
CHAPTER 1

Classical stuff - title to be changed later

1. Positive Definite Kernels

To start with something simple and elegant, we choose positive definite kernels which appear
at every corner in functional analysis. This section does not require much background. A
basic knowledge of Hilbert spaces and of operators on them will be assumed in the book.

A positive definite kernel k on a set X is a complex valued function on X ×X such that for
any positive integer n, any x1, x2, . . . , xn from X and any n complex numbers c1, c2, . . . , cn,

n∑
i=1

n∑
j=1

cicjk(xi, xj) ≥ 0.

Note that this means that the n× n matrix

((k(xi, xj)))

is a positive definite matrix. We shall use the term ”positive definite matrix” even when the
matrix has zero eigenvalues. Thus our positive definite matrices need not be invertible. In
the case when the matrix is actually invertible, i.e., when the eigenvalues are all positive, we
shall call it a strictly positive definite matrix.

Examples of positive definite kernels are as follows.

(1) If X is the finite set {1, 2, . . . , n}, take an n× n positive definite matrix A = ((aij))
and define k(i, j) = aij for all i, j = 1, 2, . . . , n.

(2) Let X = H, a Hilbert space and k(x, y) = 〈x, y〉.
(3) If X is any set and λ : X → H is a function from X to a Hilbert space H the kernel

k : X ×X → C by

(1.1.1) k(x, y) = 〈λ(x), λ(y)〉, x, y ∈ X

is positive definite.

In the last example, let M be the closed linear span of the set of vectors {λ(x) : x ∈ X}.
Then H could be replaced byM and the function λ : X →M then would have the property
that the Hilbert space is generated as the closed linear span of the vectors {λ(x) : x ∈ X}.
When this happens, the function λ is said to be minimal (for the positive definite kernel k). It
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turns out, as the following lemma illustrates, that this is a prototypical example of a positive
definite kernel.

Before we go to the lemma, we would like to mention here that, on our Hilbert spaces, the
inner product is linear in the second variable and conjugate linear in the first. This is a
departure from the standard practice in functional analysis. However, as we shall see, this
helps us regarding notations. Given two Hilbert spaces H and K, when we say H is contained
in K, usually denote by K ⊃ H and H ⊂ K we shall mean that H is physically contained in K
as a closed subspace or that H is isometrically embedded into K, i.e., there is a linear isometry
V mapping H into K. In the latter case, we shall identify H with the closed subspace Ran V
of K and make no distinction between the elements h and V h. Obviously, this then implies
that if Ran V is the whole space K, then an element k of K is identified with that unique
element h of H which satisfies V h = k. An isometry which is onto is called a unitary map.
If V is a unitary map, then we say that H and K are unitarily equivalent. As we shall often
see and as is often required, the unitary map between two Hilbert spaces also preserves some
more structures.

Lemma 1.1. Given a positive definite kernel k on a set X, there is a unique (up to unitary
isomorphism) Hilbert space H and a minimal map λ : X → H such that equation (1.1.1) is
satisfied.

Proof. Given a positive definite kernel k : X × X → C, one can construct a Hilbert
space H and a function λ : X → H as follows. Consider the vector space CX of all complex
valued functions ξ : X → C with the property that ξ(x) = 0 for all but a finite number of
x ∈ X. We can define a sesquilinear form 〈·, ·〉 on CX by

〈ξ, η〉 =
∑
x,y∈X

k(x, y)ξ̄(x)η(y), ξ, η ∈ CX.

The sesquilinear form 〈·, ·〉 is positive semidefinite because of the hypothesis on k. An appli-
cation of the Schwarz inequality shows that the set

N = {ξ ∈ CX : 〈ξ, ξ〉 = 0}

is a linear subspace of CX, so this sesquilinear form can be promoted naturally to an inner
product on the quotient CX/N . The completion of the inner product space CX/N is a Hilbert
space H(k). We shall usually omit k and denote it only by H when there is no chance of
confusion. Define a function λ : X → H as follows:

(1.1.2) λ(x) = δx +N, x ∈ X,

where δx is the indicator function of the singleton {x}. By construction, k(x, y) = 〈λ(x), λ(y)〉.
Note too that this function λ is minimal for k just by construction.

The uniqueness statement means that given two Hilbert spaces H1 and H2 with two minimal
functions λ1 : X → H1 and λ2 : X → H2, both satisfying (1.1.1), there is a unitary operator



1. POSITIVE DEFINITE KERNELS 3

U : H1 → H2 which satisfies

(1.1.3) U(λ1(x)) = λ2(x), x ∈ X.
We could try to define U by (1.1.3) and extend it linearly to finite linear combinations of the
λ(x). Indeed, it then defines a linear operator on a dense subspace of H1 and we find that
for points x1, x2, . . . , xn and y1, y2, . . . , ym from X

〈U(
n∑
i=1

ciλ1(xi)), U(
m∑
j=1

djλ1(yj))〉H2 =
∑
i,j

cidj〈U(λ1(xi)), U(λ1(yj))〉H2

=
∑
i,j

cidj〈λ2(xi), λ2(yj)〉H2

=
∑
i,j

cidjk(xi, yj)

=
∑
i,j

cidj〈λ1(xi), λ1(yj)〉H1

= 〈
n∑
i=1

ciλ1(xi),
m∑
j=1

djλ1(yj)〉H1 .

