CHAPTER 2 : HILBERT SPACE AND LINEAR OPERATORS

In the preceding chapter we have given a description
of the scattering process in physical terms. In this chapter
we shall begin to transcribe this description into the mathe-
matical language of quantum mechanics. We have seen that in
the distant past and the remote future the time evolution of a
scattering system is physically indistinguishable from that of
a system of free particles. Our first task is then to specify
the mathematical concepts and theorems needed for the descrip-
tion of particles, especially of free particles, and of their
temporal evolution. This is the topic of the present and the

following chapter.

The basic mathematical object which is needed for the
description of particles in quantum mechanics is the Hilbert
space. In Section 2-1 we introduce the abstract Hilbert space,

discuss some of its elementary properties and illustrate these
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notions in Lz-spaces. In Section 2-2 we present various simple
results concerning linear operators in Hilbert space. The em-
phasis is on getting acquainted with bounded and with self-
adjoint operators. Section 2-3 is devoted to some particular
classes of operators, namely compact, Hilbert-Schmidt and
trace class operators. Finally in Section 2-4 we introduce

the tensor product and the direct sum of Hilbert spaces.

The results of Sections 2-3 and 2-4 are not used before
Chapter 7, and the reader may skip these sections here and
familiarize himself with their material when arriving at

Chapter 7.

2-1 THEABSTRACTHILBERTSPACEANDITSCONCRETEREALIZATIONS

The abstract Hilbert space H is a collection of objects
called vectors, denoted by f, g,...; which satisfy the follo-

wing three axioms.

I. H is a linear vector space with complex coefficients.

This means that to every pair of vectors f,get there
is associated a third vector (f + g)eH. Furthermore to every
vector £ and every complex number o there corresponds another

vector afeH. The following rules are postulated :
f+g=g+f, f+g +h=£+(g+h), (2.1)
a(f + g) =of +og, (a+ g)f = of + BE, o(Bf) = (aR) £, (2.2)
1= £=f. (2.3)
There exists a unique vector 6 in H such that for all feH

o+ f=£0-+f=08. (2.4
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II. There exists a strictly positive scalar product in H.

The scalar product (f,g) is a function of pairs of

vectors f,geH with values in the set C of complex mumbers

*

and satisfies the following conditions J
(£,2) = (g,0), (2.5)

(f,g + oh) = (f,g) + a(f,h) for all complex a, (2.6)

|| £]]| = (f,f)1i >0 unless f = 0. (2.7)

(The bar in (2.5) denotes complex-conjugation.)

III. The space H is complete in the norm defined by (Z.7)

Whenever {fn}, n=1, 2,..., is a Cauchy sequence in the
sense that}!fn - fm§!+ 0 as n,m » =, there exists a vector
feH such that||fn - ||+ 0 as n > =,

In this book we shall deal only with separable Hilbert

spaces, i.e. we shall postulate also the following axiom :

IV. The space H is separable. This means that there exists

a sequence {fn}sH (n=1, 2,...) with the property that it is
dense in H. We recall that a subset D of H is dense in H if,
for any feH and any n > 0, there exists at least one element
£ in? such that || £ - fn||< n.

The last two requirements are topological in nature.
They limit the size of the space in opposite directions. The

first one can always be satisfied by a standard technique of

*

)In conformity with the practice of most physicists we shall
consider the scalar product (f,g) to be linear in g and anti-
linear in f, whereas the convention in the mathematical
literature is usually the opposite.
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adjunction of suitable limit elements; i.e. if a collection of
vectors verifies Axioms I and II, one can convert it into a
Hilbert space by adding suitable limit elements (this will be
used in Section 2-4). The second one is a genuine restriction,
requiring that there be a countable dense set D in H. So far
non-separable spaces have not been needed in quantum mechan-
ics. We may add that the property of denseness in a metric
space may be visualized by considering the example of the

real line R with the usual Euclidean metric where the set of

rational numbers is dense.

Before we introduce the Lz-spaces as concrete examples
of Hilbert spaces, we collect some additional definitions and
a few elementary relations that follow from the above axioms.
These will be useful at many later stages of this book. The
reader may also look at Problem 2.1 for other examples of

Hilbert spaces.
We begin with two simple inequalities. The first one is
the Schwarz inequality :

| (£, < [fllllell - (2.8)

For its proof we distinguish two cases. (a) If £ = g, (2.8)
holds with the equality sign by the definition (2.7). (b) If

£ # g, we may assume for instance that g # 6. For any complex
mmber a one has (cf. also Problem 2.2) 0 < || £+ ugH
(£ + ag,f + og) = £ + ol el + a(f,g) + alg, D).
(2.8) is a partlcular case of this obtained by setting o =

-(g, f)/l!g” and multiplying the resulting inequality byllgH

As a consequence of (2.8) one obtains the Minkowski
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inequality which is also called the triangle inequality :

£ + gll < |I£]] + |lg]l- (2.9)
Its proof is simple : ||f + gHZ - Hf!? + |\8H2 * (£,8) + (g,1)
€I+ lelf + 21 E,0) < I£IP + gl + 2 )£l gl
CIEN + gl )2

A

The triangle inequality implies together with axioms
I and II that the Hilbert space is a normed linear space.
The norm || f|| of a vector f is a measure of the distance be-
tween f and the zero vector 6, or in other words || f - g|| is
a mesure of the distance between f and g. Since the vectors
of H will be interpreted as the pure states of some physical
system, two states f and g are practically indistinguishable
if || £ - g|| is very small. This suggests that one could use
this norm in order to express the asymptotic properties of a
scattering system, viz. the practical indistinguishability of
the real system from a free system when |t| is very large.
This will be done in Chapter 4. The precise mathematical
statement will be a 1limit relation : the larger |t| the less
the real state should differ from a freely evolving state.
For this reason we shall now look at convergence properties

of sequences {fn} of elements of H.

In order to define the convergence of a sequence of
vectors of H, one resorts to the simpler notion of conver-
gence of a sequence of (real or complex) numbers. So far we
have introduced two kinds of numbers constructed from elements
of H, the norm of a vector and the scalar product between two

vectors. Each of these can be used to define a topology on H.
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The convergence of a sequence of vectors in the norm

|has already been used in formulating Axiom III. In

Hilbert space theory this is called strong convergence. A

sequence of vectors {fn} converges strongly to a limit vector
£ if ||f - fn||+ 0 for n » =. We then write £ - f or

S-limfn = f as n » ». A necessary and sufficient condition
for strong convergence is that the sequence be Cauchy in the
sense defined in Axiom III. The sufficiency is nothing but
Axiom III, and the necessity is an easy consequence of the
triangle inequality : If f - f, theann - fm!|=

“fn « £ £ = me f]}fn - £l + || £ - fm]|+ 0 as n,m~«, This
inequality can also be applied to verify the uniqueness of
the 1limit vector f (cf. Problem 2.3).

The convergence in H obtained by means of the scalar

product is called weak convergence. A sequence {fn} converges

weakly to a limit f if for every geH the sequence of scalar
products {(fn,g)} converges to (f,g). If this is the case we
write w-1im fn = f as n » «, The Cauchy criterion is also
valid for weak convergence, i.e. {fn} converges weakly if
and only if for every geH the sequence {(fn,g)} is a Cauchy
sequence of complex numbers. If {fn} is a Cauchy sequence in
this sense, there exists a unique vector feH such that
w-1im fn = f. We shall not use this criterion, but we may
add that the uniqueness of the weak limit is an immediate

consequence of Proposition 2.2 below.

Strong convergence implies weak convergence, but the
converse is not true. In fact one has the following relation

which is often very useful :
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PROPOSTITION 2.1 : s-lim £ = f if and only if w-lim f = f
I+ n oo n
and lim\|an = || £]].

Ti=ee

Proof : It involves the definition of strong and weak conver-

gence and the inequalities of Schwarz and Minkowski.
(1) Suppose fn + f. We get with (2.8)

(£, - G0 = (£, - £.0] <IIf, - £l llgll > o

n

for every geH, i.e. w-1im fn = f. By using (2.9) we deduce
£ 0l < g, - £l + BEll and [|£] < [1£ - £ |+ £l

and hence | £]| - [|£ - £ || < NE I < £l + || £ - £ Il Since

| £ - fn}|+ 0 for n » =, it follows that the limit of]]fnh

as n + « exists and is equal to || f]|.

G g - gl =1l g P - 65) - 5.

If w-1im £ = f and an|F+HfH, the right-hand side converges
to || £] + I EF - 2,8 - (E,£) =0y ditn £ =&, §

An example of a weakly convergent sequence which does
not converge strongly is an infinite orthonormal sequence.
Before we can verify this statement, we have to introduce
the notion of orthogonality. Two vectors f and g are said to
be orthogonal to each other if (f,g) = 0. Similarly two sub-
sets Ml and M2 of H are mutually orthogonal if (fl,fz) =0
for all flle and all fZEMZ. An important relation concerning

mutually orthogonal vectors is the following :
n n 5

I EIF= TI&IF if (£,6) =0 forall i#i. (2.10)
i ¥ i=1 - v

This is easily verified by writing the left-hand side as a

scalar product and using the linearity (2.6) of the scalar

product.



2 HILBERT SPACE AND LINEAR OPERATORS 25

An orthonormal sequence of vectors {hi} is character-
ized by the property that (h h ) = ij’ where 5ij =1 If
= j and §. i< = 0 3E 4 £ 5. If feH we then have from (2.6)
and (2. 10)
Z .o 2 s 2
Ux|f - E (hy, )b, !l = pE" + ) | F [ - 2 J | (hy, )]
i=1 1=1 i=1
2
hence Ei=1 |(hi,f]| < || £]

obtain Bessel's inequality

T 2 Z

I 1y, D° < £ (2.11)
i=1

(2.11) implies that (h ,f) > 0 as i » » for every feH, i.e.

. Since this holds for each n, we

{h } converges weakly to zero But {hl} cannot converge

strongly, since Hh - h || = Hh ]] + Hh |[ 2 if n # m.

An orthonormal set of vectors {e.} is called an ortho-
normal basis of # if the set of finite linear combinations of
vectors belonging to {ei} is dense in H. In a separable Hil-
bert space an orthonormal basis is always a countable set.
This can be seen as follows : Let u belong to some index set,
let {e } be any orthonormal set in H, i.e. (e e ) =1 if
po= g and (e eU) 0 if u # v. Let D = {fl} be a countable
dense set in H For each u, there exists i = i(u) such that
-~ fi(u) . Since /2 =\|eU - e ll < Ueu - fl(u)l
% fi

: }
< 1 % —
J|| i [|ev 1( )IL we must have i(v) # i(u) if
o # u. Thus there is a one-to-one correspondence between

|| <

e } and a subset of the set of positive integers, i.e. {e }

is countable

The existence of an orthonormal basis can be estab-
lished by choosing a subset of linearly independent vectors

of a countable dense set D and applying to it the Schmidt
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orthogonalization process [K, Ch. I.6.3.1, [RS, Thm. II. 7].
The dimension of a Hilbert space is equal to the number N of
vectors of an orthonormal basis (N does not depend on the
choice of a particular basis). Our axioms are equally valid
for finite and infinite-dimensional spaces. However if the
space if finite-dimensional the last two axioms are a conse-
quence of the others. Furthermore in the finite-dimensional

case the strong and the weak topology coincide (Problem 2.4).

An arbitrary vector in H can always be expanded in a
given basis. A little care is needed though if H is infinite-
dimensional, since only finite linear combinations of vectors
are admitted by axiom I. Infinite linear combinations are
understood as strong limits of finite linear combinations.
Thus the expansion of feH in an orthonormal basis {ei} means
that the sequence of vectors {fn}’ where fn = Z?zl(ei,f)ei,
converges strongly to f as n » =, (fn is seen to be a linear
combination of the first n vectors of the basis {ei}, and the
coefficient of ey is nothing but the '"component" (ei,f] of f
along ei.} The fact that the above is a complete expansion is

expressed by the Parseval relation which states that the equa-

lity sign holds in (2.11) if {hi} is an orthonormal basis
(Problem 2.5) :

1£1F = 1 Ice;,01% (2.12)
i=1

(2.12) says that the square of the length of the vector f is
equal to the sum of the squares of the absolute values of its
components along the vectors e, of an arbitrary orthcnormal

basis.

Another simple result in relation with the concept of
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orthogonality which will frequently be used is the following :

PROPOSITION 2.2 : Let D be a dense set in H and feH. If (f,g)=
0 for all geD, then f =

Proof : Suppose f # 6. Given n > 0, there exists fnsD such

that ||f - £ |l< n{lf{Tl Then, using also (2.8), we have

(B8 = W(f £=% ) + (£,£ )| |t ~ £ )l £l ]I £ - fnl

< 1. Since n is arbltrary, th1s 1mpllesl|fH 0, hence
=6 by (2.7). #

A

A concept that we shall need in the next section is

that of a linear manifold. This is a subset M of H that sat-

isfies Axiom I but not necessarily Axiom III (M will always
verify Axioms II and IV, since it is a subset of H, cf. Prob-
lem 2.6). A subset of H that satisfies all four axioms will
be called a subspace )

In a finite-dimensional Hilbert space a linear mani-
fold is also a subspace, since Axiom III is not an independ-
ent postulate. An example of a linear manifold that is not a
subspace in an infinite-dimensional Hilbert space is the set
i of all finite linear combinations of a countably infinite
number of linearly independent vectors {fi}. It is seen that
the sum of two elements of M and the product of an element
of M and a complex number are again finite linear combina-
tions of the vectors {fi}, and the other postulates of

Axiom I hold because M is a linear subset of H.

'In some books the designation "subspace" is used also for a
=anifold, and a subspace in the sense of our definition is
+hen called a closed subspace.
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The closure of a linear manifold (i.e. the manifold
obtained by adding to M all the 1limit points, in the sense
of Axiom III, of strong Cauchy sequences of vectors belonging
to M) is a subspace of H. In the above example the closure
of M is strictly bigger than M, since it contains also cer-
tain infinite linear combinations of the vectors {fi}. (For
a specific example, suppose that the fi form an orthonormal
basis {e;}, and let f = Ek 1K 1ek Then f belongs to H,

since by (2.12) l\fl‘“ il lk‘z < w, but f¢M.)

An important example of a closed 11near manifold (i.e.

of a subspace) is the orthogonal complement N of a subset N

of H, i.e. the set of all vectors feH such that (f,g) =0
for all geN. The proof that such a set is a subspace 1is
simple and is left to the reader. In this connection it is
also worth noticing the following fact known as the EYOJEC-
tion theorem ([AGI,[KI, [RS]) : If M is a subspace and M its
orthogonal complement, then every vector f 1n,H has a unique
decomposition f = f + fz with f eM and f, EM . A simple con-
sequence is the f0110w1ng : If M is a 11near manifold such
that the only vector of H that is orthogonal to M is the

vector 6, then M is dense in H.

The case where a linear manifold M is dense in H (L8
where the closure of M 1is equal to H) will be of particular
importance in the next section for the definition of un-
bounded linear operators in H. An example of a dense linear
manifold is the set of all finite linear combinations of

vectors of a basis {ei} of H (Problem 2.5).

