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1. Introduction

This is a write-up of the lectures given at the Advanced Instructional
School (AIS) on ‘ Functional Analysis and Harmonic Analysis ’ during the
first week of July 2006. All of the material is standard and can be found in
many basic text books on Functional Analysis.

As the prerequisites, I take the liberty of assuming 1) Basic Metric space
theory, including completeness and the Baire category theorem. 2) Basic
Lebesgue measure theory and some abstract (σ-finite) measure theory in-
cluding the Radon-Nikodym theorem and the completeness of Lp-spaces. I
thank Professor A. Mangasuli for carefully proof reading these notes.

2. Banach spaces and Examples.

Let X be a vector space over the real or complex scalar field. Let ‖.‖ :
X → R+ be a function such that

(1) ‖x‖ = 0 ⇔ x = 0
(2) ‖αx‖ = |α|‖x‖
(3) ‖x + y‖ ≤ ‖x‖+ ‖y‖

for all x, y ∈ X and scalars α.
Such a function is called a norm on X and (X, ‖.‖) is called a normed

linear space. Most often we will be working with only one specific ‖.‖ on
any given vector space X thus we omit writing ‖.‖ and simply say that X

is a normed linear space.
It is an easy exercise to show that d(x, y) = ‖x − y‖ defines a metric on

X and thus there is an associated notion of topology and convergence.
If X is a normed linear space and Y ⊂ X is a subspace then by restricting

the norm to Y , we can consider Y as a normed linear space.
Clearly |‖x‖ − ‖y‖| ≤ ‖x− y‖ and hence for any sequence {xn}n≥1 ⊂ X,

xn → x ⇒ ‖xn‖ → ‖x‖.
1
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When the metric d is complete, i.e., every Cauchy sequence in X converges
in X, we say that X is a Banach space.

It is easy to show that the Euclidian spaces Rn and Cn are Banach spaces.
A subspace Y ⊂ X is a Banach space if and only if it is a closed subset

of X.

Example 1. Let K be a compact Hausdorff space, let C(K) denote the
vector space of complex-valued continuous functions on K. For any f ∈
C(K), define ‖f‖ = sup{|f(k)| : k ∈ K}. This is called the supremum norm
and C(K) is a Banach space.

More concretely, let ∆ = {z ∈ C : |z| ≤ 1} and Γ = {z : |z| = 1}. Let
A = {f ∈ C(∆) : f is analytic in ∆o}. It is easy to see that A is a closed
subspace and hence a Banach space. On the other hand P = {p ∈ C(∆) :
p is a polynomial in z} is not a closed set and hence is not a Banach space.

If one only considers a locally compact set K then important
spaces associated with this are, C0(K) = {f : K → C :
f is continuous and vanishes at infinity} (recall that f vanishes at infin-
ity if for every ε > 0 there is a compact set C ⊂ K such that |f | < ε outside
C) and Cc(K) = {f : K → C : f is continuous and compactly supported}
(recall that f is compactly supported if {k : f(k) 6= 0}− is a compact set).
Both these spaces are equipped with the supremum norm.

It is easy to see that C0(K) is a Banach space and is the completion (in
the metric space sense) of the space Cc(K).

Example 2. Let (Ω,A, µ) be a σ-finite measure space (more concretely take
Ω = R, A to be the σ-field of Lebesgue measurable sets, µ to be the Lebesgue
measure). In what follows let us take two measurable functions that are
equal almost every where (a.e) with respect to the measure µ as ‘equal’. For
1 ≤ p < ∞, let Lp(µ) = {f : Ω → C, f is measurable and

∫ |f |p dµ < ∞}.
For f ∈ Lp(µ), let ‖f‖ = (

∫ |f |p dµ)
1
p . Then Lp(µ) is a Banach space.

A measurable function f is said to be essentially bounded if there exist a
α > 0 such that µ((|f |)−1((α,∞]) = 0. α is called an essential bound.

Let L∞(µ) = {f : Ω → C, f is measurable and essentially bounded}.
For f ∈ L∞(µ) define ‖f‖ = inf{α : α is an essential bound}. Then
L∞(µ) is a Banach space.
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A specific situation of the above example and an easy generalization leads
to a procedure for generating new classes of Banach spaces. We will only
consider countable index sets.

Example 3. Let {Xn}n≥1 be a sequence of Banach spaces. Let 1 ≤ p < ∞.
Let X = {x = {xn} ∈

∏
Xn :

∑∞
1 ‖xn‖p < ∞}. For x ∈ X, define

‖x‖ = (
∑∞

1 ‖xn‖p)
1
p . Then X is a Banach space. Next let X = {x =

{xn} : sup|xn| < ∞}. Define ‖x‖ = sup|xn|. This is again called the
supremum norm. This is again a Banach space.

When all the Xn are taken as the scalar field, the corresponding space X

is denoted by `p and `∞ respectively.
Other important sequence spaces that are Banach spaces are, c, the space

of convergent sequences of scalars and its subspace c0 of sequences converging
to 0. Both the spaces are equipped with the supremum norm. They can also
be treated as special cases of Example 1 for the discrete space N and its one
point compactification.

Next example again gives a way of generating new Banach spaces from a
given collection.

Example 4. Let X be a Banach space, let Y ⊂ X be a closed subspace.
Consider the quotient vector space X|Y . Elements of this space are denoted
by [x] = {x + y : y ∈ Y }. π : X → X|Y defined by π(x) = [x] is called the
canonical quotient map.

Define ‖[x]‖ = d(x, Y ) = inf{‖x + y‖ : y ∈ Y }. Now X|Y is a Banach
space.
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3. Operators on normed linear spaces, Hahn-Banach theorem

Let X be a normed linear space. X1 = {x ∈ X : ‖x‖ ≤ 1},the ball with
center at 0 and radius 1 is called the closed unit ball. By dilating by an
r > 0 and translating by an x0 ∈ X we get the ball B(x0, r) = x0 + rX1.

