The equality $C^{*n}C^n = (C^*C)^n$ is not sufficient for quasinormality of a composition operator C in L^2 -space

Pawel Pietrzycki

Institute of Mathematics Jagiellonian University Krakow

Recent Advances in Operator Theory and Operator Algebras Bangalore, India

December 15, 2014

Pawel Pietrzycki The equality $C^{*n}C^n = (C^*C)^n$ is not sufficient for quasinormal

イロト イポト イヨト イヨト 二日

Quasinormal operator Composition operators in L^2 -spaces Weighted shifts on directed trees Properities of S_{λ} Transcendentality of $\ln(\alpha)$

Definitions of quasinormality

Kaufman's definition of quasinormality

We say that a closed densely defined operator C in \mathcal{H} is quasinormal if C commutes with $E_{|C|}$, i.e $CE_{|C|} \subset E_{|C|}C$

J. Stochel, F. H. Szafraniec definition of quasinormality

A closed densely defined operator C in \mathcal{H} is quasinormal if and only if $U|C| \subset |C|U$, where C = U|C| is the polar decomposition of C

• Z. J. Jablonski, I. B. Jung, J. Stochel proved that this defnitions are equivalent.

(日) (同) (日) (日) (日)

Quasinormal operator Composition operators in L^2 -spaces Weighted shifts on directed trees Properities of S_{λ} Transcendentality of $\ln(\alpha)$

Charakterization of quasinormal operators

Theorem

Let C be a closed densely defined operator in \mathcal{H} . Then the following conditions are equivalent:

• C is quasinormal

•
$$C^{*n}C^n=(C^*C)^n$$
 for every $n\in\mathbb{Z}_+$,

- there exists a (unique) spectral Borel measure E on ℝ₊ such that
 C^{*n}Cⁿ = ∫_{ℝ₊} xⁿE(dx) for n ∈ {1,2,3}
- $C^{*n}C^n = (C^*C)^n$ for every $n \in \{2,3\}$

・ロト ・同ト ・ヨト ・ヨト

Quasinormal operator Composition operators in L^2 -spaces Weighted shifts on directed trees Properities of S_{λ} Transcendentality of $\ln(\alpha)$

Composition operators in L^2 -spaces

- (X, \mathcal{A}, μ) is a σ -finite measure space
- $\phi: X \to X$ is an A-measurable transformation, i.e., $\phi^{-1}(\Delta) \in A$ for every $\Delta \in A$
- If the measure μ ∘ φ⁻¹ given by μ ∘ φ⁻¹(Δ) = μ(φ⁻¹(Δ)) for Δ ∈ A is absolutely continuos with respect to μ (we say that μ is nonsingular), then the operator C_φ in L²(μ) given by D(C_φ) = {f ∈ L²(μ) : f ∘ φ ∈ L²(μ)}, C_φf = f ∘ φ, f ∈ D(C_φ) is well-defined
- We call it a **composition** operator with **symbol** ϕ

イロト イポト イヨト イヨト 三日

Quasinormal operator Composition operators in L^2 -spaces Weighted shifts on directed trees Properities of S_{λ} Transcendentality of $\ln(\alpha)$

Weighted shifts on directed trees

- T = (V; E) is a directed tree (V and E are the sets of vertices and edges of T, respectively)
- $V^{\circ} = V \setminus {\text{root}}$ if \mathcal{T} has a root and $V^{\circ} = V$ if \mathcal{T} is rootles.
- *I*²(*V*) is the Hilbert space of square summable complex functions on *V* equipped with the standard inner product
- For u ∈ V, we define e_u ∈ l(V) to be the characteristic function of the one-point set {u}.

イロト 不得 とくほ とくほ とうほう

Given a system $\lambda = {\lambda_v}_{v \in V^\circ}$ of complex numbers, we define the operator S_λ in $l^2(V)$, which is called a *weighted shift* on \mathcal{T} with weights λ , as follows

$$\mathcal{D}(S_{\lambda}) = \{ f \in l^2(V) : \Lambda_T f \in l^2(V) \}$$
(1)

$$S_{\lambda} = \Lambda_T f$$
 for $f \in \mathcal{D}(S_{\lambda})$; (2)

where,

$$(\Lambda f)(v) = \begin{cases} \lambda_v f(par(v)) & \text{if } v \in \ell^2(V), \\ 0 & \text{otherwise.} \end{cases}$$

