this, we need to use the identification of H%(T) with the Hardy space H% (D) of E-valued
square-summable analytic functions on D) [18, Chapter V].

Remark 2.4. We remain with the setting of Theorem 2.3. We have
b — oy = (2 — ’)g,

where g € K¢, y € E'\ {0}, and x € E,. We treat g as an element of Hz(D) and write
the power series expansion g(z) =Y z,2" on D (note that z, € E for all n). Then

1

1
[e.e] o0 2 o 2 1
lgI < llznlllz* < ( !I:Un|!2> < IZ\Q”) = llglle——=—=5

for all z € . Therefore, we have

gl

12(2)z — oyl < |2 — €’

which after putting z = re? becomes

, 1—r
d 0 o < )
(e — oy < lglay/ -
Finally, letting 7 — 1— we get that ®(e")x := lim,_,;_ ®(re?)x exists and

(e = oy.

In particular, if £ = C, then ®(e?) refers to the existence of the radial limit value of ®
at e®.

Recall the following observation from the setting of Lemma 2.2:

(G) L ®H,(T) & {0},
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for all nonzero G C Gg. Moreover, if [z } € G is nonzero, then y # 0. In view of this, we
now present a converse to Theorem 2.3:

Theorem 2.5. Let ® € Hyp, (T) be an inner function. Then (G) & (PHE, (T) & {0})

1s a Type II invariant subspace of Bfew for every nonzero subset G of Gg.

Proof. For any f € Hg, (T), we have

BE ﬁ)f } = F)gf } € ®H; (T) @ {0},

and for B] €qg,

, it ,
Br |9 Z |29 oy| _ e 9] (=g +oy| _ o l9| , 22|
7y ey y 0 y 0

for some x € E5. Therefore,
ijeig (span(G)) C M.

Since B ,, is a bounded linear operator, M is a closed subspace, we have BZ ,,((G)) C

0,ei0

M. This proves that (G) ® (PHZ, (T) @ {0}) is a Type II invariant subspace of BX ,,. O

Summarizing Theorems 2.3 and 2.5, we obtain the following characterization of Type
IT invariant subspaces of Brownian shifts:

Theorem 2.6. Let M ¢ HZ(T) @ {0} be a nonzero closed subspace of Hz(T)@® E. Then
M is invariant under Bfem if and only if there exists an inner function ® € ch()Eg,E) (T)
for some nonzero Hilbert space Esy, and a nonzero subset G C Gg such that

M = (G) @ (PHp,(T) ® {0}) .

The results of this section, when specialized to the case E = C (that is, the scalar case),
recover the results of Agler and Stankus. We will elaborate on this in Section 4.

3. EQUIVALENT INVARIANT SUBSPACES

By equivalent invariant subspaces, we mean unitarily equivalent invariant subspaces of
Brownian shifts. In other words, given a pair of nonzero invariant subspaces M; and Mo,

we consider the restriction operators BY , ‘ and BY , ‘ and ask: when is
01,61 I M1 02,62 | My

E ~ pE ?
Bal,ei"l |M1 - Boz,ew? ‘Mz )

The following theorem provides a concrete answer in terms of inner functions. At this
point, it is convenient to recall the definition of the canonical representations of invariant
subspaces of Bfew, as given in Definition 1.2.

Theorem 3.1. Fiz angles 01,05 € [0,27) and covariances 01,09 > 0. Let My and My be
nonzero closed invariant subspaces of the Brownian shifts Bfl 401 and Bi e respectively.
Then

rcitn | g, = Boy ot |
01,61 My T Poget2 | My

if and only if any one of the following conditions is true:
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(1) Both My and My are Type I, and if M; = ®;Hg (T) @ {0} for i = 1,2, then

(2) Both My and My are Type II. Furthermore, 61 = 0, and if M; = (G;) &
(@H%j('ﬂ') @ {0}) is the canonical representation of M;, j = 1,2, then there
exist a pair of unitaries Ug : (G1) — (Ga) and Ug : Ey — E,, such that

/ /

whenever

where {gj] € (G;) with
Yj

;1% — 0jy;

95 = — 0.