As a last general remark we mention a theorem which
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we shall have occasion to use in later chapters. It concerns

bounded linear functionals on a Hilbert space H. By defini-

tion such a functional is a linear map ¢ from H into C (i@
¢(f)eC for each feH, and &(af + g) = 0®(f) + @(g) for all aeC

and f,geH) which is bounded with respect to the norm in i

llelll = sup ﬁi‘”ﬂ <
£2n IIf

If g is a fixed vector in H, one may associate with

it a bounded linear functional @g on H by @g(f) = (g,f). The

i.e.

boundedness of @ follows from (2.8) :

lisgli= =up LEADL < sup “%H—“ - Il

In fact one has ||| @gH| = ||g|l, since equality holds in (2.8)
for £ = g. It is an interesting property of Hilbert space

that the converse is also true :

PROPOSITION 2.3 : Let ¢ : H - C be a bounded linear map.

Then there exists a uniquely determined vector gel such that
¢(f) = (g,f) for all feH, and |||]|||=] g]l.

This result is known as the Riesz representation the-
orem. We shall omit its proof, since it is given in numerous
books on functional analysis (e.g. [K],[RS]). The idea of

the proof is indicated in Problem 2.7.

So far we have considered the abstract Hilbert space.
While many of the formal developments of scattering theory
can be given in the abstract, the interpretation of the the-
ory in terms of observable quantities usually requires the

choice of some concrete realization of the space. The most
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1mportant such realization for scattering theory is the space
L (R ). It consists of all Lebesgue measurable ) complex-
valued functions defined on n-dimensional Euclidean Space R1

*k
which are absolutely square-integrable, i.e. such that )

£ d% < o, (2.13)

The set of all such functions is a linear vector space if one

defines addition and multiplication by scalars as follows :
(F + ) = £&) + £,0), (K = of(x).
The scalar product between two such functions is defined by

(£.0) = 1, Fx)gx)d'x. (2.14)

This 1ntegral is finite, since !f(x)g(x)l < £|f(§)[2
1g0) |2,

This scalar product verifies (2.5) and (2.6). Concern-
ing its strict positivity there is a certain complication to
which one must pay attention in many of the mathematical

developments of the theory. This stems from the fact that

I£F = 1 1£00]% d% = 0 (2.15)
B -

does not imply that f(x) = 0 for all X. It only implies
that f(x) = 0 almost everywhere (a.e.) with respect to the
Lebesgue measure on R". This means that f(x) may differ
from zero and may in fact assume arbitrary values on a set

of Lebesgue measure zero.

*
For measure and integration theory the reader may consult

e q fr],[R].

n
Vectors in R will be denoted by x.
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The Hilbert space LZ(RH) does therefore not consist of
the individual functions themselves but rather of classes of
equivalent functions. Two functions are defined to be equiva-
lent if they differ only on a set of measure zero. We may
formally introduce the following notation : Let V be the set
of individual functions satisfying (2.13) and Vo the subset
of V satisfying (2.15). Then the Hilbert space we wish to
deflne is the quotient space V/V LZ(RH) The element 6 of
L (R ) is given by the class V wh1ch contains in particular
the function f = 0. It is qu1te elementary to verify that
the operations of addition, multiplication by scalars, and
scalar product can be transferred to the classes since they
are independent of the representative elements inside the

classes with which the operations are carried out.

These remarks concerning the guotient space V/VO may
strike a physicist as pedantic, since it is in most cases
possible to transfer all operations in the Hilbert space
L:{Rn) to individual functions (a practice which we shall
frequently follow in the traditional manner). There are
occasional situations where the above remark is essential

znd must be borne in mind.

The completeness of LZ(Rn) is a classical result of
analysis known as the Riesz-Fischer Theorem. We shall not
give a proof of it in this book (cf. for instance [RN],[R],
[RS] or [L]). The separability of LZ(RH) can be established
in different ways (cf. e.g. [RN],[SO]). One possible method
is to show that a general function in Lz(Rn} can be approx-

imated arbitrarily well by a finite linear combination of
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characteristic functions™) of n-dimensional rectangles whose
end points have rational coordinates (the details may be read
in [RN, Section 321). Separability then follows since the

set of all such characteristic functions is countable.

The characteristic function of an n-dimensional rec-
tangle can be approximated in LZ(RH)—norm arbitrarily well by
an infinitely differentiable function vanishing outside the
rectangle; this is done by changing the characteristic func-
tions near the edges of the rectangle into a smooth function
(Problem 2.8). It follows that the set C.(R™) ) of all infin-
itely differentiable functions of compact support is dense in

LZ(Rn). This result is often useful in scattering theory.

Apart from the linear manifold C:(Rn) we shall also
need another linear manifold denoted by S(Rn). A function f
belongs to S(Rn] if it is infinitely differentiable and if f
and its partial derivatives of all orders decrease faster

*kk
than any negative power of x as x + « ). More precisely,
fES(Rn) if f is infinitely differentiable (i.e. fsdw(Rn))

and if for every 2n-tuple of non-negative integers

{jl,...,Jn,ml,...,mn} one has
i1 s
sup | (xq)" eer (x) “ﬁ £(x)5--5X,) [ <. (2.16)
ST 9X. 1l eespdx
XeR 1 n

*
)The characteristic function of a set S in Rn is defined by
Xs(f) = 1 if xeS and xs(x) = 0 if x¢s.

* n

*J1f s ¢ R" is an open set, then f is said to belong to C (s)
if it has partial derivatives to all orders and there ex15ts
a compact set in S outside which f is identically zero.

***) 2 Li

Here we have defined x = 1x1 = (E i
= i=
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Such functions are also called functions of rapid decrease.
An example is the function exp(—xz). S(Rn) has the following

interesting properties :

PROPOSITION 2.4 : (a) S(R™) is dense in L2 @RY.

(b) S(Rn) is invariant under Fourier transformation.

Proof : The denseness follows because S(Rn) contains CZ(RHJ

and the latter is dense in LZ(Rn). The Fourier transformation

will be defined here for functions belonging to S(Rn) and ex-
tended to a larger class of functions in the next section. If
k and x are two vectors in Rn, we define kex = klxl + kzxz *
siaia knxn. If feS(Rn), we may define a new function
f: R" >+ C by the formula

" -ikex

£(k) = e ™2 rd%e  EE). (kR (2.171
Proposition 2.4(b) asserts that £ belongs again to S(Rn). In
order to simplify the notation, we indicate the proof of this
for the case n = 1 and remark that the proof for n > 1 is

essentially the same (Problem 2.9).

Let fsS(Rl). The proof will rely on the following

relation which is an immediate consequence of (2.16) :
2. d .m
[t =587 — X f(x)| < c for all xeR, (2.18)
dx" }

where c may depend on r and m. From (2.17) one obtains

mo_ y -
d—m PO = (-D)™2m) " £ dxe e (x) . (2.19)

dk
Here we have interchanged the derivatives and the integral on

the right-hand side. This is justified provided that for each




34 SCATTERING THEORY IN QUANTUM MECHANICS

m the improper integral in (2.19) converges (as a limit of
integrals over an increasing sequence of finite intervals)
uniformly in k [L, Vol. I, p. 252]. This is the case since
(2.18) implies that

| f odee )] < S dx—So< ax < =
|x|>R [x|>R - I+x™  |x|>R  x

2c
T 3

which converges to zero as R + « uniformly in k. It follows
that f is infinitely differentiable. One also obtains from

(2.19) by integrating by parts

m _1 s T
K" _ch N i e T R a—r M)
dk dx
Hence i
|
r d° = -3 & m -1
sup|k” — £(K)| < (2m) *fdx|—— x £(| < (@m)7* fdx —.
keR  dK dx"” 1+x”

The last integral is seen to be finite. Hence f belongs to

s®Y. #

The result of Proposition 2.4(b) can still be strength-
ened. In fact the Fourier transformation is a mapping from
S(Rn) onto S(Rn). This can be seen by defining first the

inverse Fourier transformation on S(Rn) by

tx) = 20V kel X, fes®Y. (2.20)

The only difference between (2.17) and (2.20) is the sign of
the exponent. The same reasoning as in the preceding proof
implies that %ES(RHJ. If we can show that (2.20) is in fact

the inverse transformation of (2.17), i.e. that f = f, we
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shall have proved that the Fourier transformation is a bi-
jection of S(R™ onto itself.

For this, let f,heS(R™) and o > 0. By using (2.17)
and making appropriate substitutions for the integration
variables, one gets

-n/2

R ER Y% = (202 ; dkn(ok) £ de K BV ey

"rathe T o) E@) =S e + y). (2.21)

As a > 0, the integrand of the left-hand side converges point-
wise to h(O)%(g)exp(ig-z). It is also absolutely majorized,
uniformly in o > 0, by the supremum over yeR of ]h(z}[|%(k)].
Since the latter function is an integrable function of k, the
Lebesgue dominated convergence theorem (Proposition 2535 )
implies that

nguh(uk)f(k)eﬂ-‘ Ya' = h(0)rEe ™ Yo = h(O)(zﬁ)“”%(y).
o

Similarly one gets for the last member of (2.21)

llm.fh(u)f(uu + X)d u = f(y).fh(u)d u.

a0
The desired result %(2) = f(y) is obtained by verifying for
W%y = Rt
This is possible for 1nstance for h [x) = exp(-%xz). Then
(Problem 2.10) h (k) = exp(- Tk ) = h (k), hence

a particular function heS(Rn) that (2m)

n/2: n/2

Sho@d% = s s = @™ ©0) = @™ ().

Thus we have shown that (2.20) defines the inverse of
2.17). We shall henceforth also denote the mapplng f'— £ by
F, i.e. we shall write f = Ff. We then have f= f f



36 SCATTERING THEORY IN QUANTUM MECHANICS

where F—1 is given by (2.20). In the next section we shall

extend F and F_l to operators on the entire space LZ(Rn).

A last important result is the remark that F and e

i 4 n .
are isometric on S(R), i.e.

El = £l = |1 El] for feS(RM), (2.22)

(2.5 = (g,5) = (g,%) for f,geS(RY). (2.23)

(2.22) is a special case of (2.23). The first equality in
(2.23) is a particilar case of (2.21) : wet set =1,y =10
and h~= éi the left-hand side then equals (é,f). By noticing
that £ = T, one obtains h = é = g, i.e. the right-hand side
of (2.21) equals (g,f) for the particular choice of a, y and
h made above. This establishes the first part of (2.23). The
proof of its second part is left as an exercise (Problem
211

2-2 LINEAR OPERATORS IN HILBERT SPACE

A linear operator in a Hilbert space H is a linear
mapping between vectors of H. As an example we have already
seen the Fourier transformation F in LZ(Rn) which was defined
on all vectors belonging to the dense set S(Rn) and which is
obviously linear. We have seen that this operator does not
change the Lz-norm of a vector f. Many operators that are
important in physical applications do not have such a simple
property, and indeed they may be such that the norm of cer-
tain image vectors may exceed that of the corresponding

initial vector by an arbitrarily large amount (such operators
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will be called unbounded). A well-known example from elemen-
tary quantum mechanics is the position operator Q for a par-
ticle in one-dimensional space. Here H = LZ(R], and Q is the

operator of multiplication by the variable x in LZ(R) ;

(QF)(x) = =f(x)-

If we take for instance f(x) = (I'F\x\)-l, then feLZ(R) but
|Qf|| = =, i.e. Qf¢L2(R]. Thus one expects that in general a
linear operator will be defined only on some subset of the
Hilbert space. In the above example this domain of defini-
tion D(Q) of the operator Q can be taken as the set of those
p i = LZ(R) such that xf(x) is also an element of LZ(R]. Tt
is easily seen that this subset D(Q) is a manifold, and it
is also dense in LZ(R) (it contains all functions belonging
to S(R) which is dense in LZ(RJ).

)

i.e. a linear manifold D(A) in H, and a linear mapping A from

*
A linear operator - is defined by giving its domain,

D(A) into H. Linearity means that, if f,geD(A) and aeC, then
A(af + g) = aAf + Ag. If A is a linear operator, then D(A)
contains the vector 6, since 6 = 0-f for arbitrary feD(A).
One then has A6 = 0-(Af) = 6. The following notation will
also be used : If M is a subset of D(A), then AM is the set
of vectors f in H such that f = Ag for some g in M. The set

AD(A) will be called the range of the operator A.

Two linear operators A and B are equal if and only if
D(A) = D(B) and Af = Bf for all feD(A). A linear operator A'
is called an extension of A if D(A) c D(A') and A'f = Af for
*)

A linear operator will usually be simply called an operator.
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all feD(A). Here A' coincides with A on D(A), but it may be
defined on a larger domain than A. In this case we shall write

A c A'. One may also call A the restriction of A' to D(A).

For some operators A there is a natural way of defin-
ing an extension A. One takes a strong Cauchy sequence {f :
in D(A). If the sequence {Af } is also Cauchy, and if one
denotes by f and g the strong limits of {f } and {Af } re-
spectively, it is natural to define Af = g. Since f is not
necessarily in D(A), one may define an extension A of A by
applying the above definition to all Cauchy sequences {f }
in D(A) which are such that {Af } is also Cauchy. However
this construction makes sense only if the element g is inde-
pendent of the choice of a particular Cauchy sequence {f }
converging to f, i.e. if the following condition is satls—
fied : Whenever {f } and {f'} are two Cauchy sequences in
D(A) converging strongly to the same limit f and {Af } and
{Af'} are also Cauchy, then s-1im Af = s-1im Af' Slnce A
is llnear this condition is easily seen to be equlvalent to
the following one (Problem 2. 12) : Whenever {f }sD(A),

f + 6 and {Af } is strongly Cauchy, then Af »> 8,

An operator verifying one of these two equivalent
conditions is said to be closable, and then the above exten-
sion A is called the closure of A. A is said to be closed if

it is identical with its closure, i.e. if A =

The following is a different Criterion for an oper-

ator to be closed :

LEMMA 2.5 : Let A be a linear operator in H. The following
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two statements are equivalent :

(a) A is closed.

(b) Whenever a sequence {f } verifies (i) £ aD(A), (ii) f e hie
and (iii) Af * 8, then feD(A) and Af = g,

Proof : The result is a simple consequence of the definition
of the closure.

(1) Suppose A = A, and let 1£.} verify (1)-(iii). Since A is
closable, one has feD(AJ and Af = g. Since A = A this means
that (b) is verified. Hence (a) implies (b).

(ii) Suppose (b) holds. Then A is closable, since the hypoth-
eses {f teD(A), f + 0 and Af > g then imply g = Ap =

From the constructlon of A and (b) one sees that D(A) c D),
fe. &=si #

The operators that one encounters in applications are
usually closed or closable. An operator A may have more than
one closed extension (an example of such an operator will be
given further on in this section). If an operator A has a
Closed extension B, then it is closable. To see this, suppose
[T }ED(A), f + f and Af ~ g. Since A ¢ B and B is closed,
Lemma 2.5 1mp11es that feD(B) and g = Bf. Since the vector Bf
is independent of the sequence {f } converging to £, Hhis

shows that A is closable.

If A is closable, then its closure A is its smallest
closed extension, i.e. if A' is an arbitrary closed extension
of A, then,ﬁ_g A" (Problem 2.13). An example of a non-

closable operator is given in Problem 2.14.

