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Abstract. Let D denote the unit disc in the complex plane C and let D2 = D × D be the
unit bidisc in C2. Let (T1, T2) be a pair of commuting contractions on a Hilbert space H.
Let dim ran(IH − TjT

∗
j ) < ∞, j = 1, 2, and let T1 be a pure contraction. Then there exists a

variety V ⊆ D2
such that for any polynomial p ∈ C[z1, z2], the inequality

∥p(T1, T2)∥B(H) ≤ ∥p∥V
holds. If, in addition, T2 is pure, then

V = {(z1, z2) ∈ D2 : det(Ψ(z1)− z2ICn) = 0}
is a distinguished variety, where Ψ is a matrix-valued analytic function on D that is unitary
on ∂D. Our results comprise a new proof, as well as a generalization, of Agler and McCarthy’s
sharper von Neumann inequality for pairs of commuting and strictly contractive matrices.

Notation

D Open unit disc in the complex plane C.
D2 Open unit bidisc in C2.
H, E Hilbert spaces.
B(H) The space of all bounded linear operators on H.
H2

E(D) E-valued Hardy space on D.
Mz Multiplication operator by the coordinate function z.
H∞

B(E)(D) Set of B(E)-valued bounded analytic functions on D.
All Hilbert spaces are assumed to be over the complex numbers. For a closed subspace S

of a Hilbert space H, we denote by PS the orthogonal projection of H onto S.

1. Introduction

The famous von Neumann inequality [8] states that: if T is a linear operator on a Hilbert
space H of norm one or less (that is, T is a contraction), then for any polynomial p ∈ C[z],
the inequality

∥p(T )∥B(H) ≤ ∥p∥D
holds. Here ∥p∥D denotes the supremum of |p(z)| over the unit disc D.
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In 1953, Sz.-Nagy [6] proved that a linear operator on a Hilbert space is a contraction if
and only if the operator has a unitary dilation. This immediately gives a simple and elegant
proof of the von Neumann inequality.

In 1963, Ando [3] proved the following generalization of Sz.-Nagy’s dilation theorem: Any
pair of commuting contractions has a commuting unitary dilation. As an immediate conse-
quence, we obtain the following two variables von Neumann inequality:
Theorem (Ando): Let (T1, T2) be a pair of commuting contractions on a Hilbert space H.
Then for any polynomial p ∈ C[z1, z2], the inequality

∥p(T1, T2)∥B(H) ≤ ∥p∥D2

holds.
However, for three or more commuting contractions the above von Neumann type inequality

is not true in general (see [4], [12]). An excellent source of further information on von Neumann
inequality is the monograph by Pisier [11].

In a recent seminal paper, Agler and McCarthy [2] proved a sharper version of von-Neumann
inequality for pairs of commuting and strictly contractive matrices (see Theorem 3.1 in [2]):
Two variables von Neumann inequality can be improved in the case of a pair of commuting
and strictly contractive operators (T1, T2) on a finite dimensional Hilbert space H to

∥p(T1, T2)∥B(H) ≤ ∥p∥V (p ∈ C[z1, z2]),

where V is a distinguished variety depending on the pair (T1, T2). Again, ∥p∥V is the supre-
mum of |p(z1, z2)| over V . The proof of this result involves many different techniques including
isometric dilation of (T1, T2) to a vector-valued Hardy space and approximation of commuting
matrices by digonalizable commuting matrices.

We recall that a non-empty set V in C2 is a distinguished variety if there is a polynomial
p ∈ C[z1, z2] such that

V = {(z1, z2) ∈ D2 : p(z1, z2) = 0},
and V exits the bidisc through the distinguished boundary, that is,

V ∩ ∂D2 = V ∩ (∂D× ∂D).

Here ∂D2 and ∂D × ∂D denote the boundary and the distinguished boundary of the bidisc
repectively, and V is the closure of V in D2. We denote by ∂V the set V ∩∂D2, the boundary
of V within the zero set of the polynomial p and D2.