A set A ⊂ X is said to be bounded if there exists a r > 0 such that
A ⊂ rX1. Equivalently ‖x‖ ≤ r for all x ∈ A.

Clearly any compact set and in particular any convergent sequence, is a
bounded set.

Let X, Y be normed linear spaces, let T : X → Y be a linear map. T is
said to be bounded if it maps bounded sets to bounded sets. Such a T is
called a bounded operator.

Using linearity of T , we have that T is bounded if and only if T (X1) is
a bounded set if and only if there exists an r > 0 such that ‖T (x)‖ ≤ r‖x‖
for all x ∈ X.

It is easily seen that a linear map is bounded if and only if it is continuous
at 0 and then using the continuity of the vector space operations w. r. t the
norm, one has that any bounded linear map is continuous.

Let X be a normed linear space and let Y ⊂ X be a closed subspace. Let
π : X → X|Y be the quotient map. Then ‖π‖ = 1.

The following remarks which are like starred exercises, are designed to
illustrate the role of finite dimensional spaces.

For the Euclidean spaces, any linear map T : Cn → Cm is continuous.
A linear, one-to-one and onto map T : X → Y is said to be an isomor-

phism if both T and T−1 are bounded.
T is an isomorphism if and only if there exists constants m,M > 0 such

that m‖x‖ ≤ ‖T (x)‖ ≤ M‖x‖.
When m = M = 1 we say that T is an isometry.
Any finite dimensional normed linear space is isomorphic to some Eu-

clidean space. So it is easy to see that any finite dimensional normed linear
space is a Banach space.

Let X be a normed linear space and Y ⊂ X a finite dimensional space.
Then Y is closed.

We denote by L(X,Y ) the vector space of bounded linear operators.
For T ∈ L(X,Y ) define ‖T‖ = sup{‖T (x)‖ : x ∈ X1}. This is a norm.

Also for any x ∈ X, ‖T (x)‖ ≤ ‖T‖‖x‖.
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When Y is a Banach space, L(X, Y ) is a Banach space. For T ∈ L(X,Y )
and S ∈ L(Y, Z), S ◦ T ∈ L(X, Z) and ‖S ◦ T‖ ≤ ‖S‖‖T‖.

When Y is the scalar field, a linear map f : X → C is called a linear
functional. The space of continuous linear functionals is denoted by X∗.
For f ∈ X∗, ‖f‖ = sup{|f(x)| : x ∈ X1}. X∗ is a Banach space.

Let X be an infinite dimensional normed linear space. Using the presence
of infinitely many independent unit vectors one can see that there exists a
linear map F : X → C that is not bounded.

Thus it is not clear in an abstract situation how one exhibits non-trivial
bounded operators or bounded linear functionals?

Theorem 5. (Hahn-Banach theorem): Let X be a normed linear space and
let M ⊂ X be a subspace. Let f ∈ M∗. There exists a g ∈ X∗ such that
f = g on M and ‖f‖ = ‖g‖. In particular for any x ∈ X there exists an
f ∈ X∗ such that ‖x‖ = f(x).

Proof. We will assume, by normalizing if necessary, that ‖f‖ = 1.
We shall prove the theorem first when the scalar field is real.
Let x0 /∈ M and let N = span{x0,M} = {αx0 + m : m ∈ M, α ∈ R}.
We will get a g ∈ N∗ satisfying the assertions of the theorem.
Define g : N → R by g(αx0 + m) = αα0 + f(m) where we will choose

(below) α0 to make g bounded by 1. Clearly g is linear and g = f on M .
In order to achieve ‖g‖ ≤ 1, we need to show, |αα0 + f(m)| ≤ ‖αx0 + m‖

for all α and m.
Dividing by |α|, this is same as, |α0 + f(m

α )| ≤ ‖xo + m
α ‖.

Since M is a subspace we only need to achieve |α0 + f(m)| ≤ ‖x0 + m‖ .
This is equivalent to,
−‖x0 + m‖ ≤ α0 + f(m) ≤ ‖x0 + m‖
or −f(m)− ‖x0 + m‖ ≤ α0 ≤ −f(m) + ‖x0 + m‖.
But for any x, y ∈ M ,
|f(x) − f(y)| = |f(x − y)| ≤ ‖x − y‖ ≤ ‖x + x0‖ + ‖x0 + y‖. So that

−f(y)− ‖x0 + y‖ ≤ −f(x) + ‖x0 + x‖. Thus choose α0 such that
−f(m) − ‖x0 + m‖ ≤ α0 ≤ −f(m) + ‖x0 + m‖. This gives g ∈ N∗ with

‖g‖ ≤ 1. As g = f on M , ‖g‖ = 1.
To extend f to all of X we next invoke a version of the Axiom of choice

called Zorn’s Lemma.
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Let G = {(N, g) : M ⊂ N ⊂ X is a subspace, g ∈ N∗
1 , g = f on M}.

This is a non-empty set. Define a partial ordering here by ‘inclusion’ in the
first coordinate and functionals agreeing on the smaller space. It is easy to
see that every chain here has an upper bound. Thus by the Zorn’s Lemma
G has a maximal element, say ((N, g). To complete the proof we next note
that N = X. If not, let x0 /∈ N . By the procedure outlined above we get
an (N ′, g′) ∈ G which is bigger than the maximal element (N, g), leading to
a contradiction.

In the case of complex scalar field, we recall that for any linear functional
f , its real part ref is a real linear functional . Also, given a real linear
functional u, f(x) = u(x)− iu(ix) is a complex linear functional whose real
part is u.

To see the norm condition, note that |f(x)| = αf(x) for some α ∈ Γ. So
that |f(x)| = f(αx) = ref(αx) ≤ |ref(αx)| ≤ ‖αx‖ = ‖x‖.

