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Preface

This book was born out of a desire to have a brief introduction to oper-
ator theory - the spectral theorem (arguably the most important theorem in
Hilbert space theory), polar decomposition, compact operators, trace-class
operators, etc., which would involve a minimum of initial spadework (avoid-
ing such digressions as, for example, the Gelfand theory of commutative
Banach algebras), and which only needed simple facts from a first semester
graduate course on Functional Analysis. I believe the cleanest formulation of
the spectral theorem is as a statement of the existence and uniqueness of ap-
propriate (continuous and measurable) functional calculi of a self-adjoint, and
more generally, a normal operator on a separable Hilbert space, as against
the language of spectral measures..

This book may be thought of as a re-take of my earlier book on Functional
Analysis, but with so many variations as to not really look like a ‘second edi-
tion’: the operator algebraic point of view is minimised drastically, resulting
in an essentially operator theoretic proof of the spectral theorem - first for
self-adjoint, and later for normal, operators. What is probably new here is
what I call the joint spectrum of a family of commuting self-adjoint opera-
tors. The third chapter contains, in addition to everything that was in the
earlier fourth chapter, (i) a section about Hilbert-Schmidt and Trace-class
operators, as well as the duality results involving compact operators, trace-
class operators and all bounded operators, and (ii) a new proof of the Fuglede
theorem on the commutant of a normal operator, and the extension of the
spectral theorem to a family of commuting normal operators.

I wish to record my appreciation of the positive encouragement of Rajen-
dra Bhatia (the Chief Editor of the series in which my Functional Analysis
book appeared) to consider coming up with a second edition but with enough
work put in rather than a sloppy cut-and-paste mish-mash. Even though I
have lifted fairly large chunks of the first version, I believe there is enough
new stuff here to merit this book having a different name rather than be
thought of as the second edition of the older book. I will be remiss if I
did not record my gratitude to one of the referees who had the tremendous
patience to wade through the manuscript and use stickies to point out the
many howlers which (s?)he fortunately caught before this appeared in print.

This book is fondly dedicated to the memory of Paul Halmos.
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Chapter 1

Hilbert space

1.1 Introduction

This book is about (bounded, linear) operators on (always separable and
complex) Hilbert spaces, usually denoted by H,K,M and variants thereof,
whose elements will usually denoted by symbols such as x, y, z and variants
thereof (like yn, x

′). The collection of all bounded complex-linear operators
on H will be denoted by B(H), whose elements will usually denoted by
symbols such as A,B,E, F, P,Q, T, U, V,X, Y, Z.

The only prerequisites needed for reading this book are: a nodding ac-
quaintance with the basics of Hilbert space (eg: the definitions of orthonormal
basis, orthogonal projection, unitary operator, etc., all of which are briefly
discussed in Chapter 1); a first course in Functional Analysis - the spectral
radius formula, the Open Mapping Theorem and the Uniform Boundedness
Principle, the Riesz Representation Theorem (briefly mentioned in the ap-
pendix 4.1) which identifies C(Σ)∗ with the space M(Σ) of finite complex
measures on the compact Hausdorff space Σ, and outer and inner regular-
ity of finite positive measures on Σ; some basic measure theory, such as the
Bounded Convergence Theorem, and the not so basic Lusin’s theorem (also
briefly discussed in appendix 4.1) which leads to the conclusion - see Lemma
4.1.2 - that any bounded measurable function on Σ is the pointwise a.e.
limit of a sequence of continuous functions on Σ, and also - see Lemma 4.1.1
- that C(Σ) ‘is’ dense in L2(Σ, µ). Also, in the section on von-Neumann
Schatten ideals, basic facts concerning the Banach sequence spaces c0, `

p

and the duality relations among them will be needed/used. All the above
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2 CHAPTER 1. HILBERT SPACE

facts may be found in [Hal], [Hal1], [Sun] and [AthSun]. Although these stan-
dard facts may also be found in other classical texts written by distinguished
mathematicians, the references are limited to a very small number of books,
because the author knows precisely where which fact can be found in the
union of the four books mentioned above.

1.2 Inner Product spaces

While normed spaces permit us to study ‘geometry of vector spaces’, we are
constrained to discussing those aspects which depend only upon the notion of
‘distance between two points’. If we wish to discuss notions that depend upon
the angles between two lines, we need something more - and that something
more is the notion of an inner product.

The basic notion is best illustrated in the example of the space R2 that we
are most familiar with, where the most natural norm is what we have called
||·||2. The basic fact from plane geometry that we need is the so-called cosine
law which states that if A,B,C are the vertices of a triangle and if θ is the
angle at the vertex C, then

2(AC)(BC) cos θ = (AC)2 + (BC)2 − (AB)2 .

If we apply this to the case where the points A,B and C are represented by
the vectors x = (x1, x2), y = (y1, y2) and (0, 0) respectively, we find that

2||x|| · ||y|| · cos θ = ||x||2 + ||y||2 − ||x− y||2

= 2 (x1y1 + x2y2 ).

Thus, we find that the function of two (vector) variables given by

〈x, y〉 = x1y1 + x2y2 (1.2.1)

simultaneously encodes the notion of angle as well as distance (and has the
explicit interpretation 〈x, y〉 = ||x|| ||y|| cos θ). This is because the norm
can be recovered from the inner product by the equation

||x|| = 〈x, x〉
1
2 . (1.2.2)

The notion of an inner product is the proper abstraction of this function
of two variables.
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Definition 1.2.1. (a) An inner product on a (complex) vector space V
is a mapping V × V 3 (x, y) 7→ 〈x, y〉 ∈ C which satisfies the following
conditions, for all x, y, z ∈ V and α ∈ C:
(i) (positive definiteness) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇔ x = 0;
(ii) (Hermitian symmetry) 〈x, y〉 = 〈y, x〉;
(iii) (linearity in first variable) 〈αx+ βz, y〉 = α〈x, y〉+ β〈z, y〉.

An inner product space is a vector space equipped with a (distinguished)
inner product.

(b) An inner product space which is complete in the norm coming from the
inner product is called a Hilbert space. (In this book, however, we consider
only Hilbert spaces which are separable when viewed as metric spaces, with
the metric coming from the norm - see Proposition 1.2.4 = induced by the
inner-product - see Corollary 1.2.5.)

Example 1.2.2. (1) If z = (z1, · · · , zn), w = (w1, · · · , wn) ∈ Cn, define

〈z, w〉 =
n∑
i=1

ziwi ; (1.2.3)

it is easily verified that this defines an inner product on Cn.

(2) The equation

〈f, g〉 =

∫
[0,1]

f(x)g(x) dx (1.2.4)

is easily verified to define an inner product on C[0, 1]. �

As in the (real) case discussed earlier of R2, it is generally true that any
inner product gives rise to a norm on the underlying space via equation 1.2.2.
Before verifying this fact, we digress with an exercise that states some easy
consequences of the definitions.

Exercise 1.2.3. Suppose we are given an inner product space V ; for x ∈ V,
define ||x|| as in equation 1.2.2, and verify the following identities, for all
x, y, z ∈ V, α ∈ C:

(1) 〈x, y + αz〉 = 〈x, y〉 + α〈x, z〉;
(2) ||x+ y||2 = ||x||2 + ||y||2 + 2 Re〈x, y〉;
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(3) two vectors in an inner product space are said to be orthogonal
if their inner product is 0; deduce from (2) above and an easy induction
argument that if {x1, x2, · · · , xn} is a set of pairwise orthogonal vectors, then

||
n∑
i=1

xi||2 =
n∑
i=1

||xi||2 .

(4) ||x + y||2 + ||x − y||2 = 2 (||x||2 + ||y||2); draw some diagrams
and convince yourself as to why this identity is called the parallelogram
identity;

(5) (Polarisation identity) 4〈x, y〉 =
∑3

k=0 ik〈x + iky, x + iky〉, where,
of course, i =

√
−1.

The first (and very important) step towards establishing that any inner
product defines a norm via equation 1.2.2 is the following celebrated inequal-
ity.

Proposition 1.2.4. (Cauchy-Schwarz inequality)
If x, y are arbitrary vectors in an inner product space V, then

|〈x, y〉| ≤ ||x|| · ||y|| .

Further, this inequality is an equality if and only if the vectors x and y are
linearly dependent.

Proof. If y = 0, there is nothing to prove; so we may assume, without loss of
generality, that ||y|| = 1 (since the statement of the proposition is unaffected
upon scaling y by a constant).

Notice now that, for arbitrary α ∈ C,

0 ≤ ||x− αy||2

= ||x||2 + |α|2 − 2Re(α〈y, x〉) .

A little exercise in the calculus shows that this last expression is minimised
for the choice α0 = 〈x, y〉, for which choice we find, after some minor
algebra, that

0 ≤ ||x− α0y||2 = ||x||2 − |〈x, y〉|2 ,
thereby establishing the desired inequality.

The above reasoning shows that (if ||y|| = 1) if the inequality becomes
an equality, then we should have x = α0y, and the proof is complete. �
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Corollary 1.2.5. Any inner product gives rise to a norm1 via equation
1.2.2.

Proof. Positive-definiteness and homogeneity with respect to scalar multipli-
cation are obvious; as for the triangle inequality,

||x+ y||2 = ||x||2 + ||y||2 + 2 Re〈x, y〉
≤ ||x||2 + ||y||2 + 2||x|| · ||y|| ,

and the proof is complete. �

Exercise 1.2.6. (1) Show that

|
n∑
i=1

ziwi|2 ≤

(
n∑
i=1

|zi|2
) (

n∑
i=1

|wi|2
)

, ∀ z, w ∈ Cn .

(2) Deduce from (1) that the series
∑∞

i=1 αiβi converges, for any α, β ∈
`2, and that

|
∞∑
i=1

αiβi|2 ≤

(
∞∑
i=1

|αi|2
) (

∞∑
i=1

|βi|2
)

, ∀ α, β ∈ `2 ;

deduce that `2 is indeed (a vector space, and in fact) an inner product space,
with respect to inner product defined by

〈α, β〉 =
∞∑
i=1

αiβi . (1.2.5)

(3) Write down what the Cauchy-Schwarz inequality translates into in the
example of C[0, 1].

(4) Show that the inner product is continuous as a mapping from V × V
into C. (In view of Corollary 1.2.5, this makes sense.)

1Recall that (a) a norm on a vector space V is a function V \ {0} 3 x 7→ ‖x‖ ∈ (0,∞)
which satisfies (i) ‖αx‖ = |α|‖x‖ and (ii)‖x+ y‖ ≤ ‖x‖‖y‖ for all x, y ∈ V and α ∈ C; (b)
a vector space equipped with a norm is a normed space; and ( c) a normed space which
is complete with respect to the norm is called a Banach space.
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1.3 Hilbert spaces : examples

Our first step is to arm ourselves with a reasonably adequate supply of ex-
amples of Hilbert spaces.

Example 1.3.1. (1) Cn is an example of a finite-dimensional Hilbert space,
and we shall soon see that these are essentially the only such examples. We
shall write `2

n for this Hilbert space.

(2) `2 is an infinite-dimensional Hilbert space - see Exercise 1.2.6(2). Nev-
ertheless, this Hilbert space is not ‘too big’, since it is at least equipped with
the pleasant feature of being a separable Hilbert space - i.e., it is separable
as a metric space, meaning that it has a countable dense set. (Verify this
assertion!)

(3) More generally, let S be an arbitrary set, and define

`2(S) = {x = ((xs))s∈S :
∑
s∈S

|xs|2 <∞} .

(The possibly uncountable sum might be interpreted as follows: a typical
element of `2(S) is a family x = ((xs)) of complex numbers which is indexed
by the set S, and which has the property that xs = 0 except for s coming
from some countable subset of S (which depends on the element x) and which
is such that the possibly non-zero xs’s, when written out as a sequence in
any (equivalently, some) way, constitute a square-summable sequence.)

Verify that `2(S) is a Hilbert space in a natural fashion.

(4) This example will make sense to the reader who is already familiar
with the theory of measure and Lebesgue integration; the reader who is
not, may safely skip this example; the subsequent exercise will effectively
recapture this example, at least in all cases of interest.

Suppose (X,B, µ) is a measure space. Let L2(X,B, µ) denote the space of
B-measurable complex-valued functions f on X such that

∫
X
|f |2dµ < ∞.

Note that |f + g|2 ≤ 2(|f |2 + |g|2), and deduce that L2(X,B, µ) is a vector
space. Note next that |fg| ≤ 1

2
(|f |2 + |g|2), and so the right-hand side of

the following equation makes sense, if f, g ∈ L2(X,B, µ):

〈f, g〉 =

∫
X

fgdµ . (1.3.6)
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It is easily verified that the above equation satisfies all the requirements of an
inner product with the solitary possible exception of the positive-definiteness
axiom: if 〈f, f〉 = 0, it can only be concluded that f = 0 a.e. - meaning that
{x : f(x) 6= 0} is a set of µ-measure 0 (which might very well be non-empty).

Observe, however, that the set N = {f ∈ L2(X,B, µ) : f = 0 a.e.}
is a vector subspace of L2(X,B, µ); and a typical element of the quotient
space L2(X,B, µ) = L2(X,B, µ)/N is just an equivalence class of square-
integrable functions, where two functions are considered to be equivalent if
they agree outside a set of µ-measure 0.

For simplicity of notation, we shall just write L2(X) or L2(µ) for
L2(X,B, µ), and we shall denote an element of L2(µ) simply by such symbols
as f, g, etc., and think of these as actual functions with the understanding
that we shall identify two functions which agree µ-almost everywhere. The
point of this exercise is that equation 1.3.6 now does define a genuine inner
product on L2(X); most importantly, it is true that L2(X) is complete and
is thus a Hilbert space. �

Exercise 1.3.2. (1) Suppose X is an inner product space. Let X be a com-
pletion of X regarded as a normed space. Show that X is actually a Hilbert
space. (Thus, every inner product space has a Hilbert space completion.)

(2) Let X = C[0, 1] and define

〈f, g〉 =

∫ 1

0

f(x)g(x)dx .

Verify that this defines a genuine, i.e., positive-definite, inner product on
C[0, 1]. The completion of this inner product space is a Hilbert space - see
(1) above - which may be identified with what was called L2([0, 1],B,m) in
Example 1.3.1(4), where (B is the σ-algebra of Borel sets in [0,1] and) m
denotes the so-called Lebesgue measure on [0,1].

1.4 Orthonormal bases

In the sequel, N will always denote a (finite or infinite) countable set.

Definition 1.4.1. A collection {xn : n ∈ N} in an inner product space is
said to be orthonormal if

〈xm, xn〉 = δmn :=

{
1 if m = n
0 if m 6= n

∀ m,n ∈ N .
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Thus, an orthonormal set is nothing but a set of unit vectors which are
pairwise orthogonal; here, and in the sequel, we say that two vectors x, y in
an inner product space are orthogonal if 〈x, y〉 = 0, and we write x ⊥ y.

Example 1.4.2. (1) In `2
n, for 1 ≤ i ≤ n, let ei be the element whose i-th

co-ordinate is 1 and all other co-ordinates are 0; then {e1, · · · , en} is an
orthonormal set in `2

n.
(2) In `2, for 1 ≤ n <∞, let en be the element whose n-th co-ordinate is

1 and all other co-ordinates are 0; then {en : n = 1, 2, · · · } is an orthonormal
set in `2.

(3) In the inner product space C[0, 1] - with inner product as described in
Exercise 1.3.2 - consider the family {en : n ∈ Z} defined by en(x) = exp(2πinx),
and show that this is an orthonormal set; hence this is also an orthonormal
set when regarded as a subset of L2([0, 1],m) - see Exercise 1.3.2(2). �

Proposition 1.4.3. Let {e1, e2, · · · , en} be an orthonormal set in an inner
product space X, and let x ∈ X be arbitrary. Then,

(i) if x =
∑n

i=1 αiei, αi ∈ C, then αi = 〈x, ei〉 ∀i;
(ii) (x−

∑n
i=1〈x, ei〉ei ) ⊥ ej ∀1 ≤ j ≤ n;

(iii) (Bessel’s inequality)
∑n

i=1 |〈x, ei〉|2 ≤ ||x||2.

Proof. (i) If x is a linear combination of the ej’s as indicated, compute 〈x, ei〉,
and use the assumed orthonormality of the ej’s, to deduce that αi = 〈x, ei〉.

(ii) This is an immediate consequence of (i).
(iii) Write y =

∑n
i=1〈x, ei〉ei, z = x− y, and deduce from (two applica-

tions of) Exercise 1.2.3(3) that

||x||2 = ||y||2 + ||z||2

≥ ||y||2

=
n∑
i=1

|〈x, ei〉|2 .

�

We wish to remark on a few consequences of this proposition; for one
thing, (i) implies that an arbitrary orthonormal set is linearly independent;
for another, if we write

∨
{en : n ∈ N} for the vector subspace spanned by

{en : n ∈ N} - this is the set of linear combinations of the en’s, and is the
smallest vector subspace containing {en : n ∈ N} - it follows from (i) that we
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know how to write any element of
∨
{en : n ∈ N} as a linear combination

of the en’s.
We shall find the following notation convenient in the sequel: if S is

a subset of an inner product space X, let [S] denote the smallest closed
subspace containing S; it should be clear that this could be described in
either of the following equivalent ways: (a) [S] is the intersection of all closed
subspaces of X which contain S, and (b) [S] =

∨
S. (Verify that (a) and

(b) describe the same set.)

Lemma 1.4.4. Suppose {en : n ∈ N} is an orthonormal set in a Hilbert space
H. Then the following conditions on an arbitrary family {αn : n ∈ N} of
complex numbers are equivalent:

(i) the sum
∑

n∈N αnen makes sense as a finite sum in case N is finite
or as a norm convergent series in H if N is infinite;

(ii)
∑

n∈N |αn|2 <∞.
(iii) there exists a vector x ∈ [{en : n ∈ N}] such that 〈x, en〉 = αn ∀n ∈

N.

Proof. If N is finite, the first two assertions are obvious, while the third is
seen by choosing x =

∑
n∈N αnen.

So suppose N is infinite, in which case we may assume without loss of
generality that N = N := {0, 1, 2, · · · }. Let xk =

∑k
n=1 αnen.

(i)⇒ (iii): Condition (i) says that xk → x for some x ∈ H. As 〈xk, en〉 =
〈x`, en〉 = αn ∀k, ` ≥ n, we find that 〈x, en〉 = αn ∀n. Since each xk ∈ [{en :
n ∈ N}], it is clear that also x ∈ [{en : n ∈ N}].

(iii)⇒ (ii) is an immediate consequence of Bessel’s inequality.
(ii)⇒ (i): Condition (ii) is seen to imply that {xk : k ∈ N} is a Cauchy

sequence and hence convergent in H, which is the content of (i). �

We are now ready to establish the fundamental proposition concerning
orthonormal bases in a Hilbert space.

Proposition 1.4.5. The following conditions on an orthonormal set {en :
n ∈ N} in a Hilbert space H are equivalent:

(i) {en : n ∈ N} is a maximal orthonormal set, meaning that it is not
strictly contained in any other orthonormal set;

(ii) x ∈ H ⇒ x =
∑

n∈N〈x, en〉en;
(iii) x, y ∈ H ⇒ 〈x, y〉 =

∑
n∈N〈x, en〉〈en, y〉;
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(iv) x ∈ H ⇒ ||x||2 =
∑

n∈N |〈x, en〉|2.

Such an orthonormal set is called an orthonormal basis of H.

Proof. (i) ⇒ (ii) : It is a consequence of Bessel’s inequality and (the impli-
cation (ii)⇔ (i) of) the last lemma that there exists a vector, call it x0 ∈ H,
such that x0 =

∑
n∈N〈x, ei〉ei. If x 6= x0, and if we set e = 1

||x−x0|| (x−x0),

then it is easy to see that {en : n ∈ N} ∪ {fe} is an orthonormal set
which contradicts the assumed maximality of the given orthonormal set.
(ii)⇒ (iii) : This is obvious if N is finite, so assume without loss of generality
that N = N For n ∈ N, let xn =

∑n
i=1〈x, ei〉ei and yn =

∑n
i=1〈y, ei〉ei,

and note that, by the assumption (ii), continuity of the inner-product, and
the assumed orthonormality of the ei’s, we have

〈x, y〉 = lim
n→∞
〈xn, yn〉

= lim
n→∞

n∑
i=1

〈x, ei〉〈y, ei〉

= lim
n→∞

n∑
i=1

〈x, ei〉〈ei, y〉

=
∞∑
i=1

〈x, ei〉〈ei, y〉 .

(iii)⇒ (iv) : Put y = x.
(iv) ⇒ (i) : Suppose {ei : i ∈ I ∪ J} is an orthonormal set and suppose

J is not empty; then for j ∈ J , we find, in view of (iv), that

1 = ||ej||2 =
∑
i∈I

|〈ej, ei〉|2 = 0 ;

hence it must be that J is empty - i.e., the maximality assertion of (i) is
indeed implied by (iv). �

Corollary 1.4.6. Any orthonormal set in a Hilbert space can be ‘extended’
to an orthonormal basis - meaning that if {ei : i ∈ I} is any orthonormal
set in a Hilbert space H, then there exists an orthonormal set {ei : i ∈ J}
such that I ∩ J = ∅ and {ei : i ∈ I ∪ J} is an orthonormal basis for H.

In particular, every Hilbert space admits an orthonormal basis.
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Proof. This is an easy consequence of Zorn’s lemma. �

Remark 1.4.7. (1) It follows from Proposition 1.4.5 (ii) that if {ei : i ∈ I}
is an orthonormal basis for a Hilbert space H, then H = [{ei : i ∈
I}]; conversely, it is true - and we shall soon prove this fact - that if an
orthonormal set is total in the sense that the vector subspace spanned
by the set is dense in the Hilbert space, then such an orthonormal set is
necessarily an orthonormal basis.

(2) Each of the three examples of an orthonormal set that is given in
Example 1.4.2, is in fact an orthonormal basis for the underlying Hilbert
space. This is obvious in cases (1) and (2). As for (3), it is a consequence
of the Stone-Weierstrass theorem that the vector subspace of finite linear
combinations of the exponential functions {exp(2πinx) : n ∈ Z} (usually
called the set of trigonometric polynomials) is dense in {f ∈ C[0, 1] : f(0) =
f(1)} (with respect to the uniform norm - i.e., with respect to || · ||∞); in view
of Exercise 1.3.2(2), it is not hard to conclude that this orthonormal set is
total in L2([0, 1],m) and hence, by remark (1) above, this is an orthonormal
basis for the Hilbert space in question.

Since exp(±2πinx) = cos(2πnx) ± i sin(2πnx), and since it is easily
verified that cos(2πmx) ⊥ sin(2πnx) ∀m,n = 1, 2, · · · , we find easily that

{1 = e0} ∪ {
√

2cos(2πnx),
√

2sin(2πnx) : n = 1, 2, · · · }

is also an orthonormal basis for L2([0, 1],m). (Reason: this is orthonormal,
and this sequence spans the same vector subspace as is spanned by the ex-
ponential basis.) (Also, note that these are real-valued functions, and that
the inner product of two real-valued functions in clearly real.) It follows,
in particular, that if f is any (real-valued) continuous function defined on
[0,1], then such a function admits the following Fourier series (with real
coefficients):

f(x) = a0 +
∞∑
n=1

(ancos(2πnx) + bnsin(2πnx) )

where the meaning of this series is that we have convergence of the sequence
of the partial sums to the function f with respect to the norm in L2[0, 1]. Of
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course, the coefficients an, bn are given by

a0 =

∫ 1

0

f(x)dx

an = 2

∫ 1

0

f(x)cos(2πnx)dx , ∀ n > 0,

bn = 2

∫ 1

0

f(x)sin(2πnx)dx , ∀ n > 0

The theory of Fourier series was the precursor to most of modern func-
tional analysis; it is for this reason that if {ei : i ∈ I} is any orthonormal
basis of any Hilbert space, it is customary to refer to the numbers 〈x, ei〉
as the Fourier coefficients of the vector x with respect to the orthonormal
basis {ei : i ∈ I}. �

It is a fact that any two orthonormal bases for a Hilbert space have the
same cardinality, and this common cardinal number is called the dimension
of the Hilbert space; the proof of this statement, in its full generality, requires
facility with infinite cardinal numbers and arguments of a transfinite nature;
rather than giving such a proof here, we discuss here only the cases that we
shall be concerned with in these notes.

The purpose of the following result is to state a satisfying characterisation
of separable Hilbert spaces.

Proposition 1.4.8. The following conditions on a Hilbert space H are equiv-
alent:

(i) H is separable;
(ii) H admits a countable orthonormal basis.

Proof. (i) ⇒ (ii) : Suppose D is a countable dense set in H and suppose
{ei : i ∈ I} is an orthonormal basis for H. Notice that

i 6= j ⇒ ||ei − ej||2 = 2 . (1.4.7)

Since D is dense in H, we can, for each i ∈ I, find a vector xi ∈ D such
that ||xi − ei|| <

√
2

2
. The identity 1.4.7 shows that the map I 3 i 7→ xi ∈ D

is necessarily 1-1; since D is countable, we may conclude that so is I.
(ii)⇒ (i) : If I is a countable (finite or infinite) set and if {ei : i ∈ I} is

an orthonormal basis for H, let D be the set whose typical element is of the
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form
∑

j∈J αjej, where J is a finite subset of I and αj are complex numbers
whose real and imaginary parts are both rational numbers; it can then be
seen that D is a countable dense set in H. �

Remark 1.4.9. 1. Thus, non-separable Hilbert spaces are those whose
orthonormal bases are uncountable. It is probably fair to say that
any true statement about a general non-separable Hilbert space can
be established as soon as one knows that the statement is valid for
separable Hilbert spaces; it is probably also fair to say that almost all
useful Hilbert spaces are separable. So, the reader may safely assume
that all Hilbert spaces in the sequel are separable; among these, the
finite-dimensional ones are, in a sense, ‘trivial’, and one only need really
worry about infinite-dimensional separable Hilbert spaces.

2. For separable Hilbert spaces, it is an easy matter to see that the car-
dinality of an orthonormal basisis a complete invariant up to unitary
isomorphism. It is clear this is an invariant. For finite-dimensional
spaces, the cardinality of an orthonormal basis is the usual vector space
dimension, and vector spaces of differing finite dimension are not iso-
morphic. Also, no finite-dimensional Hilbert space can be unitarily
isomorphic to `2 as the unit ball of ell2 is not compact. (Reason: the
orthonormal basis{en : n ∈ N} can have no Cauchy subsequence as
‖en − em‖ =

√
(2) if m 6= n.)

We next establish a lemma which will lead to the important result which
is sometimes referred to as ‘the projection theorem’.

Lemma 1.4.10. Let M be a closed subspace of a Hilbert space H; (thus M
may be regarded as a Hilbert space in its own right;) let {ei : i ∈ I} be any
orthonormal basis for M, and let {ej : j ∈ J} be any orthonormal set such
that {ei : i ∈ I∪J} is an orthonormal basis for H, where we assume that the
index sets I and J are disjoint. Then, the following conditions on a vector
x ∈ H are equivalent:

(i) x ⊥ y ∀ y ∈M;
(ii) x =

∑
j∈J〈x, ej〉ej .

Proof. The implication (ii) ⇒ (i) is obvious. Conversely, it follows easily
from Lemma 1.4.4 and Bessel’s inequality that the ‘series’

∑
i∈I〈x, ei〉ei and∑

j∈J〈x, ej〉ej converge in H. Let the sums of these ‘series’ be denoted by y
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and z respectively. Further, since {ei : i ∈ I ∪ J} is an orthonormal basis for
H, it should be clear that x = y + z. Now, if x satisfies condition (i) of
the Lemma, it should be clear that y = 0 and that hence, x = z, thereby
completing the proof of the lemma. �

We now come to the basic notion of orthogonal complement.

Definition 1.4.11. The orthogonal complement S⊥ of a subset S of a Hilbert
space is defined by

S⊥ = {x ∈ H : x ⊥ y ∀ y ∈ S} .

Exercise 1.4.12. If S0 ⊂ S ⊂ H are arbitrary subsets, show that

S⊥0 ⊃ S⊥ =
(∨

S
)⊥

= ([S])⊥ .

Also show that S⊥ is always a closed subspace of H.

We are now ready for the basic fact concerning orthogonal complements
of closed subspaces.

