Unbounded Quasinormal Operators

Zenon Jabłoński

OTOA - 2014 - Bangalore

Zenon Jabłoński Unbounded Quasinormal Operators

ヘロン 人間 とくほ とくほ とう

3

Quasinormal operators ($AA^*A = A^*AA$), which were introduced by A. Brown (1953), form a class of operators which is properly larger than that of normal operators ($A^*A = AA^*$), and properly smaller than that of subnormal operators (A has a normal extension).

ヘロン 人間 とくほ とくほ とう

3

- *A* is a *pure contraction*, if ||Ax|| < ||x|| for all $x \in \mathcal{H} \setminus \{0\}$.
- Let $\Gamma(A) = A(I A^*A)^{-1/2}$.
- Γ maps the set of all pure contraction one-to-one onto the set of all closed and densely defined operators in *H*.
- (Kaufman's definition unbounded case) A is quasinormal, if A is closed and densely defined, and $(AA^*A = A^*AA)$.
- Γ and Γ^{-1} preserve quasinormality.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- *A* is a *pure contraction*, if ||*Ax*|| < ||*x*|| for all *x* ∈ *H* \ {0}.
 Let Γ(*A*) = *A*(*I* − *A***A*)^{-1/2}.
- Γ maps the set of all pure contraction one-to-one onto the set of all closed and densely defined operators in *H*.
- (Kaufman's definition unbounded case) *A* is quasinormal, if *A* is closed and densely defined, and (*AA***A* = *A***AA*).
- Γ and Γ^{-1} preserve quasinormality.

イロト 不得 とくほ とくほ とうほ

- *A* is a *pure contraction*, if ||Ax|| < ||x|| for all $x \in \mathcal{H} \setminus \{0\}$.
- Let $\Gamma(A) = A(I A^*A)^{-1/2}$.
- Γ maps the set of all pure contraction one-to-one onto the set of all closed and densely defined operators in *H*.
- (Kaufman's definition unbounded case) *A* is quasinormal, if *A* is closed and densely defined, and (*AA***A* = *A***AA*).
- Γ and Γ^{-1} preserve quasinormality.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- *A* is a *pure contraction*, if ||Ax|| < ||x|| for all $x \in \mathcal{H} \setminus \{0\}$.
- Let $\Gamma(A) = A(I A^*A)^{-1/2}$.
- Γ maps the set of all pure contraction one-to-one onto the set of all closed and densely defined operators in *H*.
- (Kaufman's definition unbounded case) A is quasinormal, if A is closed and densely defined, and (AA*A = A*AA).
- Γ and Γ^{-1} preserve quasinormality.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- *A* is a *pure contraction*, if ||Ax|| < ||x|| for all $x \in \mathcal{H} \setminus \{0\}$.
- Let $\Gamma(A) = A(I A^*A)^{-1/2}$.
- Γ maps the set of all pure contraction one-to-one onto the set of all closed and densely defined operators in *H*.
- (Kaufman's definition unbounded case) A is quasinormal, if A is closed and densely defined, and (AA*A = A*AA).
- Γ and Γ^{-1} preserve quasinormality.

<ロ> (四) (四) (三) (三) (三) (三)

Stochel and Szafraniec's definition (1989)

- If *N* is a normal operator, then its spectral measure is denoted by E_N .
- A closed and densely defined operator A in H is quasinormal, if A commutes with E_{|A|}, i.e., E_{|A|}A ⊆ AE_{|A|}.
- (Stochel and Szafraniec, 1989) A closed densely defined operator *A* in \mathcal{H} is quasinormal if and only if $U|A| \subseteq |A|U$, where A = U|A| is the polar decomposition of *A*.

ヘロト ヘアト ヘビト ヘビト

Stochel and Szafraniec's definition (1989)

- If N is a normal operator, then its spectral measure is denoted by E_N .
- A closed and densely defined operator A in H is quasinormal, if A commutes with E_{|A|}, i.e., E_{|A|}A ⊆ AE_{|A|}.
- (Stochel and Szafraniec, 1989) A closed densely defined operator *A* in \mathcal{H} is quasinormal if and only if $U|A| \subseteq |A|U$, where A = U|A| is the polar decomposition of *A*.

イロト 不得 とくほ とくほ とう

Stochel and Szafraniec's definition (1989)

- If *N* is a normal operator, then its spectral measure is denoted by E_N .
- A closed and densely defined operator A in H is quasinormal, if A commutes with E_{|A|}, i.e., E_{|A|}A ⊆ AE_{|A|}.
- (Stochel and Szafraniec, 1989) A closed densely defined operator *A* in \mathcal{H} is quasinormal if and only if $U|A| \subseteq |A|U$, where A = U|A| is the polar decomposition of *A*.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

General theory Spectral measures Composition operators in L²-spaces

Equivalence of the definitions

Theorem

Let A be a closed densely defined operator in \mathcal{H} . Then the following conditions are equivalent:

(i) $AA^*A \subseteq A^*AA$, (ii) $AA^*A = A^*AA$, (iii) $(I + A^*A)^{-1}A \subseteq A(I + A^*A)^{-1}$, (iv) $E_{|A|}A \subseteq AE_{|A|}$.

イロン 不得 とくほ とくほ とうほ

General theory Spectral measures Composition operators in *L*²-spaces

Equivalence of the definitions

Theorem

Let A be a closed densely defined operator in \mathcal{H} . Then the following conditions are equivalent:

(i) $AA^*A \subseteq A^*AA$,

(ii)
$$AA^*A = A^*AA$$
,

(iii) $(I + A^*A)^{-1}A \subseteq A(I + A^*A)^{-1}$, (iv) $E_{|A|}A \subseteq AE_{|A|}$.

イロン 不得 とくほ とくほ とうほ

General theory Spectral measures Composition operators in L²-spaces

Equivalence of the definitions

Theorem

Let A be a closed densely defined operator in \mathcal{H} . Then the following conditions are equivalent:

(i) $AA^*A \subseteq A^*AA$, (ii) $AA^*A = A^*AA$, (iii) $(I + A^*A)^{-1}A \subseteq A(I + A^*A)^{-1}$, (iv) $E_{|A|}A \subseteq AE_{|A|}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

General theory Spectral measures Composition operators in L²-spaces

Equivalence of the definitions

Theorem

Let A be a closed densely defined operator in \mathcal{H} . Then the following conditions are equivalent:

(i) $AA^*A \subseteq A^*AA$, (ii) $AA^*A = A^*AA$, (iii) $(I + A^*A)^{-1}A \subseteq A(I + A^*A)^{-1}$, (iv) $E_{|A|}A \subseteq AE_{|A|}$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

General theory Spectral measures Composition operators in *L*²-spaces

Remark

• The inclusion $A^*AA \subseteq AA^*A$ do not imply quasinormality.

Indeed, take a nonzero closed densely defined operator A such that D(A²) = {0}.

<ロ> (四) (四) (三) (三) (三)

General theory Spectral measures Composition operators in L^2 -spaces

Remark

- The inclusion $A^*AA \subseteq AA^*A$ do not imply quasinormality.
- Indeed, take a nonzero closed densely defined operator A such that D(A²) = {0}.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

General theory Spectral measures Composition operators in L²-spaces

Two lemmata

Lemma

If A is a closed densely defined operator in \mathcal{H} and $n \in \mathbb{Z}_+$, then (i) $(A^*A)^n \subseteq A^{*n}A^n$ if and only if $(A^*A)^n = A^{*n}A^n$,

(ii) (A*A)ⁿ ⊆ (Aⁿ)*Aⁿ if and only if (A*A)ⁿ = (Aⁿ)*Aⁿ provided Aⁿ is densely defined,

(iii) if $(A^*A)^n = A^{*n}A^n$, then $(A^*A)^n = (A^n)^*A^n$.

_emma

If A is a quasinormal operator in \mathcal{H} , then

$$(A^*A)^n = A^{*n}A^n = (A^n)^*A^n, \quad n \in \mathbb{Z}_+.$$

ヘロト 人間 ト ヘヨト ヘヨト

э

General theory Spectral measures Composition operators in *L*²-spaces

Two lemmata

Lemma

If A is a closed densely defined operator in \mathcal{H} and $n \in \mathbb{Z}_+$, then (i) $(A^*A)^n \subseteq A^{*n}A^n$ if and only if $(A^*A)^n = A^{*n}A^n$,

(ii) $(A^*A)^n \subseteq (A^n)^*A^n$ if and only if $(A^*A)^n = (A^n)^*A^n$ provided A^n is densely defined,

(iii) if $(A^*A)^n = A^{*n}A^n$, then $(A^*A)^n = (A^n)^*A^n$.