o — ez’@j ’

for some unique ', € Ej, j =1,2.
Proof. Let us start with the proof of the “if” part. Provided that condition (1) holds, we
assume M; = ®;Hz (T) & {0} for some inner functions ®; € Hip, g)(T), @ = 1,2, with

dim F; = dim F5. Then there exists a unitary operator U between FE; and F5. Consider

the operator U : M; — M, defined by

®h]  [®,UR

o=

for all h € Hy, (T), where U : H, (T) — H,(T) is the unitary operator induced by U,
acting on h as follows:

Uh=>Y 2"Uiy, (3.1)
n=0

for all h = > #,2" € H% (T). Note that
U = UzFh,

for all £ > 0. It is clear from the construction that U is a surjective isometry between
M and M5 and therefore, is unitary. Moreover,

B Oih|  [2®,UR]  [®,U(2h)] _ ,, [®12h] . oE 1h
Bm,e”?U{ o= o |T| o [TV o TV | o]

which implies Bfl X ~ Bk

g, 102 |M2' Next, we assume that (2) is true. Set

e
6 =06, =0,

Define a linear operator U : M; — My by

o(I5]+ B) - [ e )
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for h € Hf, (T) and LJ } (G1), where Up is the unitary operator from H (T) to H2,(T),
induced by Ug in the same way as in (3.1). It is evident from the construction that U is

surjective. In addition, since Ug L/ € (Gy), we have
1

®,Ugh g1
U,
H[ 0 % QM

This implies that U is an isometry, and therefore, is a unitary operator as well. For

notational simplicity, set
3 {(I)lh:| {91} -
0 hn

Assuming Ug [g 1} = {92] , we observe that
1

2

D1 h
= e+ ol + ol = | %51+ 2] |

Yo
BE wUF =BE ®,Uph + 192 ) = 2®yUph 4 |79 j{; aaya|
€ 02,6 0 Ys 0 ¢y,
At this point, we recall that gj(z) = % for a unique x; € Ej, j = 1,2. This yields

2g; + ojy; = € g; + ®;a;,

for j = 1,2. Therefore, recalling that Ugz, = Uz, = «, whenever Ug B 1} = B 2}, and
1 2

that kuEh = UEzkh for any k£ > 0, we have

UF — ZCI)2UEh 292 + 022
ela 619y2

_ ( <I>1OZh 4 [91]) n |:(I)2(~]E$/1:|
I | (1 0
T (@, 2h] A 2]
i 0 ] Y1 0

U ( [ 2@, ] X {291 ;galyl])
€ N

:UBE » _(I)lh 4 g1
o1,e’ I 0 Y1 )

B wUF =UBZ iF,

that is,

o bl = B
which again ensures that B2 o, = By, cion |y

simplicity, we divide the proof into three parts:
Step 1: We claim that if we assume, without loss of generality, that M; = ®H%,(T)®{0}
is of Type I, and My = (G) & (VH%,(T) & {0}) is of Type II, for certain inner functions

We now turn to the converse. For
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E E
® and ¥, then BY , | and B .|

true, then, in particular, we will have the norm identity

are not unitarily equivalent. Indeed, if it is not

E
\B

_ || pE
v e

0276i92 |M2 H ’
However, for any h € Hz,(T), we have

s S0 - 2

‘ = 1. On the other hand, we have

that is, HBE
g1

9
’ Bow M

for any nonzero B } € (G) (recall that y # 0 in this case), and hence

,67‘91 ‘Ml‘

’ 29 + 02y
ez@gy

2

2
_ o2yl > H [9] |

2
2 2 2 2 g
= + + o =
o1 + ol + o3l = | |2 g

which leads to a contradiction. Therefore, M; and My must be of same type.
Step 2: Suppose both of them are Type I with the canonical decomposition

M; = ®;HE, (T) © {0},
for some inner function ®; € H B, E)(T), i = 1,2. Now according to our hypothesis, there

exists a unitary operator U : M; — M such that UBf1 i1 }Ml = Bi it MQU. First,
let us observe that for hy € Hg (T), if

Oihy| [ DPohy
o= 1%
for some hy € Hz, (T), then

[y 4] e e - ) 2]
that is,

an)lhl . an)ghg
o[ =[]

for all n > 0. Now, we take any 2 € E;, and assume that
(I>1.17/1/ . (bgh/
v { N
for some h'(z) =Y ", z"al, € Hp (T). Suppose &}, # 0 for some k > 1, and also suppose