Theorem 1.4.13. Let M be a closed subspace of a Hilbert space H. Then,
(1) M⊥ is also a closed subspace;

(2)
(
M⊥)⊥ = M;

(3) any vector x ∈ H can be uniquely expressed in the form x = y + z,
where y ∈M, z ∈M⊥;

(4) if x, y, z are as in (3) above, then the equation Px = y defines a
bounded operator P ∈ B(H) with the property that

||Px||2 = 〈Px, x〉 = ||x||2 − ||x− Px||2 , ∀x ∈ H .

Proof. (i) This is easy - see Exercise 1.4.12.
(ii) Let I, J, {ei : i ∈ I ∪ J} be as in Lemma 1.4.10. We assert, to start

with, that in this case, {ej : j ∈ J} is an orthonormal basis forM⊥. Suppose
this were not true; since this is clearly an orthonormal set inM⊥, this would
mean that {ej : j ∈ J} is not a maximal orthonormal set in M⊥, which
implies the existence of a unit vector x ∈M⊥ such that 〈x, ej〉 = 0 ∀ j ∈ J ;
such an x would satisfy condition (i) of Lemma 1.4.10, but not condition (ii).
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If we now revese the roles of M, {ei : i ∈ I} and M⊥, {ej : j ∈ J}, we
find from the conclusion of the preceding paragraph that {ei : i ∈ I} is an

orthonormal basis for
(
M⊥)⊥, from which we may conclude the validity of

(ii) of this theorem.
(iii) The existence of y and z was demonstrated in the proof of Lemma

1.4.10; as for uniqueness, note that if x = y1 + z1 is another such decompo-
sition, then we would have

y − y1 = z1 − z ∈ M∩M⊥ ;

but w ∈M∩M⊥ ⇒ w ⊥ w ⇒ ||w||2 = 0 ⇒ w = 0.
(iv) The uniqueness of the decomposition in (iii) is easily seen to iimply

that P is a linear mapping of H into itself; further, in the notation of (iii),
we find (since y ⊥ z) that

||x||2 = ||y||2 + ||z||2 = ||Px||2 + ||x− Px||2 ;

this implies that ||Px|| ≤ ||x|| ∀ x ∈ H, and hence P ∈ B(H).
Also, since y ⊥ z, we find that

||Px||2 = ||y||2 = 〈y, y + z〉 = 〈Px, x〉 ,

thereby completing the proof of the theorem. �

The following corollary to the above theorem justifies the final assertion
made in Remark 1.4.7(1).

Corollary 1.4.14. The following conditions on an orthonormal set {ei :
i ∈ I} in a Hilbert space H are equivalent:

(i) {ei : i ∈ I} is an orthonormal basis for H;
(ii) {ei : i ∈ I} is total in H - meaning, of course, that H = [ {ei : i ∈

I} ].

Proof. As has already been observed in Remark 1.4.7(1), the implication
(i)⇒ (ii) follows from Proposition 1.4.5(ii).

Conversely, suppose (i) is not satisfied; then {ei : i ∈ I} is not a maximal
orthonormal set in H; hence there exists a unit vector x such that x ⊥ ei ∀i ∈
I; if we write M = [ {ei : i ∈ I} ], it follows easily that x ∈ M⊥, whence
M⊥ 6= {0}; then, we may deduce from Theorem 1.4.13(2) that M 6= H -
i.e., (ii) is also not satisfied. �
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A standard and easily proved fact is that the following conditions on a
linear map T : H → K between Hilbert spaces are equivalent:

1. T is continuous; i.e. ‖xn − x‖ → 0⇒ ‖Txn − Tx‖ → 0;

2. T is continuous at 0; i.e. ‖xn‖ → 0⇒ ‖Txn‖ → 0;

3. sup{‖Tx‖ : ‖x‖ ≤ 1} = inf{C > 0 : ‖Tx‖ ≤ C‖x‖ ∀x ∈ H} <∞

On account of (3) above, such continuous linear maps are called bounded
operators and we write B(H,K) for the vector space of all bounded oper-
ators from H to K. It is a standard fact that B(H,K) is a Banach space if
‖T‖ is defined as the common value of the two expressions in item 3. above.

We write B(H) for B(H,H), and note that B(H) is a Banach algebra
when equipped with composition product AB = A ◦B.

It is customary to write H∗ = B(H,C). We begin by identifying this
Banach dual space H∗.

Theorem 1.4.15. (Riesz lemma)
Let H be a Hilbert space.
(a) If y ∈ H, the equation

φy(x) = 〈x, y〉 (1.4.8)

defines a bounded linear functional φy ∈ H∗; and furthermore, ||φy||H∗ = ||y||H .
(b) Conversely, if φ ∈ H∗, there exists a unique element y ∈ H such that

φ = φy.

Proof. (a) Linearity of the map φy is obvious, while the Cauchy-Schwarz in-
equality shows that φy is bounded and that ||φy|| ≤ ||y||. Since φy(y) = ||y||2,
it easily follows that we actually have equality in the preceding inequality.

(b) Suppose conversely that φ ∈ H∗. Let M = ker φ. Since ||φy1 −
φy2|| = ||y1 − y2|| ∀ y1, y2 ∈ H, the uniqueness assertion is obvious; we only
have to prove existence. Since existence is clear if φ = 0, we may assume
that φ 6= 0, or i.e., that M 6= H, or equivalently that M⊥ 6= 0.

Notice that φ maps M⊥ 1-1 into C; since M⊥ 6= 0, it follows that M⊥

is one-dimensional. Let z be a unit vector in M⊥. The y that we seek -
assuming it exists - must clearly be an element of M⊥ (since φ(x) = 0 ∀x ∈
M). Thus, we must have y = αz for some uniquely determined scalar
0 6= α ∈ C. With y defined thus, we find that φy(z) = α; hence we
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must have α = φ(z). Since any element in H is uniquely expressible in the
form x + γz for some x ∈ M, γ ∈ C, we find easily that we do indeed have
φ = φφ(z)z. �

It must be noted that the mapping y 7→ φy is not quite an isometric
isomorphism of Banach spaces; it is not a linear map, since φαy = αφy; it
is only ‘conjugate-linear’. The dual (à priori Banach space H∗ is actually a
Hilbert space if we define

〈φy, φz〉 = 〈z, y〉 ;

that this equation satisfies the requirements of an inner product are an easy
consequence of the Riesz lemma (and the already stated conjugate-linearity
of the mapping y 7→ φy); that this inner product actually gives rise to the
norm on H∗ is a consequence of the fact that ||y|| = ||φy||.

Exercise 1.4.16. (1) Where is the completeness of H used in the proof of
the Riesz lemma; more precisely, what can you say about X∗ if you only know
that X is an (not necessarily complete) inner product space? (Hint: Consider
the completion of X.)

(2) If T ∈ B(H,K), where H,K are Hilbert spaces, prove that

||T || = sup{|〈Tx, y〉| : x ∈ H, y ∈ K, ||x|| ≤ 1, ||y|| ≤ 1} .

A mapping B : H×K → C is called a bounded sesquilinear form if

B(
m∑
i=1

αixi,

n∑
j=1

βjyj) =
m∑
i=1

n∑
j=1

αiβ̄jB(xi, yj), ∀αi, βj ∈ C, xi ∈ H, yj ∈ K

(1.4.9)
and

C := sup{|B(x, y)| : ‖x‖‖y‖ = 1} <∞ , (1.4.10)

The easy proof of the following consequence of the Riesz Lemma (see
Theorem 1.4.15)) is omitted.

Proposition 1.4.17. 1. B : H×K → C is a bounded sesqui-linear form
if and only if there exists a unique bounded operator T ∈ B(H,K) such
that B(x, y) = 〈Tx, y〉 ∀x, y; furthermore, ‖T‖ = C.
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2. A sesquilinear form, which satisfies the Hermitian symmetry condi-
tion B(y, x) = B(x, y) also satisfies the polarisation identity:

4B(X, Y ) =
3∑
j=0

ijB(x+ ijy, x+ ijy)

It is a consequence of the open mapping theorem that the following con-
ditions on a T ∈ B(H) are equivalent:

1. There exists an S ∈ B(H) such that ST = TS = 1 (where we always
simply write 1 for idH as well as λ for λidH for any λ ∈ C).

2. T is a set-theoretic bijection, i.e., both 1-1 and onto.

It is fairly easy to see that the collection GL(H) of such invertible op-
erators on H is open in the norm-topology of B(H), and that the mapping
T 7→ T−1 is a norm-continuous map of GL(H) onto itself.

Recall that the spectrum of a T ∈ B(H) is defined to be σ(T ) = {λ ∈
C : T − λ /∈ GL(H)}. It follows from the previous paragraph that σ(T ) is a
closed set.

An elementary fact about spectra that will be needed later is a special
case of a more general spectral mapping theorem.

Proposition 1.4.18. If p ∈ C[t] is any polynomial with complex coefficients,
and if T ∈ B(H), then σ(p(T )) = p(σ(T )).

Proof. Fix a λ ∈ C. If p is a constant, the proposition is obvious, so it
may be assumed that p is a polynomial of degree n ≥ 1. Then the algebraic
closedness of C permits a factorisation of the form p(t)−λ = αn

∏n
i=1(t−µi).

Clearly, then p(T ) − λ = αn
∏n

i=1(T − µi) (where the order of the product
is immaterial as the factors commute pairwise). We need the fairly easily
verified fact that if T1, · · · , Tn are n pairwise commuting operators, then
their product T1 · · ·Tn is invertible if and only if each Ti is invertible. Hence
conclude that

λ /∈ σ(p(T ))⇔µi /∈ σ(T )∀i

or equivalently, that λ ∈ σ(p(T )) if and only if there exists some i such that
µi ∈ σ(T ). This is equivalent to saying that λ ∈ p(σ(T )); and thus, indeed
σ(p(T )) = p(σ(T )). �



1.5. ADJOINTS 19

It is further true that σ(T ) is a non-empty compact set for any T ∈ B(H).
It is a fact that λ ∈ σ(T ) ⇒ |λ| ≤ ‖T‖ and that the spectrum is always
compact. The non-emptiness is a more non-trivial fact. (The truth of this
statement for all finite-dimensional H is equivalent to the fact that C is
algebraically closed, i.e., that every complex polynomial is a product of linear
factors.)

Another proof that simultaneously establishes the fact that σ(T ) is non-
empty and compact is the (not surprisingly complex analytic) proof of the
so-called spectral radius formula:

spr(T ) := sup{|λ| : λ ∈ σ(T )} = lim
n→∞

‖T n‖
1
n (1.4.11)

This says two things: (i) that the indicated limit exists, and (ii) that the
value of the limit is as asserted. Part (ii) shows that the spectral radius is
non-negative, and hence that spectrum is always non-empty. We will shortly
be using part (i) to establish that spr(T ) = ‖T‖ if T is ‘normal’, which is a
key ingredient in the proof of the spectral theorem.

Most of this required background material can be found in the initial
chapters of most standard books (such as [Sun] covering the material of a
first course in Functional Analysis.

1.5 Adjoints

An immediate cosequence of the Riesz lemma (Lemma 1.4.15) is:

Proposition 1.5.1. If T ∈ B(H,K), there exists a unique operator T ∗ ∈
B(K,H) - called the adjoint of the operator x - such that

〈T ∗y, x〉 = 〈y, Tx〉 ∀x ∈ H, y ∈ K.

Proof. Notice that the right side of the displayed equation above defines a
bounded sesquilinear form on K×H, and appeal to Proposition 1.4.17 to lay
hands on the desired operator T ∗. �

We list below some simple properties of this process of taking adjoints.
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Proposition 1.5.2. 1. For all α ∈ C, S, S1, S2 ∈ B(H,K), T ∈ B(M,H),
we have:

(αS1 + S2)∗ = ᾱS∗1 + S∗2
(S∗)∗ = S

(ST )∗ = T ∗S∗

id∗H = idH

2. ‖T‖2 = ‖T ∗T‖ and hence, also ‖T ∗‖ = ‖T‖

3. ker(T ∗) = ran⊥(T ) := (ran(T ))⊥; equivalently, ker⊥(T ∗) = ran(T ).

Proof. 1. Most of these identities are a consequence of the fact that the
adjoint is characterised by the equation it satisfies. Thus, for instance,

〈(αS1 + S2)∗y, x〉 = 〈y, (αS1 + S2)x〉
= ᾱ〈y, S1x〉+ 〈y, S2x〉
= ᾱ〈S∗1y, x〉+ 〈S∗2y, x〉
= 〈(ᾱS∗1 + S∗2)y, x〉.

The other three statements have an even more straight-forward verifi-
cation.

2. On the one hand,

‖T‖2 = sup{‖Tx‖2 : ‖x‖ ≤ 1}
= sup{〈T ∗Tx, x〉 : ‖x‖ ≤ 1}
≤ ‖T ∗T‖ ,

while on the other,

‖T ∗T‖ = sup{|〈T ∗Tx1, x2〉| : ‖x1|‖, ‖x2‖ ≤ 1}
≤ sup{‖Tx1‖‖Tx2‖ : ‖x1‖, ‖x2‖ ≤ 1}
≤ ‖T‖2

(Observe that the Cauchy-Schwarz inequality |〈x, y〉| ≤ ‖x‖ ‖y‖ has
been used in tthe proofs of both inequalities above - in the third line
of the first, and in the second line of the second.) The desired equal-
ity follows, and the sub-multiplicativity of the norm then implies that
‖T ∗‖ ≤ ‖T‖. By interchanging the roles of T and T ∗, we find that,
indeed ‖T ∗‖ = ‖T‖.
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3.

y ∈ ker(T ∗) ⇔ T ∗y = 0

⇔ 〈T ∗y, x〉 = 0∀x
⇔ 〈y, Tx〉 = 0∀x
⇔ y ∈ ran⊥(T )

�

The polarisation identity has the following immediate corollaries:

Corollary 1.5.3. 1. If T ∈ B(H,K), then

T = 0⇔〈Tx, x〉 = 0∀x ∈ H.

2.
T = T ∗⇔〈Tx, x〉 ∈ R ∀x ∈ H

This corolllary leads to the definition of an important class of operators:

Definition 1.5.4. An operator T ∈ B(H) is said to be self-adjoint (or
Hermitian) if T = T ∗.

A slightly larger class of operators which is the correct class for the pur-
poses of the spectral theorem is dealt with in our next definition.

Definition 1.5.5. An operator Z ∈ B(H) is said to be normal if Z∗Z =
ZZ∗.

Proposition 1.5.6. Let Z ∈ B(H).

1. Z is normal if and only if ‖Zx‖ = ‖Z∗x‖ ∀x ∈ H.

2. If Z is normal, then ‖Z2‖ = ‖Z∗Z‖ = ‖Z‖2; more generally, ‖Z2n‖ =
‖Z‖2n and consequently spr(Z) = ‖Z‖.

Proof. 1.

Z∗Z = ZZ∗ ⇔ 〈Z∗Zx, x〉 = 〈ZZ∗x, x〉 ∀x ∈ H
⇔ ‖Zx‖2 = ‖Z∗x‖2 ∀x ∈ H
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2. Suppose Z is normal. Then,

‖Z2‖ = sup{‖Z2x‖ : ‖x‖ = 1}
= sup{‖Z∗Zx‖ : ‖x‖ = 1} by part (1) abve

= ‖Z∗Z‖
= ‖Z‖2

where we have used Proposition1.5.2(2) in the last step; an easy in-
duction argument now yields the statement about 2n, which says that
‖Z‖ = limn→∞ ‖Z2n‖ 1

2n = spr(Z).
�

We now have the tools at hand to prove a key inequality.

Proposition 1.5.7. If X ∈ B(H) is self-adjoint, and p ∈ C[t] is any poly-
nomial with complex coefficients,then

‖p(X)‖ ≤ ‖p‖σ(X) := sup{|p(t)| : t ∈ σ(X)} (1.5.12)

Proof. Notice to start with q = |p|2 = p̄p is a polynomial with real coeffi-
cients, and hence q(X) is self-adjoint. Deduce from Proposition 1.5.6 (2) and
the spectral mapping theorem (Proposition 1.4.18) that

‖p(X)‖2 = ‖p(X)∗p(X)‖
= ‖p̄(X)p(X)‖
= ‖q(X)‖
= sup{|λ| : λ ∈ σ(q(X))}
= sup{|q(t)| : t ∈ σ(X)}
= ‖q‖σ(X)

= ‖p‖2
σ(X) ,

as desired. �

Just as every complex number has a unique decomposition into real and
imaginary parts, it is seen that each Z ∈ B(H) has a unique Cartesian
decomposition z = X + iY , with X and Y being self-adjoint (these being
necessarily given by X = Z+Z∗

2
and Y = Z−Z∗

2i
, so that, in fact, 〈Xx, x〉 =

<〈Zx, x〉 and 〈Y x, x〉 = =〈Zx, x〉).
For future reference, we make some observations on the Cartesian decom-

position of a normal operator.
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Proposition 1.5.8. Let Z = X + iY be the Cartesian decomposition of an
operator. Then, the following conditions are equivalent:

1. Z is normal

2. ‖Zx‖2 = ‖Xx‖2 + ‖Y x‖2 ∀x ∈ H

3. XY = Y X

Proof. First notice that for Z = X + iY , we have

‖Zx‖2 = ‖Xx+ iY x‖2

= ‖Xx‖2 + ‖Y x‖2 − 2<(i〈Xx, Y x〉)

while

‖Z∗x‖2 = ‖Xx− iY x‖2

= ‖Xx‖2 + ‖Y x‖2 + 2<(i〈Xx, Y x〉) .

so that

‖Z∗x‖2 = ‖Zx‖2⇔<(i〈Xx, Y x〉) = 0⇔‖Zx‖2 = ‖Xx‖2 + ‖Y x‖2

Notice finally that

<i〈Xx, Y x〉 = 0⇔〈Xx, Y x〉 ∈ R

and that (since X, Y are self-adjoint)

〈Xx, Y x〉 ∈ R ∀x ∈ H⇔XY = (XY )∗ = Y X

The truth of the Lemma is clearly seen now. �

1.6 Approximate eigenvalues

Definition 1.6.1. A scalar λ ∈ C is said to be an approximate eigenvalue
of an operator Z ∈ B(H) if there exists a sequence {xn : n ∈ N} ⊂ S(H)
such that limn→∞ ‖(Z − λ)xn‖ = 0. Here and in the sequel, we shall employ
the symbol S(H) to denote the unit sphere of H; thus, S(H) := {x ∈ H :
‖x‖ = 1}.
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The importance - as emerges from [Hal] of this notion in the context of the
spectral theorem (equivalently, the study of self-adjoint or normal operators)
lies in the following result:

Theorem 1.6.2. Suppose Z ∈ B(H) is normal. Then:

1. Z ∈ GL(H)⇔Z is bounded below - there is an ε > 0 such that ‖Zx‖ ≥
ε‖x‖ ∀x ∈ H, equivalently, inf{‖Zx‖ : x ∈ S(H)} ≥ ε > 0 (assuming
H 6= 0).

2. λ ∈ σ(Z) if and only if λ is an approximate eigenvalue of Z.

Proof. 1. If Z is invertible, then note that

‖x‖ = ‖Z−1Zx‖ ≤ ‖Z−1‖‖Zx‖ ∀x

which shows that ‖Zx‖ ≥ ‖Z−1‖−1‖x‖ ∀x and that Z is indeed bounded
below.

If, conversely, Z is bounded below, deduce two consequences, viz.,

(a) also Z∗ is bounded below (by Proposition 1.5.6)(1)) and hence
ker(Z∗)(= ker(Z)) = {0} so that ran(Z) is dense inH (by Proposition1.5.2(3)).

(b) Z has a closed range (Reason: If Zxn → y then {Zxn : n ∈ N},
and consequently also {xn : n ∈ N}, must be a Cauchy sequence,
forcing y = Z(limn→∞ xn).)

It follows from (a) and (b) above that Z is a bijective linear map
of H onto itself and hence invertible.

2. Note first that (Z−λ) inherits normality from Z, then deduce from (1)
above that λ /∈ σ(Z) if and only if there exists a sequence xn ∈ S(H)
such that ‖(Z − λ)xn‖ < 1

n
∀n if and only if λ is an approximate

eigenvalue of z, as desired.
�

Corollary 1.6.3.
X = X∗ ⇒ σ(X) ⊂ R

Proof. If there exists a sequence {xn : n ∈ N} ⊂ S(H) such that ‖(X −
λ)xn‖ → 0, then also 〈(X − λ)xn, xn〉 → 0 and hence

λ = lim
n→∞
〈λxn, xn〉 = lim

n→∞
〈Xxn, xn〉 ∈ R

(by Corollary 1.5.3 (2). �
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For later reference, we record an immediate consequence of Theorem 1.6.2
(2) and Proposition 1.5.8 (2).

Corollary 1.6.4. Suppose λ = α + iβ and Z = X + iY are the Cartesian
decompositions of a scalar λ and a normal operator Z respectively. Then the
following conditions are equivalent:

1. λ ∈ σ(Z);

2. ∃{xn : n ∈ N} such that ‖(X − α)xn‖ → 0 and ‖(Y − β)xn‖ → 0.

1.7 Important classes of operators

Projections

Remark 1.7.1. The operator P ∈ B(H) constructed in Theorem 1.4.13(4)
is referred to as the orthogonal projection onto the closed subspace M.
When it is necessary to indicate the relation between the subspace M and
the projection P , we will write P = PM andM = ran P ; (note thatM is
indeed the range of the operator P ;) some other facts about closed subspaces
and projections are spelt out in the following exercises.

�

Exercise 1.7.2. (1) Show that
(
S⊥
)⊥

= [S], for any subset S ⊂ H.

(2) Let M be a closed subspace of H, and let P = PM;
(a) show that PM⊥ = 1−PM , where we write 1 for the identity operator

on H (the reason being that this is the multiplicative identity of the algebra
B(H));

(b) Let x ∈ H; the following conditions are equivalent:
(i) x ∈M;
(ii) x ∈ ran P (= PH);
(iii) Px = x;
(iv) ||Px|| = ||x||.
(c) show that M⊥ = ker P = {x ∈ H : Px = 0}.

(3) Let M and N be closed subspaces of H, and let P = PM, Q = PN ;
show that the following conditions are equivalent:

(i) N ⊂M;
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(ii) PQ = Q;
(i)′ M⊥ ⊂ N⊥;
(ii)′ (1−Q)(1− P ) = 1− P ;
(iii) QP = Q.

(4) With M,N , P,Q as in (3) above, show that the following conditions
are equivalent:

(i) M⊥ N - i.e., N ⊂M⊥;
(ii) PQ = 0;
(iii) QP = 0.

(5) When the equivalent conditions of (4) are met, show that:
(a) [M∪N ] = M+N = {x+ y : x ∈M, y ∈ N}; and
(b) (P +Q) is the projection onto the subspace M+N .
(c) More generally, if {Mi : 1 ≤ i ≤ n} is a family of closed subspaces

of H which are pairwise orthogonal, show that their ‘vector sum’ defined by∑n
i=1Mi = {

∑n
i=1 xi : xi ∈Mi ∀i} is a closed subspace and the projection

onto this subspace is given by
∑n

i=1 PMi
.

(d) Even more generally, if {Mn : n ∈ N} is a family of closed subspaces
of H which are pairwise orthogonal, and if M = [∪n∈NMn], show that PM
is given by the sum of the SOT-convergent series

∑
n∈N PMn

Self-adjoint operators are the building blocks of all operators, and they
are by far the most important subclass of all bounded operators on a Hilbert
space. However, in order to see their structure and usefulness, we will have
to wait until after we have proved the fundamental spectral theorem - which
will allow us to handle self-adjoint operators with exactly the same facility
with which we handle real-valued functions.

Nevertheless, we have already seen one important special class of self-
adjoint operators, as shown by the next result.

Proposition 1.7.3. Let P ∈ B(H). Then the following conditions are equiv-
alent:

(i) P = PM is the orthogonal projection onto some closed subspace M⊂
H;

(ii) P = P 2 = P ∗.

Proof. (i) ⇒ (ii) : If P = PM, the definition of an orthogonal projection
shows that P = P 2; the self-adjointness of P follows from Theorem 1.4.13(4)
and Corollary 1.5.3 (2).
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(ii)⇒ (i) : Suppose (ii) is satisfied; let M = ran P , and note that

x ∈M ⇒ ∃y ∈ H such that x = Py

⇒ Px = P 2y = Py = x ; (1.7.13)

on the other hand, note that

y ∈M⊥ ⇔ 〈y, Pz〉 = 0 ∀z ∈ H
⇔ 〈Py, z〉 = 0 ∀z ∈ H (since P = P ∗)

⇔ Py = 0 ; (1.7.14)

hence, if z ∈ H and x = PMz, y = PM⊥z, we find from equations 1.7.13 and
1.7.14 that Pz = Px+ Py = x = PMz. �

Direct Sums and Operator Matrices

If {Mn : n ∈ N} are pairwise orthogonal closed subspaces - see Exercise
1.7.2(5)(d) - and if M = [∪n∈NMn] we say that M is the direct sum of
the closed subspaces Mi, 1 ≤ i ≤ n, and we write

M = ⊕∞n=1 Mi ; (1.7.15)

conversely, whenever we use the above symbol, it will always be tacitly as-
sumed that theMi’s are closed subspaces which are pairwise orthogonal and
that M is the (closed) subspace spanned by them.

To clarify matters, let us first consider the direct sum of two subspaces.
(We are going to try and mimic the success of operators on C2 being iden-
tifiable with the operation of matrices acting on column vectors by multipli-
cation.)

So suppose H = H1 ⊕H2. We shall think of a typical element x ∈ H as

a column vector x =

[
x1

x2

]
, with xi ∈ Hi. Let Pi = PHi so Pix = xi in the

above notation. If we think of Pi as being an element of B(H,Hi), then it is
easily seen that its adjoint is the isometric element Vi of B(Hi,H) described
thus:

V1x1 =

[
x1

0

]
and V2x2 =

[
0
x2

]
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Given a T ∈ B(H), define Tij = PiTVj ∈ B(Hj,Hi) and observe that we
have

Tx =

[
T11 T12

T21 T22

]
·
[
x1

x2

]
If we refer to ((Tij)) as the matrix corresponding to T , then the matrices
corresponding to P1 and P2 are seen to be[

idH1 0
0 0

]
and

[
0 0
0 idH2

]
.

More generally, if H = ⊕j∈NHj,K = ⊕i∈NKi, there exists a unique
matrix ((Tij)) with Tij ∈ B(Hj,Ki) such that whenever ξj ∈ Hj satisfy∑

j∈N ‖ξj‖2 <∞ (so that the series
∑

j∈N ξj converges in H (to ξ, say), then

Tξ =
∑

i∈N

(∑
j∈N Tijξj

)
- with the internal bracketed series converging in

Ki for each i ∈ I to ηi, say, with
∑

i∈N ‖ηi‖2 < ∞ and Tξ =
∑

i∈N ηi. In
the special case when each Hj and Ki is one-dimensional, this reduces to
saying that if T ∈ B(H,K) and if {xj : j ∈ N} (resp., {yi : i ∈ N}) is an
orthonormal basis in H (resp., K), then the operator T can be described
by matrix-multiplication in the following sense: if the vector x ∈ H (resp.,
y ∈ K) is thought of as the countably infinite column matrix [x] = [βj] with
βj = 〈x, xj〉 (resp., [y] = [αi] with αi = 〈y, yi〉), and if [T ] is the matrix
((tij)) with countably infinitely many rows and columns with tij = 〈Txj, yi〉,
then Tx = y⇔αi =

∑
j tijβj ∀i.

Exercise 1.7.4. 1. Verify the assertions of the previous paragraphs. (Hint:
The computation in the case of finite direct sums will show what needs
to be done in the infinite case.)

2. With the notation of the previous paragraph, verify that [x̄j ⊗ yi] is the
familiar Eij matrix whose only non-zero entry is a 1 in the ij-th spot.

3. Verify the following fundamental rules concerning the system {Eij of
matrix units:

(a) E∗ij = Eji ;

(b) EijEkl = δjkEil

where the Kronecker symbol is defined by

δpq =

{
1 if p = q
0 otherwise
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Isometric versus Unitary

The next two propositions identify two important classes of operators be-
tween Hilbert spaces.

