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Birkhoff-James orthogonality

X complex Banach space
x , y ∈X

x is said to be Birkhoff-James orthogonal to y (x ⊥BJ y ) if

‖x + λy‖ ≥ ‖x‖ for all λ ∈ C.

When X is a Hilbert space, this is the same as usual
orthogonality.

Note that we can also have

‖x + ty‖ ≥ ‖x‖ for all t ∈ R.

Notation x ⊥(real)
BJ y
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Properties

This orthogonality is clearly homogeneous: x orthogonal to
y ⇒ λx orthogonal to µy for all scalars λ, µ.

Not symmetric: x orthogonal to y 6⇒ y orthogonal to x .

Not additive: x orthogonal to y , z 6⇒ x orthogonal to y + z.
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New method

‖x + ty‖ ≥ ‖x‖ for all t ∈ R

Let f (t) = ‖x + ty‖ mapping R into R+.

To say that ‖x + ty‖ ≥ ‖x‖ for all t ∈ R is to say that f
attains its minimum at the point 0.

A calculus problem?

If f were differentiable, then a necessary and sufficient
condition for this would have been that the derivative
D f (0) = 0.

But the norm function may not be differentiable at x .

However, f is a convex function, that is,

f (αx+(1−α)y) ≤ α f (x)+(1−α) f (y) for all x , y ∈X ,0 ≤ α ≤ 1.

The tools of convex analysis are available.
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Subdifferential

Definition
Let f : X → R be a convex function. The subdifferential of f at
a point a ∈X , denoted by ∂f (a), is the set of continuous linear
functionals ϕ ∈X ∗ such that

f (y)− f (a) ≥ Re ϕ(y − a) for all y ∈X .
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Examples

Let f : R→ R be defined as

f (x) = |x |.
This function is differentiable at all a 6= 0 and D f (a) = sign(a).
At zero, it is not differentiable.

y

xo

∂f (x)

x
−1

1

∂f (0) = [−1,1].

Note that for v ∈ R,

f (y) = |y | ≥ f (0) + v .y = v .y

holds for all y ∈ R if and only if |v | ≤ 1.
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Examples

Let f : X → R be defined as

f (a) = ‖a‖.

Then for a 6= 0,

∂f (a) = {ϕ ∈X ∗ : Re ϕ(a) = ‖a‖, ‖ϕ‖ ≤ 1},

and
∂f (0) = {ϕ ∈X ∗ : ‖ϕ‖ ≤ 1}.
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Examples

Let f : Rn → R be defined as

f (a) = ‖a‖∞ = max{|a1|, . . . , |an|}.

Then for a 6= 0,

∂f (a) = conv{±ei : |ai | = ‖a‖∞}.
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∂f (a) = {ϕ ∈X ∗ : f (y)− f (a) ≥ Re ϕ(y − a) for all y ∈ X}.

Proposition
A convex function f : X → R attains its minimum value at
a ∈X if and only if 0 ∈ ∂f (a).
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Subdifferential calculus

Positive combinations
Let f1, f2 : X → R be two convex functions and let t1, t2 be
positive numbers. Then

∂(t1f1 + t2f2)(a) = t1∂f1(a) + t2∂f2(a) for all a ∈X .
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Subdifferential calculus

Precomposition with an affine map
Let X ,Y be any two Banach spaces. Let g : Y → R be a
convex function. Let S : X → Y be a linear map and let
L : X → Y be the affine map defined by L(x) = S(x) + y0, for
some y0 ∈ Y . Then

∂(g ◦ L)(a) = S∗∂g(L(a)) for all a ∈X .
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Birkhoff-James orthogonality by subdifferential
calculus

‖x + λy‖ ≥ ‖x‖ for all λ ∈ C (1)

Reduce the problem to solving x ⊥(real)
BJ y

(1) is equivalent to saying that for each fixed θ ∈ R

‖x + tyθ‖ ≥ ‖x‖ for all t ∈ R,

where yθ = eiθy

Let f (t) = ‖x + ty‖. Then 0 ∈ ∂f (0)

