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1 Introduction

In these lectures we will try to explore the paper written by A. Beurling in 1948
titled ”On 2-problems concerning linear operators on Hilbert spaces”.

Let us first explain the various terms in the title.

1. Hilbert Spaces under consideration are the Hardy Space H2(D) or the square
summable sequence space l2(N) where

H2(D) =

{
f ∈ Hol(D) : f(z) =

∞∑
n=0

anz
n, an ∈ C,

∞∑
n=0

|an|2 <∞

}

and D = {z ∈ C : |z| < 1} is the open unit disk in the complex plane C, and

l2(N) =

{
{an}∞n=0 :

∞∑
n=0

|an|2 <∞

}
Now onwards we use the following notations

H2(D) := H2

l2(N) := l2

Exercise: l2 is a Hilbert space with inner product defined as

⟨{an}∞n=0, {bn}∞n=0⟩ =
∞∑
n=0

anbn

and {en}∞n=0 forms an orthonormal basis for l2 where en is the sequence with
1 in the nth position and zero elsewhere. We state without proof that H2(D)
is a Hilbert Space with the inner product defined as⟨

∞∑
n=0

anz
n ,

∞∑
n=0

bnz
n

⟩
=

∞∑
n=0

anbn (1.1)

For a proof please refer Duren [3] and Halmos [1].

That H2 is a Hilbert space also follows readily from the following simple ex-
ercise.
Exercise: Show that the mapping

X : l2 → H2

{an}∞n=0 7−→
∞∑
n=0

anz
n

is well defined and one to one and onto. Prove that H2 is a Hilbert space
with the inner product defined as in (1.1) (Note that under this isomorphism
en 7−→ zn and thus {1, z, z2, ...} forms an orthonormal basis of H2).

2. The Linear Operator under consideration is the shift, S on l2 or the shift Mz

on H2 (see Definition 2.1).
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3. 2-Problems mentioned are

• Take f ∈ H2/l2. When does
∨
Snf = H2 (or l2)?

• For f ∈ H2/l2. When does Cf :=
∨
(S∗)nf is generated by the eigenvec-

tors?

Here
∨

denotes the span closure and that S∗ is the adjoint of S

2 Shift Operator on the Hardy Space H2

2.1 Definition. Define shift S on l2 by

S ({an}∞n=0) = {0, a0, a1, ...},

for all {an}∞n=0 ∈ l2.

2.2 Remarks.

1. S is a linear isometry on l2, that is,

∥S({an}∞n=0)∥ = ∥{an}∞n=0∥.

2. For any {an}∞n=0, {bn}∞n=0 ∈ l2

⟨S∗({an}∞n=0), {bn}∞n=0⟩ = ⟨{an}∞n=0, S({bn}∞n=0)⟩
= ⟨{an}∞n=0, {0, b1, b2, ...}⟩
= ⟨{a1, a2, ...}, {b0, b1, ...}⟩

⇒ S∗({an}∞n=0) = {an}∞n=1 = {a1, a2, . . .}.

3. kerS∗ = {{a0, 0, 0, ...} : a0 ∈ C} ∼= C. In particular, dim[kerS∗] = 1

4. S∗S = I but
SS∗ = I − PkerS∗ = I − PC,

where PkerS∗ is the orthogonal projection of H2 onto kerS∗. Therefore, that
S is not normal.

2.3 Definition. Let H be a Hilbert space and T ∈ L(H).

1. T is said to be C·0 if T
∗n −→ 0 in strong operator topology (that is, ∥T ∗nh∥ →

0 for all h ∈ H).

2. A closed subspace M ⊆ H is said to be invariant subspace of T ∈ L(H) (or,
T -invariant) if T (M) ⊆M .

3. A closed subspace M ⊆ H is said to be co-invariant subspace of T ∈ L(H)
(or, T ∗-invariant) if T ∗(M) ⊆M .

4. A closed subspace M is said to be T -reducing if T (M), T ∗(M) ⊆M .

5. T ∈ L(H) is said to be irreducible if T has no reducing subspace except {0}
and H.
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2.4 Definition. Define shift Mz on H2 by

Mz(f) = zf, ∀f ∈ H2.

Note that for all f ∈ H2, zf is a function in H2 defined by

(zf)(w) = wf(w),

for all w ∈ D.
2.5 Remarks.