Proposition 1.7.5. Let H,K be Hilbert spaces; the following conditions on
an operator U ∈ B(H,K) are equivalent:

(i) if {ei : i ∈ I} is any orthonormal set in H, then also {Uei : i ∈ I} is
an orthonormal set in K;

(ii) there exists an orthonormal basis {ei : i ∈ I} for H such that {Uei :
i ∈ I} is an orthonormal set in K;

(iii) 〈Ux, Uy〉 = 〈x, y〉 ∀ x, y ∈ H;
(iv) ||Ux|| = ||x|| ∀ x ∈ H;
(v) U∗U = 1H.

An operator satisfying these equivalent conditions is called an isometry.

Proof. (i)⇒ (ii) : There exists an orthonormal basis for H.
(ii)⇒ (iii) : If x, y ∈ H and if {ei : i ∈ I} is as in (ii), then

〈Ux, Uy〉 = 〈U

(∑
i∈I

〈x, ei〉ei

)
, U

(∑
j∈I

〈y, ej〉ej

)
〉

=
∑
i,j∈I

〈x, ei〉〈ej, y〉〈Uei, Uej〉

=
∑
i∈I

〈x, ei〉〈ei, y〉

= 〈x, y〉 .

(iii)⇒ (iv) : Put y = x.
(iv)⇒ (v) : If x ∈ H, note that

〈U∗Ux, x〉 = ||Ux||2 = ||x||2 = 〈1Hx, x〉 ,

and appeal to the fact that a bounded operator is determined by its quadratic
form - see Exercise 1.4.16(3).

(v)⇒ (i) : If {ei : i ∈ I} is any orthonormal set in H, then

〈Uei, Uej〉 = 〈U∗Uei, ej〉 = 〈ei, ej〉 = δij .

�
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Proposition 1.7.6. The following conditions on an isometry U ∈ B(H,K)
are equivalent:

(i) if {ei : i ∈ I} is any orthonormal basis for H, then {Uei : i ∈ I} is an
orthonormal basis for K;

(ii) there exists an orthonormal set {ei : i ∈ I} in H such that {Uei : i ∈
I} is an orthonormal basis for K;

(iii) UU∗ = 1K;
(iv) U is invertible;
(v) U maps H onto K.

An isometry which satisfies the above equivalent conditions is said to be
unitary.

Proof. (i)⇒ (ii) : Obvious.
(ii)⇒ (iii) : If {ei : i ∈ I} is as in (ii), and if x ∈ K, observe that

UU∗x = UU∗(
∑
i∈I

〈x, Uei〉Uei)

=
∑
i∈I

〈x, Uei〉UU∗Uei

=
∑
i∈I

〈x, Uei〉Uei (since U is an isometry)

= x .

(iii)⇒ (iv) : The assumption that U is an isometry, in conjunction with
the hypothesis (iii), says that U∗ = U−1.

(iv)⇒ (v) : Obvious.
(v)⇒ (i) : If {ei : i ∈ I} is an orthonormal basis for H, then {Uei : i ∈ I}

is an orthonormal set in H, since U is isometric. Now, if z ∈ K, pick x ∈ H
such that z = Ux, and observe that

||z||2 = ||Ux||2

= ||x||2

=
∑
i∈I

|〈x, ei〉|2

=
∑
i∈I

|〈z, Uei〉|2 ,

and since z was arbitrary, this shows that {Uei : i ∈ I} is an orthonormal
basis for K. �
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Thus, unitary operators are the natural isomorphisms in the context of
Hilbert spaces. The collection of unitary operators from H to K will be
denoted by U(H,K); when H = K, we shall write U(H) = U(H,H). We
list some elementary properties of unitary and isometric operators in the next
exercise.

Exercise 1.7.7. (1) Suppose that H and K are Hilbert spaces and suppose
{ei : i ∈ I} (resp., {fi : i ∈ I}) is an orthonormal basis (resp., orthonormal
set) in H (resp., K), for some index set I. Show that:

(a) dim H ≤ dim K; and
(b) there exists a unique isometry U ∈ B(H,K) such that Uei = fi ∀i ∈ I.

(2) Let H and K be Hilbert spaces. Show that:
(a) there exists an isometry U ∈ B(H,K) if and only if dim H ≤ dim

K;
(b) there exists a unitary U ∈ B(H,K) if and only if dim H = dim K.

(3) Show that U(H) is a group under multiplication, which is a (norm-)
closed subset of the Banach space B(H).

(4) Suppose U ∈ U(H,K); show that the equation

B(H) 3 T
ad U7→ UTU∗ ∈ B(K) (1.7.16)

defines a mapping (ad U) : B(H) → B(K) which is an ‘isometric isomor-
phism of Banach *-algebras’, meaning that:

(a) ad U is an isometric isomorphism of Banach spaces: i.e., ad U is a
linear mapping which is 1-1, onto, and is norm-preserving; (Hint: verify that
it is linear and preserves norm and that an inverse is given by ad U∗.)

(b) ad U is a product-preserving map between Banach algebras; i.e.,
(ad U)(T1T2) = ( (ad U)(T1) )( ad U)(T2) ), for all T1, T2 ∈ B(H);

(c) ad U is a *-preserving map between C∗-algebras; i.e.,

( (ad U)(T ) )∗ = (ad U)(T ∗) ∀T ∈ B(H).

(5) Show that the map U 7→ (ad U) is a homomorphism from the
group U(H) into the group Aut B(H) of all automorphisms (= isometric
isomorphisms of the Banach *-algebra B(H) onto itself); further, verify
that if Un → U in U(H,K), then (ad Un)(T ) → (ad U)(T ) in B(K) for all
T ∈ B(H).
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A unitary operator between Hilbert spaces should be viewed as ‘imple-
menting an inessential variation’; thus, if U ∈ U(H,K) and if T ∈ B(H),
then the operator UTU∗ ∈ B(K) should be thought of as being ‘essentially
the same as T ’, except that it is probably being viewed from a different
observer’s perspective. All this is made precise in the following definition.

Definition 1.7.8. Two operators T ∈ B(H) and S ∈ B(K) (on two possibly
different Hilbert spaces) are said to be unitarily equivalent if there exists
a unitary operator U ∈ U(H,K) such that S = UTU∗.

We conclude this section with a discussion of some examples of isometric
operators, which will illustrate the preceding notions quite nicely.

Example 1.7.9. To start with, notice that ifH is a finite-dimensional Hilbert
space, then an isometry U ∈ B(H) is necessarily unitary. (Prove this!)
Hence, the notion of non-unitary isometries of a Hilbert space into itself
makes sense only in infinite-dimensional Hilbert spaces. We discuss some
examples of a non-unitary isometry in a separable Hilbert space.

(1) Let H = `2 (= `2(N) ). Let {en : n ∈ N} denote the standard
orthonormal basis of H (consisting of sequences with a 1 in one co-ordinate
and 0 in all other co-ordinates). In view of Exercise 1.7.7(1)(b), there exists
a unique isometry S ∈ B(H) such that Sen = en+1 ∀n ∈ N; equivalently, we
have

S(α1, α2, · · · ) = (0, α1, α2, · · · ).

For obvious reasons, this operator is referred to as a ‘shift’ operator; in order
to distinguish it from a near realtive, we shall refer to it as the unilateral
shift. It should be clear that S is an isometry whose range is the proper
subspace M = {e1}⊥, and consequently, S is not unitary.

A minor computation shows that the adjoint S∗ is the ‘backward shift’:

S∗(α1, α2, · · · ) = (α2, α3, · · · )

and that SS∗ = PM (which is another way of seeing that S is not unitary).
Thus S∗ is a left-inverse, but not a right-inverse, for S. (This, of course, is
typical of a non-unitary isometry.)

Further - as is true for any non-unitary isometry - each power Sn, n ≥ 1,
is a non-unitary isometry.
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(2) The ‘near-relative’ of the unilateral shift, which was referred to earlier,
is the so-called bilateral shift, which is defined as follows: consider the
Hilbert space H = `2(Z) with its standard basis {en : n ∈ Z} for H. The
bilateral shift is the unique isometry B on H such that Ben = en+1 ∀n ∈ Z.
This time, however, since B maps the standard basis onto itself, we find that
B is unitary. The reason for the terminology ‘bilateral shift’ is this: denote
a typical element of H as a ‘bilateral’ sequence (or a sequence extending to
infinity in both directions); in order to keep things straight, let us underline
the 0-th co-ordinate of such a sequence; thus, if x =

∑∞
n=−∞ αnen, then we

write x = (· · · , α−1, α0, α1, · · · ); we then find that

B(· · · , α−1, α0, α1, · · · ) = (· · · , α−2, α−1, α0, · · · ) .

(3) Consider the Hilbert space H = L2([0, 1],m) (where, of course, m
denotes ‘Lebesgue measure’) - see Remark 1.4.7(2) - and let {en : n ∈ Z
denote the exponential basis of this Hilbert space. Notice that |en(x)| is
identically equal to 1, and conclude that the operator defined by

(Wf)(x) = e1(x)f(x) ∀f ∈ H

is necessarily isometric; it should be clear that this is actually unitary, since
its inverse is given by the operator of multiplication by e−1.

It is easily seen that Wen = en+1 ∀n ∈ Z. If U : `2(Z) → H is the
unique unitary operator such that U maps the n-th standard basis vector to
en, for each n ∈ Z, it follows easily that W = UBU∗. Thus, the operator W
of this example is unitarily equivalent to the bilateral shift (of the previous
example).

More is true; let M denote the closed subspace M = [{en : n ≥ 1}];
thenM is invariant under W - meaning that W (M) ⊂M; and it should be
clear that the restricted operator W |M ∈ B(M) is unitarily equivalent to
the unilateral shift.

(4) More generally, if (X,B, µ) is any measure space and if φ : X → C is
any measurable function such that |φ| = 1 µ− a.e., then the equation

Mφf = φf , f ∈ L2(X,B, µ)

defines a unitary operator on L2(X,B, µ) (with inverse given by Mφ). �
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Chapter 2

The Spectral Theorem

2.1 C∗-algebras

It will be convenient, indeed desirable, to use the language of C∗-algebras.

Definition 2.1.1. A C∗-algebra is a Banach algebra A equipped with an
adjoint operation A 3 S 7→ S∗ ∈ A which satisfies the following conditions
for all S, T ∈ A

(αS1 + S2)∗ = ᾱS∗1 + S∗2
(S∗)∗ = S

(ST )∗ = T ∗S∗

‖T‖2 = ‖T ∗T‖ (C∗ − identity).

All our C∗-algebras will be assumed to have a multiplicative
identity, which is necessarily self-adjoint (as 1∗ is also a multiplicative iden-
tity), and has norm one - thanks to the C∗-identity (‖1‖2 = ‖1∗1‖ = ‖1‖).
(We ignore the trivial possibility 1 = 0 - or A = {0}.)

Example 2.1.2. 1. B(H) is a C∗-algebra, and in particular Mn(C) ∀n,
so also C = M1(C).

2. Any norm-closed unital *-subalgebra of a C∗-algebra is also a C∗-
algebra with the induced structure from the ambient C∗-algebra.

3. For any subset S of a C∗-algebra, there is a smallest C∗-subalgebra -
denoted by C∗(S) - of A which contains S. (Reason: C∗(S), which

35
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may be defined somewhat uninformatively as the intersection of all C∗-
subalgebras that contain S, and described more constructively as the
norm-closure of the linear span of all ‘words’ in the alphabet {1} ∪
S ∪ S∗ := {1} ∪ {x : x ∈ S or x∗ ∈ S}.) The latter description
in the previous sentence shows that C∗({x}) is a commutative ‘singly
generated’ C∗-subalgebra if and only if x satisfies x∗x = xx∗; such an
element of a C∗-algebra, which commutes with its adjoint, is said to be
normal.

4. If Σ is any compact space, then C(Σ) is a commutative C∗-algebra
- with respect to pointwise algebraic operations, f ∗ = f̄ and ‖f‖ =
sup{|f(x)| : x ∈ Σ}. If Σ ⊂ R (resp., C), then the Weierstrass poly-
nomial approximaion theorem (resp., the Stone Weierstrass theorem)
shows that C(Σ) is a commutative unital C∗-algebra which is singly
generated - with generator given by f0(t) = t ∀t ∈ Σ.

Definition 2.1.3. A representation of a C∗-algebra A on a Hilbert space
H is just a *-preserving unital algebra homomorphism of A into B(H).

Representations πi : A → B(Hi), i = 1, 2, are said to be equiva-
lent if there exists a unitary operator U : H1 → H2 such that π2(a) =
Uπ1(a)U∗ ∀a ∈ A.

Remark 2.1.4. It is true that any representation - and more generally, any
unital *-algebra homomorphism between C∗-algebras - is contractive. This is
essentially a consequence of (a) the C∗-identity, which shows that it suffices to
check that ‖π(x)‖ ≤ ‖x‖ ∀x = x∗ (b) the fact that the norm of a self-adjoint
operator is its spectral radius, (see the last part of Proposition 1.5.6 (2)),
and (c) the obvious fact that a unital homomorphism preserves invertibility
and hence ‘shrinks spectra’. Thus,

‖π(x)‖2 = ‖π(x)∗π(x)‖ = ‖π(x∗x)‖ = spr(π(x∗x)) ≤ spr(x∗x) ≤ ‖x∗x‖ = ‖x‖2.

But we will not need this fact in this generality, so we shall say no more
about it.

The observation that sets the ball rolling for us is Proposition 1.5.7.

Proposition 2.1.5. Let Σ ⊂ R be a compact set and let f0 ∈ C(Σ) be given
by f0(t) = t ∀t ∈ Σ.
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• If X ∈ B(H) is a self-adjoint operator such that σ(X) ⊂ Σ, then there
exists a unique representation π : C(Σ)→ B(H) such that π(f0) = X.

• Conversely given any representation π : C(Σ) → B(H), it is the case
that π(f0) is a self-adjoint operator X satisfying σ(X) ⊂ Σ.

Proof. To begin with, if X ∈ B(H) is a self-adjoint operator such that
σ(X) ⊂ Σ, then it follows from the inequality (1.5.12) that ‖p(X)‖B(H) ≤
‖p‖C(σ(X)) ≤ ‖p‖C(Σ) for any polynomial p. It is easily deduced now, from
Weierstrass’ theorem, that this mapping C[t] 3 p 7→ p(X) ∈ B(H) extends
to a unique *-homomorphism from C(Σ) to B(H).

Conversely, it is easily seen that f0 − λ is not invertible in C(Σ) if and
only if λ /∈ Σ and as π preserves invertibility, we find that

σ(X) = σ(π(f0)) = ‘σ(f0)′ = Σ

as desired. �

Remark 2.1.6. Representations πi : C(Σ) → B(Hi) are equivalent if and
only if the operators πi(f0), i = 1, 2 are unitarily equivalent. This is because
a representation of a singly generated C∗-algebra is uniquely determined by
the image of the generator.

2.2 Cyclic representations and measures

Assume, for the rest of this book, that Σ is a separable compact metric space.
Suppose π : C(Σ)→ B(H) is a representation of C(Σ) on a separable Hilbert
space.

Definition 2.2.1. A representation π : C(Σ) → B(H) is said to be cyclic
if there exits a vector x ∈ H such that π(C(Σ))x is a dense subspace of H.
In such a case, the vector x is called a cyclic vector for the representation.
If such a vector exists, one can always find a unit vector which is cyclic for
the representation.

Before proceeding, it will be wise to spell out a trivial, but nevertheless
very useful, observation.

Lemma 2.2.2. If Si = {x(i)
j : j ∈ Λ} is a set which linearly spans a dense sub-

space of a Hilbert space Hi for i = 1, 2, and if 〈x(1)
j , x

(1)
k 〉 = 〈x(2)

j , x
(2)
k 〉 ∀j, k ∈

Λ, then there exists a unique unitary operator U : H1 → H2 such that
Ux

(1)
j = x

(2)
j ∀j ∈ Λ.
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Proof. The hypotheses guarantee that the equation

U0(
n∑
`=1

α`x
(1)
j`

) =
n∑
`=1

α`x
(2)
j`

unambiguously defines an inner product preserving linear bijection u0 be-
tween dense linear subspaces of the two Hilbert spaces, and hence extends
uniquely to a unitary operator U with the desired property. Uniqueness of
such a U follows from the fact that the difference between two such U ’s would
have a dense linear subspace in its kernel. �

Proposition 2.2.3. 1. If µ is a finite positive measure defined on the
Borel subsets of Σ, then the equation

(πµ(f)) (g) = fg ∀f ∈ C(Σ), g ∈ L2(Σ, µ)

defines a cyclic representation πµ of C(Σ) with cyclic vector g0 ≡ 1.

2. Conversely, if π : C(Σ) → B(H) is a representation with a cyclic
vector x, then there exists a finite positive measure µ defined on the
Borel subsets of Σ and a unitary operator U : H → L2(Σ, µ) such that
Ux = g0 and Uπ(f)U∗ = πµ(f) ∀f ∈ C(Σ).

3. In the setting of (1) above, there exists a unique representation π̃µ :
L∞(Σ, µ) → B(L2(Σ, µ)) such that (i) π̃µ|C(Σ) = πµ, and (ii) if {fn :
n ∈ N} is such that supn ‖fn‖L∞(Σ,µ) < ∞ and fn → f µ−a.e., then
‖π̃µ(fn)g − π̃µ(f)g‖L2(Σ,µ) → 0 ∀g ∈ L2(Σ, µ).

Further, the measure µ is a probability measure precisely when the cyclic
vector x is a unit vector.

Proof. 1. It is fairly clear that f ∈ C(Σ)⇒ πµ(f) ∈ B(H) is a representa-
tion of C(Σ) and ‖πµ(f)‖B(L2(Σ,µ)) ≤ ‖f‖L∞(Σ,µ). Clearly each πµ(f) is
normal, and it follows from Theorem 1.6.2 (2) that λ ∈ sp(πµ(f))⇔µ({w ∈
Σ : |w−λ| < ε}) > 0 ∀ε > 0} and in particular, ‖πµ(f)‖ = spr(πµ(f)) =
‖f‖L∞(Σ,µ). The fact that C(Σ) is dense in L2(Σ, µ) (see Lemma 4.1.1)
shows that indeed g0 is a cyclic vector for πµ(C(Σ)).

2. Consider the functional φ : C(Σ) → C defined by φ(f) = 〈π(f)x, x〉.
It is clear that if f ∈ C(Σ) is non-negative, then also f

1
2 ∈ C(Σ) is

non-negative and, in particular, real-valued, and hence

φ(f) = 〈π(f
1
2 )x, π(f

1
2 )x〉 ≥ 0.



2.2. CYCLIC REPRESENTATIONS AND MEASURES 39

Thus φ is a positive - and clearly bounded - linear functional on C(Σ),
and the Riesz representation theorem - which identifies the dual
space of C(Σ) with the set M(X) of finite complex measures - guar-
antees the existence of a positive measure µ defined on the Borel sets
of Σ such that φ(f) =

∫
fdµ. It follows that for arbitrary f, g ∈ C(Σ),

we have

〈π(f)x, π(g)x〉 = 〈π(ḡf)x, x〉
= φ(ḡf)

=

∫
ḡfdµ

= 〈πµ(f)g0, πµ(g)g0〉 .

An appeal to Lemma 2.2.2 now shows that there exists a unitary op-
erator U : H → L2(Σ, µ) such that Uπ(f)x = πµ(f)g0 ∀f ∈ C(Σ).
Setting f = 1, we find that Ux = g0. And for all g ∈ C(Σ), we see that
Uπ(f)U∗πµ(g)g0 = Uπ(f)π(g)x = πµ(f)πµ(g)x0 with the result that,
indeed, Uπ(f)U∗ = πµ(f), completing the proof of the Proposition.

3. Simply define π̃µ(φ)g = φg ∀g ∈ L2(Σ, µ). Then (i) is clearly true,
while (ii) is just a restatement of the bounded convergence theorem of
measure theory. The uniqueness assertion regarding π̃µ follows from
the demanded (i) and Lemma 4.1.2.

�

It would make sense to introduce a definition and a notation for a notion
that has already been encountered in part (3) of the previous Proposition.

Definition 2.2.4. A sequence {Xn : n ∈ N} in B(H) is said to converge in
the strong operator topology - henceforth abbreviated to SOT - if {Xnx :
n ∈ N} converges in the norm of H for every x ∈ H. It is a consequence of
the ‘uniform boundedness principle’ that in this case, the equation

Xx = lim
n→∞

Xnx

defines a bouned operator X ∈ B(H). We shall abbreviate all this by writing

Xn
SOT→ X.
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We record a couple of simple but very useful facts concerning SOT con-
vergence. But first, recall that a set S ⊂ H is said to be total if the linear
subspace spanned by S is dense in H. (eg: any orthonormal basis (onb) is
total.)

Lemma 2.2.5. 1. The following conditions on a sequence {Xn : n ∈ N} ⊂
B(H) are equivalent:

(a) Xn
SOT→ X for some X ∈ B(H);

(b) supn ‖Xn‖ <∞, and there exists some total set S ⊂ H such that
Xnx→ Xx ∀x ∈ S;

(c) supn ‖Xn‖ < ∞, and there exists a dense subspace M ⊂ H such
that Xnx→ Xx ∀x ∈M.

2. If sequences Xn
SOT→ X and Yn

SOT→ Y , then also XnYn
SOT→ XY.

Proof. 1. The implications (a) ⇒ (b) follows from the uniform bound-
edness principle, while (b) ⇒ (c) is obvious. As for (c) ⇒ (a), if
supn ‖Xn‖ = K, if x ∈ H and ε > 0, choose x′ ∈ M such that
‖x − x′‖ < ε

3K
, then choose an n0 ∈ N such that ‖(Xn − X)x′‖ <

ε
3
∀n ≥ n0 and compute thus, for n ≥ n0:

‖(Xn −X)x‖ ≤ ‖(Xn −X)(x− x′)‖+ ‖(Xn −X)x′‖
< (2K)

ε

3K
+
ε

3
(since ‖X‖ = ‖X|M ≤ K)

= ε

2. Begin by deducing from the uniform boundedness principle that there
exists a constant K > 0 such that ‖Xn‖ ≤ K and ‖Yn‖ ≤ K for all n.
Fix x ∈ H and an ε > 0. Under the hypotheses, we can find an n0 ∈ N
such that ‖(Yn − Y )x‖ < ε

2K
and ‖(Xn − X)Y x‖ < ε

2
for all n ≥ n0.

We then see that for every n ≥ n0

‖(XnYn −XY )x‖ = ‖(XnYn −XnY +XnY −XY )x‖
≤ ‖Xn(Yn − Y )x‖+ ‖(Xn −X)Y x‖
< ε ,

thus proving that indeed XnYn
SOT→ XY.

�
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The following important consequence of Proposition 2.2.3 is ‘one half’ of
the celebrated Hahn-Hellinger classification of separable representations of
C(Σ). (See Remark 2.3.3.)

Theorem 2.2.6. If π : C(Σ) → B(H) is a representation on a separable
Hilbert space H, there exists a countable collection {µn : n ∈ N} (for some
countable set N) of probability measures defined on the Borel-σ-algebra BΣ

such that π is (unitarily) equivalent to ⊕πµn : C(Σ)→ B(⊕L2(Σ, µn)).

Proof. Note that H is separable, as is the Hilbert space underlying any cyclic
representation of C(Σ) (since the latter is separable). Also observe that
π(C(Σ)) is closed under adjoints, as a consequence of which, if a subspace of
M⊂ H is left invariant by the entire *-algebra π(C(Σ)), then so is M⊥. It
follows from the previous sentence and a simple use of Zorn’s lemma, that
there exists a countable (possibly finite) collection {xn : n ∈ N} (for some
countable set N) of unit vectors such that H = ⊕n∈N(π(C(Σ))xn). Clearly
each Mn = (π(C(Σ))xn) is a closed subspace that is invariant under the
algebra π(C(Σ)) and yields a cyclic subreprepresentation πn(·) = π(·)|Mn . It
follows from Proposition 2.2.3 (2) that

π = ⊕n∈Nπn ∼ ⊕πµn ,

for the probability measures given by∫
Σ

fdµn = 〈π(f)xn, xn〉 .

�

Lemma 2.2.7. In the notation of Proposition 2.2.3 (3), the following condi-
tions on a bounded sequence {fn} in L∞(µ) are equivalent:

1. the sequence {fn} converges in (µ-) measure to 0;

2. π̃µ(fn)
SOT→ 0

Proof. (1)⇒ (2) This is an immediate consequence of a version of the dom-
inated convergence theorem.
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(2) ⇒ (1) : Since the constant function g0 ≡ 1 belongs to L2(Σ, µ), it
follows from the inequality

µ({|fn − f | ≥ ε}) ≤ ε−2

∫
{|fn−f |≥ε}

|fn − f |2dµ

≤ ε−2

∫
|fn − f |2dµ

that indeed µ({|fn − f | ≥ ε})→ 0 ∀ε > 0. �

Theorem 2.2.8. Let π : C(Σ) → B(H) and {µn : n ∈ N} be as in Corol-
lary 2.2.6. Choose some set {εn : n ∈ N} of strictly positive numbers
such that

∑
n∈N εn = 1, and define the probability measure µ on (Σ,BΣ)

by µ =
∑

n∈N εnµn. Then,

1. For E ∈ BΣ we have µ(E) = 0⇔µn(E) = 0 ∀n ∈ N . Further, φ ∈
L∞(Σ, µ)⇒ φ ∈ L∞(Σ, µn) ∀n ∈ N and supn ‖φ‖L∞(µn) = ‖φ‖L∞(µ).

2. The equation π̃ = ⊕m∈N π̃µm defines an isometric representation π̃ :
L∞(Σ, µ)→ B(H) such that the following conditions on a a uniformly
norm-bounded sequence {φn : n ∈ N} in L∞(µ) are equivalent:

(a) φn → 0 in measure w.r.t. µ

(b) φn → 0 in measure w.r.t. µm for all m.

(c) π̃(φn)
SOT→ 0

Proof. 1. Since εn > 0 ∀n ∈ N , it follows that µ(E) = 0⇔µn = 0 ∀n ∈ N .

Before proceeding with the proof, we wish to underline the (so far un-
written) convention that we use throughout this book: we treat elements
of different Lp-spaces as if they were functions (rather than equivalence
classes of functions agreeing almost everywhere.).

Since a countable union of null sets is also null, it is clear that if φ ∈
L∞(µ), we may find a µ-null set F such that ‖φ‖L∞(µ) = sup{|φ(λ)| :
λ ∈ Σ \ F}. For E ∈ BΣ we have µ(E) = 0⇔µn(E) = 0 ∀n ∈ N . The
definition of µ shows that (as µn(λ1, · · · , λl)µ) if En = {dµn

dµ
> 0} \ F ,

then µ(E) = µ(∪n∈N(E ∩ En)) for all E ∈ BΣ - and in particular for
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E = Σ \ F (in fact, we actually have Σ \ F = ∪nEn (mod µ)). Hence,

‖φ‖L∞(µ) = sup{|φ(λ)| : λ ∈ Σ \ F}
= sup

n
sup{|φ(λ)| : λ ∈ En}

= sup
n
‖φ‖L∞(µn) .

2. If φ ∈ L∞(µ), then

‖π̃(φ)‖ = sup
m∈N
‖π̃µm(φ)‖

= sup
m∈N
‖φ‖L∞(µm)

= ‖φ‖L∞(µ) by part (1) of this Theorem

so π̃ is indeed an isometry.

Suppose supn∈N ‖φn‖L∞(µ) ≤ C <∞.

(a)⇒ (b) : This follows immediately from µm ≤ ε−1
m µ.

(b) ⇒ (a) : Let δ, ε > 0. We assume, for this proof, that the index set
N = N; the case of finite N is trivially proved. First choose N ′ ∈ N
such that

∑∞
m=N ′+1 εm < ε

2
. Then choose an n0 so large that n ≥ n0 ⇒

µm({|φn| > δ}) < ε
2N ′εm

; and conclude that for an n ≥ n0, we have

µ({|φn| > δ}) ≤
N ′∑
m=1

εmµm({|φn| > δ}) +
∞∑

m=N ′+1

εm

<
N ′∑
m=1

εm
ε

2N ′εm
+
ε

2

= ε.