In the same paper [2], Agler and McCarthy proved that a distinguished variety can be
represented by a rational matrix inner function in the following sense (see Theorem 1.12 in
[2]): Let V ⊆ C2. Then V is a distinguished variety if and only if there exists a rational
matrix inner function Ψ ∈ H∞

B(Cn)(D), for some n ≥ 1, such that

V = {(z1, z2) ∈ D2 : det(Ψ(z1)− z2ICn) = 0}.

The proof uses dilation and model theoretic techniques (see page 140 in [2]) in the sense of
Sz.-Nagy and Foias [7]. See Knese [5] for another proof. For similar results in the symmetrized
bidisc setting see also [9].
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In this paper, in Theorem 3.1, we obtain an explicit way to construct isometric dilations of
a large class of commuting pairs of contractions: Let (T1, T2) be a pair of commuting operators
on a Hilbert space H and ∥Tj∥ ≤ 1, j = 1, 2. Let dim ran(IH−TjT

∗
j ) < ∞, j = 1, 2, and T1 be

a pure contraction (that is, limm→∞ ∥T ∗m
1 h∥ = 0 for all h ∈ H). Set E = ran(IH−T1T

∗
1 ). Then

there is an B(E)-valued inner function Ψ such that the commuting isometric pair (Mz,MΨ)
on the E-valued Hardy space H2

E(D) is an isometric dilation of (T1, T2).
We actually prove a more general dilation result in Theorem 3.2.

Then in Theorem 4.3, we prove: There exists a variety V ⊆ D2
such that

∥p(T1, T2)∥B(H) ≤ ∥p∥V (p ∈ C[z1, z2]).

If, in addition, T2 is pure, then V can be taken to be a distinguished variety.
It is important to note that every distinguished variety, by definition, is a subset of the

bidisc D2.
Our results comprise both a new proof, as well as a generalization, of Agler and McCarthy’s

sharper von Neumann inequality for pairs of commuting and strictly contractive matrices (see
the final paragraph in Section 4).

The remainder of this paper is built as follows. In Section 2, we first recall some basic
definitions and results. We then proceed to prove an important lemma which will be used in
the sequel. Dilations of pairs of commuting contractions are studied in Section 3. In Section 4,
we use results from the previous section to show a sharper von Neumann inequality for pairs
of pure commuting contractive tuples with finite dimensional defect spaces. In the concluding
section, Section 5, among other things, we prove that the distinguished variety in our von
Neumann inequality is independent of the choice of (T1, T2) and (T2, T1).

2. Preliminaries and a Correlation lemma

First we recall some definitions of objects we are going to use and fix few notations.
Let T be a contraction on a Hilbert space H (that is, ∥Tf∥ ≤ ∥f∥ for all f ∈ H or,

equivalently, if IH − TT ∗ ≥ 0). Recall again that T is pure if limm→0 ∥T ∗mf∥ = 0 for all
f ∈ H.

Let T be a contraction and E be a Hilbert space. An isometry Γ : H → H2
E(D) is called an

isometric dilation of T (cf. [10]) if

ΓT ∗ = M∗
zΓ.

If, in addition,

H2
E(D) = span{zmΓf : m ∈ N, f ∈ H},

then we say that Γ : H → H2
E(D) is a minimal isometric dilation of T .

Now let T be a pure contraction on a Hilbert space H. Set

DT = ran(IH − TT ∗), DT = (IH − TT ∗)
1
2 .

Then Π : H → H2
DT

(D) is a minimal isometric dilation of T (cf. [10]), where

(2.1) (Πh)(z) = DT (IH − zT ∗)−1h (z ∈ D, h ∈ H).
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In particular, Q := ranΠ is a M∗
z -invariant subspace of H2

DT
(D) and

T ∼= PQMz|Q.
Finally, recall that a contraction T on H is said to be completely non-unitary if there is no

non-zero T -reducing subspace S ofH such that T |S is a unitary operator. It is well known that
for every contraction T on a Hilbert space H there exists a unique canonical decomposition
H = H0⊕H1 of H reducing T , such that T |H0 is unitary and T |H1 is completely non-unitary.
We therefore have the following decomposition of T :

T =

[
T |H0 0
0 T |H1

]
.