Thus U is an isometry from a dense subspace of H1 to a dense subspace of H2. Hence U
extends to an isomorphism of the Hilbert spaces. That proves the uniqueness.

Obtaining a Hilbert space H from a positive definite kernel k is sometimes referred to as the
Gelfand-Naimark-Segal (GNS) construction. The space H is called the GNS space and the
pair (H, λ) together is called the GNS pair. The only word of caution is that in general, the
GNS space H need not be separable.

We close this section by showing how an innocuous looking map between two sets with kernels
preserving the kernel structures in a suitable way is loaded enough to imply that the GNS
space of the first kernel in contained in that of the other. Suppose there are two positive
definite kernels k1 and k2 on two sets X1 and X2 respectively with their respective GNS pairs
(Hi, λi) for i = 1, 2. Suppose ϕ : X1 → X2 is a map. Now ϕ may not have any relation with
the given kernels. However, it may be the case that ϕ satisfies

k2(ϕ(x), ϕ(y)) = k1(x, y), x, y ∈ X.
Then, using the GNS pair, we immediately have

〈λ2(ϕ(x)), λ2(ϕ(y))〉H(k2) = k2(ϕ(x), ϕ(y)) = k1(x, y) = 〈λ1(x), λ1(y)〉H(k1),

holding for all x, y ∈ X1. Define Uϕ : H(k1)→ H(k2) by defining it first on {λ1(x) : x ∈ X}
by

Uϕλ1(x) = λ2(ϕ(x))

and then extending it to linear combinations. The equality above shows that Uϕ is an inner
product preserving linear map defined on a dense subset of H(k1). Hence we get a unique
linear isometry from H(k1) into H(k2) such that
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(1.1.4) Uϕ(λ1(x)) = λ2(ϕ(x)), x ∈ X1.

As expected, it is not difficult to verify that Uϕ1Uϕ2 = Uϕ1◦ϕ2 holds.

Good references for the material presented above is a recent historical survey article [2] by
Arveson and the Section 15 of the book [8] by Parthasarathy.

2. Dilation of a Single Contraction

All the Hilbert spaces in this book are over the complex field and are separable. If there is

an isometry V : H → Ĥ, any bounded operator T on H is then identified with the bounded

operator V TV ∗ on Ran V . The projection from Ĥ onto Ran V (equivalently H) will be
denoted by PH.

Definition 2.1. Let H be a Hilbert space. Suppose T is bounded operator on H. If Ĥ is a

Hilbert space and A is a bounded operator on Ĥ satisfying H ⊂ Ĥ and

(1.2.1) T nh = PHA
nh for all h ∈ H and all non-negative integers n

then Ĥ is called a dilation space and the operator A is called a dilation for the operator T . A
dilation A of T is called minimal if

span{Anh : h ∈ H, n = 0, 1, 2, . . .} = Ĥ.
An isometric (respectively unitary) dilation of T is a dilation A which is an isometry (respec-
tively unitary).

Let A1 and A2 be two dilations of the same operator T on H. Let the dilation spaces be Ĥ1

and Ĥ2 respectively and let the embedding isometries be V1 : H → Ĥ1 and V2 : H → Ĥ2

respectively. Then the dilations (Ĥ1, A1) and (Ĥ2, A2) are called unitarily equivalent if there

is a unitary U : Ĥ1 → Ĥ2 which satisfies UA1U
∗ = A2 and UV1h = V2h for all h ∈ H.

Given any dilation space K and an isometric dilation A of an operator T on H, one can always

consider the subspace Ĥ def
= span{Anh : h ∈ H, n = 0, 1, 2, . . .}. This is a reducing subspace

for A. It is a dilation space for T and A|Ĥ is a minimal isometric dilation for T . Moreover,

note that if H is separable, then Ĥ is the span closure of elements of the form Anh where n is

a non-negative integer and h comes from a countable dense subset of H. Thus Ĥ is separable.

Let B(H) denote the algebra of all bounded operators on the Hilbert space H and let ‖ · ‖
denote the operator norm on B(H). An element T of B(H) is called a contraction if ‖T‖ ≤ 1.
Clearly, if T has an isometric dilation, then T is a contraction. Conversely, given a contraction
T acting on a Hilbert space H, Sz.-Nagy showed that T always has a minimal isometric
dilation. We shall give three proofs of the theorem.
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Theorem 2.2. Given a contraction T on a Hilbert space H, there is a minimal isometric
dilation which is unique up to unitary equivalence.

There are a few comments to make before we embark on the proof.

• First note that if a minimal dilation A exists, then its uniqueness up to unitary
equivalence is straightforward because 〈Anh,Amh′〉 does not depend on a particular
minimal dilation A. Indeed,

(1.2.2) 〈Anh,Amh′〉 =

{
〈An−mh, h′〉 = 〈T n−mh, h′〉 if n ≥ m ≥ 0,
〈h,Am−nh′〉 = 〈h, Tm−nh′〉 if m ≥ n ≥ 0.