‖x + ty‖ ≥ ‖x‖ for all t ∈ R⇔ f (t) ≥ f (0) for all t ∈ R⇔
0 ∈ ∂f (0)
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Birkhoff-James orthogonality by subdifferential
calculus

f is precomposition with an affine map

S : t 7→ ty

L : t 7→ x + S(t) affine map

g : a 7→ ‖a‖ convex map

f (t) = (g ◦ L)(t)

0 ∈ S∗∂‖x‖

∂f (0) = ∂(g ◦ L)(0) = S∗∂g(L(0)) = S∗∂‖x‖
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Birkhoff-James orthogonality by subdifferential
calculus

‖x + ty‖ ≥ ‖x‖ for all t ∈ R if and only if 0 ∈ S∗∂‖x‖,

where S(t) = ty for all t ∈ R.
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Orthogonality in matrices

M(n) : the space of n × n complex matrices

〈A,B〉 = tr(A∗B)

‖ · ‖ is the operator norm, ‖A‖ = sup‖x‖=1 ‖Ax‖.

Theorem (Bhatia, Šemrl; 1999)

Let A,B ∈M(n). Then A ⊥BJ B if and only if there exists
x : ‖x‖ = 1, ‖Ax‖ = ‖A‖ and 〈Ax ,Bx〉 = 0.

Importance: It connects the more complicated Birkhoff-James
orthogonality in the space M(n) to the standard orthogonality in
the space Cn.
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Bhatia-Šemrl Theorem

Sufficient to prove that if A ≥ 0, ‖A + tB‖ ≥ ‖A‖ for all t ∈ R if
and only if there exists x : ‖x‖ = 1, Ax = ‖A‖x and
Re 〈Ax ,Bx〉 = 0.

Let A = UΣV (U and V unitary matrices) be a singular value
decomposition of A.

‖Σ + tU∗BV ∗‖ ≥ ‖Σ‖ for all t ∈ R.

If there exists a unit vector y such that

Σy = ‖Σ‖y and Re 〈Σy ,U∗BV ∗y〉 = 0,

then for x = V ∗y we have

‖Ax‖ = ‖A‖ and Re 〈Ax ,Bx〉 = 0.
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Orthogonality in matrices

A ≥ 0, ‖A + tB‖ ≥ ‖A‖ for all t ∈ R if and only if there exists
x : ‖x‖ = 1, Ax = ‖A‖x and Re 〈Ax ,Bx〉 = 0.

S : R→M(n) is the map S(t) = tB.
‖A + tB‖ ≥ ‖A‖ for all t ∈ R if and only if 0 ∈ S∗∂‖A‖,
where S∗(T ) = Re tr(B∗T )

Watson, 1992
For A ≥ 0

∂‖A‖ = conv{uu∗ : ‖u‖ = 1,Au = ‖A‖u}.

18 / 36



Bhatia-Šemrl Theorem

0 ∈ ∂f (0) = S∗∂‖A‖ if and only if
0 ∈ conv{ Re 〈u,Bu〉 : ‖u‖ = 1,Au = ‖A‖u}.

By Hausdorff-Toeplitz Theorem,
{ Re 〈u,Bu〉 : ‖u‖ = 1,Au = ‖A‖u} is convex.

0 ∈ S∗∂‖A‖ if and only if
0 ∈ { Re 〈u,Bu〉 : ‖u‖ = 1,Au = ‖A‖u}.

There exists x : ‖x‖ = 1, Ax = ‖A‖x and Re 〈Ax ,Bx〉 = 0.
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Application

Distance of A from CI:

dist(A,CI) = min{‖A− λI‖ : λ ∈ C}

Variance of A with respect to x :
For x : ‖x‖ = 1,

varx (A) = ‖Ax‖2 − |〈x ,Ax〉|2.