We now turn to the study of contractions with finite dimensional defect spaces. Let (T1, T2)
be a pair of commuting contractions and dimDTj

< ∞, j = 1, 2. Since

(IH − T1T
∗
1 ) + T1(IH − T2T

∗
2 )T

∗
1 = T2(IH − T1T

∗
1 )T

∗
2 + (IH − T2T

∗
2 ),

it follows that

∥DT1h∥2 + ∥DT2T
∗
1 h∥2 = ∥DT1T

∗
2 h∥2 + ∥DT2h∥2 (h ∈ H).

Thus
U : {DT1h⊕DT2T

∗
1 h : h ∈ H} → {DT1T

∗
2 h⊕DT2h : h ∈ H}

defined by

(2.2) U (DT1h,DT2T
∗
1 h) = (DT1T

∗
2 h,DT2h) (h ∈ H),

is an isometry. Moreover, since dim DTj
< ∞, j = 1, 2, it follows that U extends to a unitary,

denoted again by U , on DT1 ⊕DT2 . In particular, there exists a unitary operator

(2.3) U :=

[
A B
C D

]
: DT1 ⊕DT2 → DT1 ⊕DT2 ,

such that (2.2) holds.
The following lemma plays a key role in our considerations.

Lemma 2.1. Let (T1, T2) be a pair of commuting contractions on a Hilbert space H. Let T1

be pure and dim DTj
< ∞, j = 1, 2. Then with U =

[
A B
C D

]
as above we have

DT1T
∗
2 = ADT1 +

∞∑
n=0

BDnCDT1T
∗n+1
1 ,

where the series converges in the strong operator topology.

Proof. For each h ∈ H we have[
A B
C D

] [
DT1h

DT2T
∗
1 h

]
=

[
DT1T

∗
2 h

DT2h

]
,

that is,

(2.4) DT1T
∗
2 h = ADT1h+BDT2T

∗
1 h,
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and

(2.5) DT2h = CDT1h+DDT2T
∗
1 h.

By replacing h by T ∗
1 h in (2.5), we have

DT2T
∗
1 h = CDT1T

∗
1 h+DDT2T

∗2
1 h.

Then by (2.4), we have

DT1T
∗
2 h = ADT1h+BDT2T

∗
1 h

= ADT1h+B(CDT1T
∗
1 h+DDT2T

∗2
1 h),

that is,

(2.6) DT1T
∗
2 h = ADT1h+BCDT1T

∗
1 h+BDDT2T

∗2
1 h.

In (2.6), again replacing DT2T
∗2
1 h by CDT1T

∗2
1 h+DDT2T

∗3
1 h, we have

DT1T
∗
2 h = ADT1h+BCDT1T

∗
1 h+BDCDT1T

∗2
1 h+BD2DT2T

∗3
1 h.

Going on in this way, we obtain

DT1T
∗
2 h = ADT1h+

m∑
n=0

BDnCDT1T
∗n+1
1 h+ (BDm+1DT2T

∗m+2
1 h) (m ∈ N).

By ∥D∥ ≤ 1 and

lim
m→∞

T ∗m
1 h = 0,

it follows that

lim
m→∞

(BDmDT2T
∗m+1
1 h) = 0.

Finally, the convergence of the desired series follows from the fact that

∥DT1T
∗
2 h− ADT1h−

m∑
n=0

BDnCDT1T
∗n+1
1 h∥ = ∥BDm+1CDT2T

∗m+2
1 h∥

≤ ∥T ∗m+2
1 h∥,

for all m ∈ N and again that limm→∞ T ∗m
1 h = 0. This completes the proof of the lemma. �

Remark 2.1. With the above assumptions, the conclusion of Lemma 2.1 remains valid if we
add the possibility

dimDT1 = ∞, or dimDT2 = ∞.