To see the last assertion of the theorem, for x ∈ X, let M = span{x}.
Define h : M → C by h(αx) = α‖x‖. Then |h(αx)| = |α|‖x‖ = ‖αx‖. Thus
‖h‖ = 1 and h(x) = ‖x‖. By what we have done above, we get f ∈ X∗

1 with
f(x) = ‖x‖.

¤

Corollary 6. Let X be a normed linear space and Y ⊂ X a closed subspace.
Let x0 /∈ Y with ‖x0‖ = 1. There exists an f ∈ X∗ with f(Y ) = 0 and
f(x0) = d(x0, Y ).

Proof. Let Z = span{Y, x0}. Define g : Z → C by g(y + αx0) = αd(x0, Y ).
Clearly g is a linear map with g(Y ) = 0 and g(x0) = d(x0, Y ). |g(y+αx0)| =
|α|d(x0, Y ) = d(αx0, Y ) ≤ ‖αx0 + y‖. Thus there is an f ∈ X∗ with the
required properties. ¤

This allows us to associate with a closed subspace
Y ⊂ X, Y ⊥ = {f ∈ X∗ : f(Y ) = 0}. This is called the annihilator of Y

and is a closed subspace of X∗.
Let X, Y be normed linear spaces. Now fix a x∗0 ∈ X∗ and y0 ∈ Y . Define

x∗0⊗y0 : X → Y as (x∗0⊗y0)(x) = x∗0(x)y0. x∗0⊗y0 is an operator with norm
‖x∗0‖‖y0‖ whose range is span{y0}. This is called a rank one operator.

The vector space spanned by the set of operators of rank one is the space
of finite rank operators and is denoted by F .

The following trick of quotienting an operator is quite useful.
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Let T ∈ L(X,Y ). ker(T ) is a closed subspace of X. Define T ′ :
X|ker(T ) → Y by T ′([x]) = T (x). Then T ′ is a one-one and continuous
operator. If T is onto so is T ′.
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4. Concrete dual spaces and Banach-Alaoglu theorem

We now identify X∗ for some concrete Banach spaces considered in Section
1. Most details can be seen in references [1] and [2].

Let K be a compact Hausdorff space, let B be the Borel σ-field. For a
complex measure µ on B, we recall that the total variation measure |µ| is de-
fined for E ∈ B by |µ|(E) = sup{∑n

1 |µ(Ei)| : {Ei} a Borel partition of E}.
µ is said to be regular if |µ|(E) = inf{|µ|(V ) : V open,E ⊂ V }.

The space of complex regular Borel measures on K with ‖µ‖ = |µ|(K), is
a Banach space.

For such a measure µ, Λ : C(X) → C defined by Λ(f) =
∫

fdµ for
f ∈ C(K), is a bounded linear functional with ‖Λ‖ ≤ ‖µ‖.

Theorem 7. ( Riesz Representation theorem) : Let Λ ∈ C(X)∗. There
exists a unique regular Borel measure µ such that Λ(f) =

∫
fdµ for f ∈

C(K) and ‖Λ‖ = ‖µ‖.

One can see that µ is a probability measure if and only if ‖µ‖ = 1 = µ(1).
There are also versions of the above theorem for locally compact spaces.
Of particular interest are the properties of the Haar Measure µ in the case

of a locally compact abelian group.
Now let 1 ≤ p ≤ ∞, let q be such that 1

p + 1
q = 1. q is called the conjugate

exponent of p. When p = 1 we take q = ∞.
Let 1 < p ≤ ∞. Let g ∈ Lq(µ). Define Λ : Lp(µ) → C by Λ(f) =

∫
fgdµ

for f ∈ Lp(µ). Then Λ ∈ (Lp(µ))∗ and ‖Λ‖ ≤ ‖g‖q.

Theorem 8. Let 1 ≤ p < ∞. Let Λ ∈ (Lp(µ))∗. There exists a unique
g ∈ Lq(µ) such that Λ(f) =

∫
fgdµ and ‖Λ‖ = ‖g‖q.

We have formulated the above theorem for complex measures, but it is
also true for positive σ-finite measures.

For the Haar measure µ, L1(µ)∗ = L∞(µ) always holds.
Using the discrete version of the above theorem, one can easily identify

the dual of the space in Example 3.
Turning to the discussion of the space in Example 4, let Y ⊂ X be a closed

subspace. Define Φ : Y ⊥ → (X|Y )∗ by Φ(Λ)([x]) = Λ(x). It is easy to see
that Φ is an isometry. For τ ∈ (X|Y )∗ define Λ : X → C by Λ(x) = τ([x]).
Then Λ ∈ Y ⊥ and Φ(Λ) = τ .
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Next define Ψ : Y ∗ → X∗|Y ⊥ by Ψ(Λ) = [z∗] where z∗ ∈ X∗ is a norm
preserving extension of Λ given by the Hahn-Banach theorem. Then Ψ is
an isometry. For [x∗] ∈ X∗|Y ⊥ define Λ : Y → C by Λ(y) = x∗(y). Then
Λ ∈ Y ∗ and Ψ(Λ) = [x∗].

These are called the canonical duals of quotient space and subspace.
Consider now X∗ as a Banach space. Its dual is denoted by X∗∗. Define

Ψ : X → X∗∗ by Ψ(x)(x∗) = x∗(x). Using the Hahn-Banach theorem we
have that Ψ is an isometry. This is called the canonical embedding in the
bidual. Some times we ignore this embedding and consider X ⊂ X∗∗. A
Banach space is said to be reflexive if Ψ is onto.

Clearly any finite dimensional space is reflexive. One has that for 1 <

p < ∞, Lp(µ) is a reflexive space.
In the infinite dimensional case, there is an example of a Λ ∈ L∞(µ)∗ that

is not given by a g ∈ L1(µ) so that Λ(f) =
∫

fgdµ.
Thus an infinite dimensional L1(µ) and L∞(µ) are not reflexive spaces.

The same is true for C(K).
We now discuss briefly a topology on X∗ which is weaker than the norm

topology and in the case of an infinite dimensional space this topology is
not induced by any norm.