(b) ⇒ (c) Since ‖π̃(φn)‖ ≤ C ∀n, deduce from Lemma 2.2.5 that it
is enough to prove that limn→∞ π̃(φn)x = 0 whenever x = ((xm)) ∈
⊕∞m=1L

2(µm) is such that xm = 0∀m 6= k for some one k. By Lemma
2.2.7, the condition (b) is seen to imply that ‖π̃µk(φn)xk‖ → 0; but
‖π̃(φn)x‖ = ‖π̃µk(φn)xk‖ and we are done.

(c) ⇒ (b) If (c) holds, it is seen by restricting to the subspace L2(µm)

that π̃µm(φn)
SOT→ 0, and it follows now from Lemma 2.2.7 that φn → 0

in measure w.r.t. µm for each m ∈ N.
�
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2.3 Spectral Theorem for self-adjoint opera-

tors

Throughout this section, we shall assume that X ∈ B(H) is a self-adjoint
operator and that Σ = σ(X). In the interest of minimising on parentheses,
we shall simply write C∗(X) rather than C∗({X}) for the (unital) C∗-algebra
generated by X. As advertised in the preface, we shall prove the following
formulation of what we would like to think of as the spectral theorem - where
f0 denotes the function f0 : Σ→ R defined by f0(t) = t. (Recall that Σ ⊂ R
- see Corollary 1.6.3.)

Theorem 2.3.1. [Spectral theorem for self-adjoint operators]

1. (Continuous Functional Calculus) There exists a unique isometric
*-algebra isomorphism

C(Σ) 3 f → f(X) ∈ C∗(X)

of C(Σ) onto C∗(X) such that f0(X) = X.

2. (Measurable Functional Calculus) There exists a measure µ de-
fined on BΣ and a unique isometric *-algebra homomorphism

L∞(Σ, µ) 3 f → f(X) ∈ B(H)

of L∞(Σ, µ) into B(H) such that (i) f0(X) = X, and (ii) a norm-
bounded sequence {fn : n ∈ N} in L∞(Σ, µ) converges in measure w.r.t.
µ (to f , say) if and only if the sequence {fn(X) : n ∈ N} SOT converges
(to f(X)).

Proof. 1. It follows from Proposition 2.1.5 that there exists a unique repre-
sentation π : C(Σ)→ B(H) such that π(f0) = X. As for the ‘isometry’
assertion, observe that for any p ∈ C[t], the spectral mapping theorem
ensures that

‖π(p)‖B(H) = spr(p(X)) = ‖p‖Σ = ‖p‖C(Σ)

and the Weierstrass approximation theorem now guarantees that

‖π(f)‖B(H) = ‖f‖C(Σ) ∀f ∈ C(Σ)

as desired.
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2. As f 7→ f(X) is a representation, say π, of C(Σ), if µ and π̃ are as
in Theorem 2.2.8 (2), the equation π̃(φ) = φ(X) defines a measurable
functional calculus with the desired properties. An isometric (unital)
*-homomorphism of L∞(Σ, µ) into B(H), i.e., a measurable functional
calculus which (i) extends the continuous functional calculus π and
(ii) maps uniformly bounded sequences converging in measure w.r.t.
µ to SOT convergent sequences, is completely determined, thanks to
Lemma 4.1.2. So we see that there is a unique *-homomorphism from
L∞(Σ, µ) into B(H) with the desired property.

�

Corollary 2.3.2. If µ′ is another probability measure as in Theorem 2.3.1,
then µ′ and µ are mutually absolutely continuous. In particular, the Banach
algebra L∞(Σ, µ) featuring in Theorem 2.3.1 (2) is uniquely determined by
the operator X, even if µ itself is not.

Proof. Suppose πi : L∞(Σ, µi)→ B(H), i = 1, 2 are isometric *-isomorphisms
which (i) extend the continuous functional calculus (call it π : C(Σ) →
C∗({X})), and (ii) satisfy the convergence in measure - sequential SOT con-
vergence homeomorphism property as in part (2) of Theorem 2.3.1. Define
ν = µ1+µ2

2
. Then convergence in measure w.r.t ν implies convergence in

measure w.r.t. µi for 1 = 1, 2 since µi ≤ 2µ.
Suppose µ1(E) = 0 for some E ∈ BC.
Then appeal to Lemma 4.1.2 to find a sequence {fn : n ∈ N} such that

‖fn‖ ≤ 1 µ1-a.e. and such that fn → 1E in measure w.r.t. µ. Then also
fn → 1E in measure w.r.t. µi, 1 = 1, 2. Then the assumptions imply that

π2(1E) = SOT − lim
n
π2(fn)

= SOT − lim
n
π1(fn)

= π1(1E)

= 0

and hence µ2(E) = 0, so µ2 � µ1. By toggling the roles of 1 and 2, we find
that µ1 � µ2, thereby proving the Corollary.

The last assertion is an off-shoot of the statement that the ‘identity map’
is an isometric isomorphism between L∞ spaces of mutually absolutely con-
tinuous probability measures. �
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Remark 2.3.3. 1. Our proof of the spectral theorem, for self-adjoint op-
erators, actually shows that if Σ is a compact metric space and π :
C(Σ) → B(H) is a representation, i.e., a unital *-homomorphism, on
separable Hilbert space, there exists a probability measure µ defined on
BΣ - which is unique up to mutual absolute continuity - and a repre-
sentation π̃ : L∞(µ) → B(H) which is uniquely determined by (i) π̃
‘extends’ π, and (ii) a norm-bounded sequence {fn : n ∈ N} converges
to 0 in (µ) measure if and only if π̃(fn) SOT-converges to 0.

2. Further, if π is isometric, so is π̃ and in particular, if U is a non-empty
open set in Σ, then µ(U) 6= 0, or equivalently π̃(U) 6= 0.

3. All this is part of the celebrated Hahn-Hellinger theorem which
says: the representation π is determined up to unitary equivalence by
the (mutual absolute continuity) measure class of µ and a measurable
spectral multiplicity function m : Σ → N̄ := {0, 1, 2, · · · ,ℵ0},
which is determined uniquely up to sets of µ measure zero; in fact if
En = m−1(n), n ∈ N̄, then π is unitarily equivalent to the representa-
tion on ⊕n∈N̄L2(En, µ|En)⊗Hn given by ⊕n∈N̄πµ|En ⊗ idHn , where Hn

is some (multiplicity) Hilbert space of dimension n.

2.4 The spectral subspace for an interval

Thi section is devoted to a pretty and useful characterisation, from [Hal], of
the spectral subspace for the unit interval. We first list some simple facts
concerning spectral subspaces (= ranges of spectral projections). We use the
following notation below: MX(E) = ran1E(X)

Proposition 2.4.1. Let X ∈ B(H) be self-adjoint. Then,

1. a‖x‖2 ≤ 〈Xx, x〉 ≤ b‖x‖2 ∀x ∈MX([a, b])

2. X1[0,∞)(X) ≥ 0

3. ε > 0, x ∈MX(R \ (t0 − ε, t0 + ε))⇒ ‖(X − t0)x‖ ≥ ε‖x‖

4. t0 ∈ σ(X)⇔MX((t0 − ε, t0 + ε)) 6= {0} ∀ε > 0

5. MX({t0}) = ker(X − t0)
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Proof. 1. Notice first that *-homomomorphisms of C∗-algebras are order-
preserving since

x ≤ y ⇒ y − x ≥ 0 (i.e., ∃z such that y − x = z∗z

⇒ π(y)− π(x) = π(y − x) = π(z)∗π(z) ≥ 0

⇒ π(x) ≤ π(y) .

Hence

a1[a,b](t) ≤ t1[a,b](t) ≤ b1[a,b](t)⇒ a1[a,b](X) ≤ X1[a,b](X) ≤ b1[a,b](X)

and the desired result follows from the fact that 1[a,b](X)x = x ∀x ∈
Mx([a, b]).

2. This follows from (1) since 1[0,∞)(X) = 1[0,‖X‖(X).

3. It follows from (1) that if x ∈MX(R\(t0−ε, t0+ε) =M(X−t0)2([ε
2,∞))

(by the spectral mapping theorem), then ε2‖x‖2 ≤ 〈(X − t0)2x, x〉 =
‖(X − t0)x‖2.

4. If µ is as in Theorem 2.3.1 (2), observe that

t0 /∈ σ(X) ⇔ (X − t0) ∈ GL(H)

⇔ (f0 − t0) is invertible in L∞(σ(X), µ)

⇔ ∃ε > o such that |f0 − t0| ≥ εµ− a.e.
⇔ ∃ε > 0 such that µ((t0 − ε, t0 + ε)) = 0

⇔ ∃ε > 0 such that MX((t0 − ε, t0 + ε)) = 0

5. Clearly X commutes with 1E(X) ∀X and hence the subspace MX(E)
is invariant under X for all E,X. (1) above implies that 〈X0x, x〉 =
t0‖x‖2 ∀x ∈MX{t0} where X0 = X|MX({t0}) and hence ker(X − t0) ⊃
MX({t0}). If this inclusion were strict, then ker(X−t0) must have non-
zero intersection withMX({t0})⊥ =Mx−t0(R\{0}) = ∪ε>0MX−t0(R \ (−ε, ε)),
which would contradict (3) above.

�

Now we come to the much advertised pretty description by Halmos of
MX([−1, 1]).
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Proposition 2.4.2. Let X = X∗ be as above, and let x ∈ H. The following
conditions are equivalent:

1. x ∈MX([−1, 1]).

2. ‖Xnx‖ ≤ ‖x‖ ∀n ∈ N.

3. {‖Xnx‖ : n ∈ N} is a bounded set.

Proof. (1)⇒ (2) The operator X leaves the subspaceMX([−1, 1]) invariant,
and its restriction X1 to this spectral subspace satisfies −1 ≤ X1 ≤ 1 (by
Proposition 2.4.1(1) and hence ‖X1‖ = spr(X1) ≤ 1 whence also ‖Xn

1 ‖ ≤ 1,
as desired.

(2)⇒ (3) is obvious.

(3) ⇒ (1): If we let x1 = 1[−1,1](X)x, we need to show that x = x1; for
this, note that

x− x1 = (1− 1[−1,1](X))x

= 1R\[−1,1](X)x

= lim
n→∞

1R\(−1− 1
n
,1+ 1

n
)(X)x

so it suffices to show that 1R\(−1− 1
n
,1+ 1

n
)(X)x = 0 ∀n. Indeed, if there ex-

ists some n such that yn = 1R\(−1− 1
n
,1+ 1

n
)(X)x 6= 0, it would follow from

Proposition 2.4.1 (3) that ‖Xyn‖ ≥ (1 + 1
n
)‖yn‖ and that hence ‖Xmx‖ ≥

‖1R\(−1− 1
n
,1+ 1

n
)(X)mx‖ = ‖Xmyn‖ ≥ (1+ 1

n
)m‖yn‖. So the sequence {‖Xmx‖ :

m ∈ N} is not a bounded set if any yn 6= 0. �

Corollary 2.4.3. 1. x ∈ MX([t0 − ε, t0 + ε])⇔{
(
X−t0
ε

)n
x : n ∈ N} is

bounded.

2. If Y X = XY for some Y ∈ B(H) then Y leaves MX(I) invariant for
every bounded interval I.

Proof. 1. This follows by applying Proposition 2.4.2 to X−t0
ε

rather than
to X.

2. If Y X = XY and if I is a compact interval (which can always be
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written in the form [t0 − ε, t0 + ε]), it follows from (1) above that

x ∈MX([t0 − ε, t0 + ε]) ⇒ {
(
X − t0
ε

)n
x : n ∈ N} is bounded

⇒ {Y
(
X − t0
ε

)n
x : n ∈ N} is bounded

⇒ {
(
X − t0
ε

)n
Y x : n ∈ N} is bounded

⇒ Y x ∈Mx([t0 − ε, t0 + ε]) ,

so Y leaves spectral subspaces corresponding to compact intervals in-
variant.

If I is an open interval, there exist an increasing sequence {In : n ∈ N}
of compact intervals such that I = ∪n∈NIn. But then 1I(X) = SOT −
limn→∞ 1In(X) and MX(I) = (∪nMX(In)). The previous paragraph
shows that Y leaves each MX(In), and hence also M(I), invariant.

Similar approximation arguments can be conjured up if I is of the form
[a, b) or (a, b]. (For example, [a+ 1

n
, b] ↑ (a, b], and [a, b− 1

n
] ↑ [a, b).

�

2.5 Finitely many commuting self-adjoint op-

erators

We assume throughout this chapter that X1, · · · , Xn, · · · are commuting self-
adjoint operators on H.

Definition 2.5.1. Consider the set Σk = Σ(X1, · · · , Xk) of those (λ1, · · · , λk) ∈
Rk for which there exists a sequence {xn : n ∈ N} of unit vectors in H such
that limn→∞ ‖(Xi − λi)xn‖ = 0 ∀1 ≤ i ≤ k. Thus Σk consists of k-tuples of
scalars which admit a sequence of ‘simultaneous approximate eigenvectors’ of
the Xi’s, and will be referred to simply as the joint spectrum of X1, · · · , Xk.

If (λ1, · · · , λk) ∈ Σk, it is clear that λi ∈ σ(Xi) ∀1 ≤ i ≤ k, and in
particular Σk ⊂

∏k
i=1 σ(Xi) and is hence bounded.

Lemma 2.5.2. 1. Σk is a compact set for k > 0; and
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2. If k > 0 then prk(Σk) = Σ(Xk), where prk : Rk → R denotes the
projection onto the k − th coordinate; in particular, Σk 6= ∅.

Proof. 1. We have already seen above that Σk is bounded, so we only
need to prove that it is closed. So suppose (λ1, · · · , λk)(n)

2. We shall prove the result by induction on k. For k = 1, th easserted
equalitythe content of Theorem 1.6.2 (2) together with the non-emptiness
of spectra of operators.

Suppose now that the Theorem is valid for k, and suppose we are
given commuting self-adjoint operators X1, · · · , Xk, Xk+1. Let us prove
that λk+1 ∈ σ(Xk+1) ⇒ ∃(λ1, · · · , λk) ∈ Σ(X1, · · · , Xk) such that
(λ1, · · · , λk, λk+1) ∈ Σ(X1, · · · , Xk, Xk+1).

For each n ∈ N, letMn =MXk+1
(λk+1− 1

n
, λk+1+ 1

n
), where we continue

to use the notationMX(E) := 1E(X) of the last section. By Proposi-
tion 2.4.1 (4), we see thatMn 6= {0} ∀n. By Corollary ?? (2), each Xi

leavesMn invariant. Define Xi(n) = Xi|Mn ∀1 ≤ i ≤ k, n ∈ N. Deduce
by induction hypothesis that Σk(n) := Σk(X1(n), · · · , Xk(n)) 6= ∅ ∀n.
Since {Mn : n ∈ N} is a decreasing sequence of subspaces, it is clear
that also {Σk(n) : n ∈ N} is a decreasing sequence of non-empty
compact sets. The finite intersection property then assures us that
we can find a (λ1, · · · , λk) in the non-empty set ∩n∈NΣk(n). Hence,
by definition of the joint spectrum of commuting self-adjoint opera-
tors, we can find unit vectors xn ∈ Mn such that ‖(Xi − λi)xn‖ =
‖(Xi(n)− λi)xn‖ < 1

n
∀1 ≤ i ≤ k, for each n ∈ N. On the other hand,

it follows from the definition ofMn that ‖(Xk+1−λk+1)xn‖ < 1
n
. Thus,

‖(Xi − λi)xn‖ < 1
n
∀1 ≤ i ≤ k + 1 for every n ∈ N; in other words,

(λ1, · · · , λk, λk+1) ∈ Σ(X1, · · · , Xk, Xk+1). Since Σ(Xk) = σ(Xk) 6= ∅
the proof is complete.

�

Proposition 2.5.3. For any p ∈ C[t1, · · · , tk], the operator Z = p(X1, · · · , Xk)
is normal, and

1. σ(Z) = p(Σk); and

2. ‖p(X1, · · · , Xk)‖ = ‖p‖Σk
, where the p on the right is the evaluation

function on Σk given by the polynomial p.
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Proof. 1. Let q = 1
2
(p+p̄), r = 1

2i
(p−p̄) andXk+1 = q(X1, · · · , Xk), Yk+1 =

r(X1, · · · , Xk). Then clearly q, r ∈ R[t1, · · · , tk], so that Xk+1 and Yk+1

are self-adjoint operators commuting with X1, · · · , Xk and with each
other as well (so Z is indeed normal). Since it follows from Corollary
1.6.4 that λ = α + iβ ∈ σ(Z)⇔α ∈ σ(Xk+1) and β ∈ σ(Yk+1), we see
that it suffices to prove the case when p = q is real-valued and Z = Xk+1

is a self-adjoint operator which is a real polynomial in X1, · · · , Xk (and
hence commutes with each Xi ).

Suppose λk+1 ∈ σ(Xk+1). It then follows from Lemma 2.5.2 that
∃(λ1, · · · , λk) ∈ Σk such that (λ1, · · · , λk, λk+1) ∈ Σ(X1, · · · , Xk, Xk+1).
Thus there exists a sequence {xn : n ∈ N} of unit vectors in H such
that ‖(Xi − λi)xn‖ → 0 ∀1 ≤ i ≤ k + 1. It follows easily from
this requirement for the first k i’s that then, necessarily, we must
have ‖[p(X1, · · · , Xk) − p(λ1, · · · , λk)]xn‖ → 0 while also ‖(Xk+1 −
λk+1)xn‖ → 0, which forces λk+1 = p(λ1, · · · , λk); in view of the arbi-
trariness of λk+1, this shows that σ(Xk+1) ⊂ p(Σk). Conversely, it must
be clear that if (λ1, · · · , λk) ∈ Σk, then p((λ1, · · · , λk)) is an approxi-
mate eigenvalue of p(X1, · · · , Xk) and thus, indeed, σ(p(X1, · · · , Xk)) =
p(Σ(X1, · · · , Xk)).

2. This follows immediately from (1) above and Proposition 1.5.6 (2).
�

Corollary 2.5.4. With the notation of Proposition 2.5.3, we have:

1. The ‘polynomial functional calculus’ extends to a unique isometric *-
algebra isomorphism

C(Σ) 3 f π7→ f(X1, · · · , Xk) ∈ C∗({X1, · · · , Xk}) ;

2. There exists a probability measure µ defined on BΣ and an isometric *-
algebra monomorphism π̃ : L∞(µ)→ B(H) such that (i) π̃ ‘extends’ π,
and (ii) a norm bounded sequence {fn : n ∈ N‖} in L∞(µ) converges
to the constant function 0 in (µ) measure if and only if π̃(fn) SOT-
converges to 0.

Proof. 1. This follows from Proposition 2.5.3(2) and a routine applica-
tion of the Stone Weierstrass theorem - to show that the collection of
complex polynomial functions on a compact subset Σ of Rk, by virtue
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of being a self-adjoint unital subalgebra of functions which separates
points of Σ - is dense in C(Σ).

2. This is a consequence of item 1. above and Remark 2.3.3.
�

2.6 The Spectral Theorem for a normal op-

erator

We are now ready to generalise Theorem 2.3.1 to the case of a normal oper-
ator. This is essentially just the specialisation of Corollary 2.5.4 for k = 2.

Thus, assume that Z = X + iY ∈ B(H) is the Cartesian decomposition
of a normal operator and that Σ = σ(Z). In view of Proposition 2.5.3 (1),
we see that Σ = {s + it : (s, t) ∈ Σ(X, Y )}, and we may and will identify
Σ ⊂ C with Σ(X, Y ) ⊂ R2.

In the following formulation of the spectral theorem for the normal oper-
ator Z (as above), the functions fi, i = 1, 2 denote the functions fi : Σ→ R
defined by f1(z) = <z, f2(z) = =z. We omit the proof as it is just Corollary
2.5.4 for k = 2.

Theorem 2.6.1. 1. (Continuous Functional Calculus) There exists a
unique isometric *-algebra isomorphism

C(Σ) 3 f → f(Z) ∈ C∗(Z)

of C(Σ) onto C∗(Z) such that f1(Z) = X, f2(Z) = Y .

2. (Measurable Functional Calculus) There exists a measure µ de-
fined on BΣ and a unique isometric *-algebra homomorphism

L∞(Σ, µ) 3 f → f(Z) ∈ B(H)

of L∞(Σ, µ) into B(H) such that (i) f1(Z) = X, f2(Z) = Y , and (ii)
a norm- bounded sequence {fn : n ∈ N} in L∞(Σ, µ) converges in (µ)-
measure to f if and only if the sequence {fn(Z) : n ∈ N} SOT converges
to f(Z).

Now we proceed to the conventional formulation of the spectral theorem
in terms of spectral or projection-valued measures P : BC → B(H).
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Theorem 2.6.2. Let N be a normal operator on a separable Hilbert space
H. Then there exists a unique mapping P := PN : BC → B(H) such that:

1. P (E) is an orthogonal projection for all E ∈ BC;

2. E 7→ P (E) is a projection-valued measure; i.e., whenever {En : n ∈
N} ⊂ BC is a sequence of pairwise disjoint Borel sets, and E =

∐
n∈NEn,

then P (E) =
∑

n∈N P (En), the series being interpreted as the SOT-
limit of the sequence of partial sums;

3. for x ∈ H, the equation Px,x(E) = 〈P (E)x, x〉 defines a finite positive
scalar measure with Px,x(C) = ‖x‖2;

4. for x, y ∈ H, the equation Px,y(E) = 〈P (E)x, y〉 defines a finite complex
measure, with the property that

〈Nx, y〉 =

∫
C
λdPx,y(λ) ; (2.6.1)

more generally for any bounded measurable function f : C → C, we
have

〈f(N)x, y〉 =

∫
C
f(λ)dPx,y(λ) ; (2.6.2)

5. the spectral measure P is ‘supported’ on the spectrum of N in the
sense that P (U) 6= 0 for all open sets U that have non-empty inter-
section with Σ := σ(N) - or equivalently Σ is the smallest compact set
such that P (Σ) = 1.

Proof. Existence: Use the measurable functional calculus to define P (E) =
1N(E). As 1E = 1E = 12

E, we see immediately that P (E) = P (E)∗ =
P (E)2, and hence 1. is proved. As for 2., note that the pairwise disjointness
assumption ensures that 1∐n

k=1 Ek
=
∑n

k=1 1Ek , while
∐n

k=1Ek ↑
∐

k∈NEk
implies P (

∐∞
k=1Ek) = SOT − limn→∞ P (

∐n
k=1Ek), thus establishing 2.

Since 〈Qx, x〉 = ‖Qx‖2 ≥ 0 for any projection Q, item 3. follows imme-
diately from item 2. The polarisation identity and the definitions show that
Px,y = 1

4

∑3
j=0 i

jPx+ijy,x+ijy, thereby demonstrating that Px,y is a complex
linear combination of four finite positive measures, and is hence a finite com-
plex measure. To complete the proof of item 4., it suffices to prove equation
2.6.2 since equation 2.6.1 is a special case (with f(z) = 1Σ(z)z). Equation
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2.6.2 is, by definition, valid when f is of the form 1E, and hence by linear-
ity, also valid for any simple function. For a general bounded measurable
function f , and an ε > 0, choose a simple function s such that ‖s − f‖ < ε
uniformly. Then,

|〈f(N)x, y〉 − 〈s(N)x, y〉| ≤ ε‖x‖ ‖y‖

and

|
∫
fdPx,y −

∫
s dPx,y| ≤ ε‖Px,y‖

so

|〈f(N)x, y〉 −
∫
fdPx,y| ≤ ε(‖x‖ ‖y‖+ ‖Px,y‖) .

As ε was arbitrary, we find that equation 2.6.2 indeed holds for any bounded
measurable f .

As for 5., suppose P (U) = 0 for some open U , and z0 ∈ U . Pick ε > 0
such that D = {z ∈ C : |z − z0| < ε} ⊂ U . Then P (U) = 0 ⇒ P (D) =
0 ⇒ ‖1D‖L∞(µ) = 0 ⇒ µ(D) = 0 ⇒ 1

f0−z0 ∈ L
∞(µ) ⇒ z0 /∈ σ(N), so, indeed

P (U) = 0, Uopen⇒ U ∩ Σ = ∅.

Uniqueness: If, conversely P̃ is another such spectral measure satisfying the
conditions 1.-5. of the theorem, it follows from equation 2.6.2 that∫

zmz̄ndP̃x,y(z) = 〈NmN∗nx, y〉 =

∫
zmz̄ndPx,y(z) ∀m,n ∈ Z+ .

Since functions of the form z 7→ zmz̄n span a dense subspace of C(Σ), thanks
to the Stone-Weierstrass theorem, it now follows from the Riesz representa-
tion theorem that P̃x,y = Px,y. The valiity of this equality for all x, y ∈ H
shows, finally, that indeed P̃ = P , as desired. �

Remark 2.6.3. Now that we have the uniqueness assertion of Theorem 2.6.2,
we can re-connect with a way to produce probability measures in the measure
class of the mysterious µ appearing in the measurable functional calculus. If
P denotes the spectral measure of X , the following conditions on an E ∈ BΣ

are equivalent:

1. 1E(X)(= P (E)) = 0.

2. µ(E) = 0.
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3. Px,x(E) = 0 for all x in a total set S ⊂ H.

Hence, a possible choice for µ is
∑

n∈N 2−nPen,en where {en : n ∈ N} is an
orthonormal basis for H.

Incidentally, a measure of the form Px,x is sometimes called a scalar
spectral measure for N .

Reason: (1)⇔(2) This is because L∞(µ) 3 f 7→ f(X) ∈ B(H) is isometric
by Theorem 2.3.1 (2).

(1)⇔(3) This is because (i) for a projection P - in this case, P (E) -
〈Px, x〉 = 0⇔Px = 0, and (ii) a bounded operator is the zero operator if
and only if its kernel contains a total set.

Remark 2.6.4. To tie a loose-end, we wish to observe that ‖Px,y‖ ≤ ‖x‖ ‖y‖.
This is because

‖Px,y‖ = inf{K > 0 : |
∫
fdPx,y| ≤ K‖f‖C(Σ) ∀f ∈ C(Σ)}

and

|
∫
fdPx,y| = |〈f(N)x, y〉

≤ ‖f(N)‖ ‖x‖ ‖y‖
≤ ‖f‖C(Σ) .

Remark 2.6.5. This final remark is an advertising pitch for my formulation
of the spectral theorem in terms of functional calculi, in comparison with the
conventional version in terms of spectral measures: the difference is between
having some statement for all bounded measurable functions and only having
it for indicator functions and having to go through the exercise of integration
every time one wants to get to the former situation!

Exercise 2.6.6. Let πµ : L∞(µ) → B(L2(µ)) be the ‘multiplication repre-
sentation’ as in Proposition 2.2.3. Can you identify the spectral measure PN
where N = πµ(f)? (Hint: Consider the cases Σ = {z ∈ C”|z| = 1} and
f(z) = zn with n = 1, 2, · · · , in increasing order of difficulty as n varies.)
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2.7 Several commuting normal operators

2.7.1 The Fuglede Theorem

Theorem 2.7.1. [Fuglede] If an operator T commutes with a normal operator
N , then it necessarily also commutes with N∗.

Proof. When H is finite-dimensional, the spectral theorem says that N ad-
mits the decomposition N =

∑k
i=1 λiPi where σ(N) = {λ1, · · · , λk} and Pi =

1{λi}(N); observe that Pi = pi(N) for appropriate polynomials p1, · · · , pk,
and deduce that T commutes with each Pi and hence also with f(N) for any
function f : σ(N)→ C, and in particular with N∗ = f̄0 where f0(z) = z̄.

We shall similarly prove that T commutes with each spectral projection
1E(N), E ∈ BC and hence also with f(N) for each (simple, and hence each)
bounded measurable function f , and in particular, for f(z) = 1σ(N)(z)z̄.
Note that T commutes with a projection P if and only if T leaves both M
and M⊥ invariant, where M = ran(P ).

We shall write M(E) = ran 1E(N). Since M(E)⊥ = M(E ′) (where
we write E ′ = C \ E), we see from the previous paragraph that Fuglede’s
theorem is equivalent to the assertion that if T commutes with a normal N ,
then T leaves eachM(E) invariant - which is what we shall accomplish in a
sequence of simple steps:

Define F = {E ∈ BC : T leaves M(E) invariant}, so we need to prove
that F = BC.

1. Write D(z0, r) = {z ∈ C : |z − z0| < r} and simply D = D(0, 1), so the
closure D̄ = {z ∈ C : |z| ≤ 1} . We shall need the following analogue
of Proposition 2.4.2 for normal operators: The following conditions on
an x ∈ H are equivalent:

(a) x ∈M(D̄).