To this end, let dimDT1 = ∞, or dimDT2 = ∞. Then there exists an infinite dimensional
Hilbert space D such that the isometry

U : {DT1h⊕DT2T
∗
1 h : h ∈ H} ⊕ {0D} → {DT1T

∗
2 h⊕DT2h : h ∈ H} ⊕ {0D}

defined by

U (DT1h,DT2T
∗
1 h, 0D) = (DT1T

∗
2 h,DT2h, 0D) (h ∈ H),
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extends to a unitary, denoted again by U , on DT1 ⊕ (DT2 ⊕ D). Now we proceed similarly
with the unitary matrix

U =

[
A B
C D

]
∈ B(DT1 ⊕ (DT2 ⊕D)),

to obtain the same conclusion as in Lemma 2.1.

3. Ando Dilations

One of the aims of this section is to obtain an explicit isometric dilation of a pair of
commuting tuple of pure contractions (see Theorem 3.2). In particular, the construction of
isometric dilations of pairs of commuting contractions with finite defect indices (see Theorem
3.1) will be important to us in the sequel.

We begin by briefly recalling some standard facts about transfer functions (cf. [1]). Let H1

and H2 be two Hilbert spaces, and

U =

[
A B
C D

]
∈ B(H1 ⊕H2),

be a unitary operator. Then the B(H1)-valued analytic function τU on D defined by

τU(z) := A+ zB(I − zD)−1C (z ∈ D),
is called the transfer function of U . Using U∗U = I, a standard computation yields (cf. [1])

(3.1) I − τU(z)
∗τU(z) = (1− |z|2)C∗(I − z̄D∗)−1(I − zD)−1C (z ∈ D).

Now let H1 = Cm and H2 = Cn, and let U be as above. Then τU is a contractive rational
matrix-valued function on D. Moreover, τU is unitary on ∂D (see page 138 in [2]). Thus τU
is a rational matrix-valued inner function.

We now turn our attention to the study of the transfer function of the unitary matrix U∗

in (2.3). Set

(3.2) Ψ(z) := τU∗(z) = A∗ + zC∗(I − zD∗)−1B∗ (z ∈ D).
Then Ψ is a B(DT1)-valued inner function on D. Thus the multiplication operator MΨ on
H2

DT1
(D) defined by

(MΨf)(w) = Ψ(w)f(w) (w ∈ D, f ∈ H2
DT1

(D)),

is an isometry (cf. [7]).
Now, we are ready to prove our first main result.

Theorem 3.1. Let (T1, T2) be a pair of commuting contractions on a Hilbert space H. Let
T1 be pure and dim DTj

< ∞, j = 1, 2. Then there exist an isometry Π : H → H2
DT1

(D) and
an inner function Ψ ∈ H∞

B(DT1
)(D) such that

ΠT ∗
1 = M∗

zΠ,

and
ΠT ∗

2 = M∗
ΨΠ.
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Moreover

T1
∼= PQMz|Q, and T2

∼= PQMΨ|Q,
where Q := ran Π is a joint (M∗

z ,M
∗
Ψ)-invariant subspace of H2

DT1
(D).

Proof. Let Π : H → H2
DT1

(D) be the minimal isometric dilation of T1 as defined in (2.1) and

let Ψ be as in (3.2). Now it is enough to show that Π intertwine T ∗
2 and M∗

Ψ. Let h ∈ H,
n ≥ 0 and η ∈ DT1 . Then

⟨M∗
ΨΠh, z

nη⟩ = ⟨Πh,Ψ(znη)⟩

= ⟨DT1(IH − zT ∗
1 )

−1h, (A∗ + C∗
∞∑
q=0

D∗qB∗zq+1)(znη)⟩

= ⟨DT1

∞∑
p=0

zpT ∗p
1 h, (A∗ + C∗

∞∑
q=0

D∗qB∗zq+1)(znη)⟩

= ⟨DT1T
∗n
1 h,A∗η⟩+

∞∑
q=0

⟨DT1T
∗q+n+1
1 h,C∗D∗qB∗η⟩

= ⟨ADT1T
∗n
1 h, η⟩+

∞∑
q=0

⟨BDqCDT1T
∗q+n+1
1 h, η⟩

= ⟨(ADT1 +
∞∑
q=0

BDqCDT1T
∗q+1
1 )T ∗n

1 h, η⟩.