Say a net {x∗α}α∈I ⊂ X∗, x∗α → x∗ ∈ X∗ in the weak∗- topology , if for
every x ∈ X, x∗α(x) → x∗(x).

This defines a topology on X∗ and is the smallest topology on X∗ w.r.t
which Ψ(X) is continuous.

Here weak∗-neighborhoods of 0 are of the form {x∗ : |x∗(xi)| < εi, 1 ≤ i ≤
n} where xi ∈ X and εi > 0. The vector space operations are continuous in
this topology.

Also the identity map I : (X∗, ‖.‖) → (X∗, weak∗) is continuous. We
recall that for any normed linear space X, X1 denotes the closed unit ball.

Theorem 9. (Banach- Alaoglu) : X∗
1 is compact in the weak∗-topology. Any

weak∗- closed and norm bounded set is weak∗-compact.

Proof. Consider the product space
∏

X ‖x‖∆ with the product topology. By
the Tychonoff’s theorem, this is a compact set. Define Φ : (X∗

1 , weak∗) →∏
X ‖x‖∆ by Φ(x∗)(x) = x∗(x) for x∗ ∈ X∗

1 and x ∈ X. Φ is a one-one
continuous map.
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We now show that Φ(X∗
1 ) is a closed set and Φ−1 is continuous. Thus Φ

is homeomorphism onto its range and as the range is a closed subset of a
compact set we conclude that X∗

1 is weak∗-compact.
Let Φ(x∗α) → f ∈ ∏

X ‖x‖∆. Since for any x ∈ X, f(x) = limx∗α(x) we
have that f is linear and |f(x)| ≤ ‖x‖. Thus f ∈ X∗

1 and Φ(f) = f so that
Φ(X∗

1 ) is a closed set.
Also, if Φ(x∗α) → Φ(x∗) in the product topology, clearly x∗α → x∗ in the

weak∗-topology. Therefore Φ is a homeomorphism onto its range.
¤

Let X be a Banach space, consider X∗
1 equipped with the weak∗-topology.

Define Φ : X → C(X∗
1 ) defined by Φ(x)(x∗) = x∗(x). Then Φ is an isometry.

Some times we ignore this embedding and consider X ⊂ C(X∗
1 ).

Similar to the weak∗-topology, one can also consider the smallest topology
on X which makes X∗ continuous. This is called the weak topology. This
is also a vector space topology and the neighborhoods of 0 are of the form
{x : |x∗i (x)| < εi 1 ≤ i ≤ n} where x∗i ∈ X∗ and εi > 0. This topology on
X is clearly weaker than the norm topology. Also xα → x in weak topology
if and only if x∗(xα) → x∗(x) for every x∗ ∈ X∗. In the case of reflexive
spaces the weak and weak∗-topology coincide and thus X1 is a compact set
in the weak topology. If X is such that in X∗ the weak and weak∗-topologies
coincide then X is reflexive.
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5. Open mapping, closed graph and closed range theorems

In this section, all the spaces are assumed to be Banach spaces. Let Xo
1

denote the open unit ball.

Theorem 10. (Open mapping theorem) : Let X, Y be Banach spaces and
let T : X → Y be an onto, bounded operator. There exists a δ > 0 such that
δY o

1 ⊂ T (Xo
1). In particular, T is an open mapping. If T is also one-one

then T is an isomorphism.

Proof. Since Y =
⋃

k≥1 T (kX0
1 ) by the Baire category theorem, there is a

k ≥ 1 and an open set W ⊂ Y such that W ⊂ T (kXo
1)−.

Let y0 ∈ W and let η > 0 such that y0 +ηY o
1 ⊂ W . Thus for any y ∈ ηY o

1

we can choose a sequence {xi} ⊂ 2kXo
1 with T (xi) → y.

Now let δ = η
2k . Then for any ε > 0 and y ∈ δY o

1 there is a x ∈ Xo
1 with

‖T (x)− y‖ < ε.
Now we use the completeness of X to get a x with T (x) = y.
Fix y ∈ δY o

1 . Let x1 ∈ Xo
1 with ‖y − T (x1)‖ < 1

2δε.
By induction we choose xn+1 with ‖xn+1‖ < ε

2n and ‖y−ΣT (xi)‖ < δε
2n+1 .

Now if sn = x1 + ... + xn then it is a Cauchy sequence in X and therefore
sn → x ∈ X. Since T is continuous, T (x) = y and ‖x‖ < 1 + ε. Since this
holds for any ε > 0, we have δY o

1 ⊂ T (Xo
1).

Again by the linearity of T we have that T maps open sets to open
sets. ¤

For a T : X → Y , let G(T ) = {(x, T (x)) : x ∈ X}. This is called the
graph of T . When T is a bounded operator, this is a closed subspace of the
product space X × Y .

Theorem 11. (Closed graph theorem): Let X,Y be Banach spaces and let
T : X → Y be a linear map with G = G(T ) closed. Then T is continuous.

Proof. Make the product space X × Y a Banach space under the norm
‖(x, y)‖ = ‖x‖ + ‖y‖, so that G is a Banach space. Define Φ : G → X by
Φ(x, T (x)) = x. This is a linear one-one and onto map. Since projection
is continuous w. r. t product topology, we have that Φ is continuous.
Therefore, by the open mapping theorem, we have that Φ is an isomorphism.

Thus there exists an m > 0 such that ‖x‖+‖T (x)‖ = ‖(x, T (x))‖ ≤ m‖x‖.
Thus ‖T (x)‖ ≤ (m− 1)‖x‖ and hence T is continuous.

¤
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A linear map P : X → X is said to be a projection if P (P (x)) = P (x).
Note that in this case X = R(P )⊕ ker(P ) (direct sum).

Let Y ⊂ X be a finite dimensional subspace. Then there exists a contin-
uous projection P : X → Y with R(P ) = Y . Also if Y ⊂ X is such that
X|Y is finite dimensional the same conclusion holds.