(b) ‖Nnx‖ ≤ ‖x‖ ∀n ∈ N.

(c) {‖Nnx‖ : n ∈ N} is a bounded set.

Reason: (a)⇒ (b):

z̄z1D(z) ≤ 1⇒ N∗N1D(N) ≤ idH ⇒ ‖Nx‖2 ≤ 1 ∀x ∈M(D̄) .

(b)⇒ (c) is obvious.
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(c)⇒ (a) Let xm := 1{z:|z|≥1+ 1
m
}(N)x ∀m ∈ N; it follows from

‖Nnx‖ ≥ ‖1{z:|z|≥1+ 1
m
}(N)Nnx‖ = ‖Nnxm‖ ≥ (1 +

1

m
)n‖xm‖ ∀n ∈ N

and the assumed boundedness condition ( c) that we must have xm =
0 ∀m and hence that x = x− limm→∞ xm ∈M(D̄) .

Hence

‖NnTx‖ = ‖TNnx‖ ≤ ‖T‖‖Nnx‖

and condition (c) above implies that also Tx ∈M(D̄); so D̄ ∈ F .

2. D(z, r) ∈ F ∀z ∈ C, r > 0.

Reason: This follows by applying item 1. above to
(
N−z
r

)
.

3. F is closed under countable monotone limits, and is hence a ‘monotone
class’.

Reason: If En ∈ F ∀n and if either En ↑ E or En ↓ E, then 1En(N)
SOT→

1E(N) so that eitherM(E) = (∪M(En)) orM(E) = ∩M(En) whence
also E ∈ F .

4. F contains all (open or closed) discs.

Reason: The assertion regarding closed discs is item 2. above, and
open discs are increasing unions of closed discs.

5. F contains all (open or closed) half-planes.

Reason: For example, if a, b ∈ R, then Ra = {z ∈ C : <z > a} =
∪∞n=1{z ∈ C : |z − (a + n)| < n} ∈ F by items 3. and 4. above;
similarly, Lb = {z ∈ C : <z ≤ b} = − ∪∞n=1 L−b− 1

n
∈ F . Likewise, if

c, d ∈ R, we also have Uc = {z ∈ C : =z > c}, Dd = {z ∈ C : =z ≤ d}.

6. F is closed under finite intersections and countable disjoint unions.

Reason: 1∩i=1nEi =
∏n

i=1 1Ei ⇒ M(∩i=1nEi) = ∩i=1nM(Ei) so if
E1, · · ·En ∈ F , an x ∈ M(∩ni=1Ei), then x ∈ M(Ei) ∀i and Tx ∈
M(∩ni=1Ei), so ∩ni=1Ei ∈ F . Similarly M(

∐∞
n=1En) = [∪∞n=1M(En)]

implies that F is closed uner countable disjoint unions.
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7. F = BC.

Reason: It follows from items 5. and 6. above that F contains (a, b]×
(c, d] = Ra ∩ Lb ∩ Uc ∩ Dd and the collection A of all finite disjoint
unions of such rectangles. Since A∪ {∅,C} is an algebra of sets which
generates BC as a σ-algebra, and since F is a monotone class containing
A ∪ {∅,C}, the desired conclusion is a consequence of the monotone
class theorem.

�

Remark 2.7.2. Putnam proved - see [Put] - this extension to Fuglede’s theo-
rem: if Ni, i = 1, 2 is a normal operator on Hi and if T ∈ B(H1,H2) satisfies
TN1 = N2T , then, we also necessarily have TN∗1 = N∗2T . (A cute 2 × 2
matrix proof of this - see [Hal2] - applies Fuglede’s theorem to the operators

on H1 ⊕H2 given by the operator matrices

[
0 0
T 0

]
and

[
N1 0
0 N2

]
.)

2.7.2 Functional calculus for several commuting nor-
mal operators

This section addresses the analogue of the statement that a family of com-
muting normal operators on a finite-dimensional Hilbert space can be simul-
taneously diagonalised, equivalently, that an arbitrary family {Nj : j ∈ I} of
pairwise commuting normal operators admits a joint functional calculus - i.e.,
an approproate continuous and measurable ‘joint functional calculus’ identi-
fying (algebraically and topologically) appropriate closures of the *-algebras
generated by the family {Nj; j ∈ I}.

Suppose {Xi : i ∈ I} is a (possibly infinite, maybe even uncountable)
family of self-adjoint operators on H. For each finite set F ⊂ I, let ΣF be
the joint spectrum of {Xj : j ∈ F} and let prF : RI → RF denote the natural
projection.

We start with a mild generalisation of Lemma 2.5.2 (2).

Lemma 2.7.3. If F ⊂ E ⊂ I are finite sets, and if prEF : RE → RF is the
natural projection, then ΣF = prEF (ΣE).

Proof. This assertion is easily seen to follow by induction on |E \F | from the
special case of the Lemma when |E\F | = 1. So suppose E = {1, 2, · · · , k+1}
and F = {1, 2, · · · , k}. Suppose (λ1, · · · , λk) ∈ ΣF . If ε > 0, it is seen from
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Corollary 2.5.4 d Remark 2.3.3 (2) thatM(ε) = π̃(1{(t1,··· ,tk)∈ΣF :|tiλiI<ε ∀i∈F} 6=
0 and is invariant under each Xi, 1 ≤ i ≤ k + 1. If Xk+1(ε) = Xk+1|M(ε) and
λk+1 ∈ σ(Xk+1(ε)), it is seen that ∃x(ε) ∈ S(M(ε)) such that ‖(Xk+1 −
λk+1)x(ε)‖ < ε. Since ‖Xi−λi)x‖ < ε ∀x ∈ S(M(ε)), we see that {x( 1

n
)) is a

sequence of unit vectors such that ‖(Xi − λi)x( 1
n
‖ < 1

n
‖ < 1

n
∀n, and indeed

(λ1, · · ·λk+1) ∈ ΣE so ΣE ⊂ pr E
F (ΣE). The reverse inclusion is obvious, and

the proof is complete. �

For each finite F ⊂ I, let Σ(F ) = pr−1
F (ΣF ) and let Σ = ∩FΣF .

Theorem 2.7.4. With the foregoing notation, we have:

1. Σ is a non-empty compact set, which we shall refer to as the joint
spectrum of {Xj : j ∈ I}.

2. There exists a unique isomorphism π : C(Σ)→ C∗({Xj : j ∈ I}) such
that π(pr{j}) = Xj ∀j ∈ I; and

3. there exists a probability measure µ defined on BΣ, unique up to mutual
absolute continuity, such that the continuous functional calculus π above
‘extends’ to an isometric *-algebra monomorphism π̃ of L∞(Σ,BΣ, µ)→
B(H) such that a norm-bounded sequence {{fn : n ∈ N} conveges in
(µ) measure if and only if the limit of this sequence under this ‘joint
measurable functional calculus’ is SOT-convergent.

Proof. 1. It is clear that Σ is the closed subset of RI consisting of those
tuples ((λi))i∈I such that for any finite F ⊂ I, it is possible to find a
sequence xFn , n ∈ N such that ‖(Xi−λi)xFn ‖ → 0 ∀i ∈ F so that, in par-
ticular Σ is a closed subset of

∏
i∈I σ(Xi) and hence compact. It is not

hard to see (from Lemma 2.7.3) that {Σ(F )∩Σ : F a finite subset of I}
is a family of non-empty compact sets with the finite intersection prop-
erty, and that hence, their intersection, which is Σ, is also non-empty
and compact.

2. On the one hand, the family {prF : F a finite subset of I} linearly
spans a self-adjoint subalgebra of functions which separates points of
Σ, which is dense in C(Σ). It then follows from Proposition 2.5.3 (2)
that there is a unique isometric *-algebra isomorphism π : C(Σ) →
C∗({Xi : i ∈ I}) such that π(pr{j}) = Xj.
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3. This follows immediately from Remark 2.3.3.
�

Suppose now that Nj = Aj + iBj (resp., λj = αj + iβj) is the Cartesian
decomposition of Nj as in the last paragraph (resp., λj ∈ σ(Nj)), and denote
their joint spectrum by the set Σ = {λ = ((λj)) ∈ CI : j ∈ I} - or
alternatively {((αj, βj)) ∈ (R2)I : j ∈ I} - of those tuples for which it is
possible to find a sequence {xn : n ∈ N} of unit vectors such thatry family

lim
n→∞

‖(Nj − λj)xn‖2 = lim
n→∞

(
‖(Aj − αj)xn‖2 + ‖(Bj − βj)xn‖2

)
= 0 ∀j ∈ I.

In view of Fuglede’s theorem, we see that commutativity of the family
{Nj : j ∈ I} of normal operators is equivalent to that of the family {Aj, Bj :
j ∈ I} of self-adjoint operators. It must be clear that {((αj + iβj)) ∈ CI :
(((αj, βj))) ∈ Σ({Aj, Bj : j ∈ I} may be defined as the joint spectrum of
the family {Nj : j ∈ I} of normal operators, and the exact counterpart of
Theorem 2.7.4 (with mild modifications, usually involving changing R to C
and ‘self-adjoint to normal) for a family of commuting normal operators is
valid.

Exercise 2.7.5. 1. State and prove the precise statement of the ‘normal
version’ of Theorem 2.7.4

2. Also state and prove a formulation of the ‘joint spectral theorem for
a family of commuting normal operators in terms of projection-valued
measures.

2.8 Typical uses of the spectral theorem

We now list some simple consequences of the spectral theorem (i.e., the
functional calculi) for a normal operator.

Proposition 2.8.1. 1. Let T ∈ B(H) be a normal operator. Then

(a) T is self-adjoint if and only if σ(T ) ⊂ R.

(b) T is a projection if and only if σ(T ) ⊂ {0, 1}.
(c) T is unitary if and only if σ(T ) ⊂ {z ∈ C : |z| = 1}.
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2. The following conditions on an operator A ∈ B(H) are equivalent:

(a) There exists some Hilbert space K and an operator T ∈ B(H,K)
such that A = T ∗T .

(b) 〈Ax, x〉 ≥ 0 ∀x ∈ H
(c) A is self-adjoint and σ(A) ⊂ [0,∞)

(d) A is normal and σ(A) ⊂ [0,∞)

(e) There exists a self-adjoint operator B ∈ B(H) such that A = B2.

Such an operator A is said to be positive, and we write A ≥ 0, and
more generally, we shall write A ≥ C for self-adjoint opertors A,C
satisfying A− C ≥ 0

3. If A ≥ 0, there exists a unique B ≥ 0 such that A = B2, and we denote
this unique positive square root of A by A

1
2 .

4. Let U ∈ B(H) be a unitary operator. Then there exists a self-adjoint
operator A ∈ B(H) such that U = eiA, where the right hand side
is interpreted as the result of the continuous functional calculus for A;
further, given any a ∈ R, we may choose A to satisfy σ(A) ⊂ [a, a+2π].

5. If T ∈ B(H) is a normal operator, and if n ∈ N, then there exists a
normal operator A ∈ B(H) such that T = An.

6. Any self-adjoint operator T admits a unique decomposition T = T+ −
T−, where T± ≥ 0 and T+T− = 0 = T−T+

7. Any self-adjoint contraction (i.e., an operator T satisfying T = T ∗

and ‖T‖ ≤ 1 is expressible as the average of two unitary operators,
and hence any operator is expressible as a linear combination of four
unitary operators.

Proof. 1. A normal operator T is self-adjoint (resp., a projection, resp.,
unitary) precisely when it satisfies T = T ∗ (resp. T = T 2, resp., T ∗T = 1),
while the function f0 ∈ C(Σ) - for Σ ⊂ C - defined by f0(z) = z satisfies
f0 = f0 (resp., f0 = f 2

0 , resp., f0f0 = 1) precisely when Σ ⊂ R (resp.,
Σ ⊂ {0, 1}, resp., Σ ⊂ {z : |z| = 1}).

2. The implications (e) ⇒ (a) ⇒ (b) and (c) ⇒ (d) are obvious. As for
(d)⇒ (e), note that (d) implies that A is self-adjoint by 1(a). If the function
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f(t) = t
1
2 denotes the positive square-root, then the condition (c) implies that

f ∈ C(σ(A)), and we see that B = f(A) works. (Notice that B ∈ C∗(A)
by construction). As for (b) ⇒ (c), the self-adjointness of A follows from
Corollary 1.5.3 (2), and the positivity of elements of σ(A) follows then from
Theorem 1.6.2 (2)

3. Suppose B1 is another prospective positive square root of A. Since B ∈
C∗(A) ⊂ C∗(B1) ∼= C(σ(B1)), there must be a non-negative g ∈ C(σ(B1))
such that B = g(B1). As B2 = A = B2

1 , we must have g(t)2 = t2 ∀t ∈ σ(B1),
and we must have g(t) = t so B = B1.

4. Let φ : C \ {0} → {z ∈ C : Im z ∈ [a, a+ 2π)} be any (measurable)
branch of the logarithm - for instance, we might set φ(z) = log|z| + iθ, if
z = |z|eiθ, a ≤ θ < a+ 2π. Setting A = φ(U), we find - since eφ(z) = z - that
U = eiA.

5. This is proved like 4 above, by taking some measurable branch of
the logarithm defined everywhere in C \ {0} and choosing the z

1
n as the

exponential of 1
n

times this choice of logarithm.
6. Define T± = f±(T ) where f± are the obviously continuous functions

f± : R→ R defined by f±(t) = |f0|±f0
2

. Then indeed

f0 = f+ − f−, f± ≥ 0 and f+f−(= f−f+) = 0

and hence

T0 = T+ − T−, T± ≥ 0 and T+T− = 0 = (T+T−)∗ = T−T+

.
As for uniqueness, if T = A+ − A− with A± ≥ 0, A+A− = 0, note first

that
A+A− = 0⇒ A−A+ = (A+A−)∗ = 0

and hence that

(A+ + A−)2 = A2
+ + A2

− = (A+ − A−)2 = T 2 = |T |2

where |T | represents the image, under the functional calculus for T , of the
function f(t) = |t|; and we may deduce from the uniqueness of the positive
square root of a positive operator that (A+ + A−) = |T | and hence we must
have

A± =
1

2
(|T | ± T ) = T±
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as desired.
7. Consider v± ∈ C([−1, 1]) defined by v±(t) = t ± i

√
1− t2. Note that

t = 1
2
(v+(t) + v−(t)) and |v±(t)| = 1∀t ∈ [−1, 1]. Define u± = v±(T ).

It follows, by scaling, that every self-adjoint operator is a linear combi-
nation of two unitary operators, and the Cartesian decomposition completes
the proof of the proposition.

�
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Chapter 3

Beyond normal operators

3.1 Polar decomposition

In this section, we establish the very useful polar decomposition for bounded
operators on Hilbert space. We begin with a few simple observations and then
introduce the crucial notion of a partial isometry.

Lemma 3.1.1. Let T ∈ B(H,K). Then,

ker T = ker (T ∗T ) = ker (T ∗T )
1
2 = ran⊥T ∗ . (3.1.1)

In particular, also

ker⊥T = ran T ∗ .

(In the equations above, we have used the notation ran⊥T ∗ and ker⊥T ,
for (ran T ∗)⊥ and (ker T )⊥, respectively.)

Proof : First observe that, for arbitrary x ∈ H, we have

||Tx||2 = 〈T ∗Tx, x〉 = 〈(T ∗T )
1
2x, (T ∗T )

1
2x〉 = ||(T ∗T )

1
2x||2 , (3.1.2)

whence it follows that ker T = ker(T ∗T )
1
2 .

Notice next that

x ∈ ran⊥T ∗ ⇔ 〈x, T ∗y〉 = 0 ∀ y ∈ K
⇔ 〈Tx, y〉 = 0 ∀ y ∈ K
⇔ Tx = 0

65
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and hence ran⊥T ∗ = ker T . ‘Taking perps’ once again, we find - because
of the fact that V ⊥⊥ = V for any linear subspace V ⊂ K - that the last
statement of the Lemma is indeed valid.

Finally, if {pn}n is any sequence of polynomials with the property that
pn(0) = 0 ∀ n and such that {pn(t)} converges uniformly to

√
t on σ(T ∗T ),

it follows that ||pn(T ∗T )− (T ∗T )
1
2 || → 0, and hence,

x ∈ ker(T ∗T ) ⇒ pn(T ∗T )x = 0 ∀n ⇒ (T ∗T )
1
2x = 0

and hence we see that also ker(T ∗T ) ⊂ ker(T ∗T )
1
2 ; since the reverse inclusion

is clear, the proof of the lemma is complete. �

Proposition 3.1.2. Let H,K be Hilbert spaces; then the following conditions
on an operator U ∈ B(H,K) are equivalent:

(i) U = UU∗U ;
(ii) P = U∗U is a projection;
(iii) U |ker⊥U is an isometry.

An operator which satisfies the equivalent conditions (i)-(iii) is called a par-
tial isometry.

Proof. (i)⇒ (ii) : The assumption (i) clearly implies that P = P ∗, and that
P 2 = U∗UU∗U = U∗U = P .

(ii) ⇒ (iii) : Let M = ran P . Then notice that, for arbitrary x ∈ H,
we have: ||Px||2 = 〈Px, x〉 = 〈U∗Ux, x〉 = ||Ux||2; this clearly implies that
ker U = ker P =M⊥, and that U is isometric on M (since P is identity on
M).

(iii) ⇒ (ii) : Let M = ker⊥U . For i = 1, 2, suppose zi ∈ H, and
xi ∈M, yi ∈M⊥ are such that zi = xi + yi; then note that

〈U∗Uz1, z2〉 = 〈Uz1, Uz2〉
= 〈Ux1, Ux2〉
= 〈x1, x2〉 (since U |M is isometric)

= 〈x1, z2〉 ( since 〈x1, y2〉 = 0),

and hence U∗U is the projection onto M.
(ii)⇒ (i) : LetM = ran U∗U ; then (by Lemma 3.1.1)M⊥ = ker U∗U =

ker U , and so, if x ∈M, y ∈M⊥, are arbitrary, and if z = x+y, then observe
that Uz = Ux+ Uy = Ux = U(U∗Uz). �
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Remark 3.1.3. Suppose U ∈ B(H,K) is a partial isometrry. Setting M =
ker⊥U and N = ran U(= ran U), we find that U is identically 0 on M⊥,
and U maps M isometrically onto N . It is customary to refer to M as the
initial space, and to N as the final space, of the partial isometry U .

On the other hand, upon taking adjoints in condition (ii) of Proposition
3.1.2, it is seen that U∗ ∈ B(K,H) is also a partial isometry. In view of the
preceding lemma, we find that ker U∗ = N⊥ and that ran U∗ =M; thus N
is the inital space of U∗ and M is the final space of U∗.

Finally, it follows from Proposition 3.1.2(ii) (and the proof of that propo-
sition) that U∗U is the projection (of H) ontoM while UU∗ is the projection
(of K) onto N . �

Exercise 3.1.4. If U ∈ B(H,K) is a partial isometry with initial space M
and final space N , show that if y ∈ N , then U∗y is the unique element x ∈M
such that Ux = y.

Before stating the polar decomposition theorem, we introduce a conve-
nient bit of notation: if T ∈ B(H,K) is a bounded operator between Hilbert
spaces, we shall always use the symbol |T | to denote the unique positive

square root of the positive operator |T |2 = T ∗T ∈ B(H); thus, |T | = (T ∗T )
1
2 .

(If T is self-adjoint - in fact, even normal - this notation/definition is consis-
tent with that yielded by the continuous functional calculus.)

Theorem 3.1.5. (Polar Decomposition)
(a) Any operator T ∈ B(H,K) admits a decomposition T = UA where
(i) U ∈ B(H,K) is a partial isomertry;
(ii) A ∈ B(H) is a positive operator; and
(iii) ker T = ker U = ker A .

(b) Further, if T = V B is another decomposition of T as a product of a
partial isometry V and a positive operator B such that kerV = kerB, then
necessarily U = V and B = A = |T |. This unique decomposition is called
the polar decomposition of T .

(c) If T = U |T | is the polar decomposition of T , then |T | = U∗T .

Proof. (a) If x, y ∈ H are arbitrary, then,

〈Tx, Ty〉 = 〈T ∗Tx, y〉 = 〈|T |2x, y〉 = 〈|T |x, |T |y〉 ,
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whence it follows - see Exercise 2.2.2 - that there exists a unique unitary
operator U0 : ran |T | → ran T such that U0(|T |x) = Tx ∀ x ∈ H. Let
M = ran |T | and let P = PM denote the orthogonal projection onto M.
Then the operator U = U0P clearly defines a partial isometry with initial
space M and final space N = ran T which further satisfies T = U |T | (by
definition). It follows from Lemma 3.1.1 that kerU = ker|T | = kerT .

(b) Suppose T = V B as in (b). Then V ∗V is the projection onto
ker⊥V = ker⊥B = ran B, which clearly implies that B = V ∗V B; hence,
we see that T ∗T = BV ∗V B = B2; thus B is a, and hence the, positive square
root of |T |2, i.e., B = |T |. It then follows that V (|T |x) = Tx = U(|T |x) ∀x;
by continuity, we see that V agrees with U on ran |T |, but since this is pre-
cisely the initial space of both partial isometries U and V , we see that we
must have U = V .

(c) This is an immediate consequence of the definition of U and Exercise
3.1.4. �

Exercise 3.1.6. (1) Prove the ‘dual’ polar decomposition theorem; i.e., each
T ∈ B(H,K) can be uniquely expressed in the form T = BV where V ∈
B(H,K) is a partial isometry, B ∈ B(K) is a positive operator and kerB =
kerV ∗ = kerT ∗. (Hint: Consider the usual polar decomposition of T ∗, and
take adjoints.)

(2) Show that if T = U |T | is the (usual) polar decomposition of T , then
U |ker⊥T implements a unitary equivalence between |T | |ker⊥|T | and |T ∗| |ker⊥|T ∗|.

(Hint: Write M = ker⊥T, N = ker⊥T ∗, W = U |M; then W ∈ B(M,N ) is
unitary; further |T ∗|2 = TT ∗ = U |T |2U∗; deduce that if A (resp., B) denotes
the restriction of |T | (resp., |T ∗|) toM (resp., N ), then B2 = WA2W ∗; now
deduce, from the uniqueness of the positive square root, that B = WAW ∗.)

(3) Apply (2) above to the case when H and K are finite-dimensional, and
prove that if T ∈ L(V,W ) is a linear map of vector spaces (over C), then
dim V = rank(T ) + nullity(T ), where rank(T ) and nullity(T ) denote the
dimensions of the range and kernel (or null-space), respectively, of the map
T .

(4) Show that an operator T ∈ B(H,K) can be expressed in the form
T = WA, where A ∈ B(H) is a positive operator and W ∈ B(H,K) is
unitary if and only if dim(ker T ) = dim(ker T ∗). (Hint: In order for such a
decomposition to exist, show that it must be the case that A = |T | and that
the W should agree, on ker⊥T , with the U of the polar decomposition, so that
W must map ker T isometrically onto ker T ∗.)
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(5) In particular, deduce from (4) that in case H is a finite-dimensional
inner product space, then any operator T ∈ B(H) admits a decomposition
as the product of a unitary operator and a positive operator. (In view of
Proposition 2.8.1 1(c) and 2(c), note that when H = C, this boils down to
the usual polar decomposition of a complex number.)

Several problems concerning a general bounded operator between Hilbert
spaces can be solved in two stages: in the first step, the problem is ‘reduced’,
using the polar decomposition theorem, to a problem concerning positive
operators on a Hilbert space; and in the next step, the positive case is set-
tled using the spectral theorem. This is illustrated, for instance, in exercise
3.1.7(2).

Exercise 3.1.7. (1) Recall that a subset ∆ of a (real or complex) vector
space V is said to be convex if it contains the ‘line segment joining any two
of its points’; i.e., ∆ is convex if x, y ∈ ∆, 0 ≤ t ≤ 1 ⇒ tx+ (1− t)y ∈ ∆.

(a) If V is a normed (or simply a topological) vector space, and if ∆ is
a closed subset of V , show that ∆ is convex if and only if it contains the
mid-point of any two of its points - i.e., ∆ is convex if and only if x, y ∈
∆ ⇒ 1

2
(x+ y) ∈ ∆. (Hint: The set of dyadic rationals, i.e., numbers of the

form k
2n

is dense in R.)

(b) If S ⊂ V is a subset of a vector space, show that there exists a
smallest convex subset of V which contains S; this set is called the convex
hull of the set S and we shall denote it by the symbol co(S). Show that
co(S) = {

∑n
i=1 θixi : n ∈ N, θi ≥ 0,

∑n
i=1 θi = 1}.

(c) Let ∆ be a convex subset of a vector space; show that the following
conditions on a point x ∈ ∆ are equivalent:

(i) x = 1
2
(y + z), y, z ∈ ∆ ⇒ x = y = z;

(ii) x = ty + (1− t)z, 0 < t < 1, y, z ∈ ∆ ⇒ x = y = z.

The point x is called an extreme point of a convex set ∆ if x ∈ ∆ and if
x satisfies the equivalent conditions (i) and (ii) above.

(d) It is a fact, called the Krein-Milman theorem - see [Yos], for instance -
that if K is a compact convex subset of a Banach space (or more generally, of
a locally convex topological vector space which satisfies appropriate ‘complete-
ness conditions’), then K = co(∂eK), where ∂eK denotes the set of extreme
points of K. Verify the above fact in case K = ball(H) = {x ∈ H : ||x|| ≤ 1},
where H is a Hilbert space, by showing that ∂e(ball H) = {x ∈ H : ||x|| = 1}.
(Hint: Use the parallelogram law - see Exercise 1.2.3(4).)
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(e) Show that ∂e(ball X) 6= {x ∈ X : ||x|| = 1}, when X = `1
n, n > 1.

(Thus, not every point on the unit sphere of a normed space need be an
extreme point of the unit ball.)

(2) Let H and K denote (separable) Hilbert spaces, and let B = {A ∈
B(H,K) : ||A|| ≤ 1} denote the unit ball of B(H,K). The aim of the follow-
ing exercise is to show that an operator T ∈ B is an extreme point of B if and
only if either T or T ∗ is an isometry. (See (1)(c) above, for the definition of
an extreme point.)

(a) Let B+ = {T ∈ B(H) : T ≥ 0, ||T || ≤ 1}. Show that T ∈ ∂eB+ ⇔T
is a projection. (Hint: suppose P is a projection and P = 1

2
(A+ B), A,B ∈

B+; then for arbitrary x ∈ ball(H), note that 0 ≤ 1
2
(〈Ax, x〉 + 〈Bx, x〉) ≤

1; since ∂e[0, 1] = {0, 1}, deduce that 〈Ax, x〉 = 〈Bx, x〉 = 〈Px, x〉 ∀ x ∈
(ker P∪ ran P ); but A ≥ 0 and ker P ⊂ ker A imply that A(ran P ) ⊂ ran P ;
similarly also B(ran P ) ⊂ ran P ; conclude (from Exercise 1.4.16) that
A = B = P . Conversely, if T ∈ B+ and T is not a projection, then it must
be the case - see Proposition 2.8.1 (1)(b) - that there exists λ ∈ σ(T ) such
that 0 < λ < 1; fix ε > 0 such that (λ− 2ε, λ + 2ε) ⊂ (0, 1); since λ ∈ σ(T ),
deduce that P 6= 0 where P = 1(λ−ε,λ+ε)(T ); notice now that if we set A =
T − εP,B = T + εP , then the choices ensure that A,B ∈ B+, T = 1

2
(A+B),

but A 6= T 6= B, whence T /∈ ∂eB+.)
(b) Show that the only extreme point of ball B(H) = {T ∈ B(H) : ||T || ≤

1} which is a positive operator is 1, the identity operator on H. (Hint: Prove
that 1 is an extreme point of ball B(H) by using the fact that 1 is an extreme
point of the unit disc in the complex plane; for the other implication, by
(a) above, it is enough to show that if P is a projection which is not equal
to 1, then P is not an extreme point in ball B(H); if P 6= 1, note that
P = 1

2
(U+ + U−), where U± = P ± (1− P ).)