Corollary

Let A ∈M(n). With notations as above, we have

dist(A,CI)2 = max
‖x‖=1

varx (A).
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Distance to CI

Idea:
Let dist(A,CI) = ‖A0‖, where A0 = A− λ0I, for some
λ0 ∈ C

A0 ⊥BJ I

There exists x : ‖x‖ = 1 such that ‖A0x‖ = ‖A0‖ and
〈x ,A0x〉 = 0.

dist(A,CI)2 = ‖A0‖2 = ‖A0x‖2 = ‖Ax‖2 − |〈x ,Ax〉|2.

dist(A,CI)2 ≤ max‖x‖=1 varx (A).

For every x : ‖x‖ = 1, varx (A) = ‖Ax‖2− |〈x ,Ax〉|2 ≤ ‖A‖2.

Let λ ∈ C. Change A→ A− λI. Since variance is
translation invariant, we get

varx (A) ≤ ‖A− λI‖2.
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Orthogonality to a subspace

W : subspace of M(n)

A is said to be Birkhoff-James orthogonal to W (A ⊥BJ W ) if

‖A + W‖ ≥ ‖A‖ for all W ∈ W .

W ⊥: the orthogonal complement of W , under the usual Hilbert
space orthogonality in M(n) with the inner product
〈A,B〉 = tr(A∗B).

Bhatia-Šemrl theorem: A ⊥BJ CB if and only if there exists a
positive semidefinite matrix P of rank one such that
tr P = 1, tr A∗AP = ‖A‖2 and AP ∈ (CB)⊥.
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D(n;R) : the space of real diagonal n × n matrices

A matrix A is said to be minimal if ‖A + D‖ ≥ ‖A‖ for all
D ∈ D(n;R), i.e. A is orthogonal to the subspace D(n;R).

Theorem (Andruchow, Larotonda, Recht, Varela; 2012)
A Hermitian matrix A is minimal if and only if there exists a
P ≥ 0 such that

A2P = ‖A‖2P

and

all the diagonal elements of AP are zero.

Question: Similar characterizations for other subspaces?
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Orthogonality to a subspace

Theorem
Let A ∈M(n) and let W be a subspace of M(n). Then A ⊥BJ W
if and only if there exists P ≥ 0, tr P = 1, such that

A∗AP = ‖A‖2P

and
AP ∈ W ⊥.

Moreover, we can choose P such that rank P ≤ m(A), where
m(A) is the multiplicity of the maximum singular value ‖A‖ of A.

24 / 36



Orthogonality to a subspace

m(A) is the best possible upper bound on rank P.

Consider W = {X : tr X = 0}.

Then {A : A ⊥BJ W } = W ⊥ = CI.

If A ⊥BJ W , then it has to be of the form A = λI, for some λ ∈ C.

When A 6= 0 then m(A) = n.

Let P be any density matrix satisfying AP ∈ W ⊥. Then
AP = µI, for some µ ∈ C, µ 6= 0.

If P also satisfies A∗AP = ‖A‖2P, then we get P = µ
λ I. Hence

rank P = n = m(A).
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Orthogonality to a subspace

Observation: In general, the set {A : A ⊥BJ W } need not be a
subspace.

Consider the subspace W = CI of M(3). Let

A1 =

 0 1 0
1 0 1
0 1 0

 and A2 =

 0 0 1
0 0 0
1 0 0

 .
Then A1,A2 ⊥BJ W .

Then A1 + A2 =

 0 1 1
1 0 1
1 1 0

 , ‖A1 + A2‖ = 2.

But
∥∥A1 + A2 − 1

2 I
∥∥ = 3

2 < ‖A1 + A2‖. Hence A1 + A2 6⊥BJ W .
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Distance to any subalgebra of M(n)

dist(A,W ) : distance of a matrix A from the subspace W

dist(A,W ) = min {‖A−W‖ : W ∈ W } .

We have seen that

dist(A,CI)2 = max
‖x‖=1

varx (A).