1. M∗
zMz = IH2

2. MzM
∗
z = IH2 − PC where PC is the orthogonal projection of H2 onto the

subspace of all constant functions, denoted by C.

3. Mz(
∑∞

n=0 anz
n) =

∑∞
n=0 anz

n+1

4. M∗
z (
∑∞

n=0 anz
n) =

∑∞
n=1 anz

n−1

5. M∗n
z −→ 0 in strong operator topology.

6. Mz on H2 is irreducible.

7. H2 ⊖MzH
2 = C.

8. That H2 ⊖MzH
2 = C satisfies the following relation:∨ ∞⊕

n=0

zn(H2 ⊖MzH
2) =

∨ ∞⊕
n=0

znC = H2.

HW: LetM ⊆ H2 be aM∗
z -invariant subspace. ThenMz|M ∈ L(H) is in C·0. [What

is the conclusion if that M is Mz-invariant?]

Example: Let n ≥ 1 be a fixed integer andMn =
∨
{zn, zn+1, ...}. ThenMn is invari-

ant under Mz but not under M∗
z . Also, Qn =

∨
{1, z, z2, ..., zn−1} is M∗

z invariant
but not Mz invariant.
Questions:
(1) Is it true that Mn = znH2?
(2) Is it true that Qn = (znH2)⊥?

2.6 Definition. Magic/ kernel Vectors: For each w ∈ D define kw : D −→ C by

kw(z) =
∑

n≥0w
nzn .

2.7 Remarks.

1. kw ∈ H2,∀w ∈ D and ∥kw∥ = (1− |w|2)1/2.

2. Let f ∈ H2 with f(z) =
∑

n≥0 anz
n then⟨

∞∑
n=0

anz
n ,

∞∑
n=0

wnzn

⟩
=

∞∑
n=0

anw
n.

Consequently, for all f ∈ H2 and w ∈ D,

f(w) = ⟨f, kw⟩.

Hence, that kw reproduce the value of f ∈ H2 at each w ∈ D.
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3. kw ∈ ker(M∗
z − w), ∀w ∈ D because,

M∗
z (kw) =M∗

z (1 + wz + w2z2 + · · · )
= w + w2z + w3z2 + · · ·
= wkw.

4. Evaluation Functional: Define evw : H2 −→ C, for all w ∈ D by

evw(f) = f(w).

Note that |evw(f)| = |f(w)| = |⟨f, kw⟩| ≤ ∥f∥∥kw∥.
What is ∥evw∥?

5. The Szego kernel over D is the function, k : D× D −→ C defined by

k(λ,w) := (1− λw)−1,

for all w, λ in D.
Note that

k(λ,w) = ⟨kw, kλ⟩, ∀λ,w ∈ D
and that k is holomorphic in the first variable and anti-holomorphic in the
second variable.

6. Prove that k(z, w) = evz ◦ ev∗w.

7. Prove that {kw : w ∈ D} ⊆ H2 is a total set, that is,∨
{kw : w ∈ D} = H2.

To proceed further we recall the following important notion.
Let H be a Hilbert space and T ∈ L(H) then the spectrum of T, σ(T ) is defined

as
σ(T ) = {λ ∈ C : T − λI is not invertible}.

We recall that a bounded linear operator T on H is invertible if and only if that
T is bounded below (that is, there exists c > 0 such that ∥Tf∥ > c∥f∥ for all
f (̸= 0) ∈ H) and of dense range (that is ranT = H).

The approximate point spectrum of T, σa(T ) is defined as

σa(T ) = {λ ∈ C : ∃fn ⊆ H ∋ ∥fn∥ = 1, ∥(T − λ)fn∥ −→ 0},

and the point spectrum, σp(T ) is defined as

σp(T ) = {λ ∈ C : Tf = λf for some f ̸= 0}.

Finally, the compression spectrum, Π(T ) is defined as

Π(T ) = {λ ∈ C : ran(T − λI) $ H}.

2.8 Theorem. ∂σ(T ) ⊆ σa(T ).
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Proof. See Problem 78 in [1].

2.9 Theorem.

(i) ∀w ∈ D, ker(M∗
z − w) = span{kw} = C · kw.