_emma

If A is a quasinormal operator in \mathcal{H} , then

$$(A^*A)^n = A^{*n}A^n = (A^n)^*A^n, \quad n \in \mathbb{Z}_+.$$

ヘロト ヘアト ヘビト ヘビト

э

General theory Spectral measures Composition operators in L²-spaces

Two lemmata

Lemma

- If A is a closed densely defined operator in \mathcal{H} and $n \in \mathbb{Z}_+$, then (i) $(A^*A)^n \subseteq A^{*n}A^n$ if and only if $(A^*A)^n = A^{*n}A^n$,
 - (ii) $(A^*A)^n \subseteq (A^n)^*A^n$ if and only if $(A^*A)^n = (A^n)^*A^n$ provided A^n is densely defined,
- (iii) if $(A^*A)^n = A^{*n}A^n$, then $(A^*A)^n = (A^n)^*A^n$.

_emma

If A is a quasinormal operator in \mathcal{H} , then

$$(A^*A)^n = A^{*n}A^n = (A^n)^*A^n, \quad n \in \mathbb{Z}_+.$$

ヘロト ヘアト ヘビト ヘビト

ъ

General theory Spectral measures Composition operators in L^2 -spaces

Two lemmata

Lemma

- If A is a closed densely defined operator in \mathcal{H} and $n \in \mathbb{Z}_+$, then (i) $(A^*A)^n \subseteq A^{*n}A^n$ if and only if $(A^*A)^n = A^{*n}A^n$,
 - (ii) $(A^*A)^n \subseteq (A^n)^*A^n$ if and only if $(A^*A)^n = (A^n)^*A^n$ provided A^n is densely defined,
- (iii) if $(A^*A)^n = A^{*n}A^n$, then $(A^*A)^n = (A^n)^*A^n$.

Lemma

If A is a quasinormal operator in \mathcal{H} , then

$$(A^*A)^n = A^{*n}A^n = (A^n)^*A^n, \quad n \in \mathbb{Z}_+.$$

イロト 不得 とくほ とくほ とうほ

General theory Spectral measures Composition operators in L^2 -spaces

Main Theorem

Theorem

If A is closed and densely defined then TCAE:

- (i) A is quasinormal,
- (ii) $A^{*n}A^n=(A^*A)^n$ for every $n\in\mathbb{Z}_+,$

(iii) \exists a (unique) spec. Borel meas. E on \mathbb{R}_+ s.t. for $n \in \mathbb{Z}_+$

$$A^{*n}A^n = \int_{\mathbb{R}_+} x^n E(\mathrm{d}x),\tag{1}$$

ヘロア 人間 アメヨア 人口 ア

ъ

(iv) ∃ a (unique) spec. Borel meas. E on ℝ₊ s.t. (1) holds for n ∈ {1,2,3},
(v) A^{*n}Aⁿ = (A^{*}A)ⁿ for n ∈ {2,3}.

General theory Spectral measures Composition operators in L²-spaces

Main Theorem

Theorem

If A is closed and densely defined then TCAE:

- (i) A is quasinormal,
- (ii) $A^{*n}A^n = (A^*A)^n$ for every $n \in \mathbb{Z}_+$,

(iii) \exists a (unique) spec. Borel meas. E on \mathbb{R}_+ s.t. for $n\in\mathbb{Z}_+$

$$A^{*n}A^n = \int_{\mathbb{R}_+} x^n E(\mathrm{d}x),\tag{1}$$

ヘロア 人間 アメヨア 人口 ア

ъ

(iv) ∃ a (unique) spec. Borel meas. E on ℝ₊ s.t. (1) holds for n ∈ {1, 2, 3},
(v) A^{*n}Aⁿ = (A^{*}A)ⁿ for n ∈ {2,3}.

General theory Spectral measures Composition operators in L²-spaces

Main Theorem

Theorem

If A is closed and densely defined then TCAE:

- (i) A is quasinormal,
- (ii) $A^{*n}A^n = (A^*A)^n$ for every $n \in \mathbb{Z}_+$,

(iii) \exists a (unique) spec. Borel meas. E on \mathbb{R}_+ s.t. for $n \in \mathbb{Z}_+$

$$A^{*n}A^n = \int_{\mathbb{R}_+} x^n E(\mathrm{d}x), \tag{1}$$

ヘロア 人間 アメヨア 人口 ア

ъ

(iv) ∃ a (unique) spec. Borel meas. E on ℝ₊ s.t. (1) holds for n ∈ {1,2,3},
(v) A^{*n}Aⁿ = (A^{*}A)ⁿ for n ∈ {2,3}.

General theory Spectral measures Composition operators in L²-spaces

Main Theorem

Theorem

If A is closed and densely defined then TCAE:

- (i) A is quasinormal,
- (ii) $A^{*n}A^n = (A^*A)^n$ for every $n \in \mathbb{Z}_+$,

(iii) \exists a (unique) spec. Borel meas. E on \mathbb{R}_+ s.t. for $n \in \mathbb{Z}_+$

$$A^{*n}A^n = \int_{\mathbb{R}_+} x^n E(\mathrm{d}x), \qquad (1)$$

ъ

ヘロト 人間 ト ヘヨト ヘヨト

(iv) \exists a (unique) spec. Borel meas. E on \mathbb{R}_+ s.t. (1) holds for $n \in \{1, 2, 3\}$,

(v) $A^{*n}A^n = (A^*A)^n$ for $n \in \{2, 3\}$.

General theory Spectral measures Composition operators in L^2 -spaces

Main Theorem

Theorem

If A is closed and densely defined then TCAE:

- (i) A is quasinormal,
- (ii) $A^{*n}A^n = (A^*A)^n$ for every $n \in \mathbb{Z}_+$,

(iii) \exists a (unique) spec. Borel meas. E on \mathbb{R}_+ s.t. for $n \in \mathbb{Z}_+$

$$A^{*n}A^n = \int_{\mathbb{R}_+} x^n E(\mathrm{d}x), \tag{1}$$

ъ

ヘロト 人間 ト ヘヨト ヘヨト

(iv) ∃ a (unique) spec. Borel meas. E on ℝ₊ s.t. (1) holds for n ∈ {1,2,3},
(v) A^{*n}Aⁿ = (A^{*}A)ⁿ for n ∈ {2,3}.

General theory Spectral measures Composition operators in L^2 -spaces

Corollary and open problem

Corollary

If A is a quasinormal operator, then for every $n \in \mathbb{Z}_+$, A^n is a quasinormal operator.

Question

Is it true that, if A is a closed operator in \mathcal{H} such that A^3 is densely defined and $(A^*A)^n = (A^n)^*A^n$ for $n \in \{2,3\}$, then A is quasinormal?

There exists a quasinormal operator A such that $A^{*n} \subsetneq (A^n)^*$ for every $n \ge 2$.

General theory Spectral measures Composition operators in L^2 -spaces

Corollary and open problem

Corollary

If A is a quasinormal operator, then for every $n \in \mathbb{Z}_+$, A^n is a quasinormal operator.

Question

Is it true that, if A is a closed operator in \mathcal{H} such that A^3 is densely defined and $(A^*A)^n = (A^n)^*A^n$ for $n \in \{2,3\}$, then A is quasinormal?

There exists a quasinormal operator A such that $A^{*n} \subsetneq (A^n)^*$ for every $n \ge 2$.

General theory Spectral measures Composition operators in L^2 -spaces

Corollary and open problem

Corollary

If A is a quasinormal operator, then for every $n \in \mathbb{Z}_+$, A^n is a quasinormal operator.

Question

Is it true that, if A is a closed operator in \mathcal{H} such that A^3 is densely defined and $(A^*A)^n = (A^n)^*A^n$ for $n \in \{2,3\}$, then A is quasinormal?

• There exists a quasinormal operator A such that $A^{*n} \subsetneq (A^n)^*$ for every $n \ge 2$.

General theory Spectral measures Composition operators in *L*²-spaces

Paranormality

An operator A in \mathcal{H} is said to be *paranormal* if $||Af||^2 \le ||A^2f|| ||f||$ for all $f \in \mathcal{D}(A^2)$.