So given two minimal dilations A1 and A2 on the spaces Ĥ1 and Ĥ2 respectively,
define U on span{An2h : h ∈ H, n = 0, 1, 2, . . .} by

U(
N∑
n=0

An2hn) =
N∑
n=0

An1hn.

This is a well-defined isometric linear transformation from a dense subspace of Ĥ2

onto a dense subspace of Ĥ1. Thus U extends to a unitary operator from Ĥ2 to Ĥ1.
Moreover, note that for h ∈ H, we have Uh = U(A0

2)h = A0
1h = h, thus the isometric

embedding of H into the dilation spaces is respected by U . Of course, U has been so
constructed that UA2U

∗ = A1.
• If A is a bounded operator on Ĥ = H⊕ (Ĥ 	H) such that the operator matrix of A

with respect to the decomposition above is

A =

(
T 0
∗ ∗

)
then it is clear from matrix multiplication that

An =

(
T n 0
∗ ∗

)
for any positive integer n. Thus A is a dilation of T . Since A∗ leaves H invariant,
H is called a is a co-invariant subspace for A. Of course, this is equivalent to saying
that A∗|H has to be T ∗.
• The minimal isometric dilation A that we shall construct has the property that H

is a co-invariant subspace for A. Now note that if this is true for one minimal
isometric dilation A, then it is true for any minimal isometric dilation. Indeed, let

(Ĥ1, A1) and (Ĥ2, A2) be two minimal isometric dilations. Suppose that H is a co-
invariant subspace for A1. We know by minimality that there is a unitary operator

U : Ĥ1 → Ĥ2 such that Uh = h for all h ∈ H and A2 = UA1U
∗. With respect to the

decompositions Ĥi = H⊕ (Ĥi 	H) for i = 1, 2, we have

A1 =

(
T 0
∗ ∗

)
and U =

(
I 0
0 ∗

)
.
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Obviously, then A2 = UA1U
∗ also has the operator matrix form(

T 0
∗ ∗

)
which means that H is a co-invariant subspace for A2. Thus any minimal isometric
dilation leaves H co-invariant.
• Here are some basic notations and terminology which will be used throughout.

Defect operators: For a contraction T , the operators 1− TT ∗ and 1− T ∗T are
called the defect operators. Let DT ∗ = (1− TT ∗)1/2 and DT = (1− T ∗T )1/2.

Defect spaces: DT ∗ = RanDT ∗ and DT = RanDT are called the defect spaces.

3. First proof of existence - an abstract method

We start with a lemma which will be useful in this proof as well as in many other places.

Lemma 3.1. Let K1 and K2 be two Hilbert spaces, let B ∈ B(K1) be a positive operator and
let A ∈ B(K1,K2). Then

(1.3.1)

(
B A∗

A I

)
: K1 ⊕K2 → K1 ⊕K2

is a positive definite operator if and only if A∗A ≤ B.

Proof Let ki ∈ KI for i = 1, 2. Then

(1.3.2)

〈(
B A∗

A I

)(
k1

k2

)
,

(
k1

k2

)〉
= 〈Bk1, k2〉+ 〈A∗k2, k1〉+ 〈Ak1, k2〉+ 〈k2k2〉.

Now given that A∗A ≤ B, we have ‖Ak1‖ ≤ ‖B1/2k1‖ for all k1 ∈ K1. So from (1.3.2), we
have 〈(

B A∗

A I

)(
k1

k2

)
,

(
k1

k2

)〉
= 〈Bk1, k2〉+ 2 Re 〈Ak1, k2〉+ 〈k2, k2〉

≥ ‖B1/2k1‖2 + ‖k2‖2 − 2|〈Ak1, k2〉|
≥ ‖B1/2k1‖2 + ‖k2‖2 − 2‖Ak1‖ ‖k2‖
≥ ‖B1/2k1‖2 + ‖k2‖2 − 2‖B1/2k1‖‖k2‖ ≥ 0.

Conversely, suppose the operator matrix in (1.3.1) defines a positive operator. Then the right
hand side of (1.3.2) is non-negative for every k1 and k2. We put k2 = −Ak1 to get the result.

With this background, we embark on the proof. Taking cue from 1.2.2, we define the set

X = {(n, g) : n ∈ Z+, g ∈ H}
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and k : X ×X → C by

k((m, g), (n, h)) =

{
〈g, (T ∗)m−nh〉 if m ≥ n,
〈g, T n−mh〉 if n ≥ m.

Now we claim that k is a positive definite kernel. A moment’s thought shows that positive
definiteness of k follows if we show that the operator matrix

(1.3.3) Xn :=


I T T 2 · · · T n

T ∗ I T · · · T n−1

(T ∗)2 T ∗ I · · · T n−2

...
...