In particular, dim[ker(M∗
z − w̄)] = 1.

(ii) σp(M
∗
z ) = D.

(iii) σ(M∗
z ) = D = σa(M

∗
z ).

Proof. We know that kw ∈ ker(M∗
z − w̄). Let f ∈ H2 be such that f(z) =

∑
anz

n

and M∗
z f = wf . This implies

a1 + a2z + a3z
2 + · · · = w(a0 + a1z + a2z

2 + · · · )

Therefore, a1 = wa0, a2 = wa1 = w2a2, . . . , and an = wna0, ∀n ∈ N and hence,
f = a0kw. Consequently, ker(M∗

z − w) = span{kw}. This completes the proof of
part (i).

Since ∥M∗
z ∥ = 1, we have that σ(M∗

z ) ⊆ D. Also by part (i), D ⊆ σ(M∗
z ) and

hence σ(M∗
z ) = D. Since σa(M

∗
z ) ⊇ σp(M

∗
z ) ⊇ D, by the fact above this theorem,

we conclude that ∂σa(M
∗
z ) = T. Therefore, σa(M∗

z ) = D. This completes the proof
of (iii).

Finally, it is easy to see that if f ∈ H2 and M∗
z f = λf for some |λ| = 1 then

that f = 0. Therefore, σp(M
∗
z ) = D.

2.10 Remarks.

1. σp(Mz) = Ø.

2. For T ∈ L(H), σp(T ) = Π(T ∗).

3. (1) and (2) ⇒ Π(M∗
z ) = Ø.

4. ∀w ∈ D, ran(M∗
z − w) = H2. [range is not required here because ∀w ∈ D,

dim(ker(M∗
z −wI)) = 1 and dim(ker(Mz−wI)) = 0. This yields thatM∗

z −wI
is Fredholm and ind (M∗

z − wI) = 1 for all w ∈ D.]

2.11 Definition. Let E be a Hilbert space. Define

H2
E :=

{
∞∑
n=0

anz
n ∈ Hol(D, E) : an ∈ E ,

∞∑
n=0

∥an∥2E <∞

}
.

Here by Hol(D, E) we denote the set of all E-valued holomorphic functions on D.
Also, l2E is defined as the set of all square-summable E-valued sequences with the

natural inner product

⟨{an}∞n=0, {bn}∞n=0⟩ =
∞∑
n=0

⟨an, bn⟩E ,

for all {an}∞n=0, {bn}∞n=0 ∈ l2E .
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Note that H2
E is isomorphic to l2E in the following sense:

Fact: The map U : H2
E → H2 ⊗ E defined by

znη
U−→ zn ⊗ η,

for all η ∈ E and n ≥ 0, is an isometric isomorphism onto H2 ⊗ E and

UMz = (Mz ⊗ I)U.

Exercises.

1. Determine Mz-reducing subspace of H2
E .

2. Prove that M∗
z
n −→ 0 in strong operator topology.

3. M∗
zMz = IH2

E

4. MzM
∗
z = I −PE , where PE is the projection of H2

E onto the E-valued constant
functions.

5. H2
E ⊖MzH

2
E = E

3 Isometries

Let T ∈ L(H) and W be a closed subspace of H. Then W is said to be a wandering
subspace of V if

T nW ⊥ W ,

for all n ≥ 1.

HW:
(1) Prove that a closed subspace W of H is wandering for an isometry V on H if
and only if V nW ⊥ V mW for all m,n ≥ 0 and m ̸= n.
(2) Let T ∈ L(H) and WT := H ⊖ TH = kerT ∗ ̸= {0}. Prove that WT is a
wandering subspace of T .

Given operator T ∈ L(H), the general question of interest is the following:

What are the wandering subspaces of T?

The above question is related to the invariant subspace problem for operators on
Hilbert spaces. For instance, if W is a wandering subspace of T on H then

∞
∨

n=0
T nW ,

is an invariant subspace of T .
Another possible formulation of the wandering subspace problem is the following:
Let T ∈ L(H) and H = ∨∞

n=0 T
nWT , where WT := H ⊖ TH is the wandering

subspace of T . Now consider a non-trivial invariant subspace S of H and define
R := T |S ∈ L(S). Does it follows that

S =
∞
∨

n=0
T nWR (=

∞
∨

n=0
RnWR),
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where WR := S ⊖RS (= S ⊖ TS) is the wandering subspace of R.
The more general question now arises:

For which T ∈ L(H), one has H = ∨∞
n=0 T

n(H ⊖ TH)?
The above questions are mostly unknown for many ”friend” operators on ”friend”

Hilbert spaces. However, one has a complete answer for the class of isometries.