A projection P is continuous if and only if R(P ) and ker(P ) are closed.
For any T ∈ L(X,Y ). Define T ∗ : Y ∗ → X∗ by T ∗(y∗)(x) = y∗(T (x)).

T ∗ is a linear map and ‖T ∗(y∗)‖ ≤ ‖T‖‖y∗‖.
Similarly T ∗∗ : X∗∗ → Y ∗∗ is defined and agrees with T on the canonical

embedding of X in X∗∗. Thus ‖T‖ ≤ ‖T ∗∗‖ ≤ ‖T ∗‖ ≤ ‖T‖. So that
‖T‖ = ‖T ∗‖.

Note that T ∗ : Y ∗ → X∗ is also a continuous map when the domain and
the range are equipped with the weak∗-topology.

We assume the following consequences of the general version of the Hahn-
Banach theorem that we have not proved here.

A subspace Y ⊂ X∗ is weak ∗-dense if and only if x ∈ X, y∗(x) = 0 for
all y∗ ∈ Y implies x = 0.

Let A ⊂ X be a closed, convex and balanced set. If x0 /∈ A then there
exists an x∗ ∈ X∗ such that |x∗(x)| ≤ 1 for all x ∈ A but x∗(x0) > 1.

Theorem 12. (Closed Range Theorem): Let X, Y be Banach spaces. Let
T ∈ L(X, Y ). The range R(T ) is closed if and only if R(T ∗) is closed if and
only if R(T ∗) is weak∗-closed.

Proof. Suppose R(T ∗) is closed. By replacing Y by R(T )− if necessary, we
may assume that R(T ) is dense in Y . Note that this implies that T ∗ is one-
one. Therefore T ∗ : Y ∗ → R(T ∗) is an isomorphism by the open mapping
theorem. Thus there exists a c > 0 such that c‖y∗‖ ≤ ‖T ∗(y∗)‖ for y∗ ∈ Y ∗.
We next show that cY 0

1 ⊂ T (X0
1 ). By an argument similar to the one given

during the proof of the Open mapping theorem, this implies that T is onto.
Let y0 ∈ Y . If y0 /∈ T (X0

1 ), as the later set is closed, convex and balanced,
by the separation theorem quoted above, there exists a y∗ ∈ Y ∗ such that
|y∗(y)| ≤ 1 < |y∗(y0)| for all y ∈ T (X0

1 ). For x ∈ X0
1 , |T ∗(y∗)(x)| =

|y∗(T (x))| ≤ 1. Thus c‖y∗‖ ≤ ‖T ∗(y∗)‖ ≤ 1.
On the other hand 1 < |y∗(y0)| ≤ ‖y0‖‖y∗‖ < 1

c‖y0‖. So ‖y0‖ > c. Thus
cY 0

1 ⊂ T (X0
1 ).
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Conversely suppose that R(T ) is closed. By replacing Y by R(T ), we may
assume that T is onto. By passing through a quotient if necessary we may
assume that T is one-one. Thus T is an isomorphism and hence so is T ∗.
Therefore R(T ∗) is norm as well as weak∗-closed.

¤

Theorem 13. (Uniform boundedness principle) : Let {Tn}n≥1 ⊂ L(X, Y ).
Suppose for every x ∈ X, {Tn(x)}n≥1 is bounded. Then {Tn}n≥1 is bounded.

Proof. By hypothesis X =
⋃

k≥1{x : ‖Tn(x)‖ ≤ k for all n}. Since X is
complete, by the Baire category theorem, there exist k0, x0 and r > 0 such
that ‖x − x0‖ ≤ r ⇒ ‖Tn(x)‖ ≤ ko for all n. Let M be the bound for
{Tn(x0)}n≥1.

Now for ‖x‖ ≤ 1, ‖Tn(x0 − rx)‖ ≤ ko.
Thus r‖Tn(x)‖ ≤ ‖Tn(rx− x0)‖+ ‖Tn(x0)‖ ≤ k0 + M .
Hence ‖Tn‖ ≤ k0+M

r .
¤
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6. Theory of Operators on Banach spaces

A linear map T : X → Y is said to be compact if T (X1)− is a compact
set. We also say that T (X1) is precompact.

Clearly T is a bounded map. Note that T is compact if and only if every
bounded sequence {xn}n≥1 has a subsequence {xnk

} such that T (xnk
) → y

for some y ∈ Y .
It is easy to see that any finite rank operator is compact.
If T is a compact operator with closed range, then T is a finite rank

operator.
If T : X → Y is compact and Z ⊂ X is a closed subspace then the

restriction operator, T |Z : Z → Y is compact.
If T : X → X is compact and λ 6= 0 then ker(T−λI) is finite dimensional.
Let K(X, Y ) denote the vector space of compact operators.
If T : X → Y is compact and S : Y → W is bounded operator then S ◦T

is compact.

Theorem 14. (Schauder): T is compact if and only if T ∗ is compact .

Proof. Suppose T is compact. Note that since T ∗ is weak∗-continuous,
T ∗(Y ∗

1 ) is weak∗-compact and hence norm-closed. To show that T ∗(Y ∗
1 ) is

compact, let {y∗n}n≥1 ⊂ Y ∗
1 . Since y∗n ∈ C(T (X1)−) are uniformly bounded

and linear maps, it is easy to see that {y∗n}n≥1 is equicontinuous . Now
using the Ascoli’s theorem, we can conclude that there is a subsequence y∗nk

converging uniformly on T (X1).
Further,
‖T ∗(y∗nk

) − T ∗(y∗nl
)‖ = sup{|(y∗nk

− y∗nl
)(y)| : y ∈ T (X1)} → 0. Since X∗

is complete, we get that T ∗(y∗nk
) converges. Therefore T ∗ is compact.