イロト イポト イヨト イヨト 三日

Quasinormal operator Composition operators in L^2 -spaces Weighted shifts on directed trees **Properities of S**_{λ} Transcendentality of ln(α)

Theorem

Let S_{λ} be a weighted shift on a directed tree $\mathcal{T} = (V, E)$ with weights $\lambda = \{\lambda_{v}\}_{v \in V^{\circ}}$. Then the following assertions hold:

(i) S_{λ} is a closed operator,

(ii) $e_u \in \mathcal{D}(\mathcal{S}_\lambda)$ if and only if $\sum_{v \in \mathit{Chi}(u)} |\lambda_v|^2 < \infty$ and in this case

$$S_{\lambda}e_{u} = \sum_{v \in Chi(u)} \lambda_{v}e_{v}, \qquad \|S_{\lambda}e_{u}\| = \sum_{v \in Chi(u)} |\lambda_{v}|^{2} \quad (3)$$

(iii) S_{λ} is densely defined if and only if $e_u \in D(S_{\lambda})$ for every $u \in V$.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

Theorem

Let S_{λ} be a densely defined weighted shift with weights λ and let $S_{\lambda} = U|S_{\lambda}|$ be its polar decomposition. Then $U = S_{\pi}$ where,

$$\pi_{\nu} = \begin{cases} \frac{\lambda_{\nu}}{||S_{\lambda}e_{par(\nu)}||} & \text{if } par(u) \in V_{\lambda}^{+} \\ 0 & \text{otherwise} \end{cases}$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のQ@

Quasinormal operator Composition operators in L^2 -spaces Weighted shifts on directed trees **Properities of S**_{λ} Transcendentality of ln(α)

Theorem

Let S_{λ} be a weighted shift on a directed tree \mathcal{T} with weights $\lambda = \{\lambda_u\}_{u \in V^{\circ}}$. Then the following conditions are equivalent: (i) $\mathcal{D}(S_{\lambda}) = \ell^2(V)$, (ii) $S_{\lambda} \in B(\ell^2(V))$, (iii) $\sup_{u \in V} \sum_{v \in Chi(u)} |\lambda_v|^2 < \infty$ If $S_{\lambda} \in B(l^2(V))$, then $||S_{\lambda}|| = \sup_{u \in V} ||S_{\lambda}e_u|| = \sqrt{\sup_{v \in Chi(u)} |\lambda_v|^2}$ (4)

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

Quasinormal operator Composition operators in L^2 -space: Weighted shifts on directed trees **Properities of S**_{λ} Transcendentality of ln(α)

Theorem

Let $n \in \mathbb{Z}_+$. If $S_{\lambda} \in B(l^2(V))$ is a weighted shift on a directed tree $\mathcal{T} = (V; E)$ with weights $\lambda = \{\lambda_v\}_{v \in V^\circ}$, then the following two conditions are equivalent:

(i)
$$(S_{\lambda}^*S_{\lambda})^n = (S_{\lambda}^*)^n S_{\lambda}^n$$
,
(ii) $\|S_{\lambda}e_u\|^n = \|S_{\lambda}^n e_u\|$ for all $u \in V$

イロト 不得 とくほ とくほ とうほう

Quasinormal operator Composition operators in L^2 -spaces Weighted shifts on directed trees Properities of S_λ Transcendentality of $ln(\alpha)$

Transcendentality of $ln(\alpha)$

Theorem (Lindemann-Weierstrass)

For any finite system of distinct algebraic numbers $\alpha_1, ..., \alpha_n$, the numbers $e_1^{\alpha}, ..., e_n^{\alpha}$ are lineary independent over \mathbb{A}

Corollary

 $\ln(\alpha)$ is transcendental for any algebraic number $\alpha \neq 0, 1$.

 Suppose ln(α) is algebraic. Then, by Theorem with α₁ = 0, α₂ = ln(α), we see that e⁰ and e^{ln(α)} are lineary independent over A thus e^{ln(α)} is transcendental. But e^{ln(α)} = α ∈ A thus we have a contradiction.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

A question Main Theorem

• Is the equality $C^{*n}C^n = (C^*C)^n$ sufficient for quasinormality of a composition operator C in L²-space?