Theorem

Let A be a closed densely defined operator in ${\mathcal H}$ such that

$$(A^*A)^2 = A^{*2}A^2.$$

Then the following assertions hold: (i) $\mathcal{D}(|A|^2) \subseteq \mathcal{D}(A^2)$ and $A^2|_{\mathcal{D}(|A|^2)}$ is closed, (i) $||Af||^2 \leq ||A^2f|| ||f||$ for all $f \in \mathcal{D}(|A|^2)$, (ii) A^2 is closed if and only if $\mathcal{D}(A^2) \subseteq \mathcal{D}(|A|^2)$, (iii) A is paranormal if and only if A^2 is closed.

General theory Spectral measures Composition operators in *L*²-spaces

Paranormality

An operator A in \mathcal{H} is said to be *paranormal* if $||Af||^2 \le ||A^2f|| ||f||$ for all $f \in \mathcal{D}(A^2)$.

Theorem

Let A be a closed densely defined operator in $\mathcal H$ such that

$$(A^*A)^2 = A^{*2}A^2.$$

Then the following assertions hold: (i) $\mathcal{D}(|A|^2) \subseteq \mathcal{D}(A^2)$ and $A^2|_{\mathcal{D}(|A|^2)}$ is closed, (i) $||Af||^2 \leq ||A^2f|| ||f||$ for all $f \in \mathcal{D}(|A|^2)$, (ii) A^2 is closed if and only if $\mathcal{D}(A^2) \subseteq \mathcal{D}(|A|^2)$, (iii) A is paranormal if and only if A^2 is closed.

General theory Spectral measures Composition operators in *L*²-spaces

Paranormality

An operator A in \mathcal{H} is said to be *paranormal* if $||Af||^2 \le ||A^2f|| ||f||$ for all $f \in \mathcal{D}(A^2)$.

Theorem

Let A be a closed densely defined operator in $\mathcal H$ such that

$$(A^*A)^2 = A^{*2}A^2.$$

Then the following assertions hold: (i) $\mathcal{D}(|A|^2) \subseteq \mathcal{D}(A^2)$ and $A^2|_{\mathcal{D}(|A|^2)}$ is closed, (i) $||Af||^2 \leq ||A^2f|| ||f||$ for all $f \in \mathcal{D}(|A|^2)$, (ii) A^2 is closed if and only if $\mathcal{D}(A^2) \subseteq \mathcal{D}(|A|^2)$, (iii) A is paranormal if and only if A^2 is closed.

General theory Spectral measures Composition operators in L^2 -spaces

Paranormality

An operator A in \mathcal{H} is said to be *paranormal* if $||Af||^2 \le ||A^2f|| ||f||$ for all $f \in \mathcal{D}(A^2)$.

Theorem

Let A be a closed densely defined operator in $\mathcal H$ such that

$$(A^*A)^2 = A^{*2}A^2.$$

Then the following assertions hold: (i) $\mathcal{D}(|A|^2) \subseteq \mathcal{D}(A^2)$ and $A^2|_{\mathcal{D}(|A|^2)}$ is closed, (i) $||Af||^2 \leq ||A^2f|| ||f||$ for all $f \in \mathcal{D}(|A|^2)$, (ii) A^2 is closed if and only if $\mathcal{D}(A^2) \subseteq \mathcal{D}(|A|^2)$, (iii) A is paranormal if and only if A^2 is closed.

General theory Spectral measures Composition operators in L^2 -spaces

Paranormality

An operator A in \mathcal{H} is said to be *paranormal* if $||Af||^2 \le ||A^2f|| ||f||$ for all $f \in \mathcal{D}(A^2)$.

Theorem

Let A be a closed densely defined operator in $\mathcal H$ such that

$$(A^*A)^2 = A^{*2}A^2.$$

Then the following assertions hold: (i) $\mathcal{D}(|A|^2) \subseteq \mathcal{D}(A^2)$ and $A^2|_{\mathcal{D}(|A|^2)}$ is closed, (i) $||Af||^2 \leq ||A^2f|| ||f||$ for all $f \in \mathcal{D}(|A|^2)$, (ii) A^2 is closed if and only if $\mathcal{D}(A^2) \subseteq \mathcal{D}(|A|^2)$, (iii) A is paranormal if and only if A^2 is closed.

イロト イヨト イヨト

General theory Spectral measures Composition operators in L²-spaces

Quasinormality by means of absolute continuity

Theorem

Let A be a closed densely defined operator in \mathcal{H} and E be the spectral measure of |A|. Then FCAE:

(i) $E_{|A|}A \subseteq AE_{|A|}$ (A is quasinormal),

(ii) $\langle E(\sigma)Af, Af \rangle = \langle E(\sigma)|A|f, |A|f \rangle$ for all $\sigma \in \mathfrak{B}(\mathbb{R}_+)$ and $f \in \mathcal{D}(A)$,

(iii) $\langle E(\cdot)Af, Af \rangle \ll \langle E(\cdot)|A|f, |A|f \rangle$ for every $f \in \mathcal{D}(A)$.

イロン 不得 とくほ とくほ とうほ

General theory Spectral measures Composition operators in L²-spaces

Quasinormality by means of absolute continuity

Theorem

Let A be a closed densely defined operator in \mathcal{H} and E be the spectral measure of |A|. Then FCAE:

- (i) $E_{|A|}A \subseteq AE_{|A|}$ (A is quasinormal),
- (ii) $\langle E(\sigma)Af, Af \rangle = \langle E(\sigma)|A|f, |A|f \rangle$ for all $\sigma \in \mathfrak{B}(\mathbb{R}_+)$ and $f \in \mathcal{D}(A)$,
- (iii) $\langle E(\cdot)Af, Af \rangle \ll \langle E(\cdot)|A|f, |A|f \rangle$ for every $f \in \mathcal{D}(A)$.

イロト 不得 とくほ とくほ とうほ

General theory Spectral measures Composition operators in L²-spaces

Quasinormality by means of absolute continuity

Theorem

Let A be a closed densely defined operator in \mathcal{H} and E be the spectral measure of |A|. Then FCAE:

- (i) $E_{|A|}A \subseteq AE_{|A|}$ (A is quasinormal),
- (ii) $\langle E(\sigma)Af, Af \rangle = \langle E(\sigma)|A|f, |A|f \rangle$ for all $\sigma \in \mathfrak{B}(\mathbb{R}_+)$ and $f \in \mathcal{D}(A)$,
- (iii) $\langle E(\cdot)Af, Af \rangle \ll \langle E(\cdot)|A|f, |A|f \rangle$ for every $f \in \mathcal{D}(A)$.

イロト イポト イヨト イヨト 一日

 We say that a closed densely defined operator A in a complex Hilbert space H is weakly quasinormal if there exists c ∈ ℝ₊ such that

 $\langle E(\sigma)|A|f, |A|f\rangle \leqslant c\langle E(\sigma)Af, Af\rangle, \quad \sigma \in \mathfrak{B}(\mathbb{R}_+), f \in \mathcal{D}(A),$

or equivalently: for every $f \in \mathcal{D}(A)$, $\langle E(\cdot)|A|f, |A|f \rangle \ll \langle E(\cdot)Af, Af \rangle$ and $d\langle E(\cdot)|A|f, |A|f \rangle/d\langle E(\cdot)Af, Af \rangle \leq c$ almost everywhere with respect to $\langle E(\cdot)Af, Af \rangle$).

- The smallest such *c* will be denoted by c_A .
- The constant c_A is always greater than or equal to 1 whenever the operator A is nonzero.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

We say that a closed densely defined operator A in a complex Hilbert space H is weakly quasinormal if there exists c ∈ ℝ₊ such that

 $\langle E(\sigma)|A|f,|A|f\rangle \leqslant c\langle E(\sigma)Af,Af\rangle, \quad \sigma\in\mathfrak{B}(\mathbb{R}_+), f\in\mathcal{D}(A),$

or equivalently: for every $f \in \mathcal{D}(A)$, $\langle E(\cdot)|A|f, |A|f \rangle \ll \langle E(\cdot)Af, Af \rangle$ and $d\langle E(\cdot)|A|f, |A|f \rangle/d\langle E(\cdot)Af, Af \rangle \leq c$ almost everywhere with respect to $\langle E(\cdot)Af, Af \rangle$).

- The smallest such c will be denoted by c_A .
- The constant c_A is always greater than or equal to 1 whenever the operator A is nonzero.