(c) Suppose T ∈ ∂eB; if T = U |T | is the polar decomposition of T , show
that |T | |M is an extreme point of the set {A ∈ B(M) : ||A|| ≤ 1}, where
M = ker⊥|T |, and hence deduce, from (b) above, that T = U . (Hint: if
|T | = 1

2
(C + D), with C,D ∈ ball B(M) and C 6= |T | 6= D, note that

T = 1
2
(A+B), where A = UC,B = UD, and A 6= T 6= B.)

(d) Show that T ∈ ∂eB if and only if T or T ∗ is an isometry. (Hint:
suppose T is an isometry; suppose T = 1

2
(A + B), with A,B ∈ B; deduce

from (1)(d) that Tx = Ax = Bx ∀x ∈ H; thus T ∈ ∂eB; similarly, if
T ∗ is an isometry, then T ∗ ∈ ∂eB. Conversely, if T ∈ ∂eB, deduce from
(c) that T is a partial isometry; suppose it is possible to find unit vectors
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x ∈ kerT, y ∈ kerT ∗; define U±z = Tz ± 〈z, x〉y, and note that U± are
partial isometries which are distinct from T and that T = 1

2
(U+ + U−).)

3.2 Compact operators

Definition 3.2.1. A linear map T : X → Y between Banach spaces is
said to be compact if it satisfies the following condition: for every bounded
sequence {xn}n ⊂ X, the sequence {Txn}n has a subsequence which converges
with respect to the norm in Y .

The collection of compact operators from X to Y is denoted by B0(X, Y )
(or simply B0(X) if X = Y ).

Thus, a linear map is compact precisely when it maps the unit ball of X
into a set whose closure is compact - or equivalently, if it maps bounded sets
into totally bounded sets1; in particular, every compact operator is bounded.

Although we have given the definition of a compact operator in the con-
text of general Banach spaces, we shall really only be interested in the case
of Hilbert spaces. Nevertheless, we state our first result for general Banach
spaces, after which we shall specialise to the case of Hilbert spaces.

Proposition 3.2.2. Let X, Y, Z denote Banach spaces.

(a) B0(X, Y ) is a norm-closed subspace of B(X, Y ).

(b) if A ∈ B(Y, Z), B ∈ B(X, Y ), and if either A or B is compact, then
AB is also compact.

(c) In particular, B0(X) is a closed two-sided ideal in the Banach algebra
B(X).

Proof. (a) Suppose A,B ∈ B0(X, Y ) and α ∈ C, and suppose {xn} is a
bounded sequence in X; since A is compact, there exists a subsequence - call
it {yn} of {xn} - such that {Ayn} is a norm-convergent sequence; since {yn} is
a bounded sequence and B is compact, we may extract a further subsequence
- call it {zn} - with the property that {Bzn} is norm-convergent. It is clear
then that {(αA + B)zn} is a norm-convergent sequence; thus (αA + B) is
compact; in other words, B0(X, Y ) is a subspace of B(X, Y ).

1Recall that a subset F of a metric space is said to be totally bounded if for every
ε > 0, it is possible to find a finite subset S such that dist(x, S) < ε ∀x ∈ F ; and that a
subset of a metric space is compact if and only if it is complete and totally bounded.



72 CHAPTER 3. BEYOND NORMAL OPERATORS

Suppose now that {An} is a sequence in B0(X, Y ) and that A ∈ B(X, Y )
is such that ||An − A|| → 0. We wish to prove that A is compact. We will
do this by a typical instance of the so-called ‘diagonal argument’. Thus,
suppose S0 = {xn} is a bounded sequence in X. Since A1 is compact, we can

extract a subsequence S1 = {x(1)
n } of S0 such that {A1x

(1)
n } is convergent in

Y . Since A2 is compact, we can extract a subsequence S2 = {x(2)
n } of S1 such

that {A2x
(2)
n } is convergent in Y . Proceeding in this fashion, we can find a

sequence {Sk} such that Sk = {x(k)
n } is a subsequence of Sk−1 and {Akx(k)

n }
is convergent in Y , for each k ≥ 1. Let us write zn = x

(n)
n ; since {zn : n ≥ k}

is a subsequence of Sk, note that {Akzn} is a convergent sequence in Y , for
every k ≥ 1.

The proof of (a) will be completed once we establish that {Azn} is a
Cauchy sequence in Y . Indeed, suppose ε > 0 is given; let K = 1+supn||zn||;
first pick an integer N such that ||AN −A|| < ε

3K
; next, choose an integer n0

such that ||ANzn −ANzm|| < ε
3
∀ n,m ≥ n0; then observe that if n,m ≥ n0,

we have:

||Azn − Azm|| ≤ ||(A− AN)zn||+ ||ANzn − ANzm||
+ ||(AN − A)zm||

≤ ε

3K
K +

ε

3
+

ε

3K
K

= ε .

(b) Let B denote the unit ball in X; we need to show that (AB)(B) is
totally bounded; this is true in case (i) A is compact, since then B(B) is
bounded, and A maps bounded sets to totally bounded sets, and (ii) B is
compact, since then B(B) is totally bounded, and A (being bounded and
linear) maps totally bounded sets to totally bounded sets. �

Corollary 3.2.3. Let T ∈ B(H1,H2), where Hi are Hilbert spaces. Then

(a) T is compact if and only if |T | (= (T ∗T )
1
2 ) is compact;

(b) in particular, T is compact if and only if T ∗ is compact.

Proof. If T = U |T | is the polar decomposition of T , then also U∗T = |T |
- see Theorem 3.1.5; so each of T and |T | is a multiple of the other. Now
appeal to Proposition 3.2.2(b) to deduce (a) above. Also, since T ∗ = |T |U∗,
we see that the compactness of T implies that of T ∗; and (b) follows from
the fact that we may interchange the roles of T and T ∗. �



3.2. COMPACT OPERATORS 73

Exercise 3.2.4. (1) Let X be a metric space; if x, x1, x2, · · · ∈ X, show
that the following conditions are equivalent:

(i) the sequence {xn} converges to x;
(ii) every subsequence of {xn} has a further subsequence which converges

to x.
(Hint: for the non-trivial implication, note that if the sequence {xn} does
not converge to x, then there must exist a subsequence whose members are
‘bounded away from x’.)

(2) Show that the following conditions on an operator T ∈ B(H1,H2) are
equivalent:

(i) T is compact;
(ii) if {xn} is a sequence in H1 which converges weakly to 0 - i.e, 〈x, xn〉 →

0 ∀ x ∈ H1 - then ||Txn|| → 0.
(iii) if {en} is any infinite orthonormal sequence in H1, then ||Ten|| → 0.

(Hint: for (i)⇒ (ii), suppose {yn} is a subsequence of {xn}; by compactness,
there is a further subsequence {zn} of {yn} such that {Tzn} converges, to z,
say; since zn → 0 weakly, deduce that Tzn → 0 weakly; this means z = 0,
since strong convergence implies weak convergence; by (1) above, this proves
(ii). The implication (ii)⇒ (iii) follows form the fact that any orthonormal
sequence converges weakly to 0. For (iii) ⇒ (i), deduce from Proposition
3.2.7(c) that if T is not compact, there exists an ε > 0 such that Mε =
ran 1[ε,∞)(|T |) is infinite-dimensional; then any infinite orthonormal set{en :
n ∈ N} in Mε would violate condition (iii).)

Recall that if T ∈ B(H,K) and if M is a subspace of H, then T is said
to be ‘bounded below’ on M if there exists an ε > 0 such that ||Tx|| ≥
ε||x|| ∀ x ∈M.

Lemma 3.2.5. If T ∈ B0(H1,H2) and if T is bounded below on a subspace
M of H1, then M is finite-dimensional.

In particular, if N is a closed subspace of H2 such that N is contained
in the range of T , then N is finite-dimensional.

Proof. If T is bounded below on M, then T is also bounded below (by the
same constant) on M; we may therefore assume, without loss of generality,
thatM is closed. IfM contains an infinite orthonormal set, say {en : n ∈ N},
and if T is bounded below by ε on M, then note that ||Ten − Tem|| ≥
ε
√

2 ∀n 6= m; then {en} would be a bounded sequence in H such that {Ten}
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had no Cauchy subsequence, thus contradicting the assumed compactness of
T ; hence M must be finite-dimensional.

As for the second assertion, letM = T−1(N )∩(ker⊥T ); note that T maps
M 1-1 onto N ; by the open mapping theorem, T must be bounded below
on M; hence by the first assertion of this Lemma, M is finite-dimensional,
and so also is N . �

The purpose of the next exercise is to convince the reader of the fact that
compactness is an essentially ‘separable phenomenon’, so that our restricting
ourselves to separable Hilbert spaces is essentially of no real loss of generality,
as far as compact operators are concerned.

Exercise 3.2.6. (a) Let T ∈ B(H) be a positive operator on a (possibly
non-separable) Hilbert space H. Let ε > 0 and let Sε = {f(T )x : f ∈
C(σ(T )), f(t) = 0 ∀t ∈ [0, ε]}. If Mε = [Sε] denotes the closed subspace
generated by Sε, then show that Mε ⊂ ran T . (Hint: let g ∈ C(σ(T )) be
any continuous function such that g(t) = t−1 ∀ t ≥ ε

2
; for instance, you could

take

g(t) =

{
1
t

if t ≥ ε
2

4t
ε2

if 0 ≤ t ≤ ε
2

;

then notice that if f ∈ C(σ(T )) satisfies f(t) = 0 ∀t ≤ ε, then f(t) =
tg(t)f(t) ∀t; deduce that Sε is a subset of N = {z ∈ H : z = Tg(T )z}; but
N is a closed subspace of H which is contained in ran T .)

(b) Let T ∈ B0(H1,H2), whereH1,H2 are arbitrary (possibly non-separable)
Hilbert spaces. Show that ker⊥T and ran T are separable Hilbert spaces.
(Hint: Let T = U |T | be the polar decomposition, and let Mε be associated to
|T | as in (a) above; show that U(Mε) is a closed subspace of ran T and deduce
from Lemma 3.2.5 that Mε is finite-dimensional; note that ker⊥T = ker⊥|T |
is the closure of ∪∞n=1M 1

n
, and that ran T = U(ker⊥T ).)

We now return to our standing assumption that all Hilbert spaces are
separable.

Proposition 3.2.7. The following conditions on an operator T ∈ B(H1,H2)
are equivalent:

(a) T is compact;
(b) |T | is compact;
(c) ran 1[ε,∞)(|T |) is finite-dimensional, for every ε > 0;
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(d) there exists a sequence {Tn}∞n=1 ⊂ B(H1,H2) such that (i) ||Tn−T || →
0, and (ii) ran Tn is finite-dimensional, for each n;

(e) ran T does not contain any infinite-dimensional closed subspace of
H2.

Proof. For ε > 0, let us use the notation 1ε = 1[ε,∞) and Pε = 1ε(|T |).
(a)⇒ (b) : See Corollary 3.2.3.
(b) ⇒ (c) : Since t ≥ ε1ε(t) ∀ t ≥ 0, we find easily that |T | is bounded

below (by ε) on ran Pε, and (c) follows from Lemma 3.2.5.
(c) ⇒ (d) : Define Tn = TP 1

n
; notice that 0 ≤ t(1 − 1 1

n
(t)) ≤ 1

n
∀ t ≥ 0;

conclude that || |T |(1−1 1
n
(|T |))|| ≤ 1

n
; if T = U |T | is the polar decomposition

of T , deduce that ||T − Tn|| ≤ 1
n
; finally, the condition (c) clearly implies

that each (P 1
n

and consequently) Tn has finite-dimensional range.

(d) ⇒ (a) : In view of Proposition 3.2.2(a), it suffices to show that each
Tn is a compact operator; but any bounded operator with finite-dimensional
range is necessarily compact, since any bounded set in a finite-dimensional
space is totally bounded.

(a)⇒ (e) : See Lemma 3.2.5.
(e) ⇒ (c) : Pick any bounded measurable function g such that g(t) =

1
t
, ∀t ≥ ε; then tg(t) = 1 ∀t ≥ ε; deduce that |T |g(|T |)x = x, ∀ x ∈ ran Pε,

and hence that ran Pε = |T |(ran Pε) is a closed subspace of (ran |T |, and
consequently of) the initial space of the partial isometry U ; deduce that
T (ran Pε) = U(ran Pε) is a closed subspace of ran T ; by condition (e),
this implies that T (ran Pε) is finite-dimensional. But |T | and consequently
T is bounded below (by ε) on ran Pε; in particular, T maps ran Pε 1-1 onto
T (ran Pε); hence ran Pε is finite-dimensional, as desired. �

We now discuss normal compact operators.

Proposition 3.2.8. Let T ∈ B0(H) be a normal (compact) operator on a
separable Hilbert space, and let E 7→ P (E) = 1E(T ) be the associated spectral
measure.

(a) If ε > 0, let Pε = P ({λ ∈ C : |λ| ≥ ε}) denote the spectral projection
associated to the complement of the ε-neighbourhood of 0. Then ran Pε is
finite-dimensional.

(b) If Σ = σ(T )− {0}, then
(i) λ ∈ Σ ⇒ λ is an eigenvalue of finite multiplicity; i.e., 0 < dim ker(T−

λ) <∞;
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(ii) With P (λ) = 1T ({λ}), the subspaces {ran P (λ) : λ ∈ Σ} are pair-
wise orthogonal finite-dimensional subspaces, so Σ is a countable set and
ran

(∑
λ∈Σ P ({λ})

)
= ker⊥(T );

(iii) the only possible accumulation point of Σ is 0; and
(iv) there exist a countable set N , scalars λn ∈ Σ, n ∈ N such that

Tx =
∑
n∈N

λn P ({λn}) .

Proof. (a) Note that the function defined by the equation

g(λ) =

{
1
λ

if |λ| ≥ ε
0 otherwise

is a bounded measurable function on σ(T ) such that g(λ)λ = 1Fε(λ), where
Fε = {z ∈ C : |z| ≥ ε}. It follows that g(T )T = Tg(T ) = Pε. Hence ran Pε
is contained in ran T , and the desired conclusion follows from Proposition
3.2.7(e).

(b) (i) By Theorem 1.6.2 (2), if λ ∈ Σ, there exists a sequence of unit
vectors xn such that limn→∞ ‖Axn − λxn‖ = 0. By compactness, there is
some subsequence {xnk} such that y = limk→∞Axnk exists. Since ‖y‖ =
limk→∞ ‖Axnk‖ = |λ| 6= 0 it follows that x = λ−1y is a unit vector and
that Ax = λx, so λ is an eigenvalue of T . Also, it follows from Proposition
2.4.1(5) that ran P (λ) = ker(T − λ). Since A is clearly bounded below (by
|λ|) on ker(A − λ), it is seen from Lemma 3.2.5 that λ is an eigenvalue of
finite multiplicity.

(ii) If λ ∈ Σ, and x ∈ ker(A− λ), note that also

‖(A∗ − λ̄)x‖ = ‖(A− λ)∗x‖ = 0

since (A− λ) inherits normality from A. Hence if λ, µ ∈ Σ, if λ 6= µ and if x
and y are eigenvectors of A corresponding to λ and µ respectively, then

λ〈x, y〉 = 〈Ax, y〉 = 〈x,A∗y〉 = µ〈x, y〉
and we find that {ker(A − λ) = ran P ({λ}) : λ ∈ Σ} is a set of pairwise
orthogonal non-zero subspaces of the separable space H. Hence Σ must be
countable. It follows that(∑

λ∈Σ

P ({λ})

)
= P (Σ)

= P (C \ {0})
= projection onto ker⊥(T ) .
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(iii) For any ε > 0, Lemma 3.2.5 implies that ran Pε is finite-dimensional.
But clearly Pε =

∑
λ∈Σ,|λ|>ε ran P ({λ}); so it must be that {λ ∈ Σ : |λ| > ε}

is finite, thereby establishing (iii).
(iv) This is a consequence of parts (ii) and (iii) above. �

Exercise 3.2.9. Let X be a compact Hausdorff space and let BX 3 E 7→
P (E) be a spectral measure; let µ be a measure which is ‘mutually absolutely
continuous’ with respect to P - thus, for instance, we may (see Remark 2.6.3)
take µ(E) =

∑
||P (E)en||2, where {en} is some orthonormal basis for the

underlying Hilbert space H - and let π : C(X) → B(H) be the associated
representation.

(a) Show that the following conditions are equivalent:
(i) H is finite-dimensional;
(ii) there exists a finite set F ⊂ X such that µ = µ|F , and such that

ran P ({x}) is finite-dimensional, for each x ∈ F .
(b) If x0 ∈ X, show that the following conditions on a vector x ∈ H are

equivalent:
(i) π(f)x = f(x0)x ∀ f ∈ C(X);
(ii) x ∈ ran P ({x0}).
(Hint: See Corollary 2.4.3.)

By piecing together our description in Proposition 3.2.8 - applied to |T | -
and the polar decomposition, we arrive at the useful ‘singular value decom-
position’ of a general compact operator.

Proposition 3.2.10. Suppose T ∈ B0(H1,H2) has polar decomposition T =
U |T |. Then, with P ({λn}) = 1|T |({λ}) (as in Proposition 3.2.8 applied to
|T |), we have

1. σ(|T |) = Σ ∪ {0} where Σ admits an enumeration Σ = {λn : n ∈ N}
for some countable set N , with λ1 > λ2 > · · · > λn > λn+1 > · · · and
λn ↓ 0 if N is infinite and taken to be N, without loss of generality;

2. T =
∑

n∈N λnUP ({λn}); more explicitly, if {x(n)
k : k ∈ In} is an or-

thonormal basis for ran P ({λn}) and y
(n)
k = Ux

(n)
k , then

Tx =
∑
n∈N

λn

(∑
k∈In

〈x, x(n)
k 〉y

(n)
k

)
. (3.2.3)
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In particular, we may assume that N = {1, 2, · · · , n} or {1, 2, · · · } ac-
cording as dim ran |T | < ∞ or ℵ0, and that λ1 ≥ λ2 ≥ · · · ; if the sequence
{sn = sn(T ) : n < dim(H1) + 1} is defined by

sn =


λ1 if 0 < n ≤ card(I1)
λ2 if card(I1) < n ≤ (card(I1) + card(I2))
· · ·
λm if

∑
1≤k<m card(Ik) < n ≤

∑
1≤k≤m card(Ik)

0 if
∑

k∈N card(Ik) < n

(3.2.4)

then we obtain a non-increasing sequence

s1(T ) ≥ s2(T ) ≥ · · · ≥ sn(T ) ≥ · · ·

of (uniquely defined) non-negative real numbers, called the sequence of sin-
gular values of the compact operator T .

The proof is essentially spelt out in the statement of the Proposition
itself, and is left as an exercise to the reader. A less verbose - and slightly
less informative - way to rephrase the content of Proposition 3.2.10 uses the
following notation: for x ∈ H, y ∈ K, write (x̄⊗ y) for the rank one operator
in B(H,K) given by (x̄⊗ y)x′ = 〈x′, x〉y.

Exercise 3.2.11. If x ∈ H, y, y′ ∈ K, z ∈M, then verify that (ȳ′⊗z)(x̄⊗y) =
〈y, y′〉(x̄⊗ z).

Singular value decomposition: If s1, s2... are the singular values of a
compact operator T , then T admits a so-called singular value decompo-
sition (sometimes abbreviated to SVD)

T =
∑
n

sn(T ) (x̄n ⊗ yn) (3.2.5)

where {xn} (resp., {yn}) is an orthonormal basis for ker⊥(T ),(resp., ker⊥(T ∗)).

Note that while the singular values are uniquely determined, this is no
longer true for the SVD, since, for instance, ker(|T |−λ) might have dimension
more than one for some λ. Some more useful properties of singular values
are listed in the following exercises.



3.2. COMPACT OPERATORS 79

Exercise 3.2.12. 1. Let T ∈ B(H) be a positive compact operator on a
Hilbert space. In this case, we write λn = sn(T ), since (T = |T | and
consequently) each λn is then an eigenvalue of T . Show that

λn = max
dimM≤n

min{〈Tx, x〉 : x ∈M, ||x|| = 1} , (3.2.6)

where the the maximum is to be interpreted as a supremum, over the
collection of all subspaces M ⊂ H with appropriate dimension, and
part of the assertion of the exercise is that this supremum is actually
attained (and is consequently a maximum); in a similar fashion, the
minimum is to be interpreted as an infimum which is attained. (This
identity is called the max-min principle and is also referred to as the
Rayleigh-Ritz principle.)

2. Define Mn = [{xj : 1 ≤ j ≤ n}], where {xn} is as in eqn. 3.2.5;
observe that λn = min{〈Tx, x〉 : x ∈ Mn, ||x|| = 1}; this proves the
inequality ≤ in 3.2.6. Conversely, if dim M ≤ n, argue that there
must exist a unit vector x0 ∈ M ∩M⊥

n−1 (since the projection onto
Mn−1 cannot be injective on M ), to conclude that min{〈Tx, x〉 : x ∈
M, ||x|| = 1} ≤ λn.)

3. If T : H1 → H2 is a compact operator between Hilbert spaces, show that

sn(T ) = max
dimM≤n

min{||Tx|| : x ∈M, ||x|| = 1} . (3.2.7)

(Hint: Note that ||Tx||2 = 〈|T |2x, x〉, apply (1) above to |T |2, and
note that sn(|T |2) = sn(|T |)2.)

4. T ∈ B0(H) ⇒ s1(T ) = ‖T‖. (Hint: This is the case n = 1 of (2)
above.)

5. If T is compact, show that

sn(T ) = min{‖T − F‖ : dim(ran(F )) < n} ∀n ≥ 1 .

(Hint: If sn(T ) = 0, then dim(ran(T )) < n and this equality is obvious.
So assume sn(T ) > 0.)

Prove two inequalities. Let eq. (3.2.5) be the SVD of T . If Fn =∑n−1
k=1 skx̄k ⊗ yk, then dim(ran(Fn)) < n and ‖T − Fn‖ = sn(T ) since

{sn(T )} is a non-increasing sequence; so indeed

sn(T ) ≤ inf{‖T − F‖ : dim(ran(F )) < n} ∀n ≥ 1} .
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Conversely suppose F is an operator whose range (call it M) has di-
mension less than n. Let N = ker(F ). Note first that ran(F ) and
ran(F ∗) have the same dimension (by polar decomposition) and hence
dim(N⊥) = dim(ran(F ∗)) < n . Let Mn = [{x1, · · · , xn}]. The as-
sumption sn(T ) > 0 implies that dim(Mn) = n. If P denotes the
projection onto N⊥, it follows that P |Mn cannot be injective; since
ker(P ) = N , we can find a unit vector x ∈Mn ∩N . Then,

‖(T − F )x‖ = ‖Tx‖
≥ min{‖Tz‖ : z ∈ S(Mn)}
= sn(T ) ,

thus yielding the reverse inequality.

Since limn→∞ sn(T ) = 0, this exercise also gives another proof of Propo-
sition 3.2.7) (d).)

6. If T ∈ B0(H1,H2) and if sn(T ) > 0, then show that n ≤ dim(H2)
(so that sn(T ∗) is defined) and sn(T ∗) = sn(T ). (Hint: Use Exercise
3.1.6(2) or the polar decomposition; in fact if T =

∑
sn(x̄n⊗ yn) is an

SVD of T , then T∗ =
∑
sn(ȳn ⊗ xn) is an SVD of T ∗ .)

3.3 von Neumann-Schatten ideals

We begin with a brief preamble to this section which might help motivate
the notation and development of this section - which should be viewed as
a non-commutative analogue of the classic sequence spaces c0, `

2, `1, `∞ and
finally `p, 1 < p < ∞, and the various duality relations among them. The
fact to remember is:

1. The following conditions on an operator T ∈ B(H,K) are equivalent:

(a) There exists an orthonormal basis {xn : n ∈ N} (resp., {yn : n ∈
N}) for ker⊥(T ) (resp., ker⊥(T ∗)) such that Txn = snyn ∀n ∈ N
for a sequence s(T ) = {sn : n ∈ N} of positive scalars such that
s(T ) ∈ c0 (resp., s(T ) ∈ `p where p ∈ [1,∞)).

(b) T ∈ B0(H,K) (resp., T ∈ Bp(H,K) where p ∈ [1,∞)) .
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2. With the notation of (1) above, The sets Bp(H,K) are Banach spaces
- called the von Neumann-Schatten classes - when equipped with

the norms given by ‖T‖p = (
∑
sn(T )p)

1
p .

3. B0(H)∗ = B1(H) (where B0(H) is viewed as a subspace of B(H)), and
there exist natural identifications Bp(H)∗ = Bq(H) for 1 < p, q < ∞
with 1

p
+ 1

q
= 1, and B1(H)∗ = B(H).

4. Each Bp(H) is a two-sided ideal in B(H) and the Schatten p-norm ‖·‖p
is unitarily invariant in the sense that ‖UTV ‖p = ‖T‖p whenever U
and V are unitary.

5. The space B00(H) of finite rank operators on H is a dense linear sub-
space of each Banach space Bp(H), 1 ≤ p < ∞, which is, in turn, a
dense subspace of the Banach space B0(H).

3.3.1 Hilbert-Schmidt operators

Lemma 3.3.1. The following conditions on a linear operator T ∈ B(H1,H2)
are equivalent:

(i)
∑

n ||Ten||2 < ∞ , for some orthonormal basis {en} of H1;
(ii)

∑
m ||T ∗fm||2 < ∞ , for every orthonormal basis {fm}m of H2.

(iii)
∑

n ||Ten||2 < ∞ , for all orthonormal basis {en} of H1.
If these equivalent conditions are satisfied, then the sums of the series in (ii)
and (iii) are independent of the choice of the orthonormal bases and are all
equal to one another.

Proof. If {en} (resp., {fm}) is any orthonormal basis for H1 (resp., H2), then
note that ∑

n

||Ten||2 =
∑
n

∑
m

|〈Ten, fm〉|2

=
∑
m

∑
n

|〈T ∗fm, en〉|2

=
∑
m

||T ∗fm||2 ,

and all the assertions of the proposition are seen to follow. �
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Definition 3.3.2. An operator T ∈ B(H1,H2) is said to be a Hilbert-
Schmidt operator if it satisfies the equivalent conditions of Lemma 3.3.1,
and the Hilbert-Schmidt norm of such an operator is defined to be

||T ||2 =

( ∑
n

||Ten||2
) 1

2

, (3.3.8)

where {en} is any orthonormal basis for H1. The collection of all Hilbert-
Schmidt operators from H1 to H2 will be denoted by B2(H1,H2).

Some elementary properties of the class of Hilbert-Schmidt operators are
contained in the following proposition.

Proposition 3.3.3. Suppose T ∈ B(H1,H2), S ∈ B(H2,H3), whereH1,H2,H3

are Hilbert spaces.
(a) T ∈ B2(H1,H2) ⇒ T ∗ ∈ B2(H2,H1); and furthermore, ||T ∗||2 = ||T ||2 ≥

||T ||∞, where we write || · ||∞ to denote the usual operator norm;
(b) if either S or T is a Hilbert-Schmidt operator, so is ST , and

||ST ||2 ≤
{
||S||2||T ||∞ if S ∈ B2(H2,H3)
||S||∞||T ||2 if T ∈ B2(H1,H2) ;

(3.3.9)

(c) B2(H1,H2) ⊂ B0(H1,H2);
(d) if T ∈ B0(H1,H2), then T is a Hilbert-Schmidt operator if and only

if
∑

n sn(T )2 < ∞; in fact,

||T ||22 =
∑
n

sn(T )2 .

Proof. (a) The equality ||T ||2 = ||T ∗||2 was proved in Lemma 3.3.1. If x
is any unit vector in H1, pick an orthonormal basis {en} for H1 such that
e1 = x, and note that

||T ||2 =

( ∑
n

||Ten||2
) 1

2

≥ ||Tx|| ;

since x was an arbitrary unit vector in H1, deduce that ||T ||2 ≥ ||T ||∞, as
desired.
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(b) Suppose T is a Hilbert-Schmidt operator; then, for an arbitrary or-
thonormal basis {en} of H1, we find that∑

n

||STen||2 ≤ ||S||2∞
∑
n

||Ten||2 ,

whence we find that ST is also a Hilbert-Schmidt operator and that ||ST ||2 ≤ ||S||∞||T ||2;
if T is a Hilbert-Schmidt operator, then, so is T ∗, and by the already proved
case, also S∗T ∗ is a Hilbert-Schmidt operator, and

||TS||2 = ||(TS)∗||2 ≤ ||S∗||∞||T ∗||2 = ||S||∞||T ||2 .