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のQ@

A question Main Theorem

Main Theorem

Theorem

For every integer $n \ge 2$, there exist an injective, non-quasinormal composition operator C in L^2 -space over a σ -finite measure such that

$$(C^*C)^n = C^{*n}C^n \qquad (C^*C)^k \neq C^{*k}C^k$$
 (5)

for all $k \in \{2, 3, ...\} \setminus \{n\}$.

イロト イポト イヨト イヨト 二日

A question Main Theorem

Special directed tree

Leafless and rootless directed trees with one branching vertex of valency \aleph_0 textupLet $\mathcal{T} = (V, E)$ be a directed tree with $V = \{-k : k \in \mathbb{Z}_+\} \sqcup \{(i, j) : i, j \in \mathbb{N}\}$ (6)and $E = \{(-k, -k+1) : k \in \mathbb{N}\} \sqcup \{(0, (i, 1)) : i \in \mathbb{N}\} \sqcup \{((i, j), (i, j+1)) : i, j \in \mathbb{N}\} \sqcup \{(i, j), (i, j+1)\} : i, j \in \mathbb{N}\}$ (7)(the symbol " \sqcup " detonates disjoint union of sets).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

A question Main Theorem

Special directed tree

Leafless and rootless directed trees with one branching vertex of valency \aleph_0

Define the system of weights $\lambda = {\lambda_v}_{v \in V}$ by

$$\lambda_{\mathbf{v}} = \begin{cases} \alpha_i & \text{if} \quad \mathbf{v} = (i, 1), i \in \mathbb{N} \\ \beta_i & \text{if} \quad \mathbf{v} = (i, j), i \in \mathbb{N}, j \ge 2 \\ \gamma_i & \text{if} \quad \mathbf{v} = i, i \in \mathbb{Z}_+ \end{cases}$$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨ のの⊙

A question Main Theorem

Theorem

If $n \ge 2$ and S_{λ} is a weighted shift on the directed tree \mathcal{F} then, $(S_{\lambda}^*S_{\lambda})^n = (S_{\lambda}^*)^n S_{\lambda}^n$ if and only if the following conditions holds

(i)
$$|\gamma_{k+n-1}|^n = |\gamma_{k+n-1}\gamma_{k+n-2}...\gamma_k| \ k \in \mathbb{Z}_+,$$

(ii) $|\gamma_{n-i-1}|^n = |\gamma_{n-i-1}...\gamma_0| \sqrt{\sum_{k=1}^{\infty} |\alpha_k \beta_k^{i-1}|^2} \ i = 1, 2, ..., n-1,$
(iii) $(\sqrt{\sum_{k=1}^{\infty} |\alpha_k|^2})^n = \sqrt{\sum_{k=1}^{\infty} |\alpha_k \beta_k^{n-1}|^2}.$

◆ロ > ◆母 > ◆臣 > ◆臣 > ● 目 ● の < ()

A question Main Theorem

Special sequence of function

we will consider some sequences of special functions For $k \in \mathbb{Z}$, we define $S_k : (0,1) \to (0,\infty)$ by

$$S_k(x) = 1^k + 2^k x + 3^k x^2 + \dots$$
 (8)

◆ロ > ◆母 > ◆臣 > ◆臣 > ● ● ● ● ●

A question Main Theorem

Lemma

The following assertions are valid.

A question Main Theorem

Theorem (Z. J. Jablonski, I. B. Jung, J. Stochel)

Let S_{λ} be a weighted shift on a rootless directed tree $\mathcal{T} = (V; E)$ with positive weights. Then S_{λ} is unitarily equivalent to a composition operator C in an L^2 -space over a σ -finite measure space. Moreover, if the directed tree is leafless, then C can be made injective.