Exercise. Let V ∈ L(H) and V ∗V = I. Consider WV = H ⊖ V (H) (assume
WV ̸= {0}, that is, V is non-unitary). Then V nWV ⊥ V mWv, for all n ̸= m ∈ N.

3.1 Definition. An isometry V ∈ L(H) is said to be shift of multiplicity dimW if⊕
n≥0

V nWV = H.

3.2 Examples.

1. Mz on H2 is a shift of multiplicity 1.

2. Mz on H2
E is a shift of multiplicity dim E .

3.3 Theorem. Let U ∈ L(H) and V ∈ L(K) be a pair of shift operators. Then U
is unitarily equivalent to V if and only if dim(WU) = dim(WV ).

Proof. (⇒) There exists Φ : H −→ K such that Φ∗V Φ = U . Therefore, KerU∗ is
isomorphic to KerV ∗.

(⇐) There exists unitary φ : WU −→ WV . Define Φ : H −→ K by

Φ

(∑
n≥0

unhn

)
=
∑
n≥0

V nϕhn; hn ∈ WU

Now check that, ΦU = V Φ and that Φ is unitary.

In particular, the multiplicity of a shift operator is well defined.

3.4 Corollary. Let V ∈ L(H) be a shift. Then V is unitarly equivalent to Mz on
H2

E where dim E = multiplicity of V .

3.5 Corollary. If V is a shift, then V ∗n −→ 0 in strong operator topology.

3.6 Theorem (Wold Decomposition). Let V ∈ L(H) is an isometry. Then there
exists V -reducing subspaces HU and HS such that H = HU⊕HS and V |HU

is unitary
and V |HS

is a shift.

Proof. Let WV := H ⊖ V (H) and HS := ⊕n≥0V
nWV . Note that HS is reducing

Define HU := HU ⊖HS. We claim that HU = ∩n≥0V
nH

f ⊥ HS ⇔
l
⊕
n=0

V nWV ; ∀l ≥ 0

⇔ f ⊥ WV ⊕ VWV ⊕ ...⊕ V lWV

⇔ f ⊥ H ⊖ V l+1H

⇔ f ∈ V l+1H, ∀l ≥ 0

⇔ f ∈ ∩
n≥0

V nH

⇒ HU = ∩
n≥0

V nH
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3.7 Corollary. Any isometry is of the form

[
unitary 0

0 Mz

]
.

3.8 Definition. Define l2(Z) by

l2(Z) = {(an)n∈Z :
∑

|an|2 <∞}.

3.9 Definition. The bilateral shift U on l2(Z) is defined by Uen = en+1, where en
is the sequence with 1 in the nth position and zero elsewhere for all n ∈ Z.

Note that U∗en = en−1 for all n ∈ Z and therefore

UU∗ = U∗U = I.

Let T be the unit circle in the complex plane. By L2(T) we denote the familiar
collection of the square integrable functions on T with respect to the normalized
lebesgue measure dm on T. Define

X : L2(T) −→ l2(Z)

f 7−→ f̂

where f̂ is the Fourier transform of f which is defined by f̂(n) =
∫ 2π

0
f(eiθ)e−inθdθ.

Fact: X defined above is unitary and XMeiθ = UX. Hence, that Meiθ is the
bilateral shift.

3.10 Definition. Define L2
+ :=

∨
n≥0e

inθ ⊆ L2(T).

We observe that MeiθL
2
+ ⊆ L2

+. If V = Meiθ |L2
+
then V ∗V = IL2

+
. Check that V

is a shift of multiplicity 1 and hence, V on L2
+ is unitarly equivalent to Mz on H2

(follows from Corollary 3.4).

3.11 Definition. Define H∞(D) by

H∞(D) = {φ ∈ L∞(T) : φ̂(n) = 0,∀n < 0} = L∞ ∩H2.