We say that a closed densely defined operator A in a complex Hilbert space H is weakly quasinormal if there exists c ∈ ℝ₊ such that

 $\langle E(\sigma)|A|f,|A|f\rangle \leqslant c\langle E(\sigma)Af,Af\rangle, \quad \sigma\in\mathfrak{B}(\mathbb{R}_+), f\in\mathcal{D}(A),$

or equivalently: for every $f \in \mathcal{D}(A)$, $\langle E(\cdot)|A|f, |A|f \rangle \ll \langle E(\cdot)Af, Af \rangle$ and $d\langle E(\cdot)|A|f, |A|f \rangle/d\langle E(\cdot)Af, Af \rangle \leq c$ almost everywhere with respect to $\langle E(\cdot)Af, Af \rangle$).

- The smallest such c will be denoted by c_A .
- The constant c_A is always greater than or equal to 1 whenever the operator A is nonzero.

We say that a closed densely defined operator A in a complex Hilbert space H is weakly quasinormal if there exists c ∈ ℝ₊ such that

 $\langle E(\sigma)|A|f,|A|f\rangle \leqslant c\langle E(\sigma)Af,Af\rangle, \quad \sigma\in\mathfrak{B}(\mathbb{R}_+), f\in\mathcal{D}(A),$

or equivalently: for every $f \in \mathcal{D}(A)$, $\langle E(\cdot)|A|f, |A|f \rangle \ll \langle E(\cdot)Af, Af \rangle$ and $d\langle E(\cdot)|A|f, |A|f \rangle/d\langle E(\cdot)Af, Af \rangle \leq c$ almost everywhere with respect to $\langle E(\cdot)Af, Af \rangle$).

- The smallest such c will be denoted by c_A .
- The constant c_A is always greater than or equal to 1 whenever the operator A is nonzero.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

General theory Spectral measures Composition operators in L^2 -spaces

Characterization

Theorem

Let A be a closed densely defined operator in \mathcal{H} and let $c \in \mathbb{R}_+$. Then the following two conditions are equivalent: (i) A is weakly guasinormal with $c_A \leq c$,

(ii) there exists $T \in \boldsymbol{B}(\mathcal{H})$ such that

 $TA = |A|, T|A| \subseteq |A|T \text{ and } ||T|| \leq \sqrt{c}.$

General theory Spectral measures Composition operators in *L*²-spaces

Characterization

Theorem

Let A be a closed densely defined operator in \mathcal{H} and let $c \in \mathbb{R}_+$. Then the following two conditions are equivalent:

(i) A is weakly quasinormal with $c_A \leqslant c$,

(ii) there exists $T \in \boldsymbol{B}(\mathcal{H})$ such that

 $TA = |A|, T|A| \subseteq |A|T \text{ and } ||T|| \leq \sqrt{c}.$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

General theory Spectral measures Composition operators in L^2 -spaces

Characterization

Theorem

Let A be a closed densely defined operator in \mathcal{H} and E be the spectral measure of |A|. Then the following two conditions are equivalent:

(i) $\langle E(\cdot)|A|f, |A|f \rangle \ll \langle E(\cdot)Af, Af \rangle$ for every $f \in \mathcal{D}(A)$,

(ii) there exists a (unique) linear map $T_0: \mathscr{H}_0 \to \mathcal{R}(|A|)$ such that $T_0A = |A|$ and $T_0E(\sigma)|_{\mathscr{H}_0} = E(\sigma)T_0$ for all $\sigma \in \mathfrak{B}(\mathbb{R}_+)$, where

$$\mathscr{H}_0 = \operatorname{LIN} \left\{ E(\sigma) A f \colon \sigma \in \mathfrak{B}(\mathbb{R}_+), \ f \in \mathcal{D}(A) \right\}.$$

イロト イポト イヨト イヨト

ъ

General theory Spectral measures Composition operators in *L*²-spaces

Characterization

Theorem

Let A be a closed densely defined operator in \mathcal{H} and E be the spectral measure of |A|. Then the following two conditions are equivalent:

- (i) $\langle E(\cdot)|A|f, |A|f\rangle \ll \langle E(\cdot)Af, Af\rangle$ for every $f \in \mathcal{D}(A)$,
- (ii) there exists a (unique) linear map $T_0: \mathscr{H}_0 \to \mathcal{R}(|A|)$ such that $T_0A = |A|$ and $T_0E(\sigma)|_{\mathscr{H}_0} = E(\sigma)T_0$ for all $\sigma \in \mathfrak{B}(\mathbb{R}_+)$, where

$$\mathscr{H}_0 = \operatorname{LIN} \left\{ E(\sigma) A f \colon \sigma \in \mathfrak{B}(\mathbb{R}_+), \, f \in \mathcal{D}(A) \right\}.$$

イロト イポト イヨト イヨト

э

General theory Spectral measures Composition operators in L^2 -spaces

The case $c_A = 1$

Theorem

Let A be a nonzero closed densely defined operator in \mathcal{H} . Then the following two conditions are equivalent:

- (i) A is quasinormal,
- (ii) A is weakly quasinormal with $c_A = 1$.

イロト イポト イヨト イヨト

ъ

General theory Spectral measures Composition operators in L^2 -spaces

The case $c_A = 1$

Theorem

Let A be a nonzero closed densely defined operator in \mathcal{H} . Then the following two conditions are equivalent:

- (i) A is quasinormal,
- (ii) A is weakly quasinormal with $c_A = 1$.

イロト イポト イヨト イヨト

ъ

A weighted shifts on a directed trees

• Let $\mathscr{T} = (V, E)$ be a directed tree.

Let l²(V) be the space of all square summable function on V with a scalar products

$$\langle f,g
angle = \sum_{u\in V} f(u)\overline{g(u)}, \quad f,g\in \ell^2(V).$$

• For $u \in V$, let us define $e_u \in \ell^2(V)$ by

$$e_u(v) = \begin{cases} 1 & \text{if } u = v, \\ 0 & \text{if } u \neq v. \end{cases}$$

• $\{e_u\}_{u \in V}$ is an orthonormal basis in $\ell^2(V)$.

・ロト ・ 理 ト ・ ヨ ト ・

A weighted shifts on a directed trees

- Let $\mathscr{T} = (V, E)$ be a directed tree.
- Let l²(V) be the space of all square summable function on V with a scalar products

$$\langle f,g
angle = \sum_{u\in V} f(u)\overline{g(u)}, \quad f,g\in \ell^2(V).$$

• For $u \in V$, let us define $e_u \in \ell^2(V)$ by

$$e_u(v) = \begin{cases} 1 & \text{if } u = v, \\ 0 & \text{if } u \neq v. \end{cases}$$

• $\{e_u\}_{u \in V}$ is an orthonormal basis in $\ell^2(V)$.

・ロト ・ 理 ト ・ ヨ ト ・

A weighted shifts on a directed trees

- Let $\mathscr{T} = (V, E)$ be a directed tree.
- Let l²(V) be the space of all square summable function on V with a scalar products

$$\langle f,g
angle = \sum_{u \in V} f(u)\overline{g(u)}, \quad f,g \in \ell^2(V).$$

• For $u \in V$, let us define $e_u \in \ell^2(V)$ by

$$e_u(v) = \begin{cases} 1 & \text{if } u = v, \\ 0 & \text{if } u \neq v. \end{cases}$$

• $\{e_u\}_{u \in V}$ is an orthonormal basis in $\ell^2(V)$.

・ロト ・ 理 ト ・ ヨ ト ・

A weighted shifts on a directed trees

- Let $\mathscr{T} = (V, E)$ be a directed tree.
- Let l²(V) be the space of all square summable function on V with a scalar products

$$\langle f,g\rangle = \sum_{u\in V} f(u)\overline{g(u)}, \quad f,g\in \ell^2(V).$$

• For $u \in V$, let us define $e_u \in \ell^2(V)$ by

$$e_u(v) = \begin{cases} 1 & \text{if } u = v, \\ 0 & \text{if } u \neq v. \end{cases}$$

• $\{e_u\}_{u \in V}$ is an orthonormal basis in $\ell^2(V)$.

