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In this talk, we introduce the well known

Hilbert Schimdt and Schatten-P class

operators on p-adic Hilbert spaces. We also

show that the Trace class operators in

p-adic Hilbert spaces contains the class of

completely continuous operators, which con-

tains the Schatten Class operators.



Let K be a complete ultrametric valued field. Clas-

sical examples of such a field include the field Qp of

p-adic numbers where p is a prime, and its various

extensions .



An ultrametric Banach space E over K is said

to be a free Banach space if there exists a fam-

ily (ei)i∈I of elements of E such that each element

x ∈ E can be written uniquely as x =
∑

i∈I xiei

that is, limi∈I xiei = 0 and ‖x‖ = supi∈I |xi| ‖ei‖

Such (ei)i∈I is called an “orthogonal base” for

E, and if ‖ei‖ = 1, for all i ∈ I , then (ei)i∈I is

called an “orthonormal base”.



Throughout this discussion, we consider free Ba-

nach spaces over K and we shall assume that the

index set I is the set of natural numbers N.

For a free Banach space E, let E∗denote its topo-

logical dual and B(E) the set of all bounded linear

operators on E. Both E∗ and B(E) are endowed

with their respective usual norms.



For (u, v) ∈ E × E∗, we define (v ⊗ u) by:

∀x ∈ E, (v ⊗ u) (x) = v (x) u = 〈v, x〉u,

then (v ⊗ u) ∈ B(E) and ‖v ⊗ u‖ = ‖v‖ . ‖u‖.



Let (ei)i∈N be an orthogonal base for E, then one

can define e′i ∈ E∗ by:

x =
∑

i∈N

xiei, e′i (x) = xi.

It turns out that ‖e′i‖ =
1

‖ei‖
, furthermore, every

x
′ ∈ E∗ can be expressed as x

′
=
∑
i∈N

〈x′, ei〉 e′i and

‖x′‖ = sup
i∈N

|〈x′, ei〉|
‖ei‖

.



Each operator A on E can be expressed as a point-

wise convergent series, that is, there exists an infinite

matrix (aij)(i,j)∈NxNwith coefficients in K, such that:

A =
∑

ij aij(e
′
j ⊗ ei),

and for any j ∈ N , lim
i→∞

|aij| ‖ei‖ = 0.

Moreover, for any s ∈ N

Aes =
∑
i∈N

aisei and ‖A‖ = sup
i,j

|aij| ‖ei‖
‖ej‖

.



Let ω = (ωi)i∈I be a sequence of non-zero elements

in the valued field K and

Eω =
{
x = (xi)i∈N | ∀i, xi ∈ K and lim

i→∞
|xi| |ωi|1/2 = 0

}
.

Then, it is easy to see that x = (xi)i∈N ∈ Eω if and

only if lim
i→∞

x2
iωi = 0. The space Eω is a free Banach

space over K, with the norm given by:

x = (xi)i∈N ∈ Eω, ‖x‖ = sup
i∈N

|xi| |ωi|1/2 .



In fact, Eω is a free Banach space and it admits a

canonical orthogonal base, namely, (ei)i∈N , where

ei = (δij)j∈N , where δij is the usual Kronecker sym-

bol. We note that for each i, ‖ei‖ = |ωi|1/2 . If

|ωi| = 1, we shall refer to (ei)i∈N as the canonical

orthonormal base.



Let 〈, 〉 : Eω × Eω → K be defined by: ∀x, y ∈

Eω, x = (xi)i∈N , y = (yi)i∈N , 〈x, y〉 =
∑
i∈N

ωixiyi.

Then, 〈, 〉 is a symmetric, bilinear, non-degenerate

form on Eω, with value in K, The space Eω endowed

with this form 〈, 〉 is called a p-adic Hilbert space.



It is not difficult to see that this “inner product”

satisfies the Cauchy-Schwarz-Bunyakovsky inequal-

ity:

x, y ∈ Eω, |〈x, y〉| ≤ ‖x‖ . ‖y‖ .

and on the cannonical orthogonal base, we have:

〈ei, ej〉 = ωiδij =





0, if i 6= j

ωi, if i = j.



In sharp contrast to classical Hilbert spaces, in p-

adic Hilbert space, there exists x ∈ Eω, such that

|〈x, x〉| = 0 while ‖x‖ 6= 0.

Again in sharp contrast to classical Hilbert space,

all operators in B(Eω) may not have an adjoint.

So, we denote by

B0(Eω) = {A ∈ B(Eω) : ∃A∗ ∈ B(Eω)}.