3.12 Theorem. {Meiθ}
′
= {Mφ : φ ∈ L∞}.

Proof. See Halmos.

3.13 Theorem. Let φ ∈ L∞. Then φH2 ⊆ H2 if and only if φ ∈ H∞.

Proof. (⇒) φ1 = φ = f for some f ∈ H2. Consequently, φ ∈ H∞.
(⇐) We claim that φH2 ⊆ H2. Indeed, fix l ∈ N:

φ̂zl(n) =

∫ 2π

0

φ(eiθ)eilθe−inθdθ

=

∫ 2π

0

φ(eiθ)e−i(n−l)θdθ

= φ̂(n− l)

= 0 if n < 0 and l ≥ 0

Therefore, φp ∈ H2, for every p ∈ C[Z]. Since the polynomials are dense in H2 we
have that φH2 ⊆ H2.
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3.14 Definition. For φ ∈ H∞(D), define Tφ := Mφ|H2 , and is called Toeplitz
Operator with holomorphic symbol φ.

3.15 Theorem. {Mz}
′
= {Tφ : φ ∈ H∞(D)}.

Proof. See Halmos.

3.16 Theorem. M ⊆ L2(T) is Meiθ-reducing if and only if

M = {f ∈ L2(T) : f = 0 a.e. on X}

for some m-measurable set X ⊆ T.

Proof. (⇐) is trivial.
(⇒) Let PM be the orthogonal projection of L2(T) onto M ⊆ L2. That M is
Meiθ -reducing yields that

PMMeiθ =MeiθPM.

That is, PM ∈ {Meiθ}′ and hence, PM = Mφ for some φ ∈ L∞. But PM =
P 2
M = P ∗

M ⇒ range(φ) ⊆ {0, 1} Let range(φ) = {0, 1} implies φ = χX where
X = {eiθ ∈ T : φ(eiθ) = 0}. This implies range(PM) = M = range(Mφ) = {f ∈
L2(T) : f = 0 a.e. on X}.

3.17 Theorem. Let M(̸= {0}) ⊆ L2(T). Then M is a non-reducing invariant
subspace of Meiθ if and only if M = φH2 for some φ ∈ L∞(T) with |φ| = 1 a.e.

Proof. Let W = M⊖ eiθM. Choose φ ∈ W with ∥φ∥ = 1 (note that W = {0} is
equivalent to the condition that M is reducing). Since einθM ⊆ eiθM, we have

φ ⊥ eiθM ⇒ φ ⊥ einθM, ∀n ≥ 1

⇒ φ ⊥ einθφ, ∀n ≥ 0

⇒
∫ 2π

0

|φ(eiθ)|2e−inθdθ = 0, ∀n ≥ 1

⇒ |̂φ|2(n) = 0 ∀n ̸= 0

⇒ |φ|2 = constant a.e.

On the other hand,
∥φ∥∞ = 1,

and hence
|φ| = 1 a.e.

Claim: φH2 = M.
Note that Mφ is unitary. Therefore {φeinθ : n ∈ Z} is an orthonormal basis for
L2(T). This means

L2(T) =
∨

n∈Z
{φeinθ},

and

φH2 =
∨

n∈N
{φeinθ}.
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Now φ ∈ M implies einθφ ∈ M, for n ≥ 0, and this further implies φH2 ⊆ M.
Now we proceed to prove M ⊆ φH2. Let f ∈ M. Claim: f ⊥ φeinθ, ∀n < 0. Now
for n > 0

⟨f, φe−inθ⟩ = ⟨f,M∗
einθφ⟩

= ⟨Mn
eiθf, φ⟩

= ⟨einθf, φ⟩
= 0.

The converse part is trivial.

3.18 Theorem. (Uniqueness of φ) If M is as in Theorem 3. 16, then

M⊖ eiθM = φ · C.

In particular, dim(M ⊖ eiθM) = 1 and hence, that φ is unique (up to a scalar
multiplier of length one).

Proof. First, check that if M = ψH2 for some ψ ∈ L∞(T) with ∥φ∥∞ = 1, then
that ψ ∈ M⊖ eiθM. Now let

M = φH2 = ψH2,

for φ, ψ ∈ L∞(T) with ∥φ∥∞ = ∥ψ∥∞ = 1. Then

φ(f) = ψ,

and
ψg = φ,

for some f, g ∈ H2. Consequently, φψ = f . Also, ψφ = g. Therefore,

f = g.