~/
U [(I)ng} = {(b%xkl for some gy € Hg, (T). Therefore, ||Z}||> = (@21, P2277) implies

= (5[5 - (o[ [ - () [
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and hence ||7}||> = (27, 2%gr) = 0 for any k > 1, which ensures that »’ € E;. On the
other hand, given a4 € E, there exists h(z) =Y~ 2", € Hz (T) such that

<I>1h7<132x’2’
o=

If 4 # 0 f > i v | 2] [ 2R " e H3(T), th
T # 0 for some k > 1, and if U | = 7 = |7 or some h" € Hg, (T), then

2] = (@1h, ®12" 7)) implies

_ ) P,z [ Dozl [2F Do
faut? = (o %3] o [0 ) = (5] [ ]) = ety o

thereby implying h € E;. The above information allows us to define U; : Fy — Ey by

Uiz = x9,

Q14 Qo9
o] = 7
It is easy to check that U; is a well-defined, surjective as well as isometric linear map
between E; and FEs, and therefore, is unitary. Thus, dim £; = dim FEs.

Step 3: Let us now assume that both M; and M, are Type II, with the canonical
representations M, = (G;) @ (<I>jH?Ej(']I‘) @ {0}), j = 1,2, as described in the statement
of this theorem, and, like in the previous part of the proof, U : M; — M is the unitary
operator satisfying the intertwining relation U Bfl = BF U. Suppose now

0.2,61'62 ‘Mz
for a given hy € Hg, (T),

whenever

,ewl }Ml

Qrhy| _ [P2hy 9>
o)+
/
for some h, € Hz, (T) and {Z?] € (Gy). In particular, we have
2
1Al = [hall* + (19211 + [lyall*.
At the same time, we have
2®1hy | E Q10| LR Qihy| _ |2P2hy 205 + 02y
U{()]_U%M” 0 | = BeenlU | g | =] 0 | T ety |
and consequently,
1A )1 = (B2l + (19211 + [lyall® + o3 [lya].
Therefore, y, = 0, and then
/
4] € Man (112,(T) © (0) = 212, (T) 0 (0},
2
forcing g5 = 0 as well. Therefore,
U(P:Hg, (T) & {0}) © 2 HE,(T) & {0}.
Using exactly similar lines of argument for U*, we get
U*(®2H, (T) & {0}) € @1 H, (T) & {0},
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and hence U is a unitary mapping between ®Hz, (T) @ {0} and ®,Hz (T) @ {0}, such
that
UBE ., £ U

o1,e ‘q)lH%I (TYa{0} - Baz,ew2 ’szH%z(T)@{O} :
Looking at the Step 2, where M; and M, both are taken to be Type I, it readily follows

that for any xy € Ei, U [‘1)1% _ |®2m for some x5 € F5, and conversely, for any

0 - 0
Ty € Fy there exists x1 € E; such that the above equality holds. This now guarantees
the existence of a unitary map Ug : Fy — Es, defined as follows:

UE(SE1) = T,

D2y o Doy
o[ =[]

for x; € Ey, 19 € Ey. For a given B] € (Gy), suppose now

-1

for some h' € Hg, (T) and B,} € (G,). This implies

whenever

gll® + NIy l1* = I8 + g/l + 111" (3.2)
/
Now there exists h € Hz, (T) such that U [(I)(l)h} = {(I)éh] . As a result,

oo 3]+ )

that is,
r, !
IeuN]
oy y
Consequently,
_ Pk 2 , 2
o2+ 1+ = o (2= =] (9] = e+ e

which, combined with (3.2) yields h = A’ = 0. In other words, U((G1)) C (G2). Imitating
this argument line by line with U replaced by U*, it immediately follows that U*((Gy)) C
(G1). We therefore conclude that there exists a unitary map Ug = U| (G, Detween (Gy)

and (Gy). Now consider any BJ} € (G;), 7 = 1,2, such that U Bl] = [32], and recall
j 1 2

that
2g; +ojy; = g + CIDjx;-, (3.3)
for a unique 7, € E£;. Then

(Bl B (o )
1,€ Y1 Y2 92,¢ Y1 Y2
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The above identity implies

o [a]\ _ /292 +02m2] [
6291y1 ] ) _yl_ €z€2y2 ) Yo )
or, equivalently,

G0 |91 4 Oy 1] , o]\ _ Gios |92 | | D22 NICIRY

() 0 |7 |v] Y2 0 Yo

2

{91] U {91} {gz]
1 Y1 Y2

— 6i91
It follows that ¢t = 2. Since 0,60, € [0,27), we conclude that §; = . Let us set
again 6 = 0; = 6,. Using this information and (3.3), we finally observe that