We shall make additional comments on closed extensions
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further on in this section. Here we shall indicate an impor-
tant class of closable operators, namely the bounded opera-
tors. A linear operator A is said to be bounded if there
exists a number M < < such that ||Af|| < M||£|| for all feD(A).
If there exists no such M, A is said to be unbounded. For

bounded A one defines its norm ||A|| as )

I|A]l = sup AL . (2.24)
feD(A) JHETP

f#£0
One then has for every feD(A) :
[A£]] < [IAJ I £]). (2.25)

As a consequence of this inequality, one has the following
result : Let A be bounded and {fn} a strong Cauchy sequence
in D(A). Then {Afn} is also strongly Cauchy. In fact
lAg, = AE I < [AJ|[I£ - £ ]|+ 0 asn, m > =,
n m' - n m

This can be used to prove that a bounded operator is always
closable. This result is contained in the following proposi-

tion which will prove to be useful in scattering theory.

PROPOSITION 2.6 : If A is a bounded linear operator on a

Hilbert space H, it has a unique bounded extension A to the
subspace spanned by D(A) (i.e. to the closure D(A) of D(A)).
A is closed, and |All = ||A|l. In particular, if D(A) is dense
in H, then D(A) = H.

Proof : We verify that the closure A of A has the required

*

)It is customary to use the same symboli%” for the norm of an
operator and for the norm of vectors in H. It is seen from
(2.24) that the former is defined in terms of the latter.
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properties.
(1) Let {fn} and {fﬁ} be two strong Cauchy sequences in D(A)
converging to the same limit f. Then {Afn} and {Afé} are also
Cauchy, and by (2.25) and (2.9)

1€, - A£111 < IAIlE, - £101 < A CIE, - £+ 1€ - £1),
which converges to zero as n - «, Hence {Afﬁ} converges to
the same vector as {Afn}, i.e. A is closable. It also follows
that every f in D(A) belongs to the domain of A. Hence

D(A) = D(A).

(ii) Suppose A' is another bounded extension of A defined on
D(A') = D(A). As in (i), A' is closable and D(A") = D(A").
Since D(A') is closed, this implies D(A") = DIAY), dis. A

is a closed operator. It follows that A' is an extension of
A. But D(A") = D(A), so that A' = A. This proves the unique-
ness of the extension.

(1ii) We have from (2.24) and the fact that A

= | Af| | Af|
Al = sup Ho> sup
£FeD(R), 640 T T fep(a),£0

The opposite inequality, i.e. ||A]| < ||A||, is obtained by

A

10

1Al -

letting f and {fn} be as in (i) and by applying twice Propo-

sition 2.1 &

A

Lin ||£ || = [|a] || £]]. #

IA]] = vim |lag_|| <
n-= oo
As a consequence of Proposition 2.6, one may always
consider a bounded operator to be defined on a subspace. If
D(A) in Proposition 2.6 is not dense in H, this subspace is
strictly smaller than H. One may then extend A to a bounded
operator A defined on all of H by setting A= A on D(A) and

by identifying A with an arbitrary bounded operator B on the
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orthogonal complement D[A)l of D(A). (R,is then defined
everywhere : An arbitrary f in H can be decomposed uniquely
intola,sum of an element f1 in ﬁ?ﬁj and of an element fz in
D(A) , and by linearity one has Af =1A£1 + sz.) The simplest
possibility is to take B = 0 on D(A) , which we shall do for

some operators used in scattering theory.

As an example where Proposition 2.6 can be applied we
mention the Fourier transformation F defined in Section 2-1.
We there had D(F) = S(Rn), and ||F|| = 1 from (2.22). Hence F
may be extended to a bounded operator of norm 1 defined on
all of LZ(RH). We shall henceforth denote this extension also
by F. This extension is still an isometric operator, i.e.
|F£]| = || £]| for all fELZ(Rn) (Problem 2.15). Also it is still
given By (2,17) £or vectors € in LE(RY which i also in

Ll(Rn), i.e. which satisfy in addition to (2.13) the condition
n
Il = 41£@)|d% < .

Indeed, for such a vector f£ the integral in (2.17) exists for
each keRn, and one can show that the vector f defined in this
way is identical with Ff (the reader may look up details in
Section 2-5). For a general f in Lz(Rn) the integral in (2.17)
need not make sense (feLZ(Rn) does not imply that f is inte-
grable); then one has to define Ff as Ff = s-lim Ffm for

m - «, where fmeLZ[Rn]r\Ll(Rn) and fm ~+ f. A particular way
of choosing fm is to set fm(g} = f(x) for x < m and fm(§) =0
for x > m. The strong convergence as m -~ « of this particular

sequence {F%ﬂ} to Ff = f is also called convergence in the

mean, and one uses the following notation for this method of

defining the Fourier transformation in LZ(RHJ :
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£ = (20 Y %8.4.m. 7 d%cexp (-ik-x) £(x) (2.26)

(some other details about this are given in Section 2-5).

Similarly F-1 can be extended to LZ(Rn), and again we
shall denote this extension by F_l. It is isometric and given
by (2.20) for fEL (R )F}L (R ). Also the extended operator
£ stlll the inverse of the extended operator F : FF .
and F 1 are bounded extensions of the identity operator I
defined on D(I ] S(R ); by Proposition 2.6 the only bounded
extension to all of LZ(R ) of I is the 1dent1ty operator I

given by If = f for all f in H. Hence FF =1 and Fth =1I.

The sum of two operators A and B is defined in a
natural way as follows : D(A + B) = D(A)ND(B), and
(A + B)f = Af + Bf for feD(A + B). In particular, if D(B) =
H, then D(A + B) = D(A). From the triangle inequality (2.9)
one easily deduces that for bounded operators (Problem 2.16)

[A + B|| < [|A]| + [|B]|. (227
One may similarly define the product of A and B :

£eD(AB) if and only if feD(B) and BfeD(A), and (AB)f = A(Bf)
for feD(AB). (2.25) implies that for bounded operators

[4B]] < liAll 1 Bl. (2.28)

The operator multiplication is not commutative, i.e. AB may
be different from BA (a well-known example is that of the
operators P = -id/dx and Q = multiplication by x in LE(R);
another example is the unilateral shift operator and its

adjoint which will be discussed later in this section).

It should be remarked that, even if both A and B are
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densely defined, D(A + B) or D(AB) may consist only of the
vector 8. For this reason one has to be very cautious when
adding or multiplying unbounded operators. We shall discuss
in later chapters some of the difficulties that arise in
scattering theory due to the unboundedness of some important
operators. When both A and B are bounded and defined every-

where, it is not necessary to worry about domain problems.

A linear operator A is invertible if Af = Ag, f and g
in D(A), implies f = g, or equivalently if Af = 8, feD(A),
implies £ = 6. The inverse A-l is then well defined and given
as follows : D(A—l) = AD(A) (i.e. the range of A) and
A_l{Af) = f. It is easy to see that A" is also linear. Also
Ale is then the restriction of the identity operator I to
D(A) and AA_l is the restriction of I to D(A_lj. If A is
bounded and D(A) = H, then A-IA = 1. The following result 1is
a direct consequence of the definitions : If A is closed and

invertible, then Aﬁl is also closed (Problem 2.17).

We shall now introduce the concept of the adjoint
operator A* of a linear operator A. For this we assume that
D(A) is dense in H. We first define the domain D(A*) : a
vector geH belongs to D(A*) if there exists a vector g*eH

such that
(g,Af) = (g*,1) for all feD(A). (2.29)

The mapping A* is then defined as A*g = g*. Thus '(2.29) may

be rewritten as
(g,Af) = (A*g,f) for all feD(A) and all geD(A*). 2.30)

A* is well defined, i.e. the vector g* in (2.29) is unique.
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In fact, if gi has the same property as g*, then (gi-—g*,f)=
0 for all feD(A), and since D(A) is dense, Proposition 2.2

implies that gI = g*, Clearly A* is also linear.

The adjoint of a linear operator A is always a closed
operator. In fact, if gneD(A*), I and A*gn + h, then
for any £ in D(A)

(g 48) = lim (g ,AL) = lim (Mg & = b, £,

which shows that geD(A*) and that A*g = h.

Another simple property of the adjoint is the follow-
ing (Problem 2.18) : If A is closable and D(A) dense, then

A* = (E\) *

B>, (.31
If D(A*) is also dense in H, then A** = (A*)* exists.

One then has the following result :

PROPOSITION 2.7 : Let A be a linear operator such that D(A)

and D(A*) are dense in H. Then A is closable and A = A**,

We shall not give a complete proof of this proposition
here. Notice that it follows immediately from the definition
(2.30) that A** is an extension of A (Problem 2.19). Since
A** is the adjoint of an operator, it is closed. Hence A has

a closed extension and is therefore closable.

The proof that A** coincides with the closure of A
requires the notion of the graph of A. This method is indi-
cated in Section 2-5. The converse of Proposition 2.7 is
also true : if A is closable and D(A) dense, then D(A*) is

also dense. We shall not use this result and therefore omit
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its proof (cf. e.g. [RS1,[RN]).

In the next proposition we specify the properties of

the adjoint of a bounded operator.

PROPOSITION 2.8 : Let A be a bounded operator with D(A) = H.

—

Then A* is bounded, D(A*) = H and ||A*|| = [|A]|. In addition
A = A

Proof : Let g be a fixed vector in H. From (2.8) and (2.25)
it follows that | (g ,Af)| <||A||ll£]l|lgll. Hence the correspon-
dence f = (g, Af) defines a bounded linear functional @ on H
with |||2]|| < ||All|lgll. Tt then follows from Proposition 2.3
that there exists g*eH such that (2.29) holds, and that

llg*ll < 1Al gll-

Since g was arbitrary, we have shown that D(A*) = H,
and that ||A*|| < ||A[|. To prove the converse inequality, we
apply the same reasoning to A* in the place of A to deduce
that ||A**|| < ||A*||. Since A** is an extension of A and
D(A) = H, one has A** = A. Hence the last inequality becomes
JA|| < [|A*]l, which proves that [|A]| = ||| - #

If A is bounded with D(A) = H and D(B) is dense, it
follows from (2.30) that

(GA)* = aA*, (A + B)* = A* + B* and (AB)* = B*A*. (2.32)

If both A and B are unbounded, the last two equalities need
not hold, since the domains of the respective left-hand and
right-hand member may be different. As a good exercise for

becoming familiar with the notion of the adjoint the reader

may show that in the general case (Problem 2.20) :
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B*A* ¢ (AB)*. (2.33)
The following is also easy to verify :
ifAC B, then B* ¢ A*. (2.34)

We shall now discuss some special types of operators

that we shall encounter throughout this book. We begin with

*
orthogonal projections ), denoted here by F. They are defined

by the requirements
D(F) = H and FZ = F = F*. (2.35)

Their most interesting property is that the set of all
orthogonal projections is in one-to-one correspondence with

the family of all subspaces of H.

To prove the above assertion, let F be a projection
and define MF = FH. ghus, if fsMF,
f = Fg. Hence Ff = F'g = Fg = f. On the other hand, if f is
such that Ff = £, then obviously feM;. Thus M; = {feH|Ff = f}.
M_ is clearly a linear manifold. To show that it is a sub-

F
space, i.e. that it is strongly closed, let {fn}EMF be a

there exists geH such that

strong Cauchy sequence, fn + f. Let getl. Then (Ff - f,g) =
(f,F*g) - (f,g) = lim[(f ,F*g) - (£ ,g)] = lim[(Ff ,g) -

(fn,g]] = (6,g) = 0 as n » «. It follows from Proposition
2.2 that Ff - {

6. Thus feM_, which proves that MF is
strongly closed.

1

If heMF and geH, we have from (2.30) (Fh,g) = (F*h,g) =
(h,Fg) = 0. Thus, by Proposition 2.2, Fh = 0. This shows
r)We shall not use non-orthogonal projections in this book.

Therefore an orthogonal projection will simply be called a
projection.
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that F is the orthogonal projection onto MF' Conversely,
given a subspace M, one may define a linear operator F as

follows : Let {ei} be an orthonormal basis of M and
Fg = § (e, 8)e, . (2.36)

It is easy to verify that this operator is an orthogonal

projection (Problem 2.21) with range M.

A particular case is that of a one-dimensional sub-

space M = {af|aeC}, where f is a fixed unit vector ) in H.

In this case we shall denote by F_ the corresponding orthog-

£

onal projection defined by (2.36). The action of F_. may be

£
written as

Feg = (£,0)f.

We mention two other simple properties of projections :

LEMMA 2.9 : Let F be an orthogonal projection. Then
(a) ||Fj|=1 unless F =0, (2+37)
(b) (f,Fg) = (Ff,Fg) for all f,g in H. (2.38)

Proof : Let feH. One may write £ = Ff + (I - F)f. Here FfeM
L

and (I - F)fEMF. Thus one has with (Z.IOJEEfHZ ={!FfHZ +

(1 - F}fHZ zliFffF, which shows that ||F|| < 1. The fact that

I|E|]| = 1 follows by taking 6 # feMy, which is possible unless

B

F is the zero operator on H.

To prove (b), one uses (2.35) :

(£,Fg) = (£,F’g) = (f,F*Fg) = (Ff,Fg). #

*)

A unit vector is a vector £ verifying\!f” = 1.
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For an example, let H = LZ(Rn) and let A be a measur-
able subset of R". Then LZ(A) is defined to be the set of
those equivalence classes of functions in LZ[RH) which have
support in A, i.e. whose representatives are zero almost
everywhere (with respect to Lebesgue measure) on the comple-
ment of A. It is easy to see that LZ(A) is a subspace of
LZ(Rn), i.e. LZ(A) is itself a Hilbert space. The orthogonal
projection FA of LZ(Rn) onto LZ(A) may be written as follows

(F,HE = (x,HE = x,®EE), (2.39)
where X5 is the characteristic function of the set A. Clearly

2 3 : :
D(FA) = H and FA = FA' The fact that FA = FA is obtained by

writing (2.30) in the form of integrals.

Next we consider partial isometries, denoted here by

0. These are important in scattering theory, as we shall see

in Chapter 4. They are defined by the requirements

D(Q) = H and Q*Q = E, E a projection. (2.40)
For such an operator one has with (2.30) and (2.38)

(of,0g) = (£,0*Qg) = (f,Eg) = (Bf,Eg). (2.41)

Hence, if f,g e EH, then (0f,0g) = (f,g). This shows that such
an operator is isometric on a part of H, namely on EH, i.e. it
preserves the length of vectors of EH and the angles between
vectors of EH. This explains the designation ''partial isom-
etry'. It also follows from (2.41) that @ is zero on the
orthogonal complement of EH : if fE(EH)L, then]!ﬂf\F -

EfH2 = 0, whence Qf = 8. This may also be written as

Q(I - E)f = 6 for all feH, i.e. Q@ = QE.
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A partial isometry may also be defined by the property
(2:41) &

PROPOSITION 2.10 : If @ is a linear operator with D(Q) = Hand

E a projection such that ||af|| = ||Ef|| for all feH, then Q*Q =E.
Proof : Since ||Qf|| = ||Ef|| for all feH, one has l|12]] = ||E||, i.e.
2]l = 1 unless E = 0. By Proposition 2.8 |e*]] = ||E||, and Q*

1s defined everywhere. Now one obtains from the polarization
identity (Problem 2.22) and (2.38) that for any f,geH

(@*Qf,g) = (of,0g) =

LUlecE + @ -llacE - 9 )P - dlace + ig) [P+ act - ig) P

HUIECE + P -1ECE - @I - 1B + ig) P+ 1]ECE - ig) P

(Ef,Eg) = (Ef,g).