Then by Lemma 2.1, we have

⟨M∗
ΨΠh, z

nη⟩ = ⟨DT1T
∗
2 (T

∗n
1 h), η⟩.

Hence

⟨ΠT ∗
2 h, z

nη⟩ = ⟨DT1(IH − zT ∗
1 )

−1T ∗
2 h, z

nη⟩

= ⟨DT1

∞∑
p=0

zpT ∗p
1 T ∗

2 h, z
nη⟩

= ⟨DT1T
∗n
1 T ∗

2 h, η⟩
= ⟨DT1T

∗
2 (T

∗n
1 h), η⟩

= ⟨M∗
ΨΠh, z

nη⟩.

This implies

M∗
ΨΠ = ΠT ∗

2 .

The second claim is an immediate consequence of the first part. This completes the proof of
the theorem. �

Theorem 3.1 remains valid if we drop the assumption that dimDTj
< ∞, j = 1, 2. Indeed,

the only change needed in the proof of Theorem 3.1 is to replace the transfer function Ψ in
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(3.2) by the transfer function of U∗ in Remark 2.1. In this case, however, the new transfer
function will be a contractive multiplier. Thus we have proved the following dilation result.

Theorem 3.2. Let (T1, T2) be a pair of commuting contractions on a Hilbert space H and let
T1 be a pure contraction. Then there exist an isometry Π : H → H2

DT1
(D) and a contractive

multiplier Ψ ∈ H∞
B(DT1

)(D) such that

ΠT ∗
1 = M∗

zΠ,

and

ΠT ∗
2 = M∗

ΨΠ.

In particular,

T1
∼= PQMz|Q, and T2

∼= PQMΨ|Q,
where Q := ran Π is a joint (M∗

z ,M
∗
Ψ)-invariant subspace of H2

DT1
(D).

4. von Neumann inequality

This section is devoted mostly to the study of von Neumann inequality for the class of
pure and commuting contractive pair of operators with finite defect spaces. However, we
treat this matter in a slightly general setting. It is convenient to be aware of the results and
constructions of Section 3.

We begin by noting the following proposition.

Proposition 4.1. Let U =

[
A B
C D

]
be a unitary matrix on H⊕K and let A be a completely

non-unitary contraction. Then for all z ∈ D, τU(z) does not have any unimodular eigenvalues.

Proof. Let z ∈ D and A be a completely non-unitary contraction. Suppose, by contradiction,

(τU(z))v = λv,

for some non-zero vector v ∈ H and for some λ ∈ ∂D. Since τU(z) is a contraction, we have

(τU(z))
∗v = λ̄v,

and hence, by (3.1)

Cv = 0.

This and the definition of τU implies

Av = (τU(z))v = λv.

Then A has a non-trivial unitary part. This contradiction establishes the proposition. �
Now we examine the role of the unitary part of the contraction A to the transfer function

τU .

Proposition 4.2. Let U =

[
A B
C D

]
be a unitary matrix on H⊕K and let A =

[
W 0
0 A′

]
∈

B(H0 ⊕ H1) be the canonical decomposition of A into the unitary part W on H0 and the
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completely non-unitary part A′ on H1. Then U ′ =

[
A′ B

C|H1 D

]
is a unitary operator on

H1 ⊕K and

τU(z) =

[
W 0
0 τU ′(z)

]
∈ B(H0 ⊕H1) (z ∈ D).

Proof. Let us observe first that if U is a unitary operator, then

A∗A+ C∗C = IH,

and

AA∗ +BB∗ = IH.