Now suppose T ∗ is compact. By what we have proved above, T ∗∗ is
compact. Since T = T ∗∗|X we have that T is compact. ¤

When T is compact let us note that for any net, {y∗α} ⊂ Y ∗
1 , y∗α → y∗ in

the weak∗-topology implies, T ∗(y∗α) → T ∗(y∗) in the norm topology (i.e., T ∗

is completely continuous).

Theorem 15. K(X,Y ) is a closed subspace of L(X, Y ) and hence is a
Banach space.

Proof. Let {Tn}n≥1 ⊂ K(X,Y ) and Tn → T . We shall show that T (X1) is
totally bounded. Then, as Y is a Banach space, we have that T (X1)− is
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a compact set. Let ε > 0 and let n0 be such that ‖Tn0 − T‖ < ε. Since
Tn0(X1) is a totally bounded set, it is now easy to see that T (X1) can be
covered by finitely many balls with radius 3ε. Thus T ∈ K(X, Y ).

¤

Thus, if F(X,Y ) ⊂ K(X,Y ) denote the finite rank operators then
F(X, Y )− ⊂ K(X,Y ). From now on we take X = Y so that, L(X)
is an algebra with I as identity and, K(X) is a two-sided ideal. When
X is infinite dimensional, I /∈ K(X). For any T ∈ L(X), its spectrum
σ(T ) = {λ : T − λI is not invertible}. λ is said to be an eigenvalue if
0 6= x ∈ ker(T − λI). When X is infinite dimensional and T compact,
0 ∈ σ(T ).

Proposition 16. For a compact operator T and a non-zero eigenvalue λ ,
R(T −λI) 6= X. Er = {λ : |λ| > r, λ an eigenvalue} is a finite set and thus
E, the set of eigenvalues ,is a countable set.

Proof. Suppose the conclusions fail. We claim that there exists a sequence
{Mn}n≥1 of strictly increasing closed subspaces of X with T (Mn) ⊂ Mn and
(T −λnI)(Mn) ⊂ Mn−1, where {λn}n≥1 ⊂ E is bounded below by an r > 0.

Assuming the claim, as Mn−1 is a proper subspace of Mn, let yn ∈ Mn

with ‖yn‖ ≤ 2 and d(yn,Mn−1) = 1.
For 2 ≤ m < n, let z = T (ym)− (T − λnI)(yn). Then,
‖T (yn− ym)‖ = ‖λnyn− z‖ = |λn|‖yn− z

λn
‖ ≥ |λn| > r. This contradicts

the compactness of T .
Thus, suppose range(S = (T −λI)) = X. Let Mn = Ker(Sn). Since λ is

an eigenvalue, there exists a 0 6= x1 ∈ M1 and as range(S) = X, there exists
a sequence {xn}n≥1 ⊂ X such that S(xn+1) = xn. Now Sn(xn+1) = x1 6= 0
but Sn+1(xn+1) = S(x1) = 0. Thus Mn is a proper closed subspace of Mn+1.
The other assertions are valid with λn = λ.

On the other hand, suppose for an r > 0 there is a distinct sequence
{λn}n≥1 ⊂ E with |λn| > r. Let {en}n≥1 be a corresponding sequence of
independent eigenvectors. Let Mn = span{ei}1≤i≤n. Then T (Mn) ⊂ Mn

and (T − λnI)(Mn) ⊂ Mn−1.
¤
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We recall that for an operator T , R(T ) stands for its range.

Theorem 17. Let T ∈ K(X), λ 6= 0. The numbers, dim(ker(T − λI)) =
dim(X|R(T − λI)) = dim(ker(T ∗ − λI)). If 0 6= λ ∈ σ(T ) then λ is an
eigenvalue of Tand T ∗. σ(T ) is countable, compact with at most one limit
point, 0.

Proof. Let S = T − λI then S∗ = T ∗ − λI. We will first show that R(S) is
closed. Since ker(S) is finite dimensional, let P : X → ker(S) be a bounded
projection. It is enough to show that S is bounded below on ker(P ) where
it is one-one. If not, there exists a sequence {xn}n≥1 ⊂ ker(P ) of unit
vectors such that S(xn) → 0. Since T is compact we may assume that
xn → x0 ∈ ker(P ), so that λxn → λxo. Since S is one-one on ker(P ),
S(x0) = 0 ⇒ x0 = 0. This contradicts that xn’s are unit vectors and λ 6= 0.
Now by duality, kerS∗ = R(S)⊥ = (X|R(S))∗, so that

dim(X|R(T − λI)) = dim(ker(T ∗ − λI)).
Now suppose dim(ker(S)) > dim(X|R(S)). Suppose X = ker(S)⊕ E =

F ⊕R(S). Let P be the projection with range ker(S).
Since dim(ker(S)) > dim(F ), let φ : ker(S) → F be linear onto and

φ(x0) = 0 for some x0 6= 0. Let Φ = T + φ ◦ P . Clearly Φ is compact and
Φ − λI = S + φ ◦ P . As Φ(x0) = λx0, R(Φ − λI) 6= X. Since P = 0 on
E, (Φ − λI)(E) = R(S). Also as P = I on ker(S), (Φ − λI)(ker(S) = F .
Therefore, R(Φ− λI) = X, a contradiction.

Thus dim(ker(T − λI)) ≤ dim(X|R(T − λI)) and by duality we have
equality.

We already know that σ(T )∪{0} is countable and compact. If X is finite
dimensional, σ(T ) is a finite set and if X is infinite dimensional 0 ∈ σ(T ).

¤
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7. Hilbert spaces

Let H be a complex linear space. <,>: H × H → C such that, <, > is
linear in the first variable with < x, x >≥ 0 and < x, x >= 0 if and only if
x = 0, < x, y >=< y, x >−, is called an inner product on H.

For a σ-finite measure space (Ω,A, µ) and p = 2, for f, g ∈ L2(µ),
< f, g >=

∫
fg−dµ is an inner product.

Similarly, in the discrete case `2 the space of square summable complex
sequences, < x, y >=

∑
x(n)y(n)− is an inner product.