Hence Q*Qf - Ef is orthogonal to every geH, i.e. Q*Qf = Ef
by Proposition 2.2. #

A particular case of a partial isometry is obtained

by setting E = I. @ is then isometric on all of H and is

called an isometrx.

The adjoint 9* of a partial isometry is also a partial
isometry. In fact F = Q**Q* = Qn* is a projection, since F2=
QR*QQ* = QEQ* = QN* = F and F* = (O** = Q**Q* = F. Some
additional properties of partial isometries that are essential

for later chapters are collected in the following proposition.

PROPOSITION 2.11 : Let 9 be a partial isometry, Q*Q = E, and
define F = q0*. Then
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(a) ||2]] = ||®*|| = 1 unless E = 0.
(b) E = Q, EQ* = 0F, (2.42)
FQ = 0, O*F = Q. (2.43)

(c) The range of @ is a subspace, and F is the orthogonal
projection onto this subspace.

(d) The restriction of @ to the subspace EH is invertible,
and its inverse is given by @* (more precisely by the

restriction of Q* to FH).

Proof : (a) has been shown in the proof of Propesition 2.10.
(b) QE = @ has already been proved. By using (2.35) and
(2.32), one obtains from this EQ* = E*Q* = (RE)* = @*. This
proves (2.42). Next we have FQ = Q0*Q = QE = Q. Also, from
(2.42) : Q*F = Q*QQ* = EQ* = Q*, which proves (2.43).

(c) The definition F = QR* shows that the range of F is con-
tained in that of @ : If feH and f = Fg, then f = Q(Q*g)ehH.
Thus FH ¢ QH. Similarly it follows from FQ = @ that QH c FH.
Thus QH
(d) Suppose feEH and Qf = 8. From (2.41) one then has[}fﬂz =
HQfHZ = 0, i.e. £ = 8. Thus the restriction of Q to EH is

FH, and (¢) is proved.

invertible. Since Q*Qf = £ for f in EH, it is clear that its

inverse is given by the restriction of Q* to FH. #

For a general partial isometry 2, the projections E
onto the so-called initial set EH of Q@ and F onto the final
set or range FH of Q are both different from the identity
operator. For an isometry, one has E = I, but F may still
be different from I. In a finite-dimensional Hilbert space,
the range of an isometry is the entire space (i.e. F = I),
since it is a subspace that has the same dimension as the

entire space. In an infinite-dimensional Hilbert space an
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isometry © may map the entire space onto a proper subspace
of infinite dimension. An example of such an operator is the

unilateral shift operator : Let {ei}?=1 be an orthonormal

basis of H, define Qei = and extend this definition to

e.
finite linear combinationslgé the vectors {ei} by linearity.
It follows from (2.10) that, if £ = J}_jase;, then |af|f =
IIEHZ. By Problem 2.15 and Proposition 2.10, the closure of
the above operator defines an isometric operator Q with

D(f2) = H. One sees that QH is the proper subspace spanned by

{ez,es,...}, and e, is orthogonal to QH. Thus F =1 - F, #1I,
1

1
where F, is the orthogonal projection onto the subspace
1
determined by e - (One may also explicitly calculate Q* :
i

* = - * _ v 5 _
Q%e; = 6 since els(QH) , and Q e; =€ 4 if 1 > Z by Propo
sition 2.11(d).)

An isometry for which F is also the identity operator

is called a unitary operator. Thus U is unitary if

D(U) = H and U*U = UU* = I. (2.44)

PROPOSITION 2.12 : Let U be unitary. Then

(a) The range of U is equal to H.
(b) U is invertible and U' = U*. (2.45)
(c) ||Uf - g|| = || £ - U*g|| for all f,geH. (2.46)

Proof : (a) and (b) follow immediately from Proposition 2.11.
(c) is easily verified by writing the norms as scalar prod-

ucts and using (2.44). #

We next consider symmetric and self-adjoint operators.
A is called symmetric if D(A) is dense in H and A c A*, i.e.
if
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(Af,g) = (g,Af) for all f,geD(A). (2.47)

A special case is that of a self-adjoint operator which is

characterized by A = A*. The condition A = A* 1s a severe
restriction for the case of unbounded operators, since in
addition to (2.47) it requires the domain of A* to be exactly
the same as that of A. For bounded operators this difficulty
does not arise, since every bounded symmetric operator with
D(A) = H is self-adjoint (this follows immediately from the
definitions). If A is bounded and symmetric and D(A) is only
dense in H, then the closure A of A is self-adjoint. In fact
one can easily check that in this case A = A*, which then
implies together with (2.31) that A = A*.

Since A* is closed, the requirement A c A* implies
that A has a closed extension. This means that a symmetric
operator A is always closable. In addition D(A*) is dense,
so that by Proposition 2,7 A = A**, By applying (2.34) to
A ¢ A* and using (2.31), one obtains A** c A* = A*, It fol-
lows that the closure A of a symmetric operator A is also
symmetric. A self-adjoint operator (A = A*) is always closed.
If one extends a symmetric operator A to a larger domain, the
domain of the adjoint of the extension A' will be smaller
than (or possibly equal to) D(A*), since a vector belonging
to D(A'*) has to satisfy more conditions than a vector be-
longing to D(A*), as can be seen from (2.30). Thus one will
have A ¢ A" and A'* ¢ A*. Since A ¢ A*, it may happen that
for certain extensions A' one will have A' = A'*, i.e. that
A' will be self-adjoint. For this reason the study of closed
extensions of a symmetric operator is an important problem

in functional analysis. We shall return to it in Chapter 8.
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We wish to point out here that the number of self-adjoint
extensions of a symmetric operator may be zero, finite,

countably or even uncountably infinite.

The preceding remark may be illustrated by means of
differential operators. We wish to associate various symmet-
ric operators with the formal operator id/dx acting on func-
tions defined on various subsets of R. Let D be the set of
all functions in Lz(R) which are absolutely continuous on
each finite interval [a,b] and such that feL2(R). Now consid
er first the Hilbert space LZ(O,I). We define Ay to be the
operator (A,f) (x) = if'(x), where feD(A ) if £eL(0,1)ND
and £(0) = £(1) = 0. By integrating by parts one may verify
that A is symmetric; it is also closed, and D(A?) LZ(O 1)
N (no boundary condition is involved !). Hence D(A*) is
strictly larger than D(A ). This operator A has an uncount-
able number of self- ad301nt extensions, whlch are obtained
by replacing the boundary condition £(0) = £(1) = 0 by the
less restrictive condition f(0) = exp(i¢)f(1) with ¢e[0,2m).
Every ¢ determines a different self-adjoint extension of A
[RN, no. 1191,[AG, no. 49].

Similarly one may associate with the formal operator
id/dx a symmetric operator A1 in LZ(O,w) : £ belongs to
D(A;) if £eL%(0,)ND and £(0) = 0. This operator has no
self-adjoint extension at all [AG, no. 49]. Thirdly one may
define A2 in L (R) by (A f)(x) = if'(x) and D(A,) D. This
symmetric operator is self—adjolnt, i.e. it has exactly one

self-adjoint extension.

Clearly the restriction of a self-adjoint operator B
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to a dense subset of its domain is a symmetric operator A.
If the dense subset is sufficiently large, B will just be
the closure of this restriction. In that case A is said to
be essentially self-adjoint. Generally a symmetric operator

A is said to be essentially self-adjoint if A is self-adjoint.

An equivalent definition of essential self-adjointness is
easily seen to be A* = A** (Problem 2.23). An essentially
self-adjoint operator has one and only one self-adjoint
extension. In fact, assume A' to be a self-adjoint extension
of an essentially self-adjoint operator A. Then A' =

AT EA=RT = A. Since A is the smallest closed extension

of A, A' must be equal to the closure A of A.

The notion of essential self-adjointness is important
since in applications one is often given a non-closed symmet-
ric operator. If such an operator can then be shown to be
essentially self-adjoint, it follows that it determines a

unique self-adjoint operator.

It is useful to have a criterion for a symmetric oper-
ator to be self-adjoint or essentially self-adjoint. Such a
criterion can be formulated in terms of the ranges (A* i)D(A)
-

of the operators (A +1i) °. We first prove an auxiliary result :

LEMMA 2.13 : Let A be a symmetric operator, A its closure.
Then the ranges of A +1i are the closures of the ranges of

A +1 respectively.

*
)We sometimes use the notation A + o for the operator
A + aI (aeC).
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Proof : (i) If feD(A), there exists a sequence {f }eD(A) with
f + f and Af + Af. Thus (A + 1)f + (A + 1)E; whlch shows
that A £ 1)D(A) is contained in the closure of the range of
(A £ i) respectively.

(ii) Since A is symmetric, we have for feD(A)

¥

lea+ DEIP = jagl? + £)F + icae,8) = 1(£,A0)

. VAR
= [|AE][" + || £0°. (2.48)

Now suppose for instance that g belongs to the closure of

(A + i)D(A). Then there exists a sequence {f }ED(A) such that
(A + 1)f >+ g. It follows from (2.48) that both {f }and{Af }
are strong Cauchy sequences. Therefore, by Lemma 2 Sy =
s-1im fnsD(A), and g = Ah + ih. Thus g belongs to the range
of A+ i. This shows that the range of (A + i) is closed. The
lemma follows by combining this with the result of (i). #

PROPOSITION 2.14 : A symmetric operator A infis self-adjoint

if and only if the range of both of the operators A+1i is H,

Proof : (i) Suppose (A + i)D(A) = H. Let geD(A*). Since

(A - i)D(A) = H, there exists heD(A) such that (A* - i)g =
(A - i)h. Since A is symmetric, one has (A - i)h = (A*~ i)H,
which leads to (A* - i)(g - h) = 8. Now for any feD(A)

= ((A* - i)(g - h),f) = (g - h,(A + 1)f).

Since (A + i)D(A) = H, it follows from Proposition 2.2 that
g-h=290, i.e. geD(A). Thus D(A*) ¢ D(A). Since A ¢ A*, we
must have A = A*,

(ii) Suppose A = A*. By Lemma 2. 13, (A £ i1)D(A) are closed
subspaces of H. Thus, 1f for instance (A + i)D(A) # H, there
exists ge{ (A + 1)D(AJ} . It follows that geD((A + i)*) =
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D(A* - i) = D(A*), and (A* - i)g = 8. Thus (g,g) = (g,-iA*g) =
(iAg,g) = (iA*g,g) = (-g,g) = -(g,g), whence (g,g) =0, i.e.
g = 6. This proves that (A + 1)D(A) = H. #

COROLLARY 2.15 : A symmetric operator A in H is essentially

self-adjoint if and only if the range of both of the operators

A+ i is dense in H.

Proof : By Lemma 2.13, range (A *+ i) is dense in H if and
only if range (A + i) = H, i.e. according to Proposition 2.14

if and only if A is self-adjoint. #

In the next proposition we specify a class of operators
that are always self-adjoint, namely the maximal multiplica-
tion operators by real functions in Lz—spaces. A certaln con-
verse of this will be given in Chapter 5 where we shall see
that every self-adjoint operator is unitarily equivalent to

e . ) 2
a multiplication operator in some (more general) L™ -space.

The statement of the proposition involves the notion
of the essential supremum of a measurable function ¥ : A - R,
where A is a measurable subset of R". ¥ is said to be essen-

tially bounded if there exists a number M < « such that

|[W(x)| <M for almost all x in A (with respect to Lebesgue

measure) . The essential supremum of ¥ is the infimum of all |

numbers M verifying the above condition and will be denoted
by |[w]| - The set of all essentially bounded measurable func- |
defined on A is denoted by L (4).

PROPOSITION 2.16 : Let A be a measurable set ‘in R" and v a

real-valued measurable function defined on A which is finite '

almost everywhere (with respect to Lebesgue measure). Define |
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an operator A in LZ(A) by
DEA) = {£eL”(8) [W(R)E(x)eL(4)}
and (Af) (x) = v(x)f(x) for feD(A).

Then (a) A is self-adjoint.
(b) A is bounded if and only if ¢ is essentially bounded,

and in that case ||A]| = ess sup |[y(x)| =||y]..
Xel

Remarks : (i) A is called maximal since D(A) is the maximal
subset in LZ(A) on which multiplication by ¥ makes sense in
2.

(ii) The condition that ¥ be a measuraMle function ensures
that ¢(x)f(x) is measurable, which is necessary if the latter

function is to belong to LZ(A).

Proof : (i) Clearly D(A) is a linear manifold. We show that
it is also dense. For this, we deflne the sets A = {xea|
Wx)| <m}, m=1,2,... . Let e (A ). Then feD(A), since

2 |
[, WP 1£0 %" < nf, £ 2% < nE)f. (2.49)
m m
Thus each of the subspaces LZ(Am] of LZ(A) belongs to D(A).

Now 1f heL (A), then XAp heL (A ), and if hg[L (A }] ’

then XA hg[L (A )] . Thus if h is in LZ(A) as well as in

[L (A )1t for each m, XAq h is the zero vector in L (A ) for
each m by Proposition 2.2, i.e. h(x) = 0 a.e. in %{Amf Since
the complement of %{Am in A is a set of measure zero (the set
of points where Y(x) is not finite), we have h(x) = 0 a.e. in
A, i.e. h = 8. Thus the only vector orthogonal to D(A) in
LZ(A) is the vector 6, which means that D(A) is dense in

LZ(A] (see the statement following the projection theorem on
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page 28).

(ii) We now prove (b). If ¢ is essentially bounded and M its
essential supremum, then one deduces as in (2.49) that |A]] <
M. If M <M, let AM) = {xed| || > MO}. The measure of
i(Mb) is positive. If f is a function which is zero outside
AM), then ||Af|| > MOIJfH sy o€ - Hence M < |A|| < M
for each M/ <M, i.e. [|A]| =M

If ¢ is not essentially bounded, let m > 0 and A(m) =
{xeA||9(x)| > m}. A(m) has positive measure; hence as above

there exists f in Lz(&) such that [[Af]| > m ||£||. Since this is

true for eachm > 0, A is unbounded.

(iii) Finally we prove (a). Clearly A is symmetric i.e.
(£,Ah) = (Af h) for all f,heD(A). For fEL (A), define £,.x) =
fIv(x) + Slnce Y is real, one has lw(x) £ i 1 € 1
and |¢(x)]|w(x) i 1[ < 1. These inequalities imply as in
(2.49) that f sL (A) and f 4ED(A) respectively. Clearly

(A £ 1)f = f. This means that range (A £ i) = H, and by
Proposition 2.14 A is self-adjoint. #

To conclude this section we consider convergence pro-
perties of sequences of linear operators. We shall mainly be
concerned with sequences of bounded operators and therefore

restrict the general definitions to this case.