On account of A∗A|H0 = AA∗|H0 = IH0 , the first equality implies

C∗C|H0 = 0,

and hence

H0 ⊆ kerC,

while the second equality yields

ranB = ran(BB∗)

= ran(IH − AA∗)

= ran(IH1 − AA∗|H1)

⊆ H1.

Consequently, it follows that U ′ =

[
A′ B

C|H1 D

]
is a unitary operator on H1 ⊕K, and hence

τU(z) = W ⊕ τU ′(z) (z ∈ D),

follows from the definition of transfer functions. �
We now return to the study of rational inner functions. Let U =

[
A B
C D

]
be a unitary on

Cm ⊕Cn. Let A =

[
W 0
0 E

]
on Cm = H0 ⊕H1 be the canonical decomposition of A into the

unitary part W on H0 and the completely non-unitary part E on H1. Then by the previous
proposition, we have

τU(z) =

[
Ψ0(z) 0
0 Ψ1(z)

]
∈ B(H0 ⊕H1) (z ∈ D),

where

Ψ0(z) = W (z ∈ D)
is a B(H0)-valued unitary constant, for some unitary W ∈ B(H0), and

Ψ1(z) = E + zB(I − zD)−1C (z ∈ D)
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is a B(H1)-valued rational inner function. It should be noted, however, that the distinguished
varieties corresponding to the rational inner functions τU and Ψ1 are the same, that is,

{(z1, z2) ∈ D2 : det(τU(z1)− z2ICm) = 0} = {(z1, z2) ∈ D2 : det(Ψ1(z1)− z2IH1) = 0}.
This follows from the observation that the unitary summand Ψ0 would add sheets to the
variety corresponding to Ψ1 of the type C×{λ}, for some λ ∈ ∂D, which is disjoint from D2.
However, we want to stress here that, by Proposition 4.1 and the fact that Ψ1 is unitary on
∂D,

V Ψ1 = {(z1, z2) ∈ D2 : det(Ψ1(z1)− z2IH1) = 0},
where VΨ1 is the distinguished variety corresponding to the inner multiplier Ψ1 and V Ψ1 is
the closure of VΨ1 in D2.

We now have all the ingredients in place to prove a von Neumann type inequality for pairs
of commuting contractions.

Theorem 4.3. Let (T1, T2) be a pair of commuting contractions on a Hilbert space H. Let

T1 be pure and dim DTj
< ∞, j = 1, 2. Then there exists a variety V ⊆ D2 such that

∥p(T1, T2)∥ ≤ ∥p∥V (p ∈ C[z1, z2]).
If, in addition, T2 is pure, then V can be taken to be a distinguished variety.

Proof. By Theorem 3.1, there is a rational inner function Ψ ∈ H∞
B(DT1

)(D) and a joint

(M∗
z ,M

∗
Ψ)-invariant subspace Q of H2

DT1
(D) such that

T1
∼= PQMz|Q, and T2

∼= PQMΨ|Q.
Here

Ψ(z) = τU∗(z) = A∗ + zC∗(I − zD∗)−1B∗, (z ∈ D)

is the transfer function of the unitary U∗ =

[
A∗ C∗

B∗ D∗

]
in B(DT1 ⊕ DT2) as defined in (2.3).

Let A∗ =

[
W 0
0 E∗

]
∈ B(H0 ⊕H1) on DT1 = H0 ⊕H1 be the canonical decomposition of A∗

in to the unitary part W on H0 and the completely non-unitary part E∗ on H1. Now from
Proposition 4.2 (or the discussion following Proposition 4.2) it follows that

Ψ(z) =

[
Ψ0(z) 0
0 Ψ1(z)

]
∈ B(H0 ⊕H1) (z ∈ D),

where
Ψ0(z) = W ∈ B(H0) (z ∈ D),

and
Ψ1(z) = E∗ + zC∗(I − zD∗)−1B∗ ∈ B(H1) (z ∈ D).