ヘロン ヘアン ヘビン ヘビン

General theory Spectral measures Composition operators in L²-sp

A weighted shifts on a directed trees

For a family λ = {λ_ν}_{ν∈V°} ⊆ C let us define an operator S_λ in ℓ²(V) by

$$\begin{aligned} \mathcal{D}(\boldsymbol{S}_{\boldsymbol{\lambda}}) &= \{ f \in \ell^2(\boldsymbol{V}) \colon \Lambda_{\mathscr{T}} f \in \ell^2(\boldsymbol{V}) \}, \\ \boldsymbol{S}_{\boldsymbol{\lambda}} f &= \Lambda_{\mathscr{T}} f, \quad f \in \mathcal{D}(\boldsymbol{S}_{\boldsymbol{\lambda}}), \end{aligned}$$

• where $\Lambda_{\mathscr{T}}$ is define on functions $f: V \to \mathbb{C}$ by

Introduction

Results

$$(\Lambda_{\mathscr{T}}f)(v) = \begin{cases} \lambda_v \cdot f(\operatorname{par}(v)) & \text{if } v \in V^\circ, \\ 0 & \text{if } v = \operatorname{root}. \end{cases}$$

An operator S_λ is called a *weighted shift on a directed tree T* with weights {λ_ν}_{ν∈V°}.

General theory Spectral measures Composition operators in L²-spa

A weighted shifts on a directed trees

For a family λ = {λ_ν}_{ν∈V°} ⊆ C let us define an operator S_λ in ℓ²(V) by

$$\mathcal{D}(\mathcal{S}_{\lambda}) = \{ f \in \ell^2(V) \colon \Lambda_{\mathscr{T}} f \in \ell^2(V) \},\ \mathcal{S}_{\lambda} f = \Lambda_{\mathscr{T}} f, \quad f \in \mathcal{D}(\mathcal{S}_{\lambda}),$$

• where $\Lambda_{\mathscr{T}}$ is define on functions $f: V \to \mathbb{C}$ by

Introduction

Results

$$(\Lambda_{\mathscr{T}}f)(v) = \begin{cases} \lambda_v \cdot f(\operatorname{par}(v)) & \text{if } v \in V^\circ, \\ 0 & \text{if } v = \operatorname{root}. \end{cases}$$

An operator S_λ is called a *weighted shift on a directed tree T* with weights {λ_ν}_{ν∈V°}.

General theory Spectral measures Composition operators in L²-spa

A weighted shifts on a directed trees

For a family λ = {λ_ν}_{ν∈V°} ⊆ C let us define an operator S_λ in ℓ²(V) by

$$\mathcal{D}(\mathcal{S}_{\lambda}) = \{ f \in \ell^2(V) \colon \Lambda_{\mathscr{T}} f \in \ell^2(V) \},\ \mathcal{S}_{\lambda} f = \Lambda_{\mathscr{T}} f, \quad f \in \mathcal{D}(\mathcal{S}_{\lambda}),$$

• where $\Lambda_{\mathscr{T}}$ is define on functions $f: V \to \mathbb{C}$ by

Introduction

Results

$$(\Lambda_{\mathscr{T}}f)(v) = \begin{cases} \lambda_v \cdot f(\operatorname{par}(v)) & \text{if } v \in V^\circ, \\ 0 & \text{if } v = \operatorname{root}. \end{cases}$$

An operator S_λ is called a *weighted shift on a directed tree T* with weights {λ_ν}_{ν∈V°}.

General theory Spectral measures Composition operators in L^2 -spaces

Characterization

Theorem

Let S_{λ} be a densely defined weigh. shift on a dir. tree \mathscr{T} with weights $\lambda = \{\lambda_{\nu}\}_{\nu \in V^{\circ}}$ and E be the spec. meas. of $|S_{\lambda}|$. Then (i) For any $c \in \mathbb{R}_+$, S_{λ} is weakly quasinormal with $c_{S_{\lambda}} \leq c$ iff

$$\|S_{\lambda}e_{u}\|^{2} \leqslant c \sum_{v \in \operatorname{Chi}_{e}(u)} |\lambda_{v}|^{2}, \quad u \in V,$$

where $\operatorname{Chi}_{e}(u) := \{ v \in \operatorname{Chi}(u) : \|S_{\lambda}e_{v}\| = \|S_{\lambda}e_{u}\| \}.$ (ii) $\langle E(\cdot)|S_{\lambda}|f, |S_{\lambda}|f \rangle \ll \langle E(\cdot)S_{\lambda}f, S_{\lambda}f \rangle$ for all $f \in \mathcal{D}(S_{\lambda})$ iff

 $\forall u \in V \colon \|S_{\lambda}e_u\| \neq 0 \implies \operatorname{Chi}'(u) \neq \emptyset,$

where $\operatorname{Chi}'(u) := \{ v \in \operatorname{Chi}_{e}(u) \colon \lambda_{v} \neq 0 \}.$

General theory Spectral measures Composition operators in L^2 -spaces

Characterization

Theorem

Let S_{λ} be a densely defined weigh. shift on a dir. tree \mathscr{T} with weights $\lambda = \{\lambda_{\nu}\}_{\nu \in V^{\circ}}$ and E be the spec. meas. of $|S_{\lambda}|$. Then (i) For any $c \in \mathbb{R}_+$, S_{λ} is weakly quasinormal with $\mathfrak{c}_{S_{\lambda}} \leq c$ iff

$$\|S_{\lambda}e_{u}\|^{2} \leqslant c \sum_{v \in \operatorname{Chi}_{e}(u)} |\lambda_{v}|^{2}, \quad u \in V,$$

where $\operatorname{Chi}_{e}(u) := \{ v \in \operatorname{Chi}(u) : \|S_{\lambda}e_{v}\| = \|S_{\lambda}e_{u}\| \}.$ (ii) $\langle E(\cdot)|S_{\lambda}|f, |S_{\lambda}|f \rangle \ll \langle E(\cdot)S_{\lambda}f, S_{\lambda}f \rangle$ for all $f \in \mathcal{D}(S_{\lambda})$ iff

 $\forall u \in V \colon \|S_{\lambda}e_u\| \neq 0 \implies \operatorname{Chi}'(u) \neq \emptyset,$

where $\operatorname{Chi}'(u) := \{ v \in \operatorname{Chi}_{e}(u) \colon \lambda_{v} \neq 0 \}.$

Characterization

Theorem

Let S_{λ} be a densely defined weigh. shift on a dir. tree \mathscr{T} with weights $\lambda = \{\lambda_{v}\}_{v \in V^{\circ}}$ and E be the spec. meas. of $|S_{\lambda}|$. Then (i) For any $c \in \mathbb{R}_{+}$, S_{λ} is weakly quasinormal with $\mathfrak{c}_{S_{\lambda}} \leq c$ iff

$$\|S_{\lambda}e_{u}\|^{2} \leqslant c \sum_{v \in \operatorname{Chi}_{e}(u)} |\lambda_{v}|^{2}, \quad u \in V,$$

where $\operatorname{Chi}_{e}(u) := \{ v \in \operatorname{Chi}(u) : \|S_{\lambda}e_{v}\| = \|S_{\lambda}e_{u}\| \}.$ (ii) $\langle E(\cdot)|S_{\lambda}|f, |S_{\lambda}|f \rangle \ll \langle E(\cdot)S_{\lambda}f, S_{\lambda}f \rangle$ for all $f \in \mathcal{D}(S_{\lambda})$ iff

 $\forall u \in V \colon \|S_{\lambda}e_u\| \neq 0 \implies \operatorname{Chi}'(u) \neq \emptyset,$

where $\operatorname{Chi}'(u) := \{ v \in \operatorname{Chi}_{e}(u) \colon \lambda_{v} \neq 0 \}.$

General theory Spectral measures Composition operators in L²-spaces

Quasinormal weighted shifts on directed trees

Corollary

Let S_{λ} be a densely defined weighted shift on a directed tree \mathscr{T} with weights $\lambda = {\lambda_v}_{v \in V^\circ}$. Then the following two conditions are equivalent:

- (i) S_{λ} is quasinormal,
- (ii) $||S_{\lambda}e_{u}|| = ||S_{\lambda}e_{v}||$ for all $u \in V$ and $v \in Chi(u)$ such that $\lambda_{v} \neq 0$.

Moreover, if $V^{\circ} \neq \emptyset$ and $\lambda_{v} \neq 0$ for all $v \in V^{\circ}$, then S_{λ} is quasinormal if and only if $||S_{\lambda}||^{-1}S_{\lambda}$ is an isometry.

General theory Spectral measures Composition operators in L²-spaces

Quasinormal weighted shifts on directed trees

Corollary

Let S_{λ} be a densely defined weighted shift on a directed tree \mathscr{T} with weights $\lambda = {\lambda_v}_{v \in V^\circ}$. Then the following two conditions are equivalent:

- (i) S_{λ} is quasinormal,
- (ii) $||S_{\lambda}e_{u}|| = ||S_{\lambda}e_{v}||$ for all $u \in V$ and $v \in Chi(u)$ such that $\lambda_{v} \neq 0$.