In order to define the notion of convergence of a
sequence of operators, one has recourse to the notion of
convergence of a sequence of vectors. Thus if {An} is a se-
quence of bounded operators with D(An) = H for all n, we say
that A is the strong limit of Ah if for each feH the sequence

of vectors {Anf} converges strongly to the vector Af, i.e. if
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lim | Af - Aan =0 for all feH.

N0
We then write Ah + A or A = s-lim Ah' Similarly A is the
weak limit of {An} if

>

1im (f,Ang) = (f,Ag) for all f,geH.
N
In this case we write A = w-1im Ah'

T—><e

A third type of convergence is the convergence in ope-

rator norm. A sequence of bounded operators {An} converges to
A in this sense ifl{An - A|| converges to zero as n » «. This

is also called uniform convergence since it is equivalent to

the requirement that s-lim Anf = Af as n > « uniformly on
the set {feH| ||£]|] = 1}. We shall write u-1lim A =Aasn~>e,
It is clear that the uniform convergence of a sequence {An}
to A implies its strong convergence to A. Also, by Proposi-
tion 2.1, the strong convergence of {Ah} to A implies weak

convergence of {An} to A.

The Cauchy criterion is valid for each of the three
kinds of convergence introduced above; e.g. if {Ah} is a
sequence of bounded operators with D(AnJ = H and if for each
feH the sequence of vectors {Anf} 1s strongly Cauchy, then
there exists a bounded linear operator A such that An + A,
The proof of this is based on the following interesting
fact ¢ if {Ah} is a sequence of weakly convergent bounded
operators, i.e. such that the sequence of scalar products
{(f,AngJ} is a Cauchy sequence of complex numbers for all
f,geH, then the sequence of norms {HAh}[]is bounded, i.e.
there exists M < = such that]{Anllf M for a8l 4 = 18,

A fortiori the above property is true for a sequence of
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strongly convergent and for a sequence of uniformly convergent
bounded operators. Similarly a weakly convergent sequence of
vectors {fn} is uniformly bounded. This result is known as
the uniform boundedness principle and will not be proved here
(cf. [AG, no. 291,[RN, no. 841,[RS, Thm. 6.11). We shall

occasionally use it to prove abstract theorems, but in most

applications of these theorems the uniform boundedness of the

occuring sequences can casily be verified directly.

The formulation of the asymptotic properties of scat-
tering systems is based on strong convergence. For this reason
we shall prove here the following two propositions concerning
strong convergence. They will be used on various occasions.
The first one asserts that, in order to establish the strong
convergence of a uniformly bounded sequence of operators {A i
it is sufficient to verify the strong convergence of {A f}
for a fundamental set of vectors f in H (a subset N of H is
called fundamental if the linear manifold consisting of all
finite linear combinations of vectors belonging to N is dense
in H. In particular an orthonormal basis of H and a dense

subset of H are fundamental in H).

PROPOSITION 2.17 : Let {An} be a sequence of linear operators
with D(A ) = H andf‘A [l <M< o for all n = lg By i » Lot N
be fundamental in H and suppose that {A f} converges strongly
for every feN. Then there exists a bounded linear operator A

with D(A) = H, 1Al < M and s-1im An =Aasn -~ o,

Proof : Let M be the dense linear manifold consisting of all
finite linear combinations of vectors belonging to N, Then

{Anf} converges strongly for every feM. The idea is to prove



62 SCATTERING THEORY IN QUANTUM MECHANICS

strong convergence of {An} on H by approximating an arbitrary
get by an element of M and then using the strong convergence
of {A } on M.

Let A be the linear operator defined by D(R) = M and
Af = s-lim Anf (n - f) for feM. We notice that ||A
by Proposition 2.1 ||Af]| = 1im HAth < M|/ £]| for all feM. Let
A be the unique extension of A to all of H (Proposition 2.6).

Then ||Al| < M.

< M, since

If gef, there exists a sequence {fﬁ}EM such that fh‘*o

5

From the triangle inequality (2.9) we find for any m and n
= - \ A - [l + | -
Iag - Agll < llAg - AE ||+ ]AE - A £ [|+]|A£ - Ag]|
<Mlig - £l +llAE - &£ ||+ Mg~ £l

Given § > 0, one may choose first m so large that ||g - fmil<
§/4M. Since fmgM, there exists N < = such that for all n>N:
HAfm - Anme < §/2. Thus ||Ag - Ahg'|< § for all n > N, i.e.
Ang > Ag. #

PROPOSITION 2.18 : Let {An}, {Bn}, A and B be bounded opera-
tors defined on all of H. (a) If s-1im An = A and s-1im Bn =
B, then s-1im Aan =AB as n—+ «, (b) If u-lim Ah = A and

u-1lim B_ = B, then u-1lim A B = AB as n + =,

n nn
Proof : It is based on the triangle inequality. If feH, then
||ABf - AthfH = (A - An)Bf + An(B = Bn)f||f | (A - An)BfH +
HAnHi|(B - Bn)f||§ H(An - A)Bf|| + M][(B—Bn]f|L (2:+50)

Here we have used the fact mentioned before Proposition 2.17

that there exists M < « such that HAnH < M for all n. Bach
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term on the right-hand side of (2.50) converges to zero as

n + = by the hypotheses, which proves that Aanf + ABf, estab-
lishing (a). The proof of (b) is left as an exercise (Prob-
lem 2.24). #

As an immediate consequence of this proposition, one
sees that the action of a bounded operator can always be

interchanged with strong limits :

COROLLARY 2.19 : Let A be a bounded operator with D(A) = H.
Suppose D(Bn) = H and s-1lim Bn =B as n > «. Then s-1im ABn =
AB and s-lim BnA = BA as n + =,

The following result is a direct consequence of the
definitions (Problem 2.24) : If a sequence of bounded and
everywhere defined operators {An} converges strongly to A,
then the adjoint sequence {A;} converges weakly to A*. The
adjoint sequence need not be strongly convergent though. We
shall encounter this question again in Chapter 4 and discuss

some special cases there.

PROPOSITION 2.20 : Let A be everywhere defined and ||A|| < 1.

Then I - A is invertible. Its inverse is bounded, defined

everywhere, given by the uniformly convergent series (called

the Neumann series)

et T fFatenef®ae . (2.51)
n=o0

and verifies || (I-0)"Y|| < (1 - ||A|D L.

The proof of this result is left as an exercise
(Problem 2.25).
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Finally, we add a few comments concerning strong con-
vergence when unbounded operators are involved. There are
two cases that can be considered here. Firstly, a sequence
{Ah} of bounded operators may converge strongly to an unbound-
ed operator, i.e. one may have Ahf + Af for every feD(A),
where A may be an unbounded operator. In this case the se-
quence of norms {HAH\\}cannot be bounded. An example of this
will be seen in Section 2-4, Secondly the operators An may
themselves be unbounded and converge strongly on a subset of
H which is common to their domains, i.e. the sequence of vec-
tors {Ahf} may be strongly Cauchy for each f in éiND(Ah)
for some N (which may depend on f). The limit may define a
bounded or an unbounded operator. Whenever unbounded operators
are involved in statements using strong convergence, we shall
explicitly specify the set of vectors on which convergence
takes place. When we speak simply of strong convergence of
operators, 1t is always understood that only bounded operators

OoCccur.

2=5 COMPACT OPERATORS

In this section we define compact operators, Hilbert-
Schmidt operators and trace class operators and derive some
consequences of these definitions. The aim is not to give a
complete theory of these classes of operators but rather to
assemble those of their properties that will be needed in
later chapters. A few of the lengthier proofs will be given

only in Section 2-5.

Consider an operator of the form
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]
Tf = I3 (e;,Hh,, with D(T) = #, (2.52)

where {ei,hﬂ-areZN vectors in H and N < <, The range of T
is the finite-dimensional subspace spanned by hl""’hN’ and
Tf = © if f is orthogonal to the subspace spanned by € senes
. Thus T may be viewed as an operator that acts on the fi-
nlte dimensional subspace M spanned by {e h } in the sense
that it is zero on M and its range also 11es in M. T may be
described by a matrix acting on vectors in M. An operator of

the form (2.52) with N < » is called a finite rank operator.

(An equivalent definition is obtained by requiring that the

range of T be finite-dimensional.)

We first give some simple properties of finite rank
operators. Henceforth B(H) will denote the set of all bounded

and everywhere defined linear operators in H.

LEMMA 2.21 : Let T be a finite rank operator. Then

(a) T* is a finite rank operator.

(b) If BeB(H), then BT and TB are finite rank operators.
(&) IE T1 is of finite rank, then so is T + uTl{uaCJ.

Proof : (b) and (c) are immediate from the definition. To
prove (a), let f,geH. It follows from (2.30) and (2.52) that

"ol = _ N = N
(f:T g) - (Tf,g) - El:l(f,el) (hlsg) s (fsil:}-(hlsg)el}'
Hence by Proposition 2.2
_ N
g = Zl:l(hl,gJel’ {2'53)

which proves that T* is of finite rank. #
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An operator A in B(H) is said to be comgact*) if there
exists a sequence {TN} of finite rank operators such that
A - TNI[+ 0 as N » =, It follows from this definition that
each finite rank operator is compact and that in a finite-
dimensional Hilbert space every operator is compact. We shall
denote by BD the set of all compact operators. Let us prove

some consequences of the preceding definition.

PROPOSITION 2.22 :

(a) A is compact if and only if A* is compact.

(b) If ASBO and BeB(H), then ABEBO and BASBO.

(c) If Al and AZ are compact, so is Al + qu (axeC).

(d) If {Ah}sﬁo, AeB(H) and||A-An[i+ 0 as n>, then AcB_.

Proof @ Let {TN} be a sequence of finite rank operators
converging uniformly to A.

(a) This follows from the fact that [|A-T, | =J|A*—T§H [,
Proposition 2.8) and Lemma 2.21(a).

(b) By Lemma 2.21(b) BTN and TNB are finite rank operators.
Now by (2.28){\BA—BTN||5J1BH|\A~TN|]+ 0, which shows that
BA is compact; similarly one proves ABEBO.

(c) This follows from the triangle inequality (2.27) and
Lemma 2.21 (c).

*

)This definition is equivalent tn the customary definition
of compactness : A is compact iff for every bounded sequence
{£,} the sequence {af_ } has a strongly convergent subsequence
[RS, Section VI.S5]. This latter characterization of compact-
ness is valid in more general metric spaces than Hilbert
space, but the one given above is more convenient for our

purposes.
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(d) Let n > 0. For each n we choose a finite rank operator
TN(n)Isuch that HAn_TN(n)H < n/2. We next choose n so large
that “A—AHH < n/2. Then by (2.27) ||A-T

N
HAn-TN(n)\{< n. Hence HA‘TN(H)II”'O as n»», which proves

ol < 1A, +
that A is compact. #

PROPOSITION 2.23 : Let {fn} be a sequence of vectors which

converges weakly to 6, and let A be a compact operator. Then

{Afn} converges strongly to 8.

Proof : Since {fn] is uniformly bounded by the uniform bound-
edness principle, there exists M < = such that||fn||f M for
all n. Given n > 0, choose a finite rank operator T of the
form (2.52) such that [|A-T|| < n/2M. It follows from (2.9)

and (2.52) that
N

8811 < NADE 1Tl < w2 + T [y, €] Il

Since w-1lim f =6, there exists n_ such that |(e,,f )|||h.| <
n 0 1 i
n/2N for all i

for n > n_, which proves that HAfn||+ 0asn~+ o #

lyewss N and all n > ng- Hence][Aan< n

Compact operators share the following property with
operators acting in a finite-dimensional space : Consider
the equation f-Af = g where g is a given vector, A is compact
and f is to be determined. Then either the homogeneous equa-
tion f-Af = 6 has a non-trivial solution or else the equa-
tion f-Af = g has, for any given geH, a unique solution feH,
namely £ = (I-0) g ((=8)"Y 4= then bounded and dsfined
everywhere). The preceding result is known as the Fredholm

alternative and follows immediately from Proposition 2.24
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below, the proof of which can be found in Section 2-5. If A
is for instance a compact integral operator in an Lz—space

(cf. (2.65) for its definition), the above is a result about
the existence and the uniqueness of the solution of an inte-
gral equation. Of course the operator (I—A)_l cannot in gen-
eral be written down explicitly. However, if for instance

|Al| < 1, the solution may be written as a power series in A

by using Proposition 2.20.

For a non-compact operator the above alternative need
not hold, since (I-Aj_l may exist but be an unbounded opera-
tor, so that f-Af = g is not solvable in H for every g. This
happens for instance if A is self-adjoint and the point A = 1

belongs to its continuous spectrum (Problem 2.260).

PROPOSITION 2.24 : Let A be a compact operator and zeC, z # 0.

Then either the equation Af = zf has a solution f # 6 in H

or (zI-A)-l exists and belongs to B(H).

We shall now discuss some spectral properties of com-
pact operators. (A general definition of the spectrum of an
operator is given in Section 5-6). In an infinite-dimensional
Hilbert space the spectrum of a compact operator consists of
isolated*) non-zero eigenvalues**) and of the point z = 0.
The latter may itself be an eigenvalue or an accumulation
point of eigenvalues or both. This result is the content of
=

By is an isolated eigenvalue if there exists a neighbor-

hood of zocontaining no eigenvalue other than z-

* *

)The number zeC is an eigenvalue of a linear operator A
if there exists a vector £ # 6 in D(A) such that Af = zf.
f is called an eigenvector of A.
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Proposition 2.25 the proof of which is also deferred to

Section 2-5.

PROPOSITION 2.25 : If AEBO, then each non-zero eigenvalue of

A is of finite multiplicity (i.e. the corresponding space of

eigenvectors is finite-dimensional). Furthermore the only
possible accumulation point of the eigenvalues of A is the

point z = 0,

ILE AEBO is self-adjoint, it is possible to choose an
orthonormal basis {ei} of H such that each e is an eigenvec-
tor of A, i.e. verifying Aei = Aiei for some (real) Ai. This
is nothing but the spectral theorem for a self-adjoint opera-
tor A for the case where A is compact and will be deduced
below. It should be said here that for a non-compact self-
adjoint operator B such a basis need not exist, since B may
also have continuous spectrum (the relevant details will be
explained in Chapter 5). We first give a characterization of
the eigenvalues and the eigenvectors of a general self-adjoint

operator and some lemmas needed to prove the spectral theorem.

PROPOSITION 2.26 : Let A be self-adjoint. Then

(a) A1l eigenvalues of A are real.

(b) If Afl = hlfl and Afz = Azfz with Al A
orthogonal to fz.

5 then f1 is

Proof : (a) Suppose Af = A f with f # 6. By using (2.30) we
then obtain A(f,f) = (f,Af) = (f,Af) = (Af,f) = (Af,D) =
A(f,f), which implies that X = \.

(b) One obtains as in (a) that
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Since Al # A,, this implies that (fl,fz) = 0. #

2’
LEMMA 2.27 : Let E be a subset of H and denote by M the sub-
space spanned by £ (i.e. the closure of the set D of all

finite linear combinations of vectors belonging to E). Let
A,BeB(H) and suppose that Af = Bf for all feE. Then A=B onM.