It is well known that the operator

A =
∑

ij aij(e
′
j⊗ei) ∈ B0(Eω) ⇐⇒ ∀i, lim

j→∞

|aij|
|ωj|1/2

=

0, and A∗ =
∑

ij ω−1
i ωjaji(e

′
j ⊗ ei)

The space B0(Eω) is stable under the operation of

taking an adjoint and for any A ∈ B0(Eω) : (A∗)∗ =

A and ‖A‖ = ‖A∗‖ .



1. Schatten-p class Operators

Let us now recall few well known results from the

Scahtten class operators in classical Hilbert spaces.

Let H be a Hilbert space and let T : H −→ H

be a compact operator. Then the operator |T |, de-

fined as |T | = (TT ∗)
1
2 is also a compact operator

hence its spectrum consists of at most countably

many distinct Eigenvalues. Let σj(|T |) denote the



eigen values of |T |. These numbers are called the

singular numbers of T . Let (σj(|T |) denote the non

increasing sequence of the singular numbers of T ,

every number counted according to its multiplicity

as an eigenvalue of |T |.



Definition 1.1. For 0 < r < ∞, let Br(H) de-

note the following

Br(H) = {T ∈ B(H) :
∑

j

σ(j)(|T |r) < ∞|}

Then Br(H) is called the Scahtten-r-class opera-

tors of H.

The difficulty that arises in defining a Scahtten r-

class operator in a p-adic Hilbert space is there is



no well developed theory of compact operator and

its representation and there is no notion of positive

operators existing in the literature, the reason be-

ing the inner product is defined on the abstract ul-

tramteic field K, as opposed to Real or Complex

fields. So, to introduce this class in p-adic Hilbert

spaces we first look at the following straightforward

observation for Br(H). For more details, see [14].



Proposition 1.2. Let Br(H) denote the Schat-

ten r-class operators of H and let {ej} be the

eigenvectors corresponding to the eigenvalues{σj(|T |)}.

Then T ∈ Br(H) if and only if
∑

j ‖T (ej)‖r < ∞.



Definition 1.3. An operator A ∈ B(Eω) is said

to be in Schatten-p class ( 1 ≤ p < ∞) denoted

by Bp(Eω) if

‖A‖p = (
∑ ‖A(es)‖p

|ωs|
p
2

)
1
p < ∞.

Remark 1.4. If p = 2, we get the p-adic Hilbert

Schimdt operator.



Proposition 1.5. If A ∈ B2(Eω), then

(i) A has an adjoint A∗.

(ii) ‖A‖2 = ‖A∗‖2 and A∗ ∈ B2(Eω). In particu-

lar, B2(Eω) ⊆ B0(Eω).

(iii) ‖A‖ ≤ ‖A‖2



Example 1.6. Suppose K = Qp. . Also, let, ωi =

pi+1, hence |ωi| = p−i−1 → 0 as i → ∞.

We define an operator A on Eω as, A =
∑

aije
′
j⊗

ei where, aij = ωj
i

Then, clearly limi |aij|‖ei‖ = 0, hence A ∈ B(Eω)

Also, ‖A(es)‖ = ‖
∑∞

i=0 aisei‖ = supi
1

pis+s+i+1 =

1
p2s+2 Hence ‖A(es)‖

|ωs|
1
2

= p
s+1
2

p2s+2 Therefore,
∑∞

s=1
‖A(es)‖r

|ωs|
r
2

=

∑
1

p
3r(s+1)

2

< ∞. Hence A ∈ Br(Eω).



For every A ∈ Bp(Eω), we define its Schatten-p

norm as

|||A||| = ‖A‖p

In the space B2(Eω), we introduce a symmetric bi-

linear form, namelyA, B ∈ B2(Eω), 〈A,B〉 =

∑
s

〈Aes, Bes〉
ωs

. Its relationship with the Hilbert-Schmidt

norm is through the Cauchy-Schwarz-Bunyakovsky

inequality.



Theorem 1.7. A, B ∈ B2(Eω), |〈A, B〉| ≤ |||A||| . |||B||| .

Proof: A =
∑
i,j

aij

(
e′j ⊗ ei

)
and B =

∑
i,j

bij

(
e′j ⊗ ei

)
,

then | < A, B > | =

∣∣∣∣
∑
s

〈Aes, Bes〉
ωs

∣∣∣∣ ≤ sup
s

∣∣∣∣
〈Aes, Bes〉

ωs

∣∣∣∣

≤ sup
s

‖Aes‖ ‖Bes‖
|ωs|

≤
(

sup
s

‖Aes‖
|ωs|1/2

)
.