U Py} Lty |9 — Zglje‘o'lyl _UBE , 1] _pE |92
O g1, 02,6
Y1 e Y Y2

and so
2

— ei@g

2
ei91

BE . |92| — |#92F 02y2| _ Cowy| L o 92
o2,et Y2 ezeyz 0 -y2 )

it follows that U7 |2171] = |®2%2] 4 Uga!, = a/,. Thi letes th
1t tollows that 0 = Ak s a consequence, Ugx| = T5. 1s completes the

proof. O

In the following section, we illustrate this theorem in the case £ = C.

4. THE SCALAR CASE

The purpose of this section is to recover the representations of invariant subspaces of
Brownian shifts on H?(T), as obtained by Agler and Stankus (see [3, pp. 21-24]). More
specifically, in the particular case of F = C, by using Theorem 2.1 and combining Theo-
rems 2.3 and 2.5 with Remark 2.4, we retrieve the representations of invariant subspaces
of Agler and Stankus:

Theorem 4.1. Let M be a nonzero closed subspace of H*(T) & C. Then M is invariant
under B, .o if and only if it admits one of the following representations:

M = oH*(T) & {0},

for some inner function ¢ € H*(T), or
AA=@E}@@H%D@@H,

where 1 € H®(T) is an inner function with the condition that (e®) exists, and

gzg<¢w%w—1

2z — et

) € H*(T).
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Proof. We start with the proof of “only if” part. Suppose M C H?*(T) @ {0}. If
B, ci0(M) € M, then setting ' = C in Theorem 2.1, we find that £, = C (note that
M #{0}), and

M = oH*(T) & {0},
for some inner function ¢ € H*(T). Next, assume that M ¢ H*(T) @ {0}. Under the
assumption £ = C, Theorem 2.3 asserts that

M =Dy & (VH*(T) @ {0}),
for some inner function ¢» € H*°(T), where

Dy =M& (M (H*(T) & {0})) # {0}.

It now remains to show that any element of D, is a scalar multiple of {ﬂ , g as given in
the statement of the theorem. Making use of Theorem 2.3 and Remark 2.4, we see that

for any nonzero {g‘ﬂ € Dy, there exists unique o € C with |a| = o|f| > 0 such that

Ya—aff
= : 4.1
(51 y — 620 ) ( )
and
: iy
rl_lgl_w(re Ja = of.
Since |a| = o|B] > 0, |[¢(e?)] = 1. As a result,

o = o BB,
Using this value of a in (4.1), we deduce that

o o (M)

z — e

3 1

In the scalar case, the unitary equivalence of invariant subspaces established in Theorem
3.1 takes the following form:

which means [g 1} =0 [g } . The “it” part follows trivially from Theorems 2.1 and 2.5. [

Theorem 4.2. Fiz angles 01,05 € [0,27) and covariances 1,09 > 0. Let My and
My be nonzero closed invariant subspaces of the Brownian shifts B, e, and B, e, in
H?*(T) ® C, respectively. Then

B, i |

o1,e

o1, o2,e

My = BUQ,eif’z |M27
if and only if any one of the following conditions is true:

(1) Both My and My are Type I.