If < x, y >= 0 we say, x is orthogonal to y, and write x⊥y.
Let ‖x‖ = (< x, x >)

1
2 . Put α =< x, y >.

For any λ ∈ C, 0 ≤ ‖λx + y‖2 = |λ|2‖x‖2 + 2re(αλ) + ‖y‖2.
Thus, if < x, y >= 0 then ‖y‖ ≤ ‖λx + y‖ for all λ ∈ C.
Also when 0 6= x, by taking λ = − α−

‖x‖2 we see that,

0 ≤ ‖λx + y‖ = ‖y‖2 − |α|2
‖x‖2 .

Thus, | < x, y > | ≤ ‖x‖‖y‖. This is called the Schwarz inequality.
Also if < x, y >6= 0 for the above choice of λ, ‖y‖ > ‖λx+y‖. Hence x⊥y

if and only if ‖y‖ ≤ ‖λx + y‖ for all λ ∈ C.
Thus orthogonality can be described only using ‖.‖. In a Banach space,

according to G. Birkhoff, x⊥y if ‖λx + y‖ ≥ ‖y‖ for all λ ∈ C.
It is easy to see now from the Schwarz inequality that ‖x+y‖ ≤ ‖x‖+‖y‖.

Thus ‖x‖ = (< x, x >)
1
2 defines a norm on H.

H is a Hilbert space when it is a Banach space with this norm.
L2(µ) and `2 are Hilbert spaces with norms, ‖f‖2 = (

∫ |f |2dµ)
1
2 and

‖x‖2 = (
∑ |x(n)|2) 1

2 .
The equation ‖x + y‖2 + ‖x − y‖2 = 2(‖x||2 + ‖y‖2) is called the the

parallelogram law.
For M ⊂ H define M⊥ = {x ∈ H :< x, y >= 0 for y ∈ M}. This is a

closed subspace. Also M ∩M⊥ = 0.
Fix a y ∈ H. Define f : H → C by f(x) =< x, y >. Then f ∈ H∗ and

‖f‖ = ‖y‖.

Theorem 18. Every non-empty closed convex set A ⊂ H has a unique
vector of smallest norm. For any closed subspace M ⊂ H there is a unique
projection P ∈ L(H) such that ker(P ) = M⊥, R(P ) = M and ‖x‖2 =
‖P (x)‖2 + ‖(I − P )(x)‖2. Let f ∈ H∗. There exists a unique y ∈ H such
that f(x) =< x, y >.
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Proof. We may assume that 0 /∈ A. Let d = d(0, A). Let {an}n≥1 ⊂ A

and d = lim‖an‖. As 1
2(an + am) ∈ A, ‖an + am‖2 ≥ 4d2. Thus by the

Parallelogram law, ‖an − am‖2 → 0. therefore an → a ∈ A and hence
d = ‖a‖. If b ∈ A and ‖b‖ = d then the sequence an = a or b alternately
must converge by the above argument. So a = b.

Let x ∈ H and let d(x,M) = ‖x − y‖ for a unique y ∈ M . Define
P (x) = y. Now ‖x − P (x)‖ ≤ ‖x − P (x) + m‖ for all m ∈ M . Therefore
x− P (x) ∈ M⊥. Thus P is a projection with the above properties.

Let 0 6= f ∈ H∗. Applying the above conclusion to M = ker(f), let
0 6= z ∈ M⊥. Since f(x)z − f(z)x ∈ ker(f), f(x) < z, z >= f(z) < x, z >.
Now by taking y = f(z)−

<z,z>z we have f(x) =< x, y >. Uniqueness is easy to
see.

¤

The P in the above theorem is called an orthogonal projection.
Note that f → y is a conjugate linear isometry of H∗ with H. Thus a

Hilbert space is reflexive and the unit ball is weakly compact.
We can relate M⊥ to the annihilator of M discussed in Section 3.
We saw, in the case of Banach spaces,

∑∞
n=1 ‖xn‖ < ∞ implies

∑∞
n=1 xn =

lim
∑n

i=1 xi exists. This property, in the case of pair-wise orthogonal vectors,
can be completely described in terms of the norm in a Hilbert space.

Theorem 19. Let {xn}n≥1 ⊂ H be a sequence of pair-wise orthogonal vec-
tors.

∑
xn converges if and only if

∑ ‖xn‖2 < ∞. This is also equivalent
to

∑
< xn, y > < ∞ for any y ∈ H.

Proof. As the vectors are pair-wise orthogonal, by the parallelogram law
we have,

∑l
i=k ‖xi‖2 = ‖xk + ... + xl‖2. Thus

∑ ‖xn‖2 < ∞ implies the
convergence of the series of vectors. Also by the Schwarz’ inequality,

∑
xn

converges, implies
∑

< xn, y > < ∞ for all y ∈ H.
Conversely, suppose

∑
< xn, y > < ∞ for all y ∈ H. Define Λn : H → C

by Λn(x) =
∑n

i=1 < xi, y >. Then Λn ∈ H∗ and ‖Λn‖ =
∑n

i=1 ‖xi‖2.
Also for any y ∈ H, {Λn(y)} is a bounded sequence. Thus, by the uniform
boundedness principle, we get that

∑ ‖xn‖2 < ∞.
¤
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In the following we assume that H is a separable space.
A sequence {xn}n≥1 of unit vectors that are pair-wise orthogonal is called

an orthonormal sequence. These are clearly independent vectors. There can
be only countably many such vectors in a separable space.

Note that in the case of `2, xn = en the coordinate vectors form an
orthonormal sequence and
‖x‖2 =

∑ | < x, ei > |2 and < x, y >=
∑

< x, en >< en, y >.
An orthonormal sequence satisfies the Bessel’s inequality,∑ | < x, xn > |2 ≤ ‖x‖2.
To see this, let Mn = span{{xi}1≤i≤n}. Then
d(x,M) = ‖x−∑

< x, xi > xi‖.
Also, we know
‖x‖2 = ‖x−∑

< x, xi > xi‖2 + ‖∑
< x, xi > xi‖2.