... · · · ...
(T ∗)n (T ∗)n−1 (T ∗)n−2 · · · I


is a positive operator on Hn+1 for every n. To prove that, we apply induction on n. For
n = 1, we have X1 =

(
I
T ∗

T
I

)
which is positive by Lemma 3.1 because T is a contraction.

Suppose then that n ≥ 2 is a positive integer and Xn−1 is a positive operator on Hn. Note
that

Xn =

(
Xn−1

A∗
A

I

)
with A =


T n

T n−1

...
T

 .

Hence by Lemma 3.1, we need to show that AA∗ ≤ Xn−1. For k = 0, 1, 2, . . . , n, denote the
operator

(T k, T k−1, . . . , T, I, 0, . . . , 0) : Hn+1 → H h1
...
hn

 → T kh1 + · · ·+ Thk + hk+1

by Lk. Then a straightforward, albeit a little cumbersome, computation shows that

Xn−1 − AA∗ =
n∑
k=0

L∗kD
2
T ∗Lk.

Hence the positive definiteness of the operator matrix (1.3.3) follows. So k is a positive definite
kernel.

Let (Ĥ, λ) be the GNS pair for the positive definite kernel k. Note that 〈λ(0, g), λ(0, h)〉Ĥ =

k((0, g), (0, h)) = 〈g, h〉H, so that we can embed H isometrically in Ĥ by identifying h in H
with λ(0, h) in Ĥ. Define A on the total set of vectors by

Aλ(m,h) = λ(m+ 1, h), where (m,h) ∈ X

and then extend it linearly to finite linear combinations of these vectors. Let m1 ≤ m2 ≤
· · · ≤ mk be non-negative integers and let h1, h2, . . . , hk be vectors in H. Then using the
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definition of the inner product in terms of the kernel we get

‖
k∑
i=1

ciλ(mi, hi)‖2 =
k∑
i=1

k∑
j=1

cicj〈λ(mi, hi), λ(mj, hj)〉

=
∑
i>j

cicj〈hi, (T ∗)mi−mjhj〉+
k∑
i=1

|ci|2‖hi‖2 +
∑
i<j

cicj〈hi, Tmj−mihj〉

=
k∑
i=1

k∑
j=1

cicj〈λ(mi + 1, hi), λ(mj + 1, hj)〉

= ‖
k∑
i=1

ciλ(mi + 1, hi)‖2 = ‖A(
k∑
i=1

ciλ(mi, hi))‖2.

Thus A is an isometry on this dense subspace and hence extends to the whole space as an
isometry. It is a straightforward computation to see that A∗|H = T ∗.

4. Second proof of existence - Schaffer construction

In this section, we give a concrete construction for the minimal isometric dilation. This elegant
construction appears in a one page paper by Schaffer [10]. The dilation space is constructed
by setting

Ĥ = H⊕DT ⊕DT · · · .
The spaceH is identified with the subspace of Ĥ consisting of elements of the form (h, 0, 0, . . .)

where h ∈ H. This is the way H is isometrically embedded into Ĥ. Define the operator A on

Ĥ by
A(h0, h1, h2, . . .) = (Th0, DTh0, h1, h2, . . .).

For every h ∈ H, we have ‖Th‖2 + ‖DTh‖2 = ‖h‖2, so that the operator A defined above is

an isometry. Now for h0 ∈ H and (k0, k1, k2, . . .) ∈ Ĥ, we have

< A∗h0, (k0, k1, k2, . . .) > = < h0, A(k0, k1, k2, . . .) >

= < (h0, 0, 0, . . .), (Tk0, DTk0, k1, k2, . . .) >

= < h0, Tk0 >

= < T ∗h0, k0 >=< T ∗h0, (k0, k1, k2, . . .) > .

Thus A∗h = T ∗h for all h ∈ H. The isometry A on Ĥ has the property that H is is left
invariant by A∗. So A is an isometric dilation of T . Minimality becomes clear by observing
that

An(h0, h1, h2, . . .) = (T nh0, DTT
n−1h0, . . . , DTh0, h1, h2, . . .)

from which it follows that

(1.4.1) An(h0, 0, 0, . . .) = (T nh0, DTT
n−1h0, . . . , DTh0, 0, 0, . . .).
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Thus
span{An(h, 0, 0, . . .) : h ∈ H, n = 0, 1, 2, . . .} = H⊕DT ⊕DT · · · = Ĥ.

The Schaffer construction, apart from being direct and explicit, emphasizes a very basic
ingredient in all of operator theory. To detect it, note that with respect to the decomposition

Ĥ = H⊕ (DT ⊕DT ⊕DT ⊕DT ⊕ · · · )
of the dilation space, the block matrix of the dilation operator is

(1.4.2)



T | 0 0 0 0 . . .
− − − − − − −
DT | 0 0 0 0 . . .
0 | 1 0 0 0 . . .
0 | 0 1 0 0 . . .
0 | 0 0 1 0 . . .
... | ...

...
...

...
...


.

The bottom right hand corner of the block matrix above is an example of a unilateral shift.
This is a class of operators which plays a fundamental role.