Proof : The hypotheses imply that Af = Bf for all feD. Hence
Af = Bf for all f in M by the uniqueness of the closure
(Proposition 2.6). #

LEMMA 2.28 : Let {Fk}’ k =1,...,n be a set of projections
with mutually orthogonal ranges, i.e. verifying Fij =
Sijk’ and let uksC. Then for all feH
2 2 2
IleakafH g 5¥p|3k| 1] (2.54)
Proof : This follows by applying (2.10) and Bessel's ine-
quality (2.11) :

2 2 7 2
ol =1§|akﬁwkfu <l 71570 SSEPIakﬁifl

2 4

LEMMA 2.29 : Let A be a compact self-adjoint operator, and

suppose that A has no non-zero eigenvalue. Then A = 0.

The proof of this lemma will be indicated in Section
2-5. We shall use it to establish the spectral theorem for
compact self-adjoint operators. Suppose A = A* and AEBO. Let
{Ak} be an enumeration of all non-zero eigenvalues of A such
that |Ak+1| < |Ak| for all k = 1,2,... . We denote by Mk the
subspace spanned by all eigenvectors corresponding to the

eigenvalue Ay, by My the subspace My = {f[Af = 6} and by
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E{Ak} the orthogonal projection whose range is Mk One has
dim Mk < = for k # 0 by Proposition 2,25 and E{x. }E{Ak}-
éjkE{A } by Proposition 2.26 (i.e. Mk is orthogonal to M

if Kk # J). The spectral theorem may now be stated as follows.

PROPOSITION 2.30 : Suppose A is self-adjoint and compact.

For each k = 0,1,..., let {e( )} be an orthonormal basis ofM :

Then the set {e(lJ} 5 4 is an orthonormal basis of H. Further-
more
A=} M\AE (2.55)
Kk£0 k {lk}’

the sum being convergent in the uniform operator topology.

Proof : (i) Let M be a subspace which is 1nvarlant under A,
i.e. such that AfeM for each feM. Let geM ; feM. Then
(Ag,f) = (g,Af) = 0, which shows that AgEM , or that M-L is
also invariant under A.

(1i) Let M, be the subspace spanned by {e( )} i x with
k # 0, F the orthogonal projection with range M, and ﬁ' =
I-F. Clearly A leaves M, invariant, hence AM c M by (i).
This means that

F'AEF' = AF', (2.56)

Two consequences of (2.56) are : (a) The operator AF'
is self-adjoint. (b) If AF'f = Mt for some A # 0, then F'f=¢f
and hence Af = )f. Therefore, since all eigenvectors of A
corresponding to a non-zero eigenvalue lie in M » AF' is g
self-adjoint compact operator having no non- zero eigenvalue.
Thus AF' = 0 by Lemma 2 .29, or in other words M+ = 40. This
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shows that the eigenvectors of A (including those in MO)

span H.

(iii) It is easily seen that the series in (2.55) con-
verges uniformly by using Lemma 2.28 and the fact that |kkl-+0
as k - « if A has an infinite number of non-zero eigenvalues.
Its 1limit is some operator B in B(H). If e is any eigenvector
of A, then clearly Ae = Be. The fact that A = B on H now
follows from the result of (ii) and Lemma 2.27. #

We next derive a canonical form for an arbitrary com-
pact operator. If AEBO, then A*AEBO by Proposition 2.22.
Furthermore A*A is self-adjoint and positive, i.e. (f,A*Af) =
HAfHZ > 0 for all feH. The preceding identity also shows that
A*Af = 6 implies Af = 6.

It follows that all eigenvalues of A*A are real and
non-negative, and each non-zero eigenvalue has finite multi-
plicity. Let By 2 My 2 e be an enumeration of the non-zero
eigenvalues of A*A such that each of them appears as many
times as its multiplicity. Let {e.,o} be an orthonormal basis
of the subspace MO = {f|A*Af = 8}. By Proposition 2.30 there
exists an orthonormal set {ek} such that {e

of H and such that

k’ej,o} is a basis

—§ * - g
A*Aek Wl s A Aek,o 8. (2.57)
_ A2 .
Let kk = The numbers {Ak} are called the sin-

gular values of the compact operator A. The following charac-

terization of compact operators is a generalization of (2.52).
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PROPOSITION 2.31 (Canonical expansion of compact operators) :

Let AEB - Then there exist two orthonormal sets {e } and {h }
such that for all feH
= 2
Af E Mcle, )hy (2.58)

where {A } are the singular values of A and the infinite sum
(viewed as the limit of a sequence of operators) converges

in operator norm.

Proof : Let {e eJ } be the orthonormal basis used in

(2.57), and deflne h =) lAek. One has

-1 _
(h ,h } k (e S,A*Ae ) Aj Ak(ej,ek) = ij.

Thus {hk} is an orthonormal set.

Define AN by (2.58) with the sum running from k =
to k = N. Let M > N. By using (2.10) and (2.11) one obtains

M 2 M ;
| Ay A\I)f kl(ek,fJi g ,=%+1 | (o D)
< Ay NEIP

Since AN +0as N+ o, {AN} is a Cauchy sequence in the uni-

form operator topology. Denote by B its limit. Then

N
Be. = lim j A (e ,e )h = A h = Ae..
Nooo k=1 J
Clearly BeJ o - 9, and we have already seen that Ae. = 8.
Hence B and A coincide on an orthonormal basis, i.e. B = A

by Lemma 2.27. #

In order to prove that a given operator is compact,
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one may try to approximate it uniformly by a sequence of fi-
nite rank operators or by a sequence of operators that are
already known to be compact (Proposition 2.22(d)). For this
the Hilbert-Schmidt operators are very useful. Firstly they
form a subset of the class of compact operators, and secondly
in an Lz—space they have a simple characterization as inte-
gral operators (cf. Proposition 2.33), so that in many in-
stances it is easy to decide whether a given operator belongs

to the Hilbert-Schmidt class or not.

To define this class of operators, we introduce the

Hilbert-Schmidt norm ||Al| 1S of an operator A in B(H)

2 2
1Al = ] Al (2.59)

where {ek} is an orthonormal basis of H. A is said to be a

Hilbert-Schmidt operator if ||A|| Hs < = and the set of all

Hilbert-Schmidt operators will be denoted by 82.

In the above definition the quantity [[Al| yg appears
to depend on the choice of an orthonormal basis {ek}' We
shall now- show that the sum in (2.59) is the same for each
orthonormal basis of H. For this, let {gk} be an arbitrary
orthonormal basis. By using the Parseval relation (2.12),

(2.30) and again (2.12) one obtains

2 2 2
A s (e.,Ag)|“ =) A*e.,g.)
LRI PRICEESIEDRICC RN

3

k
2

= §||A*eiH ) (2.60)

where the change of the order of summation is permitted be-

cause only non-negative terms are involved. Since {ei} may
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be thought of as being fixed, (2.60) shows that the value
of Zﬁ]Agk[[ is the same for each orthonormal basis {gt.
(2.60) also implies that

Al g = M1A%]] - (2.61)

PROPOSITION 2.32 :
(a) AEBZ if and only if A*eBz.

(b) A1l < AT - (2.62)
(c) Every Hilbert-Schmidt operator is compact, i.e. B2 c B 2
(d) If AEBZ and BeB(H), then ABEBZ and BAEBZ.

(e) If AIEBZ and AZEBZ, then (Al + aAZJEBZ (0eC).

Proof : (a) follows from (2.61). To prove (b)), Bix £:4£ @
and choose an orthonormal basis {ek} such that e = £/ £]].

Then >
AAEE e < ] llaey I =

T IAllZs -

Since this inequality holds for each f # 6, (b) follows from
(2.24) .

(c) Let AEB and fix an orthonormal basis {e }. For
each N < « we deflne a finite rank operator T by TNf =
\
Li=1 (e f)Ae Then TNek =0 1if k > N and TVek = Aek if
k < N. Thusj[A—T ’hS =N+1 | |Aek]

It follows from (2.62)
and the hypothesis AEB that

llml[A T, H < 11m ) |lAe
Nooo k=N+1

which proves that A is compact.

2
k” =
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(d) We have

2 - 2 2 2 2 [ 2
IBalf = T Imsey I < IBIF T laey I = 1BIF Al e (2.69)
Hence BAEBZ. Since A*EBZ by part (a) and B*eB(H) by Propo-
sition 2.8, this also implies that B*A*EBZ. By applying part
(a) again, we get (B*A*)* = ABEBZ.

(e) One has for f,geH

2 2 2 2 2
£+ gl <lIE£+gll" +l£-gl =2l£[[ +2lgll". (2.64)
2 2 2 2
It follows that}lAl + oA, || pe & 20|yl fg * 2ol ]}AZH i #

We now consider integral operators in H = LZ(Rn). Let
KA : Rzn‘+ C be a measurable function. Then the operator A

given by
(AF) (x) = Fd"YK, G0 EQ) (2.65)

is called an integral operator and KA the kernel of A. The
domain of A consists of those functions f in LZ(RH) for

which the integral in (2.65) exists for almost every X and
for which the function (Af) (x) defined by (2.65) belongs to
L2x%

The function KA is said to be a Hilbert-Schmidt kernel

if
M, = fdnxdnleA(g,g)iz <, (2.66)

One has the following interesting result :

PROPOSITION 2.33 : Let H = LZ(R™.
(a) If A is an integral operator with Hilbert-Schmidt kernel

Ky then A is a Hilbert-Schmidt operator and
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2 n 2
IAll s = 7d"xd"y X, (x,p) |2 (2.67)
(b) If A is a Hilbert-Schmidt operator, then A is an inte-
gral operator with Hilbert-Schmidt kernel.

The proof of this result is given in Section 2-5,
One can see from it that an analogous theorem is valid in a
general L2—5pace. If one evaluates HAIJHS in the basis used

in (2.57), one obtains
2 _ | ke _ 2
1Al gs E | (epsA%Ae,) | Ehk. (2.68)

Thus[[Aﬂ]éS 1s the sum of the squares of the singular values
of A.

We now pass on to the trace class operators. For
their definition we first introduce the absolute value [A|
of a compact operator A. This is done by starting from the
orthonormal basis {ek’ej,o} used in (2.57) and defining
jA[ek = M8 [A[ej’o = 8, where {hk} are the singular val-
ues of A. This definition is extended by linearity to the
set D of finite linear combinations of these basis vectors,
and |A| is the closure of the operator defined in this

manner on P (Proposition 2.6),

We now define the trace norm of AEBO by
Al = g A = i (eps[Ale) = Tr|a|. (2.69)

The trace of a positive operator B is defined as TrB =

Zk(gk,ng), where {g, } is an orthonormal basis of H.*Since
2 o A .
TrB =][B]/2]]és, 1t is independent of the basis {gk} ]. An
o e
The square-root of a bounded positive operator will be
defined in Lemma 5.5.
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operator A in B_ is said to be of trace class if H}AHil is
finite. The set of all trace class operators will be denoted
by Bl'

The derivation of a fair number of the deeper results
in scattering theory involves trace class operators. Since
we shall not reproduce such arguments in this book, we re-
frain from proving here the basic properties of trace class
operators and simply mention a few of them. A notable one is
that an operator belongs to the trace class if and only if
it can be written as the product of two Hilbert-Schmidt oper-
ators. Such a factorization is the usual method of showing
that an operator is trace class. We collect this factoriza-
tion property in the following proposition. Its proof is
based on the cancnical expansion of compact operators and

can be found in Section 2-5.

PROPOSITION 2.34 :
(a) A belongs to B1 if and only if A = BC with B,CeB

(b) If AEBl and TeB(H), then ATeBl and TAEBI.

5"

We may now define the trace of an arbitrary trace

class operator by

Tr A = 1E< (g, -Ag,) (2.70)

where {gk} is an arbitrary orthonormal basis of H. We have
to show that Tr A is finite and independent of the basis
{gk}. For this we write A = BC with B,CQBZ. By using the
polarization identity (2.97) one easily gets that



2 HILBERT SPACE AND LINEAR OPERATORS 79

41 (goAg) =4 (B'g,Cq)
K K
2 T ———
= IIB*Cll g = [IB*=Cl| g - 3| Breic]| o + 1]B*-ic]| 2.

One sees that the last member of this equation is independent
of the basis {gk} and finite by Proposition 2.32. Together
with (2.61) the above identity also implies that, if B,CeB
then Tr BC = Tr (B.

2!

For an operator A in B(H) to be of trace class it is
not sufficient that the sum in (2.70) be convergent (or even
absolutely convergent) for some orthonormal basis {gk}. A
counter-example is the unilateral shift operator in an infi-
nite-dimensional Hilbert space defined by ng = €0 where
{gk} is a fixed orthonormal basis. One has (gk,sagk) = 0 for
all k, so that the sum in (2.70) is absolutely convergent.
However ﬂéBl (QeBl would imply Q*Q = IsBl). In order to con-
clude that AeBl the sum in (2.73) must be absolutely conver-
gent for every orthonormal basis of H.

We end this section with the following definitions :

A B(H)-valued functions s — A(s) is called strongly continu-

ous, weakly continuous, norm continuous or continuous in
Hilbert-Schmidt norm if s-lim A(s) = A(t), w-1im A(s) = A(t),
u-lim A(s) = A(t) or HA(S)-A(t)||HS-+O respectively as s - t.

2-4 DIRECT SUMS AND TENSOR PRODUCTS OF HILBERT SPACES

In this section we indicate two methods of construct-

ing from a given family Hl""’ Hn of Hilbert spaces a new
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Hilbert space H. The idea is essentially to take as elements
of H the set H1 X H2 X ees X Hn of n-tuples {fl,..., fn}
formed of elements fi of Hi and to define a scalar product
between such n-tuples by taking either the sum or the product
of the respective scalar products in Hi' This leads to the
direct sum and the tensor product of Hl""’ Hn' The former
is important in multichannel scattering theory, and the
latter is involved whenever one deals with a quantum mechan-

ical system which is composed of several subsystems.

Let us begin with two Hilbert spaces Hl and HZ' The
direct sum of Hl and HZ’ denoted by H1 ® HZ’ is defined as
follows : The elements of H, @ H2 are pairs of vectors

1
{fl’fz} with fieHi, and the scalar product between two such

pairs 1is
Addition and multiplication by scalars are defined by
{f].’fz} + {Blygz} = {fl + gl, fz + gz}, (2.72)
a{fl,fz} = {ufl,afz}. (2.73)

We leave it to the reader to check that H1 ® H2 is a
Hilbert space, i.e. that Axioms I-IV of Section 2-1 are
verified (Problem 2.30). One may remark that both H1 and H2

may be considered as subspaces of H1 ® H2 : H, may be iden-

1
tified with the set of pairs of the form {fl,ez} with fleHl
and 6, the zero vector of H2, and similarly for HZ' Hl ® H2

is simply the orthogonal sum of H1 and HZ' In particular, if
{ei} is an orthonormal basis of H1 and {h.} an orthonormal

basis of HZ’ then the set of pairs {{ei,ez}, {Bl,hj}} is an
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orthonormal basis of H1 ® HZ' Thus dim (Hl ® HZ) = dim Hl +
dim Hz. We also remark that a Hilbert space H may always be
viewed as the direct sum of a subspace M of # and of its

X
orthogonal complement : H = M & M 3

One may similarly define the direct sum of a finite

or countable number of Hilbert spaces H, . We shall denote

k
this direct sum by H =8 Hk (k=1,2,...). Its elements are

sequences {fl,fz,...} with fkng such that

.
[kj!koHk < . (2.74)
Addition and multiplication by scalars is defined component-

wise as in (2.72) and (2.73), and each Hk may again be con-
sidered to be a subspace of H. The proof of the completeness
of a countably infinite direct sum of Hilbert spaces is sim-
ilar to that for 22 (Problem 2.1). The space RZ gives an
example for a countably infinite direct sum, since it may be

viewed as a direct sum of one-dimensional Hilbert spaces.