Moreover, if $V^{\circ} \neq \emptyset$ and $\lambda_{v} \neq 0$ for all $v \in V^{\circ}$, then S_{λ} is quasinormal if and only if $||S_{\lambda}||^{-1}S_{\lambda}$ is an isometry.

General theory Spectral measures Composition operators in L²-spaces

Quasinormal weighted shifts on directed trees

Corollary

Let S_{λ} be a densely defined weighted shift on a directed tree \mathscr{T} with weights $\lambda = {\lambda_v}_{v \in V^\circ}$. Then the following two conditions are equivalent:

- (i) S_{λ} is quasinormal,
- (ii) $||S_{\lambda}e_{u}|| = ||S_{\lambda}e_{v}||$ for all $u \in V$ and $v \in Chi(u)$ such that $\lambda_{v} \neq 0$.

Moreover, if $V^{\circ} \neq \emptyset$ and $\lambda_{v} \neq 0$ for all $v \in V^{\circ}$, then S_{λ} is quasinormal if and only if $||S_{\lambda}||^{-1}S_{\lambda}$ is an isometry.

イロト 不得 とくほと くほとう

General theory Spectral measures Composition operators in L²-spaces

Quasinormal weighted shifts on directed trees

Corollary

Let S_{λ} be a densely defined weighted shift on a directed tree \mathscr{T} with weights $\lambda = {\lambda_v}_{v \in V^\circ}$. Then the following two conditions are equivalent:

- (i) S_{λ} is quasinormal,
- (ii) $||S_{\lambda}e_{u}|| = ||S_{\lambda}e_{v}||$ for all $u \in V$ and $v \in Chi(u)$ such that $\lambda_{v} \neq 0$.

Moreover, if $V^{\circ} \neq \emptyset$ and $\lambda_{v} \neq 0$ for all $v \in V^{\circ}$, then S_{λ} is quasinormal if and only if $||S_{\lambda}||^{-1}S_{\lambda}$ is an isometry.

ヘロン 人間 とくほ とくほ とう

General theory Spectral measures Composition operators in L^2 -spaces

- (i) There exists an injective quasinormal weighted shift on a directed binary tree whose restriction to ℓ²(Des(u)) is unbounded for every u ∈ V,
- (ii) for every $c \in (1, \infty)$, there exists an injective weighted shift S_{λ} on a directed tree such that $\mathfrak{c}_{S_{\lambda}} = c$
- We constructed bounded and unbounded, and non-hyponormal and hyponormal operators with the properties mentioned in (ii).

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

General theory Spectral measures Composition operators in L^2 -spaces

- (i) There exists an injective quasinormal weighted shift on a directed binary tree whose restriction to ℓ²(Des(u)) is unbounded for every u ∈ V,
- (ii) for every $c \in (1, \infty)$, there exists an injective weighted shift S_{λ} on a directed tree such that $\mathfrak{c}_{S_{\lambda}} = c$
- (iii) We constructed bounded and unbounded, and non-hyponormal and hyponormal operators with the properties mentioned in (ii).

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

- (i) There exists an injective quasinormal weighted shift on a directed binary tree whose restriction to ℓ²(Des(u)) is unbounded for every u ∈ V,
- (ii) for every $c \in (1, \infty)$, there exists an injective weighted shift S_{λ} on a directed tree such that $\mathfrak{c}_{S_{\lambda}} = c$
- (iii) We constructed bounded and unbounded, and non-hyponormal and hyponormal operators with the properties mentioned in (ii).

ヘロン 人間 とくほ とくほ とう

General theory Spectral measures Composition operators in L²-spaces

Remarks

- Let *q* be a positive real number. Following S. Ota, we say that a closed densely defined operator *A* in a complex Hilbert space \mathcal{H} is *q*-quasinormal if $U|A| \subseteq \sqrt{q} |A|U$, where A = U|A| is the polar decomposition of *A* (or equivalently if and only if $U|A| = \sqrt{q} |A|U$).
- It was proved by Ota, that a closed densely defined operator A in H is q-quasinormal if and only if

$$UE(\sigma) = E(\psi_q^{-1}(\sigma))U, \quad \sigma \in \mathfrak{B}(\mathbb{R}_+),$$

where $\psi_q \colon \mathbb{R}_+ \to \mathbb{R}_+$ is a Borel function given by $\psi_q(x) = \sqrt{q} x$.

General theory Spectral measures Composition operators in L^2 -spaces

Remarks

- Let *q* be a positive real number. Following S. Ota, we say that a closed densely defined operator *A* in a complex Hilbert space \mathcal{H} is *q*-quasinormal if $U|A| \subseteq \sqrt{q} |A|U$, where A = U|A| is the polar decomposition of *A* (or equivalently if and only if $U|A| = \sqrt{q} |A|U$).
- It was proved by Ota, that a closed densely defined operator A in H is q-quasinormal if and only if

$$UE(\sigma) = E(\psi_q^{-1}(\sigma))U, \quad \sigma \in \mathfrak{B}(\mathbb{R}_+),$$

where $\psi_q \colon \mathbb{R}_+ \to \mathbb{R}_+$ is a Borel function given by $\psi_q(x) = \sqrt{q} x$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

General theory Spectral measures Composition operators in L²-spaces

A generalization

Let $E(\varphi^{-1}(\cdot))$ stands for the spectral measure $\mathfrak{B}(\mathbb{R}_+) \ni \sigma \longmapsto E(\varphi^{-1}(\sigma)) \in \boldsymbol{B}(\mathcal{H}).$

Proposition

Let A be a closed densely defined operator in \mathcal{H} , A = U|A| be its polar decomposition and E be the spectral measure of |A|. Suppose ϕ and ψ are Borel functions from \mathbb{R}_+ to \mathbb{R}_+ . Then the following conditions are equivalent:

(i) $UE(\varphi^{-1}(\cdot)) = E(\psi^{-1}(\cdot))U$, (ii) $U\varphi(|A|) \subseteq \psi(|A|)U$, (iii) $E(\psi^{-1}(\cdot))A \subseteq AE(\varphi^{-1}(\cdot))$.

General theory Spectral measures Composition operators in L²-spaces

A generalization

Let $E(\varphi^{-1}(\cdot))$ stands for the spectral measure $\mathfrak{B}(\mathbb{R}_+) \ni \sigma \longmapsto E(\varphi^{-1}(\sigma)) \in \boldsymbol{B}(\mathcal{H}).$

Proposition

Let A be a closed densely defined operator in \mathcal{H} , A = U|A| be its polar decomposition and E be the spectral measure of |A|. Suppose ϕ and ψ are Borel functions from \mathbb{R}_+ to \mathbb{R}_+ . Then the following conditions are equivalent:

(i)
$$UE(\varphi^{-1}(\cdot)) = E(\psi^{-1}(\cdot))U$$
,

(ii)
$$U\varphi(|A|) \subseteq \psi(|A|)U$$
,

(iii) $E(\psi^{-1}(\cdot))A \subseteq AE(\varphi^{-1}(\cdot)).$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

General theory Spectral measures Composition operators in L^2 -spaces

A generalization

Let $E(\varphi^{-1}(\cdot))$ stands for the spectral measure $\mathfrak{B}(\mathbb{R}_+) \ni \sigma \longmapsto E(\varphi^{-1}(\sigma)) \in \boldsymbol{B}(\mathcal{H}).$

Proposition

Let A be a closed densely defined operator in \mathcal{H} , A = U|A| be its polar decomposition and E be the spectral measure of |A|. Suppose ϕ and ψ are Borel functions from \mathbb{R}_+ to \mathbb{R}_+ . Then the following conditions are equivalent:

(i)
$$UE(\varphi^{-1}(\cdot)) = E(\psi^{-1}(\cdot))U$$
,

(ii)
$$U\varphi(|A|) \subseteq \psi(|A|)U$$
,

(iii)
$$E(\psi^{-1}(\cdot))A \subseteq AE(\varphi^{-1}(\cdot)).$$

ヘロン 人間 とくほ とくほ とう

Composition operators

- Let μ be a σ-finite measure and let L²(μ) be the Hilbert space of all square integrable complex functions on X with the standard inner product.
- Let $\phi: X \to X$ be an \mathscr{A} -measurable transformation of X, i.e., $\phi^{-1}(\varDelta) \in \mathscr{A}$ for all $\varDelta \in \mathscr{A}$.
- Denote by $\mu \circ \phi^{-1}$ the measure on \mathscr{A} given by $\mu \circ \phi^{-1}(\varDelta) = \mu(\phi^{-1}(\varDelta))$ for $\varDelta \in \mathscr{A}$.
- We say that φ is *nonsingular* if μ ∘ φ⁻¹ is absolutely continuous with respect to μ.