Definition 4.1. An isometry S on a Hilbert space M is called a unilateral shift if there is a
subspace L of M satisfying

(i) SnL ⊥ L for all n = 1, 2, . . . and

(ii) L ⊕ SL ⊕ S2L · · · =M.

The subspace L is called the generating subspace for S and dimL is called the multiplicity of
S.

The bottom right corner of (1.4.2) has a unilateral shift with the full space

M = DT ⊕DT ⊕DT ⊕DT ⊕ · · ·
the generating subspace

L = DT ⊕ 0⊕ 0⊕ · · ·
and

S(h1, h2, h3, . . .) = (0, h1, h2, . . .).

Its multiplicity is dim DT . Thus the block operator matrix of the dilation A constructed in
this section is 

T 0 0 0
DT

0
0

S

 .

A unilateral shift has a unique generating subspace and is determined up to unitary equivalence
by its multiplicity, i.e., if S1 and S2 are two unilateral shifts on Hilbert spaces L1 and L2
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respectively with the same multiplicity, then there is a unitary U : L1 → L2 such that
US1U

∗ = S2. The proofs and other facts about unilateral shifts can be found in, for example
[11].

5. The unitary dilation

Definition 5.1. Let H ⊂ K be two Hilbert spaces. Suppose V and U are bounded operators
on H and K respectively such that

Unh = V nh for all h ∈ H.
Then U is called an extension of V . A unitary extension is an extension which is also a
unitary operator.

Note that the block operator matrix of the operator U with respect to the decomposition
K = H⊕ (K 	H) is

U =

(
V

0

∗
∗

)
.

An extension U of a bounded operator V is also a dilation of V because PHU
nh = PHV

nh =
V nh for any h ∈ H and n ≥ 1. It moreover has the property that H is an invariant subspace
for U . It is this second property that makes it clear that in general, contractions could not
have isometric extensions.

Remark 5.2. Let H be a Hilbert space and T ∈ B(H). Suppose V is a dilation of T on a
Hilbert space K1 ⊃ H and U is an extension of V on a Hilbert space K2 ⊃ K1. Then U is a
dilation of T . Indeed,

PHU
nh = PHV

nh because U is an extension of V and h ∈ H ⊂ K1

= T nh because V is a dilation of T.

Definition 5.3. A unitary operator U on a Hilbert spaceM is called a bilateral shift if there
is a subspace L of M satisfying

(i) UnL ⊥ L for all integers n 6= 0 and

(ii) ⊕∞n=−∞U
nL =M.

The subspace L is called a generating subspace for U and dimL is called the multiplicity of
U .

Lemma 5.4. A unilateral shift V onM always has an extension to a bilateral shift. Moreover,
the extension preserves multiplicity.

Proof: The generating subspace of V is L =M	 VM. Define K = ⊕∞−∞Ln where each Ln
is the same as L. For an element (. . . , l−2, l−1, l0, l1, l2, . . .) of K with ln ∈ Ln for every n ∈ Z,
define
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U(. . . , l−2, l−1, l0, l1, l2, . . .) = (. . . , l′−2, l
′
−1, l

′
0, l
′
1, l
′
2, . . .),

where now l′n ∈ Ln and l′n = ln−1 for all n ∈ Z. Clearly, U is unitary and {(. . . , 0, 0, l0, 0, 0, . . .) :
l0 ∈ L0} is a generating subspace for U . This subspace has the same dimension as that of L.
An element

∑∞
0 V nln of H is identified with the element (. . . , 0, 0, l0, l1, l2, . . .) of K. This is

an isometric embedding.

Now for h =
∑∞

0 V nln, we have

Uh = U(. . . , 0, 0, l0, l1, l2, . . .) = (. . . , 0, 0, 0, l0, l1, . . .) =
∞∑
0

V nln−1 = V h.

That completes the proof.

An immediate corollary is the following.

Corollary 5.5. An isometry V on H always has an extension to a unitary.

Proof: By Wold decomposition ([11], page 3), we have H = H0⊕H1 where H0 and H1 are
reducing subspaces of V and V = V0 ⊕ V1 where V0 = V |H0 is a unitary and V1 = V |H1 is a
unilateral shift. By the lemma above, V1 can be extended to a bilateral shift, say U1. Now
V0 ⊕ U1 is a unitary extension of V .

Theorem 5.6. For every contraction T on a Hilbert space H, there is a minimal unitary
dilation which is unique up to unitary equivalence.

Proof: Obtaining a unitary dilation is immediate from the above discussions. We take an
isometric dilation and then its unitary extension, say U0. This is a unitary dilation, although
may not be minimal. Let

K = span{Un
0 h : h ∈ H and n = 0, 1, 2, . . .}.

This is a reducing subspace for U0 and the restriction U of U0 to K is a minimal unitary
dilation.

The uniqueness (up to unitary equivalence) proof is exactly on the same lines as the proof of
uniqueness of isometric dilation.