This is equivalent to saying that

dist(A,CI)2 =

max
{

tr(A∗AP)− | tr(AP)|2 : P ≥ 0, tr P = 1, rank P = 1
}
.

Let B be any C∗-subalgebra of M(n).

Similar distance formula?
(This question has been raised by Rieffel)
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Distance to a subalgebra of M(n)

CB : M(n)→ B denote the projection of M(n) onto B.

Theorem
For any A ∈M(n)

dist(A,B)2 = max{tr(A∗AP − CB(AP)∗CB(AP)CB(P)−1)

: P ≥ 0, tr P = 1},

where CB(P)−1 denotes the Moore-Penrose inverse of CB(P).
The maximum on the right hand side can be restricted to
rank P ≤ m(A).

28 / 36



Orthogonality in C∗- algebra

Bhatia and Šemrl, 1999
A,B ∈ B(H), A ⊥BJ B if and only if there exists a sequence
{xn} of unit vectors such that ‖Axn‖ → ‖A‖, and 〈Axn,Bxn〉 → 0
as n→∞.

Theorem
Let A be a C∗-algebra. Let a,b ∈ A. Then a ⊥BJ b if and only if
there exists a state ϕ on A such that

ϕ(a∗a) = ‖a‖2 and ϕ(a∗b) = 0.
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Distance to C1

S(A): the state space of A
ϕ ∈ S(A) .

Let variance of a with respect to ϕ, denoted by varϕ(a), be
defined as

varϕ(a) = ϕ(a∗a)− |ϕ(a)|2.

Theorem (Rieffel, 2012)

Let a ∈ A. Let S(A) denote the state space of A.

dist(a,C1)2 = max{varϕ(a) : ϕ ∈ S(A)}.

When A = M(n), then

dist(A,CI)2 = max
{

tr(A∗AP)− | tr(AP)|2 : P ≥ 0, tr P = 1
}
.
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Hilbert C∗-modules

Let A be a C*-algebra. An inner-product A-module is a vector
space E which is a (right) A-module (with compatible scalar
multiplication:

λ(xa) = (λx)a = x(λa) for x ∈ E ,a ∈ A, λ ∈ C),

together with a map (x , y) 7→ 〈x , y〉 : E × E → A such that

(i) 〈x , αy + βz〉 = α〈x , y〉+ β〈x , z〉 for all x , y , z ∈ E , α, β ∈ C
(ii) 〈x , ya〉 = 〈x , y〉a for all x , y ∈ E , a ∈ A
(iii) 〈y , x〉 = 〈x , y〉∗ for all x , y ∈ E

(iv) 〈x , x〉 ≥ 0; if 〈x , x〉 = 0 then x = 0.

For x ∈ E ,
‖x‖ = ‖〈x , x〉‖1/2.

An inner-product A-module which is complete with respect to
this norm is called a Hilbert A-module.
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Hilbert C∗-modules

Example: M(m,n) is a Hilbert M(n)-module, with the inner
product

〈A,B〉 = A∗B for all A,B ∈M(m,n).

Similarly for infinite dimensional Hilbert spaces H,K,

B(H,K) is a Hilbert B(H)-module.
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Orthogonality in B(H,K)

Theorem
Let H and K be two Hilbert spaces. Let A,B ∈ B(H,K). Then
A ⊥BJ B if and only if there exists a state ϕ on B(H) such that
ϕ(A∗A) = ‖A‖2 and ϕ(A∗B) = 0.
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Orthogonality in Hilbert C∗-modules

Let E be a (right) Hilbert A-module.

Theorem (Blecher; 1997)

E can be isometrically embedded in B(H,K) for some Hilbert
spaces H,K.

As a consequence, we obtain the following.

Theorem
Let e1,e2 ∈ E . Then e1 ⊥BJ e2 if and only if there exists a state
ϕ on A such that

ϕ(〈e1,e1〉) = ‖e1‖2 and ϕ(〈e1,e2〉) = 0.
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