Thus, f is a constant, f = c (say) with |c| = 1.

4 Beurling’s Theorem and some Consequences

4.1 Theorem (Beurling’s Theorem). Let M ̸= {0} be a closed subspace of H2.
Then, M is Mz-invariant if and only if M = φH2 for some φ ∈ H∞ and

|φ(eiθ)| = 1 a.e.

Moreover, that φ is unique up to a scalar multipliers of length one.

Proof. (⇒)

Mz(φf) =MzTφf

= Tφ(zf) ∈ φH2,

since TφMz =MzTφ.
(⇐): Let M ̸= {0} be a Mz-invariant subspace. In particular, M is Meiθ -invariant.
This means, M = φH2 for φ ∈ L∞ and |φ| = 1 a.e. Now, φ · 1 ∈ M which implies
that φ is holomorphic, that is, φ ∈ H∞.
Uniqueness of φ follows from Theorem 3.18.
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4.2 Corollary. If M is a Mz-invariant subspace of H2, then Mz|M ∈ L(M) is an
isometry with multiplicity 1(= dim(M⊖ zM).

4.3 Definition. A function φ ∈ H∞(D) is inner if |φ(eiθ)| = 1 a.e.

Fact. Let φ ∈ H∞. Then Tφ : H2 → H2 (f 7→ φf for all f ∈ H2) is an isometry if
and only if φ is inner. (see Halmos)

4.4 Definition. A function f ∈ H2 is outer if
∨∞

n=0z
nf = H2.

Fact. If f is outer, then, f(z) ̸= 0 for all z ∈ D.
[If not, then there exists w ∈ D such that f(w) = 0 for all f ∈ H2 - a contradiction.]

The following result also follows directly from Corollary 4.2.

4.5 Corollary. Let {0} ̸= M1,M2 ⊆ H2 be Mz-invariant. Then, Mz|M1
(on M1)

is unitarily equivalent to Mz|M2
(on M2).

Proof. Set M1 = φ1(H
2) and M = φ2H

2. Define

X : M1 → M2

φ1f 7→ φ2f,

for all f ∈ H2. Check that X is unitary and X(Mz|M1
) = (Mz|M2

)X.

4.6 Corollary. Let M ⊆ H2 be an Mz-invariant subspace. Then, Mz|M on M has
a cyclic vector.

Proof. First, note that (Mz|M)n =Mn
z |M for all n ∈ N. Then

M = φH2 =
∨
n>0

znφ =
∨
n>0

(Mz|M)nφ.

Thus φ is the required cyclic vector.

4.7 Corollary. Let M1,M2 be a pair of non-zero Mz-invariant subspaces of H2.
Then, M1 ∩M2 ̸= {0}.

Proof. Set Mi = φiH
2. Then, (φ1φ2)H

2 ⊆ φ1H
2, φ2H

2.

4.8 Corollary. (Riesz Brother’s theorem) Let f ∈ H2 and E := {eiθ ∈ T : f(eiθ) =
0}. Then, m(E) = 0.

Proof. Let E be a measurable subspace and let

ME := {g ∈ H2 : g = 0 onE a.e.}.

Note that for all g ∈ ME and w ∈ E,

(zg)(w) = wg(w) = 0.

Therefore, ME is shift-invariant. Thus, ME = φH2 and |φ| = 1 a.e. It follows that
φ ∈ ME, which implies that φ = 0 on E a.e. contradicting the fact that |φ| = 1
a.e. unless that m(E) = 0.
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4.9 Corollary. (Inner-outer Factorization) Let 0 ̸= f ∈ H2. Then, f = φiφ0 where
φi is inner and φ0 is outer. Furthermore, this representation is unique up to scalar
multipliers of length one.

Proof. Let Mf =
∨∞

n=0z
nf . Since that Mf is Mz-invariant, we have

Mf = φiH
2,

for some inner function φi ∈ H∞(D). We are done if Mf = φiH
2 = H2.

Therefore, we assume that φiH
2 ( H2. But, f ∈ Mf = φiH

2. Thus

f = φiφ0,

for some φ0 ∈ H2. We claim that φ0 is outer, that is,∨
znφ0 = H2.