The unitary dilation of a contraction gives a quick proof of von Neumann’s inequality. In
its original proof [13], von Neumann first proved it for Mobius functions and then used the
fact that the space of absolutely convergent sums of finite Blashke products is isometrically
isomorphic to the disk algebra, the algebra of all functions which are analytic in the interior
and continuous on the closure of the unit disk. See Drury [5] or Pisier [9] for the details of
this proof. The following proof using the dilation is due to Halmos [6].
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Theorem 5.7. (von Neumann’s inequality): For every polynomial p(z) = a0 +a1z+ · · ·+
amz

m, let
‖p‖ = sup{|p(z)| : |z| ≤ 1}.

If T is a contraction and p is a polynomial, then

‖p(T )‖ ≤ ‖p‖.

Proof: First note that by spetcral theory, if U is a unitary operator and p is a polynomial,
then σ(p(U)) = {p(z) : z ∈ σ(U)}.

Since U is unitary, σ(U) ⊂ T where T is the unit circle. Thus ‖p(U)‖ = sup{|p(z)| : z ∈
σ(U)} ≤ sup{|p(z)| : z ∈ T} = ‖p‖. Now by the unitary dilation theorem, p(T ) = PHp(U)|H
which gives

‖p(T )‖ = ‖PHp(U)|H‖ ≤ ‖p(U)‖ ≤ ‖p‖.

The survey article by Drury [5] is an excellent source for more discussions on von Neumann’s
inequality.

6. Tuples of Commuting Contractions

Ando gave a beautiful generalization of Sz.-Nagy and Foias’s theorem for two commuting
contractions. The concept of dilation for a tuple of operators is similar to Definition 2.1.

Definition 6.1. Let H ⊂ K be two Hilbert spaces. Suppose T = (T1, T2, . . . , Tn) and V =
(V1, V2, . . . , Vn) are tuples of bounded operators acting on H and K respectively, i.e., Ti ∈ B(H)
and Vi ∈ B(K). The operator tuple V is called a dilation of the operator tuple T if

Ti1Ti2 . . . Tikh = PHVi1Vi2 . . . Vikh for all h ∈ H, k ≥ 1 and all 1 ≤ i1, i2, . . . , ik ≤ n.

If Vi are isometries with orthogonal ranges, i.e., V ∗i Vj = δij for 1 ≤ i, j ≤ n, then V is called
an isometric dilation. A dilation V of T is called minimal if span{Vi1Vi2 . . . Vikh : h ∈ H, k ≥
0 and 1 ≤ i1, i2, . . . , ik ≤ n} = K.

Theorem 6.2. For a pair T = (T1, T2) of commuting contractions on a Hilbert space H, there
is a commuting isometric dilation V = (V1, V2).

Proof: Let H+ = H⊕H⊕ · · · be the direct sum of infinitely many copies of H. Define two
isometries W1 and W2 on H+ as follows. For h = (h0, h1, h2, . . .) ∈ H+, set

Wih = (Tih0, DTi
h0, 0, h1, h2, . . .), for i = 1, 2.

Here DTi
are the defect operators as defined in the proof of Theorem 2.2. Clearly, W1 and W2

are isometries. However, they need not commute. We shall modify them to get commuting
isometries.
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Let H4 = H ⊕H ⊕H ⊕H and let v be a unitary operator on H4. We shall specify v later.
Identify H+ and H⊕H4 ⊕H4 ⊕ · · · by the following identification:

h = (h0, h1, h2, . . .)→ (h0, {h1, h2, h3, h4}, {h5, h6, h7, h8}, . . .).

Now define a unitary operator W : H+ → H+ by

Wh = (h0, v(h1, h2, h3, h4), v(h5, h6, h7, h8), . . .),

where h = (h0, h1, h2, . . .). The unitarity of W is clear since v is a unitary and

W ∗h = W−1h = (h0, v
−1(h1, h2, h3, h4), v

−1(h5, h6, h7, h8), . . .).

We define V1 = WW1 and V2 = W2W
−1. These are isometries because they are products of

isometries. These act on H+ and

V ∗i (h0, 0, . . .) = (T ∗i h0, 0, . . .), for i = 1, 2.

Now we shall see that v can be chosen so that V1 and V2 commute.

To choose such a v, we first compute V1V2 and V2V1.

V1V2(h0, h1, . . .) = WW1W2v
−1(h0, h1, . . .)

= WW1W2((h0, v
−1(h1, h2, h3, h4), v

−1(h5, h6, h7, h8), . . .)

= WW1(T2h0, DT2h0, 0, v
−1(h1, h2, h3, h4), v

−1(h5, h6, h7, h8), . . .)

= W (T1T2h0, DT1T2h0, 0, DT2h0, 0, v
−1(h1, h2, h3, h4),

v−1(h5, h6, h7, h8), . . .)

= (T1T2h0, v(DT1T2h0, 0, DT2h0, 0), (h1, h2, h3, h4),

(h5, h6, h7, h8), . . .)

and

V2V1(h0, h1, . . .) = W2W1(h0, h1, . . .)

= W2(T1h0, DT1h0, 0, h1, h2, . . .)

= (T2T1h0, DT2T1h0, 0, DT1h0, 0, h1, h2, . . .).