(2) Both My and My are Type II, along with the facts that
01 =02,

and
o3 (1+ lgrll?) = o7 (1 + [|lg=01?),
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® (¢, H*(T) ® {0}) is the canonical representation of M;, and

10 ;
gj = 0 (M) for i =1,2.

where M; = C {gf

z—ezeﬂ

Proof. 1t is clear that we can now assume F; = Fy = C and G; = C {gf] , G, =C 912 in

the statement of Theorem 3.1. All we have to verify is that condition (2) of Theorem 3.1
becomes equivalent to condition (2) of this theorem for F = C. In both cases 6; = 0 is
common in condition (2), so we only need to concentrate on the rest. Suppose

ol o[

for some o € C. Tt is evident that 1+ [|g1]|> = |a]*(1 + ||g2]|*), and at the same time,
according to condition (2) of Theorem 3.1

Ug (01<P1(€i9)> = aoapa(e’),
which gives |a| = 01/09. As a result,
03(1+ llgall*) = o1 (1 + llg2l®). (4.2)

Conversely, if we start by assuming (4.2), then it is immediately seen that
g1 91 |92
U, = — ,
o[3] -2 17]

Us (#1(c7)) = pale?)

define surjective isometries (G;) — (Gs) and E; — Es, respectively, and therefore, they
are unitaries. Our proof is therefore done. 0

and

This result was previously obtained in [8, Theorem 2.1].

5. REDUCING SUBSPACES

Given a bounded linear operator A on a Hilbert space H, a closed subspace S C H is
said to be reducing for A (or A-reducing) if S is invariant under both A and A*. Our goal
here is to classify all reducing subspaces of Brownian shifts.

Recall that a closed subspace M of H%(T) is reducing for Sg if and only if there exists a
closed subspace F' C E such that M = H2(T) (cf. [19, Theorem 3.22]). For the question
of reducing subspaces of a Brownian shift Bfe,-g on H%(T) @ E, the answer is as follows:

Theorem 5.1. Let M be a closed subspace of H&(T)®E. Then M is a reducing subspace
for BE ., if and only if there exists a closed subspace G of E such that

M = HE(T) & G.
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o.et?

Proof. Given the adjoint operator (BE ) = [S.E 0 ], the sufficiency is straight-

oiy e g

forward. Suppose M is a reducing subspace for B¥ ,,. Let / € M. Then
og,e €T

[02xf+ J]:| (BO' 516) Ba et? |:£:| < M7

8- h ][

As ¢ > 0, this implies B] € M. On the other hand, since BJ i {0] = {;fx} e M, it

T
) e[ = o e

and hence, [x} € M, and also, [f} = {f] — [0} € M. Therefore, for each {f] e M,
0 0 T x x

(- =

Write f = 32°° f(n)2", where f(n) € E for all n. > 0. Then

oy -] e

and hence (5.1) implies { } : [ 0 } {SEf] } C M. Assuming that

and hence
follows that

we have

0

(P ool (5] =

) {Sfﬂgf} — {iEan;iﬂ € M, and again from

(5] [ 75 e

The principle of mathematical induction now yields

G

:{x fn): {f eM,nzo}.

Therefore, GG is a closed subspace of E. Moreover, we let

([ ] [esnc)

for any m > 1, we observe that (BE

o.ett

(5.1), it follows that

Set G = (G), where
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Gyz{ﬁy{%@}:u}ewanzo}
Then (G1) = {0} & G and (Go) = G & {0}. Now (G5) C M implies H(T) & {0} C M.
This and {0} & G = (G1) C M yields

HZ(T) & G C M.

and

For the reverse inclusion, we pick H] € M, and assume [f; } 1 (HA(T)® G). In

particular, [i] 1 {0} ® G implies x = 0. Similarly, [ﬂon)] 1 G {0} for allm > 0
implies that f = 0. This proves HZ(T) & G = M. O

Recall that a bounded linear operator A on H is irreducible if there is no nontrivial
closed subspace of H that reduces A. The following is now straightforward: B, .» on
H?*(T)®C is irreducible for all angle 6 € [0, 27) and covariance o > 0. This was previously
observed in [8, Proposition 4.3].

We conclude this paper with a remark: Let 1" be a contraction on a Hilbert space H.
We say that T' € C if

SOT — lim 7" = 0.

m—0o0
The contraction 7T is said to satisfy the Cyp-property if both 7" and 7™ are in C. In this
case, we simply write T € Cy. In [8, Theorem 3.2] we proved that ;Bmew € Cyo

1B, ol
for all covariance o > 0 and angle 6 € [0,27). A similar technique establishes in the

vector-valued case: .
E
TBE  Pre € Coo-

0,ei0

This result is also comparable to the asymptotic properties observed in [7]. Finally, we
remark that, following the computation of [8, Section 3|, one concludes that Bfew is not
similar to a contraction.
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