(c) Let Mε = ran 1[ε,∞)(|T |); then Mε is a closed subspace of H1 on
which T is bounded below, by ε; so, if {e1, · · · , eN} is any orthonormal set
in Mε, we find that Nε2 ≤

∑N
n=1 ||Ten||2 ≤ ||T ||22, which clearly implies

that dimMε is finite (and can not be greater than
(
||T ||2
ε

)2

). We may now

infer from Proposition 3.2.7 that T is necessarily compact.
(d) Let Tx =

∑
n sn(T )〈x, xn〉yn for all x ∈ H1, as in equation (3.2.5),

for an appropriate orthonormal (finite or infinite) sequence {xn} (resp., {yn})
in H1 (resp., in H2). Then notice that ||Txn|| = sn(T ) and that Tx = 0 if
x ⊥ xn ∀n. If we compute the Hilbert-Schmidt norm of T with respect to an
orthonormal basis obtained by extending the orthonormal set {xn}, we find
that ||T ||22 =

∑
n sn(T )2, as desired. �

Remark 3.3.4. 1. B2(H) is a two-sided ideal in B0(H). (This follows
from Proposition 3.3.3 (b), (d) and the fact that `2(N) is a vector
space.)

2. The set B00(H) of all finite rank operators is the smallest non-zero (two-
sided) ideal of B(H). (Reason: If I is any non-zero ideal in B(H), there
exists a T ∈ I and x0, y0 ∈ H \ {0} such that Tx0 = y0. Then, for any
0 6= x, y ∈ H, we have

x̄⊗ y = ‖y0‖−2(ȳ0 ⊗ y)T (x̄⊗ x0) ∈ I

and we are done, because B00(H) is linearly spanned by operators of
the form (x̄⊗ y).)

3. B2(H,K) is a Hilbert space with respect to the inner product given by

〈S, T 〉ε =
∑
〈Sen, T en〉
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for an orthonormal basis ε = {en} of H; and this definition is in-
dependent of the orthonormal basis ε. (Reason: For any orthonor-
mal basis ε of H, this series is convergent (by two applications of the
Cauchy-Schwarz inequality, once in K and then again in `2) and is eas-
ily seen to define a sesquilinear form Bε on B2(H,K) with associated
quadratic form qε being independent of the orthonormal basis ε. It
follows from the polarisation identity that Bε is also independent of e.
As qε(T ) ≥ ‖T‖∞, any qε-Cauchy sequence {Tn : n ∈ N} in B2(H,K) is
also a Cauchy sequence in B(H,K). If T ∈ B(H,K) and ‖Tn−T‖ → 0,
it is not hard to see that also qε(Tn − T ) → 0. If H̄ denotes the ‘con-
jugate Hilbert space’ of H - with an anti-unitary operator H 3 f 7→ f̄
- it is not hard to show that {(f̄j ⊗ ei) : i, j ∈ N} is an orthonormal
basis for B2(H,K) whenever {en : n ∈ N} (resp., {fn : n ∈ N}) is
an orthonormal basis for H (resp., K), and hence we have a natural
identification B2(H,K) ∼= H̄ ⊗ K.)

4. B00(H) is dense in the Hilbert space B2(H) as well as in the Banach
space B0(H).

5. B0(H) is the only non-trivial closed ideal in B(H). (Reason: If I is any
non-zero closed ideal in B(H), it follows from items 2. and 4. above
that B0(H) ⊂ I. It suffices to show that B0(H) is the largest ideal
in B(H). (This requires separability of H.) Suppose I is a two-sided
ideal containing a non-compact operator. Then, by Proposition 3.2.7
(e), we find that there exists an infinite-dimensional closed subspace
M contained in ran(T ). Let N = T−1(M) ∩ ker⊥(T ). Then T is a
bijective bounded operator of N onto M and hence there exists an
S ∈ B(M,N ) such that TS = idM. Since M is infinite-dimensional,
there exists an isometry V ∈ B(H) such that ran(V ) =M. It is seen
that idH = V ∗TSV ∈ I, whence the ideal I must be all of B(H).)

Probably the most useful fact concerning Hilbert-Schmidt operators is
their connection with integral operators. (Recall that a measure space (Z,BZ , λ)
is said to be σ-finite if there exists a partition Z =

∐∞
n=1En, such that

En ∈ BZ , µ(En) <∞ ∀n. The reason for our restricting ourselves to σ-finite
measure spaces is that it is only in the presence of some such hypothesis that
Fubini’s theorem.)
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Proposition 3.3.5. Let (X,BX , µ) and (Y,BY , ν) be σ-finite measure spaces.
Let H = L2(X,BX , µ) and K = L2(Y,BY , ν). Then the following conditions
on an operator T ∈ B(H,K) are equivalent:

(i) T ∈ B2(K,H);
(ii) there exists k ∈ L2(X × Y,BX ⊗ BY , µ× ν) such that

(Tg)(x) =

∫
Y

k(x, y)g(y) dν(y) ν − a.e. ∀ g ∈ K . (3.3.10)

If these equivalent conditions are satisfied, then,

||T ||B2(K,H) = ||k||L2(µ×ν) .

Proof. (ii) ⇒ (i): Suppose k ∈ L2(µ × ν); then, by Tonelli’s theorem, we
can find a set A ∈ BX such that µ(A) = 0 and such that x /∈ A ⇒ kx (=
k(x, ·) ) ∈ L2(ν), and further,

||k||2L2(µ×ν) =

∫
X−A
||kx||2L2(ν)dµ(x) .

It follows from the Cauchy-Schwarz inequality that if g ∈ L2(ν), then kxg ∈
L1(ν) ∀ x /∈ A; hence equation 3.3.10 does indeed meaningfully define a
function Tg on X − A, so that Tg is defined almost everywhere; another
application of the Cauchy-Schwarz inequality shows that

||Tg||2L2(µ) =

∫
X

|
∫
Y

k(x, y)g(y) dν(y)|2 dµ(x)

=

∫
X−A
|〈kx, g〉K|2 dµ(x)

≤
∫
X−A
||kx||2L2(ν)||g||2L2(ν) dµ(x)

= ||k||2L2(µ×ν)||g||2L2(ν) ,

and we thus find that equation 3.3.10 indeed defines a bounded operator
T ∈ B(K,H).

Before proceeding further, note that if g ∈ K and f ∈ H are arbitrary,
then, (by Fubini’s theorem), we find that

〈Tg, f〉 =

∫
X

(Tg)(x)f(x)dµ(x)

=

∫
X

( ∫
Y

k(x, y)g(y)dν(y)

)
f(x)dµ(x)

= 〈k, f ⊗ g〉L2(µ×ν) , (3.3.11)
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where we have used the notation (f ⊗ g) to denote the function on X × Y
defined by (f ⊗ g)(x, y) = f(x)g(y).

Suppose now that {en : n ∈ N} and {gm : m ∈ M} are orthonormal
bases for H and K respectively; then, notice that also {gm : m ∈ M} is an
orthonormal basis for K; deduce from equation 3.3.11 above that∑

m∈M,n∈N

|〈Tgm, en〉H|2 =
∑

m∈M,n∈N

|〈k, en ⊗ gm〉L2(µ×ν)|2

= ||k||2L2(µ×ν) ;

thus T is a Hilbert-Schmidt operator with Hilbert-Schmidt norm agreeing
with the norm of k as an element of L2(µ× ν).

(i) ⇒ (ii) : If T : K → H is a Hilbert-Schmidt operator, then, in partic-
ular - see Proposition 3.3.3(c) - T is compact; let

Tg =
∑
n

λn〈g, gn〉fn

be the singular value decomposition of T (see Proposition 3.2.10). Thus {gn}
(resp., {fn}) is an orthonormal sequence in K (resp., H) and λn = sn(T ).
It follows from Proposition 3.3.3(d) that

∑
n λ

2
n <∞, and hence we find that

the equation

k =
∑
n

λn fn ⊗ g

defines a unique element k ∈ L2(µ× ν); if T̃ denotes the ‘integral operator’
associated to the ‘kernel function’ k as in equation 3.3.10, we find from
equation 3.3.11 that for arbitrary g ∈ K, f ∈ H, we have

〈T̃ g, f〉H = 〈k, f ⊗ g〉L2(µ×ν)

=
∑
n

λn〈fn ⊗ gn, f ⊗ g〉L2(µ×ν)

=
∑
n

λn〈fn, f〉H〈gn, g〉K

=
∑
n

λn〈fn, f〉H〈g, gn〉K

= 〈Tg, f〉H ,

whence we find that T = T̃ and so T is, indeed, the integral operator induced
by the kernel function k. �
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Exercise 3.3.6. If T and k are related as in equation 3.3.10, we say that T
is the integral operator induced by the kernel k, and we shall write T = Int k.

For i = 1, 2, 3, let Hi = L2(Xi,Bi, µi), where (Xi,Bi, µi) is a σ-finite
measure space.

(a) Let h ∈ L2(X2×X3,B2⊗B3, µ2×µ3), k, k1 ∈ L2(X1×X2,B1⊗B2, µ1×
µ2), and let S = Int h ∈ B2(H3,H2), T = Int k, T1 = Int k1 ∈ B2(H2,H1);
show that

(i) if α ∈ C, then T + αT1 = Int (k + αk1);
(ii) if we define k∗(x2, x1) = k(x1, x2), then k∗ ∈ L2(X2×X1,B2⊗B1, µ2×

µ1) and T ∗ = Int k∗;
(iii) TS ∈ B2(H3,H1) and TS = Int (k ∗ h), where

(k ∗ h)(x1, x3) =

∫
X2

k(x1, x2)h(x2, x3) dµ2(x2)

for (µ1 × µ3)-almost all (x1, x3) ∈ X ×X.
(Hint: for (ii), note that k∗ is a square-integrable kernel, and use equation
3.3.11 to show that Int k∗ = (Int k)∗; for (iii), note that |(k ∗h)(x1, x3)| ≤
||kx1||L2(µ2)||hx3||L2(µ2) to conclude that k∗h ∈ L2(µ1×µ3); again use Fubini’s
theorem to justify interchanging the orders of integration in the verification
that Int(k ∗ h) = (Int k)(Int h).)

3.3.2 Trace-class operators

Proposition 3.3.7. 1. The following conditions on a T ∈ B(H) are
equivalent:

(a) T is compact and
∑

n∈N sn(T ) <∞.

(b) There exist Hilbert-Schmidt operators H1, H2 such that T = H1H2.

(c)
∑
|〈Txn, yn〉| < ∞ for any pair {xn} and {yn} of orthonormal

sets in H.

The collection of operators satisfying the three equivalent conditions
above is denoted by B1(H).

2. B1(H) is a self-adjoint two-sided ideal in B(H).

Due to the next property the class B1(H) is called the Trace Class
and such operators are said to be trace class operators.
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3. If T is of trace class, the sum
∑
〈Txn, xn〉 is convergent for any or-

thonormal basis{xn}n of H; the value of this sum is independent of the
orthonormal basis {xn}n, is called the trace of T , and is denoted by
Tr(T ).

4. If T ∈ B1(H), A ∈ B(H), then Tr(AT ) = Tr(TA). (Note that both
sides of this equation make sense in view of (3) above.) And, in par-
ticular Tr(UTU∗) = Tr(T ) for any unitary U .

Proof. 1. (a) ⇒ (b) : Let T =
∑
sn(T )(x̄n ⊗ yn) be the SVD of T . Let

H1 =
∑
sn(T )

1
2 (ȳn ⊗ yn) and H2 =

∑
sn(T )

1
2 (x̄n ⊗ yn). Then the Hi’s

are Hilbert-Schmidt operators (these defining equations are, in fact,

the SVD’s of the Hi’s, and hence sn(Hi) = sn(T )
1
2 , i = 1.2 and so,∑

sn(Hi)
2 =

∑
sn(T ) <∞) and clearly T = H1H2.

(b) ⇒ (c) : It follows from (two applications of) the Cauchy-Schwarz
inequality (once in H2 and once in `2) and Proposition 3.3.3 that∑

|〈Txn, yn〉| ≤
∑
|〈H2xn, H

∗
1yn〉|

≤
∑
‖H2xn‖ · ‖H∗1yn‖

≤ ‖H2‖2‖H∗1‖2

< ∞ ,

as desired.

(c)⇒ (a) : We first wish to show that the assumption (c) implies that
T is compact. For this, it suffices to prove that |T | is compact, or
equivalently that ran(1[ε,∞)(|T |) is finite-dimensional, for any ε > 0.

Assertion: Let Mε = ran(1[ε,∞). Suppose Mε is infinite-dimensional
for some ε > 0. Then there exist orthonormal sets {xn} in Mε and
{yn} in T (Mε) such that 〈Txn, yn〉 = ‖Txn‖ ∀n.

Reason: Pick a unit vector x1 ∈ Mε. Then ‖Tx1‖ = ‖|T |x1‖ ≥ ε, so
|T |x1 6= 0. Let z1 = 1

‖Tx1‖ |T |x1. Let V1 = [{x1, z1}]. As V1 is a finite-

dimensional subspace ofMε, we may find a unit vector x2 ∈Mε∩V ⊥1 .
As before, let z2 = 1

‖Tx2‖ |T |x2. Under the assumed infinite dimension-
ality of Mε, we may keep repeating this process to find an infinite
orthonormal set {xn} ⊂ Mε such that the subspaces Vn = [xn, zn] are
pairwise orthogonal subspaces of Mε, where zn = 1

‖Txn‖ |T |xn. Define
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yn = Uzn where T = U |T | is the polar decomposition of T . Since {zn}
is an orthonormal set in Mε and hence in the initial space of U , it
follows that {yn} is an orthonormal set. The construction implies that
〈Txn, yn〉 = 〈|T |xn, U∗yn〉 == 〈|T |xn, zn〉 = ‖|T |xn‖ ≥ ε, so there is no
way the infinite series

∑
|〈Txn, yn〉| can converge; hence the assumed

infinite-dimensionality of Mε is untenable.

So |T |, and hence T , must be compact.

As T is compact, let {xn}, {yn} be as in equation (3.2.5). The desired
result follows by applying condition (3) to extensions of {xn}, {yn} to
orthonormal bases of H.

2. This follows from 1(b) of this Proposition, and from Proposition 3.3.3.

3. We consider three cases of increasing levels of generality:

Case (i): T ≥ 0

In this case, it follows from Proposition 3.3.7 (1) and Proposition 3.3.3

(c) that T
1
2 ∈ B2(H), and the desired conclusions are consequences of

Lemma 3.3.1.

Case (ii): T = T ∗

Observe that T+ = 1[0,∞)(T )T and T− = −1(−∞,0](T )T are also trace-
class operators, by (2) above. It follows from the already established
Case (i) that both T±, and consequently also T , have a well-defined
orthonormal basis - independent trace.

Case (iii): T arbitrary.

This follows from Case (ii) and the Cartesian decomposition (since part
(2) of this Proposition shows that B1(H) is closed under taking real
and imaginary parts.

4. We prove this also in three stages like (2) above.

Case(i) : T ≥ 0

In this case, the SVD decomposition or the spectral theorem will yield
decomposition T =

∑
sn(T )(x̄n ⊗ xn) for some orthonormal basis for

ker⊥T . By extending this orthonormal set {xn} to an orthonormal
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basis{en} for H, we find that

Tr(AT ) =
∑
n

〈ATen, en〉

=
∑
n

〈ATxn, xn〉

=
∑

sn(T )〈Axn, xn〉

while also

Tr(TA) =
∑
〈TAen, en〉

=
∑
〈Aen, T en〉

=
∑

sn(T )〈Axn, xn〉 .

Case(ii): T = T ∗

Apply the already proved Case (i) for T± and T = T+ − T−.

Case(iii) T arbitrary

Use the Cartesian decomposition.

�

The next Exercise outlines an alternative proof of part 4 of Proposition
3.3.7.

Exercise 3.3.8. 1. If U is unitary and T ∈ B1(H), deduce from part 3
of Proposition 3.3.7 that Tr(UTU∗) = Tr(T ).

2. Show that for unitary U and arbitrary S ∈ B1(H), we have Tr(US) =
Tr(SU). (Hint: Put T = SU in part 1 above.)

3. Show that for A ∈ B(H) and arbitrary S ∈ B1(H), we have Tr(AS) =
Tr(SA). (Hint: Use Proposition 2.8.1 (7) and part 2 of this Exercise.)
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3.3.3 Duality results

In this section, we shall establish the non-commutative analogues of `1 ∼=
(c0)∗ and `∞ ∼= (`1)∗.

For T ∈ B1(H), define its trace norm ‖T‖1 by

‖T‖1 =
∑

sn(T ) . (3.3.12)

Clearly ‖T‖1 ≥ 0 ∀T while ‖T‖1 ≥ s1(T ) = ‖T‖ so ‖T‖1 = 0⇔T = 0, and
Exercise 3.2.12 (5) shows that sn(A+B) ≤ sn(A)+sn(B) ∀n,∀A,B ∈ B0(H)
and it follows that ‖ · ‖1 is a norm on B1(H).

Proposition 3.3.9. 1. Each T ∈ B1(H) defines an element φT ∈ (B0(H))∗

via φT (A) = Tr(AT ) for A ∈ B0(H); and further, the mapping T 7→ φT
defines an isometric isomorphism B1(H) ∼= (B0(H))∗ of Banach spaces.

2. Each A ∈ B(H) defines an element ψA ∈ (B1(H))
∗

via ψA(T ) =
Tr(AT ) ∀T ∈ B1(H); and further, the mapping A 7→ ψA defines an
isometric isomorphism B(H) ∼= (B1(H))

∗
of Banach spaces.

Proof. Let T ∈ B1(H) and A ∈ B(H). Suppose T = U |T | is the polar
decomposition of T and T =

∑
sn(x̄n ⊗ yn) an SVD of T . Let {en} be a

completion of {xn} to an orthonormal basis of H. Then ,

|Tr(TA)| = |Tr(AT )|
= |

∑
〈ATen, en〉|

≤
∑

sn|〈Ayn, xn〉|
≤ ‖T‖1‖A‖ .

Conclude that (i) φT ∈ (B0(H))∗ and ‖φT‖ ≤ ‖T‖1 and (ii) ψA ∈ (B1(H))
∗

and ‖ψA‖ ≤ ‖A‖
For T as above, define Wn =

∑n
k=1 ȳk⊗xk. Then W is a partial isometry

with finite-dimensional range, so Wn is compact and ‖Wn‖ = 1. Clearly

‖φT‖ ≥ sup
n
|φT (Wn)| = sup

n
|Tr(WnT ))| = sup

n

n∑
k=1

sk = ‖T‖1

so indeed ‖φT‖ = ‖T‖1. And if A ∈ B(H), then

‖A‖ = sup{|〈Ax, y〉| : x, y ∈ S(H)}
= sup{|ψA(ȳ ⊗ x))| : x, y ∈ S(H)}
≤ ‖ψA‖ ,
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whence indeed ‖ψA‖ = ‖A‖.
On the other hand, if φ ∈ (B0(H))∗, (resp., ψ ∈ (B1(H))

∗
, notice that

the equation Bφ(x, y) = φ(ȳ ⊗ x) (resp., Bψ(x, y) = ψ(ȳ ⊗ x)) defines to a
sesquilinear form onH and that |Bφ(x, y)| ≤ ‖φ‖ ‖x‖ ‖y‖ (resp., |Bψ(x, y)| ≤
‖ψ‖ ‖x‖ ‖y‖) - since ‖(ȳ ⊗ x)‖ = ‖(ȳ ⊗ x)‖1 = 1. Deduce the existence
of a bounded operator T (resp., A) such that Bφ(x, y) = 〈Tx, y〉 (resp.,
Bψ(x, y) = 〈Ax, y〉).

It follows that φ(F ) = Tr(TF ) and ψ(F ) = Tr(AF ) whenever F ∈
B00(H). It follows easily from the SVD that B00(H) is dense in B1(H),
which then shows that ψ = ψA. To complete the proof, we should show that
T ∈ B1(H) and that φ = φT . For this, suppose {xn} and {yn} are a pair of
orthonormal sets. Define

αk =

{
|〈Txk,yk〉|
〈Txk,yk〉

if 〈Txk, yk〉 6= 0

1 otherwise
.

and FN =
∑N

k=1 αk(ȳk ⊗ xk). Observe now that for each N , the operator FN
is a partial isometry of finite rank N (and operator norm one) and that

N∑
k=1

|〈Txk, yk〉| =
N∑
k=1

αk〈Txk, yk〉

= Tr(TFn)

= φ(FN)

≤ ‖φ‖ ,

so
∑∞

k=1 |〈Txk, yk〉| <∞.
In particular, we may deduce from Proposition 3.3.7 (1c) that T ∈ B1(H).

Since φ and φT agree on the dense subspace B00(H) of B0(H), we see that
φ = φT , as desired. �

Remark 3.3.10. The so-called von Neumann-Schatten p-class is the
(non-closed) two-sided self-adjoint ideal of B0(H) defined by Bp(H) = {T ∈
B0(H) : ((sn(T ))) ∈ `p}, 1 ≤ p <∞. (To see that Bp(H) are ideals in B(H),
notice that sn(UTV ) = sn(T ) so that T ∈ Bp(H)⇔UTV ∈ Bp(H) whenever
U, V are unitary, then appeal to Proposition 2.8.1 (7).) These are Banach
spaces w.r.t. ‖T‖p = ‖((sn(T )))‖`p , and the expected duality statement
(Bp(H))∗ = Bq(H) where q = p

p−1
is the conjugate index to p. These my

be proved by using the classical fact (`p)∗ = `q and imitating, with obvious
modifications, our proof above of B1(H) = (B0(H))∗.
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3.4 Fredholm operators

Recall (see Remark 3.3.4 (5)) that B0(H) is the unique closed two-sided ideal
in B(H). This section is devoted to invertibility modulo this ideal.

Proposition 3.4.1. (Atkinson’s theorem) If T ∈ B(H1,H2), then the
following conditions are equivalent:

(a) there exist operators S1, S2 ∈ B(H2,H1) and compact operators Ki ∈
B(Hi), i = 1, 2, such that

S1T = 1H1 +K1 and TS2 = 1H2 +K2 .

(b) T satisfies the following conditions:
(i) ran T is closed; and
(ii) ker T and ker T ∗ are both finite-dimensional.
(c) There exists S ∈ B(H2,H1) such that both idH1 − ST and idH2 − TS

are projections with finite-dimensional range.

Proof. (a)⇒ (b): Begin by fixing a finite-rank operator F such that ||K1 −
F || < 1

2
(see Proposition 3.2.7(d)); set M = ker F and note that if x ∈ M,

then

||S1|| · ||Tx|| ≥ ||S1Tx|| = ||x+K1x|| = ||x+ (K1 − F )x|| ≥ 1

2
||x||,

which shows that T is bounded below on M; it follows that T (M) is a
closed subspace of H2; note, however, that M⊥ is finite-dimensional (since
F maps this space injectively onto its finite-dimensional range). It is a fact
- see [Sun] Exercise A.6.5 (3) - that the vector sum of a closed subspace
and a finite-dimensional subspace (in any Banach space, in fact) is always
closed; and hence T satisfies condition (i) thanks to the obvious identity
ran T = T (M) + T (M⊥).

As for (ii), since S1T = 1H1 +K1, note that K1x = −x for all x ∈ ker T ;
this means that ker T is a closed subspace which is contained in ran K1

and the compactness of K1 now demands the finite-dimensionality of ker T .
Similarly, ker T ∗ ⊂ ran K∗2 and condition (ii) is verified.

(b) ⇒ (c) : Let N1 = ker T, N2 = ker T ∗ (= ran⊥T ); thus T maps N⊥1
1-1 onto ran T ; the condition (b) and the open mapping theorem imply the
existence of a bounded operator S0 ∈ B(N⊥2 ,N⊥1 ) such that S0 is the inverse
of the restricted operator T |N⊥1 ; if we set S = S0PN⊥2 , then S ∈ B(H2,H1)
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and by definition, we have ST = 1H1−PN1 and TS = 1H2−PN2 ; by condition
(ii), both subspaces Ni are finite-dimensional.

(c)⇒ (a) : Obvious. �

Remark 3.4.2. (1) An operator which satisfies the equivalent conditions of
Atkinson’s theorem is called a Fredholm operator, and the collection of
Fredholm operators from H1 to H2 is denoted by F(H1,H2), and as usual,
we shall write F(H) = F(H,H). It must be observed - as a consequence of
Atkinson’s theorem, for instance - that a necessary and sufficient condition
for F(H1,H2) to be non-empty is that either (i) H1 and H2 are both finite-
dimensional, in which case B(H1,H2) = F(H1,H2), or (ii) neither H1 nor
H2 is finite-dimensional, and dim H1 = dim H2.

(2) Suppose H is a separable infinite-dimensional Hilbert space. Then the
quotient Q(H) = B(H)/B0(H) (of B(H) by the ideal B0(H)) is a Banach
algebra, which is called the Calkin algebra. If we write πB0 : B(H)→ Q(H)
for the quotient mapping, then we find that an operator T ∈ B(H) is a
Fredholm operator precisely when πB0(T ) is invertible in the Calkin algebra;
thus, F(H) = π−1

B0
(G(Q(H))) - where the symbol G(A) stands for ‘group of

invertible elements of the unital algebra A’. (It is a fact, which we shall not
need and consequently do not go into here, that the Calkin algebra is in fact
a C∗-algebra - as is the quotient of any C∗-algebra by a norm-closed *-ideal.)

(3) It is customary to use the adjective ‘essential’ to describe a property
of an operator T ∈ B(H) which is actually a property of the correspond-
ing element πB0(T ) of the Calkin algebra, thus, for instance, the essential
spectrum of T is defined to be

σess(T ) = σQ(H)(πB0(T )) = {λ ∈ C : (T − λ) /∈ F(H)} . (3.4.13)

�

The next exercise is devoted to understanding the notions of Fredholm
operator and essential spectrum at least in the case of normal operators.

Exercise 3.4.3. (1) Let T ∈ B(H1,H2) have polar decomposition T = U |T |.
Then show that

(a) T ∈ F(H1,H2) ⇔ U ∈ F(H1,H2) and |T | ∈ F(H1).
(b) A partial isometry is a Fredholm operator if and only if both its ini-

tial and final spaces have finite co-dimension (i.e., have finite-dimensional
orthogonal complements).
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(Hint: for both parts, use the characterisation of a Fredholm operator which
is given by Proposition 3.4.1(b).)

(2) If H1 = H2 = H, consider the following conditions on an operator
T ∈ B(H):

(i) T is normal;
(ii) U and |T | commute.

Show that (i)⇒ (ii), and find an example to show that the reverse implication
is not valid in general.
(Hint: if T is normal, then note that

|T |2U = T ∗TU = TT ∗U = U |T |2U∗U = U |T |2 ;

thus U commutes with |T |2; deduce that in the decomposition H = kerT ⊕
ker⊥T , we have U = 0 ⊕ U0, |T | = 0 ⊕ A, where U0 (resp., A) is a unitary
(resp., positive injective) operator of ker⊥ T onto (resp., into) itself; and infer
that U0 and A2 commute; since U0 is unitary, deduce from the uniqueness of
positive square roots that U0 commutes with A, and finally that U and |T |
commute; for the ‘reverse implication’, let T denote the unilateral shift, and
note that U = T and |T | = 1.)

(3) Suppose T = U |T | is a normal operator as in (2) above. Then show
that the following conditions on T are equivalent:

(i) T is a Fredholm operator;
(ii) there exists an orthogonal direct-sum decomposition H = M⊕ N ,

where dim N <∞, with respect to which T has the form T = T1 ⊕ 0, where
T1 is an invertible normal operator on M;

(iii) there exists an ε > 0 such that 1Dε(T ) = 1{0}(T ) = P0, where (a)
E 7→ 1E(T ) denotes the measurable functional calculus for T , (b) Dε = {z ∈
C : |z| < ε} is the ε-disc around the origin, and (c) P0 is some finite-rank
projection.
(Hint: For (i)⇒ (ii), note, as in the hint for exercise (2) above, that we have
decompositions U = U0⊕0, |T | = A⊕0 - with respect to H =M⊕N , where
M = ker⊥T and N = kerT (is finite-dimensional under the assumption
(i))- where U0 is unitary, A is 1-1 and positive, and U0 and A commute;
deduce from the Fredholm condition that N is finite-dimensional and that A
is invertible; conclude that in this decomposition, T = U0A ⊕ 0 and U0A is
normal and invertible. For (ii)⇒ (iii), if T = T1⊕0 has polar decomposition
T = U |T |, then |T | = |T1|⊕0 and U = U0⊕0 with U0 unitary and |T1| positive
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and invertible; then if ε > 0 is such that T1 is bounded below by ε, then argue
that 1Dε(T ) = 1[0,ε)(|T |) = 1{0}(|T |) = 1{0}(T ) = PN .)