For each k, let Ak be a bounded linear operator in
Hy with]!Ak” < M < e for all k. We may define an operator A
inH =8 Hk by

AL, Boynaf = £ S S S, (2.75)

We shall use the notation A = Al 6 AZ B e =@ Ak for such
an operator. Of course the operators of this form do not
exhaust the set of bounded operators on @ Hk' They are char-
acterized by the property that they leave each Hk invariant.
The following rules follow imnediately from the above defj-
nitions :

[® Ak] + [® Bk] = @[Ak + Bk), (2.76)
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[ AJ[® Bl =@ AB and [0 A" =0 A  (2.77)

If the sequence {Ak} is not uniformly bounded with respect
to k or, more generally, if the operators Ak are unbounded,
one may similarly define an operator A = ® Ak by (2.75) with
= 2 &
D(A) = {{f,f),...}[£,eD(A) for each k and {k]\Akfkl]Hk< H

Let us now turn to the tensor product G = H1 8 H2 of
two Hilbert spaces H1 and Hz. For this we again consider
pairs {fl,fz} with fieHi and try to define a scalar product

between two such pairs by

({fl’fz} ’{gl :gz})G = (fl ’gl)Hl(fz sgz)HZ' (2.78)
Here one is faced with two difficulties. The first one has
to do with the linear structure of a Hilbert space. In fact,
since {gl,gz} + a{hl,hz} has to belong to G, (2.6) requires

that
({fl,fz},{gl,gz} +afh ,h}) =
(f1,87)(£,,8,) + a(f;,hy) (£,,h,).
Now in general the right hand side cannot be written in the
form (2.78), i.e. as the scalar product between two elements
of H1 X HZ' Thus, in order to obtain the linear structure
of the tensor product, one has to introduce new elements not
contained in H1 x H,. This is done by first adding to Hlx H2
all finite linear combinations of elements of Hl x H2 and
extending the scalar product (2.78) by linearity to these

new elements.

The second difficulty turns up when one considers

(2.7). It is seen that for instance ”{fl’SZ}”Gz H{el,fZ}HG =
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0 and Ha{fl,fz} + B{gl,fz} = {of) + Bgl,fz}]h3= 0 for any
fl,gleHl, f EH and a,BeC. In order to ensure that Axiom II
is verlfled one will therefore consider as vectors of H ®!¥
the equivalence classes of the elements already 1ntroduced
two elements being equivalent if their difference has norm
zero (that this does define an equivalence relation follows
from (2.9) which is valid for the nomm H-|hgsince the
Schwarz inequality (2.8) used in its proof can be established
wihout using (2.7) [RN, no. 831). The equivalence class of
the pair {fl,f } will be denoted by fl 8 f2 and the set of
all equivalence classes by H 8 H Finally one completes

H 8 H by the standard method of completlng a metric space
[RS Theorem I.1.3] to obtain the Hilbert space Hl ® HZ'

We shall now indicate a more explicit way of construct-
ing H ® H,. Let {e } and {hJ} be orthonormal bases of H
and H2 respectlvely Consider the set of pairs {e., hJ} 19"
They clearly form an orthonormal set with respect to the

scalar product (2.78). The tensor product G = Hl 8 HZ may

then be defined as a Hilbert space in which the above ortho-

normal set forms an orthonormal basis.

Up to an isomorphism, this latter definition coincides
with the first one and is also independent of the choice of a
particular basis in H1 or HZ' To see this, it suffices to
verify that each vector of the form f e f2 with f EH can
be completely expanded with respect to the orthonormal set
{e, 8 h } Now one has fl Jase,, £, = Zthj with
Xi,jl 18 "Hf H £, H and (2.78) implies that
(ei 2] hJ,f ®f ) = uiBj Hence
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2 2 2
iij | (e; 8 by, fy 8 £)5l" = 151" £, = I, 8 £l
which proves the Parseval relation. It follows that we must
have £, 8 f = 8 h..
1 Ly W i Bl

There is no canonical way of identifying H1 or H2 with
subspaces of H 8 H . However, if f aH is a fixed vector
such that || £, H = Ly the set of vectors f ® f, with f; rang-
ing over H is a subspace of H 8 H that is 1somorph1c to
Hl‘ It will be denoted by H1 @ f2 We also remark that
dim Hl ® H2 = dim Hl -+ dim Hz.

As an example we consider the tensor product
Gmn ifs (Rm) 5] LZ(Rn) Let {e (x)} and {hj[y)} be orthonormal
bases of L (R ) and L {R ) respectlvely (xeR ,YER ). Then the
set of functions {e. (x)h (y)} forms an orthonormal set in

L2(®™™); indeed

It

m .n — -
(eihj’erhs)LZ(Rm+n) fd'xd yei(§)hj(z)er(§)hs(z)

(e. ® h.,e_®h)
i il S 8

It is an interesting fact that the above set of functions is

1ndeed an orthonormal basis of LZ(Rm+n), which means that

L (R ) 8 LZ(R ) is naturally isomorphic to Lz(Rm n) (iden-

tify £, @ £el’ @ 8 LE@®™ with £, £ cL2®™™.) We shall
use this result on varlous occasions, but we leave it to the
reader to verify that g = 6 is the only vector in L (R )

which is orthogonal to the set {ei(g)hj(zj} (Problem 2.31).

Let Ag be linear operators in Hy (k = 1,2). One may
define an operator denoted Ay 8 A, in G = Hy @ H, by
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(A 8 A (£ 8 £)) = Af) @ AE,  for £eD(A)  (2.79)
and extending this definition by linearity to the set of all
finite linear combinations of vectors of the form fl ® fz with
fksD(Ak). This set will be written as D(Al) 2] D(AZ). If each
D(Ak) is dense in the respective Hilbert space Hk’ Al 3] A2
is densely defined. A particular case is an operator of the
form Al ® I whose action differs from the identity only in
the first component. In order that the above definition makes
sense, one has to verify that, whenever Z 1% {f f } and
E% 1Bk{gl,g2} dfflne the same vector in H, 8 H2’ tnen so do
gl lal{Alfl,A fr} and §k=18k{A1gl, Zgz} where fJ,g s:D(A B
For this, let u sD(Ak). (2.30) and (2.78) then imply that

Lio; (Tug,u,, A £7,A 51 =1, NUSR IR R o))

1’
= LBy (A3 A3, 3, ey, g 1) = 1,8, (fup ), (A g5,A 650 .
Since the set of Vectors {u ®Lblu eD(Ak}} is fundamental

in Hy @ Hys z Q. {Al L’

equivalence class of {8,8} by virtue of Proposition 2.2.

A f } - XkBk{Algl, ZgZ} must be in the

ik Al ® AZ is closable, we denote its closure by
Al 8 AZ. If AIEB(HI) and AZEB(HZ), then Al e A2 1s bounded
(see Problem 2.35), hence Al e AZEB(H1 ® Hz). If only bounded

operators are involved, one has the following rules :

a(A] 8 A,) = (GA]) ®A, = A O (aA,), (2.80)
(A] 8 A,) (B ® B,) = A|B, 8 A,B,, (2.81)
(A ® A))* =AY 8 AS. (2.82)

EE A, 1s self-adjoint, so is A; @ I (Problem 2.39). For other
properties of Al 8 AZ’ see Problems 7.7, 11.3 and 14.8.
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The construction of the tensor product G = ® Hk (k =
1,...,n) of a finite number of Hilbert spaces is done in
complete analogy with that given above for n = 2 by using

instead of (2.78) the definition

({fl" “’fn}’{gl’ n !gn})G = (fllglJ (fzigz) e '(fn!gn) ‘(2'83)

Operators of the form Al 8...6 An can be defined by an
obvious modification of (2.79). Infinite tensor products

will not be used in this book.

2=5 NOTES AND SUPPLEMENTARY MATERIAL

A. We add some comments regarding the extension of
the Fourier transformation from S(Rn) to Lz(Rn). To simpli-
fy the notation we set n = 1. Suppose feLl(R)r\LZ(R), and
let f be defined by (2.17). Then if geS = S(R),

ik

|fdk§(k)§(k)1 = (Zw]—%\fdkfdxf(x)e g(k) |

= [JaxEx)g)| = | (£, < 1€l el (2.84)

where the interchange of the order of integration is per-
mitted since the integrand is absolutely integrable. Hence
the first integral in (2.84) defines a bounded linear func-
tional on S which can be extended by continuity to H. By
Prop051t10n 2.3 there exists f EL (R) such that Idk{f(k] -
f (k)}g(k) = 0 for all geS.

Let [a,b] be a bounded interval. By taking a uniform-
ly bounded sequence {"gn}es with support in [a-1, b+1] con-
verging pointwise to the characteristic function of [a,b],

one gets from the dominated convergence theorem that
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fi’dk{?(k) - %O(k)} = 0, which implies f(k) = fo(k) on [a,b]
(cf. [R, Lemma 5.7]). Hence f = fOELZ{R).

Let {f } €8 be such that f + f. Then by (2.84) and
(2.23), (£,8) = (£,g) = Lim(f_,g) = lim (f ,8) = (Ff,g) for
all geS, so that f defined by (2.17) is 1dent1cal with the
vector Ff by Proposition 2.2,

If one requires only fELZ(R), then, as pointed out in
Section 2-2, its Fourier transform has to be defined through
convergence in the mean. One writes f = s-1lim fm with fm(x) =
f(x) for |x| <mand f(x) = 0 for |x| > m and defines f =
s=-1lim %m (m » =), %m is well defined, since fmeLl(R)r\LZ(R)

as a consequence of (2.8) :

I£ 1] = Max| £ | < (Max|£0x) | 212 Mas) 3
m L1 -m - -m -m
< | £]] 2m)? < =, (2.85)

B. As the Lebesgue dominated convergence theorem is

often invoked in this book, we shall state here a simple
version of it for the convenience of the reader. For its

proof one may consult e.g. [MS, page 1691, [R, Thm. 4.15].

PROPOSITION 2.35 : Let A be a Lebesgue measurable set in R'.
Let {ft}tsR be a family of measurable functions from R" to C
and geLl(a) such that £ ()| <g) on 4 and lim £, (x) = £(x)

for almost all X in A as t+1, Te[-%,%]. Then stl(A) and

g? [ @)dx = [ £(x)d"x.

C. The graph of an operator. The definition of the

closure of an operator A involves sequences {fn}eD(A] such
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that both {fn} and {Afn} are strongly Cauchy. It is useful
to combine these two Cauchy sequences into one mathematical
object. For this one introduces the graph of A which is de-
fined to be the set I'(A) of all pairs {f,Af} with f ranging
over D(A). It is natural to regard I'(A) as a subset of

G =H®H (this is similar to plotting the graph of a func-
tion £ : R - R in the plane Rz). Since A is linear, T(A) is
a linear manifold in G. In general a linear manifold M in G
will be the graph of some operator if and only if the ele-
ments {fl,fz} of M are uniquely determined by their first

argument f . Since M is linear, this condition is equivalent

1
to the requirement that M contain no element of the form

{6,g} with g # 6.

The usefulness of regarding I'(A) as a subset of G

resides in the following identity :
2 2 2
115, - (£ ,AF Nlg = | £ + llg-ag |I"-

One may deduce from this that, if A is closable, then Pl =
T(A), and that A is a closed operator if and only if T'(A) is
a closed subspace of H & H.

The adjoint operator may also be specified in terms
of graphs. To do this one introduces the following unitary
operator U in G : U{f,g} = {-g,f}. One then sees that the
pair {g,g*} verifies (2.29) if and only if {g,g*} is orthog-
onal to Ur(A) in G. Since I'(A) is just the closure of T(A),
this means that T'(A*) ® Ur(A) = G if A is closable.

Proposition 2.7 can now be proved by applying twice
the preceding identity. (i) Upon replacing A by A* and using
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(2.31), we obtain T'(A**) ® UI'(A*) = G. (ii) Upon applying U
to both of its members, using the identity U2 = -1 and the
fact that T(A) = -I'(A) as sets, we find that UT(A*) & T'(A) =G.
By comparing the two equations thus obtained, we infer that
I'(A**) = I'(A), whence A** = A,

D. We conclude by giving a number of proofs that were

omitted in Section 2-3.

Proof of Proposition 2.24 : Since A/z is compact, it suffi-

ces to consider the case z = 1. So let us assume that the
only solution of Af = f is f = 6. Then I-A is invertible,
and it remains to show that (I—A)_leB(H).

The idea of the proof is to reduce the problem to a
finite-dimensional subspace. For this one chooses a finite
rank operator T such that ||A-T|| < 1. Then [I—A+T]-IEB(H] by
Proposition 2.20. Define Y = T(I-A+T)"1 and denote by M its
range. Clearly Y is a finite rank operator, so that M is a
subspace (Problem 2.38) of dimension n < =. The following

identity is also easily checked :
(I-A) = (I-Y)(I-A+T). (2.86)

Denote by F the projection whose range is M. Then
FY =Y, implying that F-YF = F(I-YF). Thus the operator F-YF
maps M into itself. Suppose there exists geM such that (I-Y)g-=
(F-YF)g = 8. Define f = (I-A+T) lg. It then follows from
(2.86) that (I-A)f = (I-Y)g = 6. Hence f = ¢ by the origi-
nal assumption, which implies g = (I-A+T)f = 6. This shows
that the operator F-YF, considered as a map in M, is in-

vertible. Since this operator is given by a nxn matrix, the
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inverse matrix defines a bounded operator in M which will be
denoted by (F-YF}&I. It satisfies

(1-Y) (F—YF)A:[I = F and (F-YF);'(F-YF) = F. (2.87)

Now define Z = (P—YF)&IF(I+Y-YF) + (I-F). By what we
have shown above, ZeB(H). By using Y = FY, Y(I-Y) = (I-Y)Y
and (2.87), one obtains
Z(1-Y) = (B-YE); (F-YF) (I-Y) + (F-YE) (I-Y)FY + (I-F) (1Y) =
= F(I-Y) + FY + (I-F)(I-Y) = I.