But ‖∑
< x, xi > xi‖2 =

∑ | < x, xi > |2.
Thus Φ : H → `2 defined by Φ(x) = {< x, xn >} is a linear onto map

with ‖Φ‖ = 1.
We will next see conditions under which Φ is an isometry and preserves

the inner product.
An orthonormal sequence is said to be maximal if < x, xn >= 0 for all n

implies x = 0.
One can show that {xn}n≥1 is a maximal orthonormal sequence if and

only if M = span{xn}n≥1 is dense in H.

Theorem 20. {xn}n≥1 is a maximal orthonormal sequence if and only if
‖x‖2 =

∑ | < x, xn > |2. In this case, < x, y >=
∑

< x, xn >< xn, y >.

Proof. Suppose {xn}n≥1 is a maximal orthonormal sequence. Let ε > 0.
There is a z ∈ Mn for some n such that ‖x− z‖ < ε. Therefore
‖x−∑n

1 < x, xi > xi‖ = d(x, Mn) ≤ ‖x− z‖ < ε.
Thus,
(‖x‖−ε)2 < ‖∑n

1 < x, xi > xi‖2 =
∑n

1 | < x, xi > |2 ≤ ∑∞
1 | < x, xi > |2.

Hence ‖x‖2 =
∑ | < x, xn > |2. The converse is trivial. The last assertion

follows since Φ : H → `2 has this property. More precisely, by our hypothesis
we have < x, x >=

∑
< x, xn >< xn, x >. For x, y, λ ∈ C,

< x + λy, x + λy >=< Φ(x) + λφ(y), Φ(x) + λΦ(y) >. Thus,
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λ− < x, y > +λ < y, x >= λ− < Φ(x), Φ(y) > +λ < Φ(y),Φ(x) >.
Taking λ = 1, i in this relation shows that < x, y >=< Φ(x),Φ(y) > as they
have the same real and imaginary parts.

¤

Finally to generate a maximal orthonormal set (also called a complete
orthonormal basis) we invoke Zorn’s Lemma. Consider the class of all or-
thonormal sets and order it by inclusion. Every chain here has a maximal
element. Thus the maximal element given by the Zorn’s Lemma is a maxi-
mal orthonormal set.
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8. Operators on Hilbert spaces

Let T ∈ L(H). If < T (x), x >= 0 for all x ∈ H then T = 0.
To see this, apply the idea from the last section to get < T (x), y >= 0

for all x, y ∈ H. Taking y = T (x) thus gives the conclusion.
For each y ∈ H, by Theorem 18, there exists a unique S(y) ∈ H with

‖S(y)‖ ≤ ‖T (x)‖‖y‖, such that < T (x), y >=< x, S(y) >. It is easy to see
that S is linear and thus S ∈ L(H) and ‖S‖ ≤ ‖T‖. We denote this S by
T ∗ and is unique with the property < T (x), y >=< x, T ∗(y) >. It is called
the adjoint of T .

Applying the same idea to T ∗ ∈ L(H),
< T (x), y >=< T ∗(y), x >−=< y, T ∗∗(x) >−=< T ∗∗(x), y >

so that by uniqueness T ∗∗ = T and ‖T ∗‖ = ‖T‖.
Also ‖T (x)‖2 =< T (x), T (x) >=< T ∗(T (x)), x >≤ ‖T ∗T‖‖x‖2. So

‖T‖2 ≤ ‖T ∗T‖ ≤ ‖T‖‖T ∗‖ = ‖T‖2. Therefore ‖T‖2 = ‖T ∗T‖.
T → T ∗ is a conjugate linear map and (TS)∗ = S∗T ∗.
In the case of Hilbert space, we have that T is compact if and only if

T (H1) is a compact set. T is compact if and only if T ∗ is compact.
For α ∈ `∞, define Mα : `2 → `2 by Mα(x) = (α(n)x(n)). It is easy to

see that ‖Mα‖ = ‖α‖. One can easily compute M∗
α, and also decide when is

Mα compact ?
Let H be separable with a complete orthonormal basis {en}n≥1. Let Pn

be the orthogonal projection onto span{e1, ..., en}. Then Pn(x) → x. If
T ∈ K(H) then PnT → T . Thus F(H)− = K(H).

The duality between the range of an operator and the kernel of the adjoint,
in Section 5, in the case of Hilbert spaces is given by, Ker(T ∗) = R(T )⊥

and Ker(T ) = R(T ∗)⊥.
T is said to be normal if TT ∗ = T ∗T , self-adjoint if T ∗ = T and unitary

if T ∗T = I = TT ∗.
For a normal operator we have,
‖T (x)‖2 =< T (x), T (x) >=< T ∗T (x), x >=< TT ∗(x), x >. Also
< TT ∗(x), x >=< T ∗(x), T ∗(x) >= ‖T ∗(x)‖2.
Thus ‖T (x)‖ = ‖T ∗(x)‖.
Mα defined above is a normal operator. Define U : `2 → `2 by
U(x1, ...xn, ..) = (0, x1, x2, ....). It is easy to compute U∗. This is called

the shift operator.
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We see that an operator U is unitary if and only if U is onto and preserves
the norm or inner product.

Let P ∈ H be a projection, i.e., P 2 = P . Then if P is normal then P is
an orthogonal projection (i.e., ker(P )⊥ = R(P )) and P is self adjoint. To
see this we note that for a normal operator T , ker(T ) = ker(T ∗) = R(T )⊥.
Now since R(P ) = ker(I − P ), we have that P is an orthogonal projection.

Now ‖P (x)‖2 =< P (x), P (x) >=< P (x), (I − P )(x) + P (x) >.
Similarly, ‖P (x)‖2 =< P (x) + (I − P )(x), P (x) >. Thus,
< P (x), x >=< x, P (x) >. Hence an orthogonal projection is self adjoint.
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