・ロト ・同ト ・ヨト ・ヨト

A question Main Theorem

Define

$$\alpha_k = \sqrt{k^{n-1}q^{k-1}}, \qquad \beta_k = \sqrt{\frac{1}{k}c^{\frac{1}{n-1}}}, \tag{9}$$

where $q,c\in\mathbb{Q}$ are chosen as follows

$$(S_{n-1}(q))^n = cS_0(q)$$
 (10)

and

$$c^{\frac{k}{n-1}} \notin \mathbb{Q}$$
 for all $k \in \{1, 2, ..., n-2\}$ (11)

•
$$(S_{\lambda}^*S_{\lambda})^p \neq (S_{\lambda}^*)^p S_{\lambda}^p$$
 for $p \in \{2, 3, ..., n-1\}$

Suppose, contrary to our claim that for some $p \in \{2, 3, ..., n-1\}$ the equality $(S_{\lambda}^* S_{\lambda})^p = (S_{\lambda}^*)^p S_{\lambda}^p$ holds. In view of Theorem, this equality implies that

$$\left(\sqrt{\sum_{k=1}^{\infty} |\alpha_k|^2}\right)^p = \sqrt{\sum_{k=1}^{\infty} |\alpha_k \beta_k^{p-1}|^2}$$
(12)

We verify that for the directed tree the last equation is of the form

$$\sum_{k=1}^{\infty} k^{n-1} q^k)^p = c^{\frac{p-1}{n-1}} (\sum_{k=1}^{\infty} k^{n-p} q^k)$$
(13)

which we can write as

$$S_{n-1}(q) = c^{\frac{p-1}{n-1}} S_{n-p} q \mapsto (\mathbb{P} \setminus \mathbb{P} \setminus \mathbb{P}$$
Pavel Pietrzycki The equality $C^{*n} C^n = (C^* C)^n$ is not sufficient for quasinormal

Recall that by the condition (i) Lemma $S_{n-1}(q) \in \mathbb{Q}$ and $S_{n-p}(q) \in \mathbb{Q}$. But this is a contradiction since c was such that $c^{\frac{p-1}{n-1}} \notin \mathbb{Q}$.

•
$$(S^*_\lambda S_\lambda)^p
eq (S^*_\lambda)^p S^p_\lambda$$
 for $p = n+1$

As in the previous case we see that the equality $(S_{\lambda}^*S_{\lambda})^{n+1} = (S_{\lambda}^*)^{n+1}S_{\lambda}^{n+1}$ implies that

$$\left(\sum_{k=1}^{\infty} \alpha_k^2\right)^{n+1} = \sum_{k=1}^{\infty} \alpha_k \beta_k^{n^2},\tag{15}$$

which is equivalent in this case with

$$\left(\sum_{k=1}^{\infty} k^{n-1} q^k\right)^{n+1} = c^{\frac{n}{n-1}} \sum_{\substack{k=1\\ k \equiv n}}^{\infty} \frac{1}{k} q^k \tag{16}$$
Pawel Pietrzycki The equality $C^{*n}C^n = (C^*C)^n$ is not sufficient for quasinormal

Introduction A question Main problem Main Theorem

which one can note as $S_{n-1}(q)^{n+1} = c^{\frac{n}{n-1}}S_{-1}(q)$ This is a contradiction because $S_{n-1}(q) \in \mathbb{A}$ and $c^{\frac{n}{n-1}} \in \mathbb{A}$ but $S_{-1}(q) = \frac{\ln(1-q)}{q}$ is transcendental

•
$$(S_{\lambda}^*S_{\lambda})^p \neq (S_{\lambda}^{*p})S_{\lambda}^p$$
. for $p \in \{n+2, n+3, ...\}$

Otherwise, we have

$$\gamma_{p-1-i}^{2} p = (\gamma_{p-1-i} \dots \gamma_{0})^{2} \sum_{k=1}^{\infty} \alpha_{k} \beta_{k}^{i-1^{2}}$$
(17)

for i = 1, 2, ..., p - 1, which implies that to

$$\gamma_{k-1-i}^{2n} = (\gamma_{k-1-i}...\gamma_0)^2 c^{\frac{2k}{n-1}} \sum_{\substack{k=1\\ k \neq k}}^{\infty} \frac{1}{k} q^k \tag{18}$$
Pawel Pietrzycki The equality $C^* C^n = (C^* C)^n$ is not sufficient for quasinormal

for i = n + 1. But this is a contradiction as in the previous case, because γ_i is an algebraic number and $\sum_{k=1}^{\infty} \frac{1}{k} q^k$ is transcendental.

This completes the proof.

A question Main Theorem

Table of contents

- Quasinormal operator
- Composition operators in L²-spaces
- Weighted shifts on directed trees
- Properities of S_{λ}
- Transcendentality of $ln(\alpha)$

Main problem

- A question
- Main Theorem

▲ □ ▶ ▲ □ ▶ ▲ □ ▶