Since T1 and T2 commute, V1V2 will be equal to V2V1 if

(1.6.1) v(DT1T2h, 0, DT2h, 0) = (DT2T1h, 0, DT1h, 0)

for all h ∈ H. Now a simple calculation shows that

‖(DT1T2h, 0, DT2h, 0)‖ = ‖(DT2T1h, 0, DT1h, 0)‖, for all h ∈ H.

Hence one can define an isometry v by (1.6.1) from

L1
def
= span{(DT1T2h, 0, DT2h, 0) : h ∈ H}
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onto L2
def
= span{(DT2T1h, 0, DT1h, 0) : h ∈ H}. To extend v to the whole of H4 as a unitary

operator, i.e., an isometry of H4 onto itself, one just needs to check that H4	L1 and H4	L2

have the same dimension. If H is finite dimensional, this is obvious because L1 and L2 are
isometric. When H is infinite dimensional, note that L⊥1 and L⊥2 have dimension at least as
large as dimH because each of L⊥1 and L⊥2 contain a subspace isomorphic to H, for example
the subspace {(0, h, 0, 0) : h ∈ H}. Thus

dimH4 ≥ dim(H4 	 Li) ≥ dimH = dimH4 for i = 1, 2.

So they have the same dimension. This completes the proof that v can be so defined that V1

and V2 commute.

Theorem 6.3. Let V1 and V2 be two commuting isometries on a Hilbert space H. Then there
is a Hilbert space K and two commuting unitaries U1 and U2 on K such that

U1h = V1h and U2h = V2h for all h ∈ H.

In other words, two commuting isometries can be extended to two commuting unitaries.

We remark here that simple modifications of the proof of this theorem yield that the same is
true for any number (finite or infinite) of commuting isometries.

Proof: Using Corollary 5.5, we first find a unitary extension U1 on a Hilbert space H̃ of the
isometry V1. Without loss of generality we may assume that this extension is minimal, i.e.,

H̃ = span{Un
1 h : n ∈ Z and h ∈ H}.

We want to define an isometric extension Ṽ2 on H̃ of V2 which

(1) would commute with U1,
(2) would be a unitary on H̃ if V2 already is a unitary.

Assume for a moment that this has been accomplished, i.e., we have found a Ṽ2 satisfying
the above conditions. Then if V2 happens to be unitary, we are done. If not, then just repeat
the construction by applying Corollary 5.5 again, this time to the isometry Ṽ2 instead of V1.
Since U1 is already a unitary, the resulting extensions that we shall get will be commuting
unitaries.
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Now we get down to finding a Ṽ2 satisfying (1) and (2). To that end, note that

‖
∞∑

n=−∞

Un
1 V2hn‖2

=
∑
n,m

〈Un
1 V2hn, U

m
1 V2hm〉

=
∑
n≥m

〈Un−m
1 V2hn, V2hm〉+

∑
n<m

〈V2hn, U
m−n
1 V2hm〉

=
∑
n≥m

〈V n−m
1 V2hn, V2hm〉+

∑
n<m

〈V2hn, V
m−n
1 V2hm〉 as U1 extends V1

=
∑
n≥m

〈V2V
n−m
1 hn, V2hm〉+

∑
n<m

〈V2hn, V2V
m−n
1 hm〉 as V2, V1 commute

=
∑
n≥m

〈V n−m
1 hn, hm〉+

∑
n<m

〈hn, V m−n
1 hm〉 as V2 is an isometry

= ‖
∞∑

n=−∞

Un
1 hn‖2 tracing the steps back with V2 = 1H.

Thus on the dense subspace span{Un
1 h : n ∈ Z, h ∈ H}, one can unambiguously define an

isometry Ṽ2 by

Ṽ2

(
∞∑

n=−∞

Un
1 hn

)
=

∞∑
n=−∞

Un
1 V2hn.

Of course, Ṽ2 extends V2 and commutes with U1. Finally if V2 is a unitary, i.e., a surjective
isometry, then it follows from the definition of Ṽ2 that it has a dense range. An isometry with
a dense range is surjective and hence unitary. We have finished the proof.

This theorem of course immediately produces the unitary dilation theorem for two commuting
contractions:

Theorem 6.4. Given two commuting contractions T1 and T2 on a Hilbert space H, there is
a Hilbert space K ⊃ H and two commuting unitaries U1 and U2 on K such that

(1.6.2) Tm1 T
n
2 h = PHU

m
1 U

n
2 h, for all h ∈ H and m,n = 0, 1, 2, . . . .

Proof First get a commuting isometric dilation V = (V1, V2) on a space H+ by Theorem
6.2. Then get a commuting unitary extension U = (U1, U2) of V by Theorem 6.4. Now U is
the required dilation because U1 and U2 commute and for any h ∈ H and m,n = 0, 1, 2, . . .,
we have

PHU
m
1 U

n
2 h = PHV

m
1 V n

2 h because U extends V and h ∈ H ⊂ H+

= Tm1 T
n
2 h because V dilates T .
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The simultaneous unitary dilation theorem immediately produces a von Neumann’s inequality.