(
sup
s

‖Bes‖
|ωs|1/2

)

= sup
s

‖Aes‖
‖es‖

. sup
s

‖Bes‖
‖es‖

= ‖A‖ . ‖B‖ ≤ |||A||| . |||B||| �



Proposition 1.8. For any padic Hilbert space

Eω, the following is true

(i) B2(Eω) is a two ideal of B0(Eω).

(ii) If S, T ∈ B2(Eω), then ST ∈ B2(Eω) and

‖|ST |‖ ≤ ‖|S|‖ ‖|T |‖, i. e. B2(Eω) is a

normed algebra with respect to the Hilbert

Schmidt norm



2. Completely Continuous operators

and Schatten -p class

Definition 2.1. An operator A ∈ B(Eω) is com-

pletely continuous if it is the limit, in B(Eω), (i.e.a

uniform limit) of a sequence of operators of finite

ranks. We denote by C(Eω) the subspace of all

completely continuous operators on Eω.



Proposition 2.2. Every Scahtten-p class opera-

tor is completely continuous,

i.e, Bp(Eω) ⊂ C(Eω).



3. Trace and Schatten-p class

One important notion in the classical theory is that

of trace.

Definition 3.1. For A ∈ L (Eω) , we define the

trace of A to beTrA =
∑
s

〈Aes, es〉
ωs

if this series

converges in K. We denote by T C (Eω) the sub-

space of all Trace class operators, namely, those

operators for which the trace exists.



Remark 3.2. Let A =
∑
i,j

aij

(
e′j ⊗ ei

)
and sup-

pose that A ∈ T C (Eω) then, the series
∑
k

akk

converges and TrA =
∑
k

akk.

Theorem 3.3. Bp(Eω) ⊂ T C (Eω), i.e., every

Scahtten-p Class operator has a trace.



Theorem 3.4. B2(Eω) ⊂ T (Eω), i.e., every Hilbert-

Schmidt operator has a trace.

Proof. Let A =
∑
i,j

aij

(
e′j ⊗ ei

)
be a Hilbert-Schmidt

operator.
∑
k

‖Aek‖2

|ωk|
converges, hence, lim

k

‖Aek‖2

|ωk|
=

0. We observe that for any k, |akk|2 |ωk| ≤ sup
i
|aik|2 |ωi| =

‖Aek‖2, therefore, |akk|2 ≤ ‖Aek‖2

|ωk|
, which implies

that lim
k
|akk| = 0, i.e.lim akk = 0 and the series

k

∑
k

akk

converges in K. �



Remark 3.5. The above theorem is in sharp con-

trast with the classical case, since ∃ Schatten-p

Class operators which do not have traces. In fact,

for a classical Hilbert space H, the trace class op-

erator B1(H) is a subset of the algebra of Hilbert

Schimdt operators in H. In the padic case how-

ever, we definitely have B1(Eω) ⊆ B2(Eω) but the

class of operators with a trace is a larger class.



We also have the following

Theorem 3.6. Suppose A ∈ Bp(Eω) and B ∈

B0(Eω), then Tr(AB) = Tr(BA).



4. Examples

Example 4.1. Assume that the filed K = Qp

and consider the linear operator on Eω defined by

Aes =
∑+∞

k=0 aksek,where aks = ps+k

1+p+p2+....+ps if k ≤

s and aks = 0 if k > s. Suppose that |ωk| ≥ 1

for all k and that supk |ωk| ≤ M for some posi-

tive real number M , then, the operator A defined

above is in Bp(Eω).



Example 4.2. K = Qp and suppose that |ωs| →

∞ as s → ∞.

For integers m ≥ 1 and n ≥ 0, let

A(m,n) =
∑

i.j

1

ωm
i ωn

j

(
e′j ⊗ ei

)
.

Then, A(m,n) ∈ Bp (Eω) .



Example 4.3. Assume that the series
∑
s
|ωs| con-

verges and fix a vector x = (xs)s∈N ∈ Eω. Let A

be such that Aes = 〈x, es〉 es = xsωses. Then

A ∈ B2 (Eω) . Now, A =
∑
i,j

(δijxjωj)
(
e′j ⊗ ei

)
.

Since lim
s
|ωs| = 0, then A ∈ B (Eω).

Moreover,
‖Aes‖2

|ωs|
= |xs|2 |ωs|2

= |〈x, es〉|2

≤ ‖x‖2 |ωs| , and hence A ∈ B2 (Eω).
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