Let us set
V = V0 ∪ V1,

where
V0 = {(z1, z2) ∈ D× D : det(Ψ0(z1)− z2IH0) = 0},
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and

V1 = {(z1, z2) ∈ D2 : det(Ψ1(z1)− z2IH1) = 0}.
Clearly

V0 = {(z1, z2) ∈ D× D : det(W − z2IH0) = 0} =
l
∪
j=1

D× {λj} ⊆ D× ∂D,

where {λj}lj=1 = σ(W ) ⊆ ∂D. Now for each p ∈ C[z1, z2], we have

∥p(T1, T2)∥H = ∥PQp(Mz,MΨ)|Q∥Q
≤ ∥p(Mz,MΨ)∥H2

DT1
(D)

≤ ∥p(Meiθ ,MΨ(eiθ))∥L2
DT1

(T)

= ∥Mp(eiθIDT1
,Ψ(eiθ))∥L2

DT1
(T)

= sup
θ

∥p(eiθIDT1
,Ψ(eiθ))∥B(DT1

)

= sup
θ
∥p(eiθIH0 ,Ψ0(e

iθ))⊕ p(eiθIH1 ,Ψ1(e
iθ))∥B(H0)⊕B(H1)

≤ max{sup
θ
∥p(eiθIH0 ,Ψ0(e

iθ))∥B(H0), ∥p(eiθIH1 ,Ψ1(e
iθ))∥B(H1)}.

But now, since Ψ(eiθ) is unitary on ∂D, for each fixed eiθ ∈ ∂D and j = 1, 2, we have

∥p(eiθIHj
,Ψj(e

iθ))∥B(Hj) = sup{|p(eiθ, λ)| : λ ∈ σ(Ψj(e
iθ))}

= sup{|p(eiθ, λ)| : det(Ψj(e
iθ)− λIHj

) = 0}
≤ ∥p∥∂Vj

,

and hence, by continuity, we obtain

∥p(T1, T2)∥H ≤ ∥p∥V .

This completes the proof of the first part.
For the second part, it is enough to show that Ψ0(z) = W = 0. For this, we show that A∗

is a completely non-unitary operator. To this end, first notice that Q ⊆ H2
H1
(D). Indeed, for

each f ∈ H2
H0
(D) we have

fn := M∗n
Ψ f = W ∗nf ∈ H2

H0
(D) (n ∈ N),

and hence for g ∈ Q we have

|⟨f, g⟩| = |⟨Mn
Ψfn, g⟩| = |⟨fn,M∗n

Ψ g⟩| = |⟨fn, T ∗n
2 g⟩| ≤ ∥fn∥∥T ∗n

2 g∥ = ∥f∥∥T ∗n
2 g∥ (n ∈ N).

Since T2 is a pure contraction, ⟨f, g⟩ = 0. This implies that Q ⊆ H2
H1
(D).

On the other hand, note that Mz is the minimal isometric dilation of T1, that is,∨
n≥0

Mn
z Q = H2

DT1
(D),
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and H2
H1
(D) is a Mz-reducing subspace of H2

DT1
(D). Therefore

H2
H0
(D) = {0}.

This shows H0 = {0} and completes the proof of this theorem. �
In the special case where dimH < ∞ and where (T1, T2) is a commuting pair of pure

contractions, we have
σ(Tj) ∩ ∂D = ∅ (j = 1, 2).

Hence, in this particular case, we recover Agler and McCarthy’s sharper von Neumann inequal-
ity for commuting pairs of strictly contractive matrices (see Theorem 3.1 in [2]). Moreover,
the present proof is more direct and explicit than the one by Agler and McCarthy (see, for
instance, case (ii) in page 145 [2]).

5. Concluding remarks

Uniqueness of varieties: Let (T1, T2) be a pair of pure commuting contractions on a Hilbert
space H and dimDTj

< ∞, j = 1, 2. Theorem 3.1 implies that there exists a rational inner
function Ψ ∈ H∞

B(DT1
)(D) such that

ΠT ∗
1 = M∗

zΠ, and ΠT ∗
2 = M∗

ΨΠ,

where Π : H → H2
DT1

(D) is the minimal isometric dilation of T1 (see (2.1) in Section 2).