Corollary 6.5. (von Neumann’s inequality): Let T1 and T2 be two commuting con-
tractions acting on a Hilbert space H. Suppose p(z1, z2) is any polynomial in two variables.
Then

‖p(T1, T2)‖ ≤ sup{|p(z1, z2)| : |z1| ≤ 1, |z2| ≤ 1}.

Proof Let K ⊃ H be a unitary dilation space for T and U1 and U2 be two commuting
unitaries on K as obtained from Theorem 6.4. Since U1 and U2 are commuting unitaries,
all four of U1, U2, U

∗
1 and U∗2 commmute. Thus the C∗-algebra C generated by U1 and U2

is commutative. So by Gelfand theory ([4], Chapter I), C is isometrically ∗-isomorphic to
C(MC) where MC is the set of all multiplicative linear functionals χ on C. Such functionals
satisfy ‖χ‖ = χ(1) = 1.

Thus |χ(Ui)|2 = χ(Ui)χ(U∗i ) = χ(UiU
∗
i ) = χ(1K) = 1. So for any polynomial p(z1, z2), we

have

‖p(U1, U2)‖ = sup
χ∈MC

|χ(p(U1, U2)|

= sup
χ∈MC

|p(χ(U1), χ(U2))| as χ is multiplicative & linear

≤ sup
|z1|=1,|z2|=1

|p(z1, z2)|.

Hence

‖p(T1, T2)‖ = ‖PHp(U1, U2)|H‖ ≤ ‖p(U1, U2)‖ ≤ sup
|z1|=1,|z2|=1

|p(z1, z2)|.

The simultaneous unitary dilation of a pair of contractions is due to Ando [1] and the proofs
given here are essentially the same as his original ones. We shall end this section with the
rather striking fact that Ando’s theorem does not generalize to more than two commuting
contractions. The unitary extension theorem of isometries holds good, as remarked above, for
any number of commuting isometries. It is the isometric dilation of contractions which fails
for more than a pair of contractions.

Perhaps the easiest way to see it is to construct a triple of commuting contractions which
do not have a commuting unitary dilation. To that end, let L be a Hilbert space and let
A1, A2, A3 be three unitary operators on L such that

A1A
−1
2 A3 6= A3A

−1
2 A1.

(For example, A2 = 1 and A1, A3 two non-commuting unitaries will do.) Let H = L⊕L and
let Ti ∈ B(H) for i = 1, 2, 3 be defined as

Ti(h1, h2) = (0, Aih1) where h1, h2 ∈ L.
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Clearly ‖Ti‖ = ‖Ai‖ = 1 for i = 1, 2, 3 and TiTj = TjTi = 0 for i, j = 1, 2, 3. SO (T1, T2, T3) is
a commuting triple of contractions on H. Suppose there exist commuting unitary operators
U1, U2, U3 on some Hilbert space K ⊃ H such that Ti = PHUi|H for i = 1, 2, 3. Then

PHUi(h, 0) = Ti(h, 0) = (0, Aih), h ∈ H i = 1, 2, 3.

Note that ‖Ui(h, 0)‖ = ‖h‖ and ‖(0, Aih)‖ = ‖Aih‖ = ‖h‖. So Ui(h, 0) = (0, Aih). Hence

UkU
−1
j Ui(h, 0) = UkU

−1
j (0, Aih) = UkU

−1
j (0, Aj(A

−1
j Aih))

= UkU
−1
j Uj(0, A

−1
j Aih) = Uk(0, A

−1
j Aih) = (0, AkA

−1
j Aih).

Since the Ui commute, UkU
−1
j Ui = UiU

−1
j Uk for all i, j = 1, 2, 3. So AkA

−1
j Ai = AiA

−1
j Ak for

all i, j = 1, 2, 3. That is a contradiction. So there is no commuting dilation.

Note that von Nemann’s inequality is an immediate corollary of unitary dilation. So one way
to show non-existence of dilation is to show that von Neumann’s inequality is violated. This
is what Crabb and Davie did with a triple of operators acting on an eight-dimensional space
[3]. The literature over the years is full of a lot of discussions and considerations of many
aspects of the issue originating from this spectacular failure of von Neumann’s inequality. The
survey article of Drury [5] is very insightful, so is the monograph by Pisier [9]. The reader is
referred to Varopoulos [12] for his probabilistic arguments and establishing connection with
Grothedieck’s inequality, and Parrott [7] who gave an example which satisfies von Neumann’s
inequality but does not have a unitary dilation.
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[10] J. J. Schäffer. On unitary dilations of contractions. Proc. Amer. Math. Soc., 6:322, 1955.
[11] B. Sz.-Nagy and C. Foias. Harmonic Analysis of Operators on Hilbert Space. North-Holland, 1970. MR

43 #947.
[12] N. Varopoulos. On an inequality of von neumann and an application of the metric theory of tensor

products to operator theory. J. Funct. Anal., 16:83 – 100, 1974. MR 50 #8116.
[13] J. von Neumann. Eine spektraltheorie fur allgemeine operatoren eines unitaren raumes. Math. Nachr.,

4:258 – 281, 1951. MR 13,254a.

19