If not, by Mz-invariance of
∨
znφ0, we have∨

znφ0 = ψH2,

for some inner function ψ ∈ H∞(D). Therefore,

φiH
2 =

∨
znf

=
∨
znφiφ0

= φi

∨
znφ0

= φiψH
2.

By the uniqueness part of Beurling’s theorem, φi = cφiψ for some c such that |c| = 1.

Thus, ψ = c and φ0 is outer:
∨
znφ0 = ψH2 = H2.

Uniqueness part is left to the reader.

4.10 Example. Let w ∈ D and consider Mw = {f ∈ H2 : f(w) = 0}. Then, Mw is
closed, being the kernel of the evaluation functional evw. Also, Mw is shift-invariant.

Now, Mw = φH2 and φ(w) = 0. Also, φ : D → D. Then,

φw(z) = eiϕ
z − w

1− wz
for some ϕ

We claim that φ is inner: ∣∣∣∣ eiθ − w

1− eiθw

∣∣∣∣ = |eiθ|
∣∣∣∣1− e−iθw

1− eiθw

∣∣∣∣
= 1

since the denominator of the last fraction is the conjugate of the numerator. Thus,
Mw = φwH

2.

4.11 Theorem. Let wi ∈ D, 1 6 i 6 n. Then,

Mw1...wn := {f ∈ H2 : f(wi) = 0} =

(
n∏

i=1

φwi

)
H2

.
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5 Bergman space and more

Let L2
a(D) (see [5]) be the space of all square integrable (with respect to the area

measure) holomorphic functions on the open unit disc D, that is,

L2
a(D) = {f ∈ Hol(D) :

∫
D
|f |2dA <∞},

where dA is the normalized area measure on D. Then L2
a(D) is a Hilbert space with

⟨f, g⟩ :=
∫
D
fḡdA,

for all f, g ∈ L2
a(D).

One checks that the ring of polynomials C[z] ⊆ L2
a(D) and

∥zn∥ =

√
1

n+ 1
,

for all n ≥ 0. Another way to represent the Bergman space is based on the weighted-
square summability condition:

L2
a(D) = {f ∈ Hol(D) : f =

∞∑
n=0

anz
n,

∞∑
n=0

|an|2

n+ 1
<∞},

with

⟨
∞∑
n=0

anz
n,

∞∑
n=0

bnz
n⟩ =

∞∑
n=0

anb̄n
n+ 1

,

for all
∑∞

n=0 anz
n,
∑∞

n=0 bnz
n ∈ L2

a(D).
It is easy to see that the multiplication operator Mz : L2

a(D) → L2
a(D) defined

by f 7→ zf (for all f ∈ L2
a(D)) is bounded. Moreover, for each w ∈ D, the function

kw : D → D,

defined by
kw(z) = (1− zw̄)−2, (∀z ∈ D)

is in the Bergman space. Also these functions (magic/kernel) reproduces the values
of functions of L2

a(D) in the following sense:

f(w) = ⟨f, kw⟩. (∀f ∈ L2
a(D), w ∈ D)

The Bergman kernel on the open unit disc D is defined by

k(z, w) = (1− zw̄)−2,

for all (z, w) ∈ D× D.
Some surprising facts:
(1) Beurling type representations of Mz-invariant subspaces of L

2
a(D) fails.

(2) If M1,M2 ⊆ L2
a(D) be a pair of Mz-invariant subspaces and that

Mz|M1
∼= Mz|M2 ,
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then, M1 = M2.
(3) For a Mz-invariant subspace M of L2

a(D), the dimension of M⊖ zM could be
any natural number 1, 2, . . ., even ∞.
(4) However, Mz-invariant subspaces of the Bergman space obeys the wandering
subspace theorem. That is, for any non-zero closed Mz-invariant subspace M of
L2

a(D), one has

S =
∞
∨

n=0
zn(M⊖ zS).

(5) For the weighted Bergman spaces, the above result is still not known.
(6) In several variables, situation is more complicated.
(7) The fact in (2) is known as the rigidity property. It seems that except the Hardy
space on the unit disc and some pathological examples, all known reproducing kernel
Hilbert spaces enjoy the rigidity property!
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