Composition operators

- Let μ be a σ-finite measure and let L²(μ) be the Hilbert space of all square integrable complex functions on X with the standard inner product.
- Let φ: X → X be an A-measurable transformation of X,
 i.e., φ⁻¹(Δ) ∈ A for all Δ ∈ A.
- Denote by $\mu \circ \phi^{-1}$ the measure on \mathscr{A} given by $\mu \circ \phi^{-1}(\Delta) = \mu(\phi^{-1}(\Delta))$ for $\Delta \in \mathscr{A}$.
- We say that φ is nonsingular if μ ∘ φ⁻¹ is absolutely continuous with respect to μ.

Composition operators

- Let μ be a σ-finite measure and let L²(μ) be the Hilbert space of all square integrable complex functions on X with the standard inner product.
- Let φ: X → X be an A-measurable transformation of X,
 i.e., φ⁻¹(Δ) ∈ A for all Δ ∈ A.
- Denote by $\mu \circ \phi^{-1}$ the measure on \mathscr{A} given by $\mu \circ \phi^{-1}(\varDelta) = \mu(\phi^{-1}(\varDelta))$ for $\varDelta \in \mathscr{A}$.
- We say that φ is nonsingular if μ ∘ φ⁻¹ is absolutely continuous with respect to μ.

Composition operators

- Let μ be a σ-finite measure and let L²(μ) be the Hilbert space of all square integrable complex functions on X with the standard inner product.
- Let φ: X → X be an A-measurable transformation of X,
 i.e., φ⁻¹(Δ) ∈ A for all Δ ∈ A.
- Denote by $\mu \circ \phi^{-1}$ the measure on \mathscr{A} given by $\mu \circ \phi^{-1}(\Delta) = \mu(\phi^{-1}(\Delta))$ for $\Delta \in \mathscr{A}$.
- We say that φ is nonsingular if μ ∘ φ⁻¹ is absolutely continuous with respect to μ.

Introduction Results General theory Spectral measures Composition operators in L^2 -spaces

Composition operators

If ϕ is a nonsingular transformation of X, then the map $C_{\phi} \colon L^{2}(\mu) \supseteq \mathcal{D}(C_{\phi}) \to L^{2}(\mu)$ given by

$$\mathcal{D}(C_{\phi}) = \{ f \in L^{2}(\mu) \colon f \circ \phi \in L^{2}(\mu) \}$$
$$C_{\phi}f = f \circ \phi \text{ for } f \in \mathcal{D}(C_{\phi}),$$

is well-defined. We call such C_{ϕ} a *composition operator*.

ヘロト ヘアト ヘビト ヘビト

Composition operators

If *φ* is nonsingular, then by the Radon-Nikodym theorem there exists a unique (up to sets of measure zero)

 A-measurable function h_φ: X → ℝ₊ such that

$$\mu \circ \phi^{-1}(\varDelta) = \int_{\varDelta} h_{\phi} d\mu, \quad \varDelta \in \mathscr{A}.$$

- ② Given *n* ∈ \mathbb{N} , we denote by ϕ^n the *n*-fold composition of ϕ with itself; ϕ^0 is the identity transformation of *X*.
- ③ If ϕ is nonsingular and $n \in \mathbb{Z}_+$, then ϕ^n is nonsingular and thus h_{ϕ^n} makes sense.

・ロト ・ 理 ト ・ ヨ ト ・

Composition operators

If *φ* is nonsingular, then by the Radon-Nikodym theorem there exists a unique (up to sets of measure zero)

 A-measurable function h_φ: X → ℝ₊ such that

$$\mu \circ \phi^{-1}(\varDelta) = \int_{\varDelta} \mathsf{h}_{\phi} \mathsf{d} \mu, \quad \varDelta \in \mathscr{A}.$$

- ② Given *n* ∈ \mathbb{N} , we denote by ϕ^n the *n*-fold composition of ϕ with itself; ϕ^0 is the identity transformation of *X*.
- ③ If ϕ is nonsingular and $n \in \mathbb{Z}_+$, then ϕ^n is nonsingular and thus h_{ϕ^n} makes sense.

ヘロン ヘアン ヘビン ヘビン

Composition operators

If *φ* is nonsingular, then by the Radon-Nikodym theorem there exists a unique (up to sets of measure zero)

 A-measurable function h_φ: X → ℝ₊ such that

$$\mu \circ \phi^{-1}(\varDelta) = \int_{\varDelta} \mathsf{h}_{\phi} \mathsf{d} \mu, \quad \varDelta \in \mathscr{A}.$$

- ② Given *n* ∈ \mathbb{N} , we denote by ϕ^n the *n*-fold composition of ϕ with itself; ϕ^0 is the identity transformation of *X*.
- If *φ* is nonsingular and *n* ∈ Z₊, then *φⁿ* is nonsingular and thus h_{*φ*ⁿ} makes sense.

ヘロン ヘアン ヘビン ヘビン

A conditional expectation

- Suppose that φ: X → X is a nonsingular transformation such that h_φ < ∞ a.e. [μ]. Then the measure μ|_{φ⁻¹(𝒜)} is σ-finite.
- Hence, by the Radon-Nikodym theorem, for every *A*-measurable function *f*: *X* → ℝ₊ there exists a unique (up to sets of measure zero) φ⁻¹(*A*)-measurable function E(*f*): *X* → ℝ₊ such that

$$\int_{\phi^{-1}(\Delta)} f \mathrm{d}\mu = \int_{\phi^{-1}(\Delta)} \mathsf{E}(f) \mathrm{d}\mu, \quad \Delta \in \mathscr{A}.$$

We call E(f) the *conditional expectation* of f with respect to $\phi^{-1}(\mathscr{A})$.

・ロト ・ 理 ト ・ ヨ ト ・

A conditional expectation

- Suppose that φ: X → X is a nonsingular transformation such that h_φ < ∞ a.e. [μ]. Then the measure μ|_{φ⁻¹(𝒜)} is σ-finite.
- Hence, by the Radon-Nikodym theorem, for every *A*-measurable function *f*: *X* → ℝ₊ there exists a unique (up to sets of measure zero) φ⁻¹(*A*)-measurable function E(*f*): *X* → ℝ₊ such that

$$\int_{\phi^{-1}(\Delta)} f \mathrm{d}\mu = \int_{\phi^{-1}(\Delta)} \mathsf{E}(f) \mathrm{d}\mu, \quad \Delta \in \mathscr{A}.$$

We call E(f) the *conditional expectation* of *f* with respect to $\phi^{-1}(\mathscr{A})$.

ヘロン 人間 とくほとくほとう

Introduction Results General theory Spectral measures Composition operators in L²-spaces

Characterization

Theorem

- Let ϕ be a n. t. of X s. t. C_{ϕ} is densely defined. Then FCAE: (i) C_{ϕ} is quasinormal,
- (ii) $\chi_{\sigma} \circ h_{\phi} \circ \phi \cdot \chi_{\sigma} \circ h_{\phi} = \chi_{\sigma} \circ h_{\phi} \circ \phi$ a.e. $[\mu]$ for every $\sigma \in \mathfrak{B}(\mathbb{R}_+)$,
- (iii) $\mathsf{E}(\chi_{\sigma} \circ \mathsf{h}_{\phi}) = \chi_{\sigma} \circ \mathsf{h}_{\phi} \circ \phi$ a.e. $[\mu]$ for every $\sigma \in \mathfrak{B}(\mathbb{R}_{+})$, (iv) $\mathsf{E}(f \circ \mathsf{h}_{\phi}) = f \circ \mathsf{h}_{\phi} \circ \phi$ a.e. $[\mu]$ for every Borel function

 $f\colon \mathbb{R}_+ o \mathbb{R}_+,$

(v) $h_{\phi^n} = h_{\phi}^n$ a.e. $[\mu]$ for every $n \in \mathbb{Z}_+$,

(vi) $\mathsf{E}(\mathsf{h}_{\phi}) = \mathsf{h}_{\phi} \circ \phi$ a.e. $[\mu]$ and $\mathsf{E}(\mathsf{h}_{\phi^n}) = \mathsf{E}(\mathsf{h}_{\phi})^n$ a.e. $[\mu]$ for every $n \in \mathbb{Z}_+$,