Furthermore, by the second assertion of Theorem 4.3, we have

∥p(T1, T2)∥H ≤ ∥p∥V (p ∈ C[z1, z2]),
where

V = {(z1, z2) ∈ D2 : det(Ψ(z1)− z2I) = 0}
is a distinguished variety.

Now let Π̃ : H → H2
DT2

(D) be the minimal isometric dilation of T2. Then Theorem 3.1

applied to (T2, T1) yields a rational inner multiplier Ψ̃ ∈ H∞
B(DT2

)(D) such that

Π̃T ∗
2 = M∗

z Π̃, and Π̃T ∗
1 = M∗

Ψ̃
Π̃.

Therefore (MΨ̃,Mz) on H2
DT2

(D) is also an isometric dilation of (T1, T2). Furthermore,

Ψ = τU∗ , and Ψ̃ = τŨ ,

where

U =

[
A B
C D

]
, and Ũ =

[
D∗ B∗

C∗ A∗

]
.

Again applying the second assertion of Theorem 4.3 to (T2, T1), we see that

∥p(T1, T2)∥H ≤ ∥p∥Ṽ (p ∈ C[z1, z2]),
where

Ṽ = {(z1, z2) ∈ D2 : det(Ψ̃(z2)− z1I) = 0}
is a distinguished variety. Now it follows from Lemma 1.7 in [2] that

V = Ṽ .
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Joint eigenspaces: Let (T1, T2) and the variety V be as in Theorem 4.3. Then the joint
eigenspace of (T ∗

1 , T
∗
2 ) is contained in the distinguished variety V . Indeed, let

T ∗
j v = λ̄jv (j = 1, 2),

for some (λ1, λ2) ∈ D2 and for some non-zero vector v ∈ H. Then (λ1, λ2) ∈ V . Equation
(2.2) gives

U(DT1v, λ̄1DT2v) = (λ̄2DT1v,DT2v).

Hence, by (2.3) [
A B
C D

] [
DT1v
λ̄1DT2v

]
=

[
λ̄2DT1v
DT2v

]
.

Then by Lemma 2.1,

(A+ λ̄1B(I − λ̄1D)−1C)(DT1v) = λ̄2(DT1v),

and hence (
A∗ + λ1C

∗(I − λ1D
∗)−1B∗)∗ DT1v = λ̄2DT1v,

that is, det(Ψ(λ1)− λ2I) = 0. Thus the claim follows.

An example: We conclude this paper by pointing out a simple but illustrative example of our
sharper von Neumann inequality. Let Mz be the shift operator on H2

Cm(D) and
(T1, T2) = (Mz,Mz).

Since DMz = PCm , by a simple calculation it follows that the unitary U in (2.3) has the form

U =

[
0 W

ICm 0

]
,

where W ∈ B(Cm) is an arbitrary unitary operator. Let us choose a unitary W in B(Cm). In
this case,

τU∗(z) = Ψ(z) = zW ∗ (z ∈ D).
Let {λ1, . . . , λk}, 1 ≤ k ≤ m, be the set of distinct eigenvalues of W ∗ and

p(z1, z2) :=
k∏

i=1

(z2 − λiz1).

Then the distinguished variety V in the second assertion of Theorem 4.3 is given by

V = {(z1, z2) ∈ D2 : det(z1W
∗ − z2ICm) = 0}

= {(z1, z2) ∈ D2 : p(z1, z2) = 0},
and hence for any p ∈ C[z1, z2], the inequality

∥p(Mz,Mz)∥B(H2
Cm (D)) ≤ ∥p∥V

holds. In particular, if we choose W = ICm , then the distinguished variety V is given by

V = {(z, z) : z ∈ D}.
This observation also follows by a direct calculation.
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