(4) Let T ∈ B(H) be normal; prove that the following conditions on a
complex number λ are equivalent:

(i) λ /∈ σess(T );
(ii) there exists an orthogonal direct-sum decomposition H = M⊕ N ,

where dim N <∞, with respect to which T has the form T = T1 ⊕ λ, where
(T1 − λ) is an invertible normal operator on M;

(iii) there exists ε > 0 such that 1Dε+λ(T ) = 1{λ}(T ) = Pλ, where Dε + λ
denotes the ε-disc around the point λ, and Pλ is some finite-rank projection.
(Hint: apply (3) above to T − λ.)

We now come to an important definition.

Definition 3.4.4. If T ∈ F(H1,H2) is a Fredholm operator, its (Fred-
holm) index is the integer defined by

ind T = dim(ker T )− dim(ker T ∗).

Several elementary properties of the index are discussed in the following
remark.

Remark 3.4.5. (1) The index of a normal Fredholm operator is always 0.
(Reason: If T ∈ B(H) is a normal operator, then |T |2 = |T ∗|2, and the
uniqueness of the square root implies that |T | = |T ∗|; it follows that ker T =
ker |T | = ker T ∗.)

(2) It should be clear from the definitions that if T = U |T | is the polar
decomposition of a Fredholm operator, then ind T = ind U .

(3) If H1 and H2 are finite-dimensional, then B(H1,H2) = F(H1,H2)
and ind T = dim H1 − dim H2 ∀ T ∈ B(H1,H2); in particular, the
index is independent of the operator in this case. (Reason: let us write
ρ = dim(ran T ) (resp., ρ∗ = dim(ran T ∗)) and ν = dim(ker T ) (resp.,
ν∗ = dim(ker T ∗)) for the rank and nullity of T (resp., T ∗); on the one hand,
deduce from Exercise 3.1.6(3) that if dim Hi = ni, then ρ = n1 − ν and
ρ∗ = n2 − ν∗; on the other hand, by Exercise 3.1.6(2), we find that ρ = ρ∗;
hence,

ind T = ν − ν∗ = (n1 − ρ)− (n2 − ρ) = n1 − n2 .)
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(4) If S = UTV , where S ∈ B(H1,H4), U ∈ B(H3,H4), T ∈ B(H2,H3), V ∈
B(H1,H2), and if U and V are invertible (i.e., are 1-1 and onto), then S is
a Fredholm operator if and only if T is, in which case, ind S = ind T . (This
should be clear from Atkinson’s theorem and the definition of the index.)

(5) Suppose Hi = Ni ⊕ Mi and dim Ni < ∞, for i = 1, 2,; suppose
T ∈ B(H1,H2) is such that T maps N1 into N2, and such that T maps M1

1-1 ontoM2. Thus, with respect to these decompositions, T has the matrix
decomposition

T =

[
A 0
0 D

]
,

where D is invertible; then it follows from Atkinson’s theorem that T is a
Fredholm operator, and the assumed invertibility of D implies that ind T =
ind A = dim N1 − dim N2 - see (3) above. �

Lemma 3.4.6. Suppose Hi = Ni ⊕Mi, for i = 1, 2; suppose T ∈ B(H1,H2)
has the associated matrix decomposition

T =

[
A B
C D

]
,

where A ∈ B(N1,N2), B ∈ B(M1,N2), C ∈ B(N1,M2), and D ∈ B(M1,M2);
assume that D is invertible - i.e, D maps M1 1-1 onto M2. Then

T ∈ F(H1,H2) ⇔ (A−BD−1C) ∈ F(N1,N2) ,

and ind T = ind (A−BD−1C); further, if it is the case that dim Ni <∞, i =
1, 2, then T is necessarily a Fredholm operator and ind T = dimN1−dimN2.

Proof. Let U ∈ B(H2) (resp., V ∈ B(H1)) be the operator which has the
matrix decomposition

U =

[
1N2 −BD−1

0 1M2

]
, (resp., V =

[
1N1 0
−D−1C 1M1

]
)

with respect to H2 = N2 ⊕M2 (resp., H1 = N1 ⊕M1).
Note that U and V are invertible operators, and that

UTV =

[
A−BD−1C 0

0 D

]
;
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since D is invertible, we see that ker(UTV ) = ker(A − BD−1C) and that
ker(UTV )∗ = ker(A − BD−1C)∗; also, it should be clear that UTV has
closed range if and only if (A−BD−1C) has closed range; we thus see that T
is a Fredholm operator precisely when (A− BD−1C) is Fredholm, and that
ind T = ind(A−BD−1C) in that case. For the final assertion of the lemma
(concerning finite-dimensional Ni’s), appeal now to Remark 3.4.5(5). �

We now state some simple facts in an exercise, before proceeding to es-
tablish the main facts concerning the index of Fredholm operators.

Exercise 3.4.7. (1) Suppose D0 ∈ B(H1,H2) is an invertible operator; show
that there exists ε > 0 such that if D ∈ B(H1,H2) satisfies ||D − D0|| < ε,
then D is invertible. (Hint: let D0 = U0|D0| be the polar decomposition;
write D = U0(U∗0D), note that ||D − D0|| = ||(U∗0D − |D0|)||, and that D
is invertible if and only if U∗0D is invertible, and use the fact that the set of
invertible elements in any Banach algebra (B(H1) in this case) form an open
set.)

(2) Show that a function φ : [0, 1] → Z which is locally constant, is
necessarily globally constant.

(3) Suppose Hi = Ni ⊕Mi, i = 1, 2, are orthogonal direct sum decompo-
sitions of Hilbert spaces.

(a) Suppose T ∈ B(H1,H2) is represented by the operator matrix

T =

[
A 0
C D

]
,

where A and D are invertible operators; show, then, that T is also invertible
and that T−1 is represented by the operator matrix

T−1 =

[
A−1 0

−D−1CA−1 D−1

]
.

(b) Suppose T ∈ B(H1,H2) is represented by the operator matrix

T =

[
0 B
C 0

]
,

where B is an invertible operator; show that T ∈ F(H1,H2) if and only if
C ∈ F(N1,M2), and that if this happens, then ind T = ind C.
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Theorem 3.4.8. (a) F(H1,H2) is an open set in B(H1,H2) and the function
ind : F(H1,H2)→ C is ‘locally constant’; i.e., if T0 ∈ F(H1,H2), then there
exists δ > 0 such that whenever T ∈ B(H1,H2) satisfies ||T − T0|| < δ, it is
then the case that T ∈ F(H1,H2) and ind T = ind T0.

(b) T ∈ F(H1,H2), K ∈ B0(H1,H2) ⇒ (T + K) ∈ F(H1,H2) and
ind(T +K) = ind T .

(c) S ∈ F(H2,H3), T ∈ F(H1,H2) ⇒ ST ∈ F(H1,H3) and ind(ST ) =
ind S + ind T .

Proof. (a) Suppose T0 ∈ F(H1,H2). Set N1 = ker T0 and N2 = ker T ∗0 , so
that Ni, i = 1, 2, are finite-dimensional spaces and we have the orthogonal
decompositions Hi = Ni ⊕Mi, i = 1, 2, where M1 = ran T ∗0 and M2 =
ran T0. With respect to these decompositions of H1 and H2, it is clear that
the matrix of T0 has the form

T0 =

[
0 0
0 D0

]
,

where the operator D0 : M1 → M2 is (a bounded bijection, and hence)
invertible.

Since D0 is invertible, it follows - see Exercise 3.4.7(1) - that there exists
a δ > 0 such that D ∈ B(M1,M2), ||D − D0|| < δ ⇒ D is invertible.
Suppose now that T ∈ B(H1,H2) and ||T − T0|| < δ; let

T =

[
A B
C D

]
be the matrix decomposition associated to T ; then note that ||D −D0|| < δ
and consequently D is an invertible operator. Conclude from Lemma 3.4.6
that T is a Fredholm operator and that

ind T = ind(A−BD−1C) = dimN1 − dimN2 = ind T0 .

(b) If T is a Fredholm operator and K is compact, as in (b), define
Tt = T + tK, for 0 ≤ t ≤ 1. It follows from Proposition 3.4.1 that each
Tt is a Fredholm operator; further, it is a consequence of (a) above that the
function [0, 1] 3 t 7→ ind Tt is a locally constant function on the interval
[0, 1]; the desired conlcusion follows easily - see Exercise 3.4.7(2).

(c) Let us write K1 = H1 ⊕ H2 and K2 = H2 ⊕ H3, and consider the
operators U ∈ B(K2), R ∈ B(K1,K2) and V ∈ B(K1) defined, by their
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matrices with respect to the afore-mentioned direct-sum decompositions of
these spaces, as follows:

U =

[
1H2 0
−ε−1S 1H3

]
, R =

[
T ε1H2

0 S

]
,

V =

[
−ε1H1 0
T ε−11H2

]
,

where we first choose ε > 0 to be so small as to ensure that R is a Fredholm
operator with index equal to ind T + ind S; this is possible by (a) above,
since the operator R0, which is defined by modifying the definition of R so
that the ‘off-diagonal’ terms are zero and the diagonal terms are unaffected,
is clearly a Fredholm operator with index equal to the sum of the indices of
S and T .

It is easy to see that U and V are invertible operators - see Exercise
3.4.7(3)(a) - and that the matrix decomposition of the product URV ∈
F(K1,K2) is given by:

URV =

[
0 1H2

ST 0

]
,

which is seen - see Exercise 3.4.7(3)(b) - to imply that ST ∈ F(H1,H3) and
that ind(ST ) = ind R = ind S + ind T , as desired. �

Example 3.4.9. Fix a separable infinite-dimensional Hilbert space H; for
definiteness’ sake, we assume that H = `2. Let S ∈ B(H) denote the uni-
lateral shift - see Example 1.7.9(1). Then, S is a Fredholm operator with
ind S = −1, and ind S∗ = 1; hence Theorem 3.4.8((c) implies that if n ∈ N,
then Sn ∈ F(H) and ind(Sn) = −n and ind(S∗)n = n; in particular, there
exist operators with all possible indices.

Let us write Fn = {T ∈ F(H) : ind T = n}, for each n ∈ Z.
First consider the case n = 0. Suppose T ∈ F0; then it is possible to

find a partial isometry U0 with initial space equal to ker T and final space
equal to ker T ∗); then define Tt = T + tU0. Observe that t 6= 0 ⇒ Tt
is invertible; and hence, the map [0, 1] 3 t 7→ Tt ∈ B(H) (which is clearly
norm-continuous) is seen to define a path - see Exercise 3.4.10(1) - which is
contained in F0 and connects T0 to an invertible operator; on the other hand,
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the set of invertible operators is a path-connected subset of F0; it follows that
F0 is path-connected.

Next consider the case n > 0. Suppose T ∈ Fn, n < 0. Then note
that T (S∗)n ∈ F0 (by Theorem 3.4.8(c)) and since (S∗)nSn = 1, we find
that T = T (S∗)nSn ∈ F0S

n; conversely since Theorem 3.4.8(c) implies that
F0S

n ⊂ Fn, we thus find that Fn = F0S
n.

For n > 0, we find, by taking adjoints, that Fn = F∗−n = (S∗)nF0.
We conclude that for all n ∈ Z, the set Fn is path-connected; on the other

hand, since the index is ‘locally constant’, we can conclude that {Fn : n ∈ Z}
is precisely the collection of ‘path-components’ (= maximal path-connected
subsets) of F(H). �

Exercise 3.4.10. (1) A path in a topological space X is a continuous func-
tion f : [0, 1]→ X; if f(0) = x, f(1) = y, then f is called a path joining (or
connecting) x to y. Define a relation ∼ on X by stipulating that x ∼ y if
and only if there exists a path joining x to y.

Show that ∼ is an equivalence relation on X.
The equivalence classes associated to the relation ∼ are called the path-

components of X; the space X is said to be path-connected if X is itself
a path component.

(2) Let H be a separable Hilbert space. In this exercise, we regard B(H)
as being topologised by the operator norm.

(a) Show that the set Bsa(H) of self-adjoint operators on H is path-
connected. (Hint: Consider t 7→ tT .)

(b) Show that the set B+(H) of positive operators on H is path-connected.
(Hint: Note that if T ≥ 0, t ∈ [0, 1], then tT ≥ 0.)

(c) Show that the set GL+(H) of invertible positive operators on H form
a connected set. (Hint: If T ∈ GL+(H), use straight line segments to first
connect T to ||T || · 1, and then ||T || · 1 to 1.)

(d) Show that the set U(H) of unitary operators on H is path-connected.
(Hint: If U ∈ U(H), find a self-adjoint A such that U = eiA - see Proposition
2.8.1 (4) - and look at Ut = eitA.)

We would like to conclude this section with the so-called ‘spectral theorem
for a general compact operator’. As a preamble, we start with an exercise
which is devoted to ‘algebraic (possibly non-orthogonal) direct sums’ and
associated non-self-adjoint projections.
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Exercise 3.4.11. (1) Let H be a Hilbert space, and let M and N denote
closed subspaces of H. Show that the following conditions are equivalent:

(a) H =M+N and M∩N = {0};
(b) every vector z ∈ H is uniquely expressible in the form z = x+ y with

x ∈M, y ∈ N .

(2) If the equivalent conditions of (1) above are satisfied, show that there
exists a unique E ∈ B(H) such that Ez = x, whenever z and x are as in (b)
above. (Hint: note that z = Ez + (z−Ez) and use the closed graph theorem
to establish the boundedness of E.)

(3) If E is as in (2) above, then show that
(a) E = E2;
(b) the following conditions on a vector x ∈ H are equivalent:
(i) x ∈ ran E;
(ii) Ex = x.
(c) ker E = N .

The operator E is said to be the ‘projection on M along N ’.

(4) Show that the following conditions on an operator E ∈ B(H) are
equivalent:

(i) E = E2;
(ii) there exists a closed subspace M ⊂ H such that E has an operator-

matrix (with respect to the decomposition H =M⊕M⊥) of the form:

E =

[
1M B
0 0

]
;

(iii) there exists a closed subspace N ⊂ H such that E has an operator-
matrix (with respect to the decomposition H = N⊥ ⊕N ) of the form:

E =

[
1N⊥ 0
C 0

]
;

(iv) there exist closed subspacesM,N satisfying the equivalent conditions
of (1) such that E is the projection on M along N .
(Hint: (i) ⇒ (ii) : M = ran E (= ker(1 − E)) is a closed subspace
and Ex = x ∀ x ∈ M; since M = ran E, (ii) follows. The implication
(ii) ⇒ (i) is verified by easy matrix-multiplication. Finally, if we let (i)∗
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(resp., (ii)∗) denote the condition obtained by replacing E by E∗ in condition
(i) (resp., (ii)), then (i)⇔(i)∗⇔(ii)∗; take adjoints to find that (ii)∗⇔(iii).
The implication (i)⇔(iv) is clear.)

(5) Show that the following conditions on an idempotent operator E ∈
B(H) - i.e., E2 = E - are equivalent:

(i) E = E∗;
(ii) ||E|| = 1.

(Hint: Assume E is represented in matrix form, as in (4)(iii) above; notice
that x ∈ N⊥ ⇒ ||Ex||2 = ||x||2 + ||Cx||2; conclude that ||E|| = 1 ⇔ C = 0.)

(6) If E is the projection onto M along N - as above - show that there
exists an invertible operator S ∈ B(H) such that SES−1 = PM. (Hint:
Assume E and B are related as in (4)(ii) above; define

S =

[
1M B
0 1M⊥

]
;

deduce from (a transposed version of) Exercise 3.4.7 that S is invertible, and
that

SES−1 =

[
1M B
0 1M⊥

] [
1M B
0 0

] [
1M −B
0 1M⊥

]
=

[
1M 0
0 0

]
.

(7) Show that the following conditions on an operator T ∈ B(H) are
equivalent:

(a) there exists closed subspaces M,N as in (1) above such that
(i) T (M) ⊂M and T |M = A; and
(ii) T (N ) ⊂ N and T |N = B;
(b) there exists an invertible operator S ∈ B(H,M⊕N ) - where the direct

sum considered is an ‘external direct sum’ - such that STS−1 = A⊕B.

We will find the following bit of terminology convenient. Call operators
Ti ∈ B(Hi), i = 1, 2, similar if there exists an invertible operator S ∈
B(H1,H2) such that T2 = ST1S

−1.
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Lemma 3.4.12. The following conditions on an operator T ∈ B(H) are equiv-
alent:

(a) T is similar to an operator of the form T0 ⊕Q ∈ B(M⊕N ), where
(i) N is finite-dimensional;
(ii) T0 is invertible, and Q is nilpotent.

(b) T ∈ F(H), ind(T ) = 0 and there exists a positive integer n such that
ker T n = ker Tm ∀ m ≥ n.

Proof. (a)⇒ (b) : If STS−1 = T0⊕Q, then it is obvious that ST nS−1 = T n0 ⊕
Qn, which implies - because of the assumed invertibility of T0 - that ker T n = S−1({0}⊕
ker Qn), and hence, if n = dimN , then for any m ≥ n, we see that
kerTm = S−1({0} ⊕ N ).

In particular, kerT is finite-dimensional; similarly ker T ∗ is also finite-
dimensional, since (S∗)−1T ∗S∗ = T ∗0 ⊕Q∗; further,

ran T = S−1(ran (T0 ⊕Q)) = S−1(M⊕ (ran Q)) ,

which is closed since S−1 is a homeomorphism, and since the sum of the
closed subspace M⊕{0} and the finite-dimensional space ({0} ⊕ ran Q) is
closed in M⊕N - see the remark at the end of the first paragraph of the
proof of (a)⇒ (b) of Atkinson’s theorem.. Hence T is a Fredholm operator.

Finally,

ind(T ) = ind(STS−1) = ind(T0 ⊕Q) = ind(Q) = 0.

(b) ⇒ (a) : Let us write Mk = ran T k and Nk = ker T k for all k ∈ N;
then, clearly,

N1 ⊂ N2 ⊂ · · · ; M1 ⊃M2 ⊃ · · · .
We are told that Nn = Nm ∀ m ≥ n. The assumption ind T = 0

implies that ind Tm = 0 ∀ m, and hence, we find that dim(ker T ∗m) =
dim(ker Tm) = dim(ker T n) = dim(ker T ∗n) < ∞ for all m ≥ n. But since
ker T ∗m =M⊥

m, we find thatM⊥
m ⊂M⊥

n , from which we may conclude that
Mm =Mn ∀ m ≥ n.

Let N = Nn, M =Mn, so that we have

N = ker Tm andM = ran Tm ∀ m ≥ n . (3.4.14)

The definitions clearly imply that T (M) ⊂ M and T (N ) ⊂ N (since M
and N are actually invariant under any operator which commutes with T n).
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We assert that M and N yield an algebraic direct sum decomposition
of H (in the sense of Exercise 3.4.11(1)). Firstly, if z ∈ H, then T nz ∈
Mn = M2n, and hence we can find v ∈ H such that T nz = T 2nv; thus
z − T nv ∈ ker T n; i.e., if x = T nv and y = z − x, then x ∈ M, y ∈ N and
z = x + y; thus, indeed H = M + N . Notice that T (and hence also T n)
mapsM onto itself; in particular, if z ∈M∩N , we can find an x ∈M such
that z = T nx; the assumption z ∈ N implies that 0 = T nz = T 2nx; this
means that x ∈ N2n = Nn, whence z = T nx = 0; since z was arbitrary, we
have shown that N ∩M = {0}, and our assertion has been substantiated.

If T0 = T |M and Q = T |N , the (already proved) fact that M∩N = {0}
implies that T n is 1-1 on M; thus T n0 is 1-1; hence T0 is 1-1; it has already
been noted that T0 maps M onto M; hence T0 is indeed invertible; on the
other hand, it is obvious that Qn is the zero operator on N . �

Corollary 3.4.13. Let K ∈ B0(H); assume 0 6= λ ∈ σ(K); then K is
similar to an operator of the form K1 ⊕ A ∈ B(M⊕N ), where

(a) K1 ∈ B0(M) and λ /∈ σ(K1); and
(b) N is a finite-dimensional space, and σ(A) = {λ}.

Proof. Put T = K − λ; then, the hypothesis and Theorem 3.4.8 ensure that
T is a Fredholm operator with ind(T ) = 0. Consider the non-decreasing
sequence

kerT ⊂ kerT 2 ⊂ · · · ⊂ kerT n ⊂ · · · . (3.4.15)

Suppose ker T n 6= kerT n+1 ∀ n; then we can pick a unit vector xn ∈
(ker T n+1) ∩ (ker T n)⊥ for each n. Clearly the sequence {xn}∞n=1 is an or-
thonormal set. Hence, limn||Kxn|| = 0 (by Exercise 3.2.4(3)).

On the other hand,

xn ∈ ker T n+1 ⇒ Txn ∈ ker T n

⇒ 〈Txn, xn〉 = 0

⇒ 〈Kxn, xn〉 = λ

contradicting the hypothesis that λ 6= 0 and the already drawn conclusion
that Kxn → 0.

Hence, it must be the case that ker T n = ker T n+1 for some n ∈ N; it
follows easily from this that ker T n = ker Tm ∀ m ≥ n.

Thus, we may conclude from Lemma 3.4.12 that there exists an invertible
operator S ∈ B(H,M ⊕ N ) - where N is finite-dimensional - such that
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STS−1 = T0 ⊕ Q, where T0 is invertible and σ(Q) = {0}; since K = T + λ,
conclude that SKS−1 = (T0 + λ)⊕ (Q+ λ); set K1 = T0 + λ,A = Q+ λ,
and conclude that indeed K1 is compact, λ /∈ σ(K1) and σ(A) = {λ}.

�

We are finally ready to state the spectral theorm for a compact operator.

Theorem 3.4.14. Let K ∈ B0(H) be a compact operator on a Hilbert space
H. Then,

(a) λ ∈ σ(K) − {0} ⇒ λ is an eigenvalue of K and λ is ‘isolated’ in
the sense that there exists ε > 0 such that 0 < |z − λ| < ε ⇒ z /∈ σ(K);

(b) if λ ∈ σ(K) − {0}, then λ is an eigenvalue with ‘finite algebraic
multiplicity’ in the strong sense described by Corollary 3.4.13;

(c) σ(K) is countable, and the only possible accumulation point of σ(K)
is 0.

Proof. Assertions (a) and (b) are immediate consequences of Corollary 3.4.13,
while (c) follows immediately from (a). �
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Appendix

4.1 Some measure theory

We briefly recall here the two non-trivial theorems from measure theory that
we use in this book. They are the Riesz representation theorem and
Lusin’s theoem. We shall only consider compactly supported probability
measures defined in BC here.

The former identifies positivity-preserving linear functionals on C(Σ).
with Σ a compact Hausdorff space, as being given by integration against
positive regular measures defined on the Borel σ-algebra BΣ. Recall that
a finite positive measure µ defined on BC is said to be regular if it is both
inner and outer regular in the sense that for any E ∈ BΣ and any ε > 0,
there exists a compact set K and and open set U such that K ⊂ E ⊂ U and
µ(U \K) < ε. We spell out a consequence of this regularity below.

Lemma 4.1.1. C(Σ) is dense in Lp(C, µ) for each p ∈ [1,∞)

Proof. Since simple functions are dense in Lp, it is enough to show that
functions of the form 1E, E ∈ BC are in the closure of C(C). If E ∈ BC
and ε > 0, pick a compact K and open U as in the paragraph preceding
the lemma. Next invoke Urysohn’s lemma to find an f ∈ C(C) such that
1K ≤ f ≤ 1U . Observe that {z ∈ C : f(z) = 1E(z)} ⊃ K ∪ (C\U) and hence
{z ∈ C : f(z) 6= 1E(z)} ⊂ (U \K), and since 0 ≤ 1E, f ≤ 1, we see that∫

|f − 1E|pdµ ≤ µ(U \K) < ε ,

107
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as desired. �

The latter says that if φ is any bounded Borel measurable function, and
if ε > 0 is arbitrary, then there exists an f ∈ C(C) such that µ({x ∈ C :
φ(x) 6= f(x)}) < ε. We shall need the following consequence:

Lemma 4.1.2. For any φ ∈ L∞(C,BC, µ), there exists a sequence {fn : n ∈
N} ⊂ C(C) such that sup{|fn(z)| : z ∈ C} ≤ ‖φ‖L∞(µ) ∀n and fn → φ in
(µ-) measure.

Proof. By Lusin’s theorem, we may, for each n ∈ N, find an fn ∈ C(C such
that µ({z ∈ C : fn(z) 6= φ(z)}) < 1

n
. Let r : C → {z ∈ C : |z| ≤ ‖φ‖L∞(µ)}

denote the radial retraction defined by

r(z) =

{
z if |z| ≤ ‖φ‖L∞(µ)(

‖φ‖L∞(µ)

|z|

)
z otherwise

and set gn = r ◦ fn. Then notice that |gn(z)| ≤ ‖φ‖L∞(µ) ∀z ∈ C and that
{fn = φ‖ ⊂ {gn = φ = fn} so that µ({gn 6= φ) < 1

n
and so indeed the

continuous functions {gn : n ∈ N} are uniformly bounded by ‖φ‖L∞(µ) and
converge in (µ) measure to φ. �

4.2 Some pedagogical subtleties

I believe the natural stage to discuss the measurable functional calculus is
in the language of von Neumann algebras. The more symmetric formulation
of the spectral theorem is to say that the continuous (resp., measurable)
fubctional calculus is an isomorphism of C(σ(T )) (resp., L∞(σ(T ), µ) for
appropriate µ) onto C∗(T ) (resp., W ∗(T )) in the category of C∗-algebras
(resp., W ∗-algebras). This is what was done in [Sun], but that approach
necessitates a digression into C∗-algebras and W ∗(= von Neumann) algebras.

But my goal here was to convey the essence of the spectral theorem
in purely ‘operator-theoreric’ terms (not making too many demands of a
graduate student just getting introduced to functional analysis). This is
made possible thanks to the considerations described in the next paragraphs.

One of many equivalent definitions of a von Neumann algebra is as a
unital *-subalgebra of B(H) which is closed in the SOT. In fact, I never even
stated what the acronym SOT stood for. In fact, SOT is an abbreviation
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for strong operator topology - which is the smallest topology on B(H)
for which B(H) 3 T 7→ Tx ∈ H is continuous for each x ∈ H. More
formally, the collection of sets of the form {T ∈ B(H) : ‖Tx − T0x‖ <
ε}, with (T0, x, ε) ranging over B(H) × H × (0,∞), yields a sub-base for
this topology. If one carried this formal process just a bit more, one finds,
fairly quickly, various unpleasant pathologies (even when H is separable, but
infinite-dimensional) such as: (i) this topological space does not satisfy ‘the
first axiom of countability’, as a result of which sequential convergence is
generally insufficient to describe the possible nastiness that this topological
algebra is capable of exhibiting, and one needs to deal with nets or filters
instead; (ii) the product mapping B(H) × B(H) 3 (S, T ) 7→ ST ∈ B(H) is
not continuous, contrary to what Lemma 2.2.5 (2) might lead one to expect;
and (iii) the adjoint mapping B(H) 3 T 7→ T ∗ ∈ B(H) is not continuous.

Fortunately, it is possible to not have to deal with the unpleasant features
of the SOT that were advertised above, thanks to the useful Kaplansky
Density Theorem which ensures that if a *-algebra A is SOT-dense in a
von Neumann algebraM, then it is sequentially dense; more precisely, the
theorem says that if T ∈M, then one can find a sequence {Tn : n ∈ N} ⊂ A
such that Tn

SOT→ T ; and such an approximating sequence can be found so
that, in addition, ‖Tn‖ ≤ ‖T‖ ∀n ∈ N. Our interest here lies naturally in the
case where A = C∗(T ) and M = W ∗(T ), for a normal T .
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