(vii) $h_{\phi} \circ \phi = h_{\phi} a.e. [\mu].$

Theorem

Let ϕ be a n. t. of X s. t. C_{ϕ} is densely defined. Then FCAE: (i) C_{ϕ} is quasinormal,

- (ii) $\chi_{\sigma} \circ h_{\phi} \circ \phi \cdot \chi_{\sigma} \circ h_{\phi} = \chi_{\sigma} \circ h_{\phi} \circ \phi$ a.e. $[\mu]$ for every $\sigma \in \mathfrak{B}(\mathbb{R}_+)$,
- (iii) E(χ_σ ∘ h_φ) = χ_σ ∘ h_φ ∘ φ a.e. [μ] for every σ ∈ 𝔅(ℝ₊),
 (iv) E(f ∘ h_φ) = f ∘ h_φ ∘ φ a.e. [μ] for every Borel function f: ℝ₊ → ℝ₊,
- (v) $h_{\phi^n} = h_{\phi}^n$ a.e. $[\mu]$ for every $n \in \mathbb{Z}_+$
- (vi) $\mathsf{E}(\mathsf{h}_{\phi}) = \mathsf{h}_{\phi} \circ \phi$ a.e. $[\mu]$ and $\mathsf{E}(\mathsf{h}_{\phi^n}) = \mathsf{E}(\mathsf{h}_{\phi})^n$ a.e. $[\mu]$ for every $n \in \mathbb{Z}_+$,
- (vii) $h_{\phi} \circ \phi = h_{\phi} a.e. [\mu].$

Theorem

Let ϕ be a n. t. of X s. t. C_{ϕ} is densely defined. Then FCAE: (i) C_{ϕ} is quasinormal, (ii) $\chi_{\sigma} \circ h_{\phi} \circ \phi \cdot \chi_{\sigma} \circ h_{\phi} = \chi_{\sigma} \circ h_{\phi} \circ \phi$ a.e. [μ] for every $\sigma \in \mathfrak{B}(\mathbb{R}_+),$ (iii) $\mathsf{E}(\chi_{\sigma} \circ \mathsf{h}_{\phi}) = \chi_{\sigma} \circ \mathsf{h}_{\phi} \circ \phi$ a.e. $[\mu]$ for every $\sigma \in \mathfrak{B}(\mathbb{R}_{+})$,

Theorem

Let ϕ be a n. t. of X s. t. C_{ϕ} is densely defined. Then FCAE: (i) C_{ϕ} is quasinormal, (ii) $\chi_{\sigma} \circ h_{\phi} \circ \phi \cdot \chi_{\sigma} \circ h_{\phi} = \chi_{\sigma} \circ h_{\phi} \circ \phi$ a.e. [μ] for every $\sigma \in \mathfrak{B}(\mathbb{R}_+),$ (iii) $\mathsf{E}(\chi_{\sigma} \circ \mathsf{h}_{\phi}) = \chi_{\sigma} \circ \mathsf{h}_{\phi} \circ \phi$ a.e. $[\mu]$ for every $\sigma \in \mathfrak{B}(\mathbb{R}_{+})$, (iv) $E(f \circ h_{\phi}) = f \circ h_{\phi} \circ \phi$ a.e. $[\mu]$ for every Borel function $f: \mathbb{R}_+ \to \mathbb{R}_+,$

(vii) $h_{\phi} \circ \phi = h_{\phi} a.e. [\mu].$

Theorem

Let ϕ be a n. t. of X s. t. C_{ϕ} is densely defined. Then FCAE: (i) C_{ϕ} is quasinormal, (ii) $\chi_{\sigma} \circ h_{\phi} \circ \phi \cdot \chi_{\sigma} \circ h_{\phi} = \chi_{\sigma} \circ h_{\phi} \circ \phi$ a.e. [μ] for every $\sigma \in \mathfrak{B}(\mathbb{R}_+).$ (iii) $\mathsf{E}(\chi_{\sigma} \circ \mathsf{h}_{\phi}) = \chi_{\sigma} \circ \mathsf{h}_{\phi} \circ \phi$ a.e. $[\mu]$ for every $\sigma \in \mathfrak{B}(\mathbb{R}_{+})$, (iv) $E(f \circ h_{\phi}) = f \circ h_{\phi} \circ \phi$ a.e. [µ] for every Borel function $f: \mathbb{R}_+ \to \mathbb{R}_+,$ (v) $h_{\phi^n} = h_{\phi}^n a.e. [\mu]$ for every $n \in \mathbb{Z}_+$,

Theorem

Let ϕ be a n. t. of X s. t. C_{ϕ} is densely defined. Then FCAE: (i) C_{ϕ} is quasinormal, (ii) $\chi_{\sigma} \circ h_{\phi} \circ \phi \cdot \chi_{\sigma} \circ h_{\phi} = \chi_{\sigma} \circ h_{\phi} \circ \phi$ a.e. [μ] for every $\sigma \in \mathfrak{B}(\mathbb{R}_+).$ (iii) $\mathsf{E}(\chi_{\sigma} \circ \mathsf{h}_{\phi}) = \chi_{\sigma} \circ \mathsf{h}_{\phi} \circ \phi$ a.e. $[\mu]$ for every $\sigma \in \mathfrak{B}(\mathbb{R}_{+})$, (iv) $E(f \circ h_{\phi}) = f \circ h_{\phi} \circ \phi$ a.e. [µ] for every Borel function $f: \mathbb{R}_+ \to \mathbb{R}_+,$ (v) $h_{\phi^n} = h_{\phi}^n a.e. [\mu]$ for every $n \in \mathbb{Z}_+$, (vi) $\mathsf{E}(\mathsf{h}_{\phi}) = \mathsf{h}_{\phi} \circ \phi$ a.e. $[\mu]$ and $\mathsf{E}(\mathsf{h}_{\phi^n}) = \mathsf{E}(\mathsf{h}_{\phi})^n$ a.e. $[\mu]$ for every $n \in \mathbb{Z}_+$,

(vii) $h_{\phi} \circ \phi = h_{\phi} a.e. [\mu].$

Theorem

Let ϕ be a n. t. of X s. t. C_{ϕ} is densely defined. Then FCAE: (i) C_{ϕ} is quasinormal, (ii) $\chi_{\sigma} \circ h_{\phi} \circ \phi \cdot \chi_{\sigma} \circ h_{\phi} = \chi_{\sigma} \circ h_{\phi} \circ \phi$ a.e. [μ] for every $\sigma \in \mathfrak{B}(\mathbb{R}_+).$ (iii) $\mathsf{E}(\chi_{\sigma} \circ \mathsf{h}_{\phi}) = \chi_{\sigma} \circ \mathsf{h}_{\phi} \circ \phi$ a.e. $[\mu]$ for every $\sigma \in \mathfrak{B}(\mathbb{R}_{+})$, (iv) $E(f \circ h_{\phi}) = f \circ h_{\phi} \circ \phi$ a.e. [µ] for every Borel function $f: \mathbb{R}_+ \to \mathbb{R}_+,$ (v) $h_{\phi^n} = h_{\phi}^n a.e. [\mu]$ for every $n \in \mathbb{Z}_+$, (vi) $\mathsf{E}(\mathsf{h}_{\phi}) = \mathsf{h}_{\phi} \circ \phi$ a.e. $[\mu]$ and $\mathsf{E}(\mathsf{h}_{\phi^n}) = \mathsf{E}(\mathsf{h}_{\phi})^n$ a.e. $[\mu]$ for every $n \in \mathbb{Z}_+$, (vii) $h_{\phi} \circ \phi = h_{\phi} a.e. [\mu].$

Zenon Jabłoński Unbounded Quasinormal Operators

References

1. Z. J. Jabłoński, I. B. Jung, J. Stochel, *Operators with absolute continuity properties: an application to quasinormality*, Stud. Math. **215** (2013), 11-30.

2. Z. J. Jabłoński, I. B. Jung, J. Stochel, *Unbounded quasinormal operators revisited*, Integral Equations Operator Theory **79** (2014), 135-149.

3. P. Budzyński, Z. J. Jabłoński, I. B. Jung, J. Stochel, *A multiplicative property characterizes quasinormal composition operators in L²-spaces*, J. Math. Anal. Appl. **409** (2014), 576-581.

ヘロン 人間 とくほ とくほ とう