Thus I-Y is invertible, and Z is an extepsion of (I-Y)-l.
Similarly one finds (I-Y)Z = I, implying that [range (I-Y)]=
H = D(Z). Hence Z = (I—Y]_l. It now follows from (2.86) that
(-8~ = @-a+1)"Y1-v) "L, which is in B(H). #

Proof of Proposition 2.25 : Let {fn} be an infinite sequence
of linearly independent eigenvectors of A, {zn} the corre-
sponding sequence of eigenvalues. Choose an orthonormal set
{ei} such that e is a linear combination of fl""’fh’ which
can be done by the Schmidt orthogonalization procedure [K,
Ch. I.6.3]. Thus

®n T z?=1 anifi’
and fk is a linear combination of € seresCpe Now
Aen - z?=1 DLnizifi B 22;} Otni(zi-zn)fi " “n°n
B Zﬂ;i Bnkek T 20
and lae I = Tpotlegl® + 12,0°

Since w-1im e =6 asn->w», we have by Proposition 2.23

that HAenlﬁ - 0asn~>ooi.e. lim z = 0 as n + =,
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This shows that an infinite sequence of different ei-
genvalues necessarily converges to z = 0. If z is an eigen-
value of A of infinite multiplicity, one takes for {f } an
infinite sequence of linearly independent vectors verlfylng
Af = zf, Then z =z for all n, and by the above we have
2z = 0. Thus the only possible eigenvalue of infinite multi-
plicity is z = 0. #

Proof of Lemma 2.29 : (i) We first notice the following con-

sequences of (2.9) and (2:27) respectively
el =gl <le- gl for a1t figen, (o8
1Al =1l <A - Bl for  a,BeBH), (2.89)

which are obtained by arguments similar to those in part (i)

of the proof of Proposition 2.1.

(ii1) Let {T } be a sequence of finite rank operators converg-

ing unlformly to A. It may be seen as in (2.50) that

|A*A - TXT |]+ 0 as N > ». Hence A*A = A% is the uniform
limit of a sequence YN = T]:'ITN of self-adjoint finite rank

positive operators.

Tt follows from (2.30) that Y*f 8 for all f in

f 4
(range Y ) Hence Y is zero on {range Y.) . By part (i) of

)
N
the proof of Prop051t10n 2.30, range Y is invariant under
YN’ 158 Y can be decomposed into the sum of a self-adjoint

3
operator on range YN and the zero operator on (range YN) .
(iii) Let {eiN}, i=1,..., M(N) be a set of mutually ortho-
gonal eigenvectors of Y in range Y (i.e. YNe SN kiNeiN
with AiN > 0) which span,range Y (for a self-adjoint opera-

tor in a finite-dimensional space such a set of eigenvectors
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always exists, cf. [H]). Then Y, may be written as

N
_ M(N)
Yy & 51 1 AlN(eiN,f)eiN ; (2.90)
Let us denote by AN the largest eigenvalue of YN and by ey
one of the corresponding eigenvectors (“6N1|= 1). As in the

proof of Lemma 2.28 one deduces from (2.90) that HYNI|§ A

Slnce || Y eNH ¢ We have in fact HYN}{= Mg+ Since
HA -Y \}+ 0 as N + =, one obtains from (2.89) that lim Ay =
11m||Y ll—}lA | = pas N+ =,
(iv) We have by (2.88) and (2.9)
2 2 2
8% ll - of = 1A%y ]l - loegll| < 1A - oreyll
2
<2 - vdegll + 10ty - Agegll+ 1o = Ayl lleyl
2
< |[|A” - YNH #|p= gl = 0as N»e, (2.91)

2
This implies that][A“eNllv+p as N » =,

(v) Assume p # 0. Since A is a55umed to have no non-zero

1
eigenvalues, we have (A * 0%)” EB{H) by virtue of Prop051—
tion 2.24. Hence (AZ - p)-l = (A-p J (A + oi) EB(H),

i.e. range (AZ - p) =

Let feH. Then there exists geH such that f = (A2 - plg.
As || (A% - p)eyl| + 0 by one of the inequalities in (2.91), we
get (£,e) = (A% - p)g,ey) = (&, (A" - pley) » 0 as N » .
Thus ey converges weakly to zero. By Proposition 2.23,
UAZENL§+ 0 as N » =, a contradiction. Hence p = 0, i.e.
|A*Al[ = 0. Therefore ||Ag||* = (g,A*Ag) = 0 for every gef,
e. A=0.#

Proof of Proposition 2.33 : (a) (i) Let

A = {xeR" IIKA(§,X)EZ d = =},
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The Lebesgue measure of A is zero as a consequence of (2.66).
Let fEL (R" ) and x#A. The 1ntegral in (2.65) may be viewed
as a scalar product in L (R ), so that by applying to it the
Schwarz inequality (2.8) one gets

4O ° < YK, xp |2 rdy e |2,
This implies ||Af|F < M, £1F, i.e. DEA) = H and AeB(H).

(ii) Let AeB(H), let {e } be an orthonormal basis of K and
define g (e sAe). Then Aey = E]aJk ., and by (2.59)
and (2.12)

2
UAfiHS Iy llae, "= Zk,j!ujk; : (2.92)

(iii) 1f {e } is an orthonormal basis of L (R ), the complex
conjugate functlons {e } also form an orthonormal basis.

Hence the functions {e (x)ek(z)} form an orthonormal basis

of L (R ) 8 L’®") - I, AP o B b -4). Since K, is

in L (R ), it may be expanded with respect to the latter
basis :
By = Ij,k B85k

The Parseval relation in LZ(RZH) gives

2 2
M, = IIK of PR L .93
=i AJLZ(Rzn) Xj,k ‘Bjk‘ (2.55)
Now
ajy = (e A% 2 o T YR (0K, (e, (y)
(")
= ia €K, 2n, = By (2.94)

L (R™)
By combining (2.92) - (2.94) we get (2.67), and since }h=:m
by hypothesis we have AEBZ.
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(b) Define ajk as in part (ii) above, and let
- N =
K (2,7 = Zj’k=1 EICHES DR
2
KN is a finite linear combination of functions in LZ(R“DJ,

i.e. KNELZ(Rzn). Let N' > N. One has as in (2.93) that

fdnxdnleN(§,X) = KN.(§,X)|2

N' 2

: 1 '
) §?=1 E§=N+1 lajk[z ¢ Lo EE=1 o5
fziﬂyzﬂﬂ_mﬂJ2+Z;MJZ;11%kF

Since AEBZ, the double sum in (2.92) is convergent. This im-

plies that {KN} is astrong Cauchy sequence in LZ(RZH]. There-

fore it has a limit function K(x,y) in LZ(RZH), and by part

(a), K(x,y) defines a Hilbert-Schmidt operator B in LZ(RH).

It remains to show that B = A. For this one deduces
as in (2.94) that

(e.,Be;) = (e.e, ,K) = lim(e.e, ,K ) = Qs
17 2eny " VT 2o, = A8 N 2y B
Hence Bek = Ejajkej’ i.e. Bek = Aek for all k. The fact that

B = A is now a consequence of Lemma 2.27. #

Proof of Proposition 2.34 : (i) Suppose AsBl. Let {ek},{hk},
{Ak} be as in Proposition 2.31. Define B and C by

Bf

1 1
2 — 2
jj Aj(ej,f)hj, Cf = ) M(epsDleg.

Then

1 1 1
BCE X(e.. 6. =F. . 4 A*fe., +Eih.
Lij (o5 C00R; = 1)y A5 Aglegaep) (o, )by
Lx Alep,f)hy = Af.

Since Elk < o, Ak + 0 as k » ». Thus one sees as in the proof
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of Proposition 2.31 that B as well as C is the uniform limit
of a sequence of finite rank operators, i.e. B,CEBO. By using
also (2.68) we then get

IBll s =licll &5 = 3, 0h% = ), < =,

which proves the "only if" part of (a).

(ii) Suppose A = BC with B,CEBZ- A is compact by
Proposition 2.32. Consider its canonical expansion (2.58).
Then one gets from (2.69), (2.58) and (2.8) that

A = Td = T (hy,he)) = I (B*hy ,Ce,)

A

b B llicey < Ty 1Bhy P53t fce, s

A

<131 g l1€l] g = 1Bl g CH] g < o= (2.95)

which proves (a). (b) follows from (a) and Proposition
2.32(d). #

PROBLEMS
2.1 : Verify that the following are Hilbert spaces :
(1) The set C® of all n-tupels o = {al,...,an} of complex
numbers (a;eC) with the scalar product
n - n
(0,8) =)  a.B.. (a,8:C™) (2.96)
i=1 "i%i

(ii) The set &% of all infinite sequences o = {al,az,...}
of complex numbers which satisfy Zifai|2 < ®, with the sca-
lar product given by (2.96) for n = [AG, Section 4].

2.2 : Verify that (i) |[8]|= 0, (£,6) = 0 for a1l feH,

(11) (af,q) = @(f,9), (f+ah,g) = (f,9) + a(h,q).
2.3 : Prove that a sequence {fn} can converge strongly to

at most one vector f.

2.4 : (a) IFf fn = 55 gn + g, then (fn,gn) > (£,9) as n+w,
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(b) If w-lim £, = £ and ||£,|| < ||£]| for all n, then s-lim £, =
f as n » ». (c) Show that in a finite-dimensional Hilbert space
weak convergence implies strong convergence.

2.5 : Let {e;} be an orthonormal basis of H and feH. Define
T = ZEzl(ek,f)ek. (i) show that £ + f as n » «. (ii) Prove
Parseval's relation (2.12). (Hint : Use (2.11) to show that
{£,} is a Cauchy sequence. Use Proposition 2.2 to prove that
its limit is f. Use Proposition 2.1 for (ii).)

2.6 : Verify that a linear manifold M satisfies axioms II
and IV. (Hint : Let {f,} be a dense seguence in M, M the
closure of M and Ny = 1/m. Define fn,l from the projection
theorem and show that the sequence {f_ ;} is dense in M. For

each n choose a sequence {g }eM such Ehat]\g -f (X
nm nm n,l m

2.7+ : Prove Proposition 2.3. (Hint : Show that the set %
N = {£|6(f) = 0} is a subspace. If ® #Z 0, there exists heN
such that ®(h) = 1. Define g = h/ ||h|[2. If feH, then

f-% (f)heN, which implies (g,f) = ®(f).)

2
2.8% « Th T (R) ; 1=t X[a,p] Pe the characteristic function

of the interval [a,b], and let n > o. Show that there exists
a function g in CZ(R) such that\iX[a'b]—gH < n. (Hint
Replace Xfa p] tear a and b by a function similar to
1.

exp[xg(xz-Mz)_ 1, x| < M)

2.9 : Prove Proposition 2.4(b) for n > 1.

2.10 : Let o be a complex number with Re o > 0. Make the
appropriate choice of the branch of Yo and show that the
Fourier transform of the function exp(—a\x\2/2) is
u—n/2exp(—‘5‘2/2u). N

2.11 : Prove the second equality (2.23).

2.12 : Verify the equivalence of the two conditions for an
operator to be closable given before Lemma 2.5.

2.13 : Let A be closable, ﬁ_its closure and A' a closed
extension of A. Prove that A ¢ A'.

2.14 : Let {e;} be an orthonormal basis of an infinite-di-
mensional Hilbert space H, and define a linear operator A as
follows : D(A) is the set of all finite linear combinations
of vectors of {ei}, and Aep, = kel. Show that A is not clos-
able. Verify also that D(A*) is not dense in H. Find a
sequence of bounded operators converging strongly to A on
D(A). (Hint : Consider the sequence {fn} with £ = n_len).
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2.15 : Let Q be a linear operator such thatJIQfH =‘!f“ for

all feD(Q), and denote by & the closure of Q. Verify that
le£]| = || £]] for all fep(d).

2.16 : Prove equations (2.27) and (2.28) .

2.17 = Prove the following statements. (a) If A is closed
and invertible, then a-1 is closed. (b) If in addition a-l
is bounded and defined everywhere and B is closed, then AB

is closed. (c) If A is closed and C bounded with D(C) = H,
then A+C is closed. (d) If A and B are bounded with D(a) =
D(B) = H and AB is densely defined, then AB = AB.

2.18 : Verify the assertion (Z30):.

2.19 : Show that, if a%* exists, then A C AEX,

2.20 : Verify (2.32), (2.33) and (2.34).

2.21 : Show that (2.36) defines an orthogonal projection.

2.22 : Prove the polarization identity

) 2
42,9 = ||e+g)f - || £-gl? - ) erig)? + W e-iglf. (.07

Show that, for f,geD(a), (f,Ag) can be similarly expressed
as a sum of four terms of the form B(h,Ah) with ge(C.

2.23 : Suppose A ¢ A*. Show that A is self-adjoint if and

only if A* = px* ~

2.24 : (a) Suppose that D(A,) = D(A) = H, A, and A are bound-
ed and A >+ A. Show that {az} converges weakly to A* as n— w,
(b) Prove Proposition 2.18(b).

2.25 : Prove Proposition 2.20. (Hint : Use (2.28) and the
identity I-a"™l = (I+a+...+aD) (1-a).)

2
2.26 : Let H = L"(R) and let Q be the maximal multiplica-_
tion operator defined by (Qf) (x) = xf (x) . Show that (I-Q)
exists but is unbounded.

2.27 : Give an example of a compact operator which is not in
the Hilbert-Schmidt class.

2.28 : Find necessary and sufficient conditions for a pro-
jection and for a partial isometry to be compact, Hilbert-
Schmidt or trace class.

2.29 : (Polar decomposition) : Let A be closed. Then there
exists a positive self-adjoint operator ]A[ with D(|A|) =
D(A) and a partial isometry @ with initial set wA[H and final
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set AH such that A = Q\A!. (This may be viewed as a general-
ization of the polar decomposition z = exp(i¢)|z| of complex
numbers). Verify the above statement for the case where A is
compact by using Proposition 2.31.

2.30 : Verify that the space H @ H satisfies axioms I-IV,

2.31+: Prove that there is an 1somorphlsm from L (R ) ®
LZ(R") onto LZ(R™D7), see Section 2-4. (By an isomorphism
between two Hilbert spaces H; and Hp we mean a linear map j
from H; onto H, such that (3£,39), = (£,9), for all f,gsHl.)

2.32 32T Show that

(a) the dlrect sum A = & A of a sequence of self-adjoint
operators {Ak}k—l is self-adjoint,

(b) the direct sum F = @ F. of a sequence of projections
{Fk}k -1 is a projection,

(c) By is a projection in ® Hk (k=1,wemwyhi) «

2.33 : Let E and F be two projections. Show that the follo-
wing three statements are equivalent : (i) EH c FH,
(ii) BF = E = FE, (iii) E < F (i.e. F-E > 0).

2.34 : show that A*ReB, if and only if AeB_ . (Hint : Use
Proposition 2.31.)

2,35 : (a) Show that[h§§l|| HA!l (Hint : Use an orthonormal
basis of Hy ®H,). (b) If AeB(H;), BeB(Hy), then ||a®B| =

lall ||B]]. [Hlnt : Use (a)l]. (c) Suppose that ||Ap|[<M, ||By||<M,
A,~A and B, +B. Show that An®Bn+A®B. (Hint : Use
Proposition 2.17.)

2.36 : (Cyclicity of the trace) : Let AeBy, B,CeB,, DeB(H).
Then TrBCD = TrDBC = TrCDB and TrAD = TrDA.

2.37 : (a) Let A be Hilbert-Schmidt or trace class. Show that
the infinite sum in (2.58), viewed as the limit of a sequence
of operators, converges in Hilbert-Schmidt or trace norm
respectively. (b) Let BeB,. Then || B|| <|]BH H|BW

2.38 : Show that the range of a finite rank operator is &
(closed) subspace.

2.39 : If A is self-adjoint in Hy, then A ® I is essentially
self-adjoint 1n fﬁ_@fb. If furthermore H2 s Fiftite—ainern=
sional, then ABI = A®I.




