Characterization of Birkhoff-James orthogonality

Priyanka Grover

December 15, 2014

□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

・ロト・西ト・ヨー シャウ

Either $||x + ty|| \ge ||x||$ for all $t \ge 0$ or $||x + ty|| \ge ||x||$ for all $t \le 0$.

Either $||x + ty|| \ge ||x||$ for all $t \ge 0$ or $||x + ty|| \ge ||x||$ for all $t \le 0$.

 $||x + ty|| \ge ||x||$ for all $t \in \mathbb{R}$ if and only if x and y are orthogonal.

 \mathscr{X} complex Banach space $x, y \in \mathscr{X}$

x is said to be Birkhoff-James orthogonal to $y (x \perp_{BJ} y)$ if

 $\|\mathbf{x} + \lambda \mathbf{y}\| \ge \|\mathbf{x}\|$ for all $\lambda \in \mathbb{C}$.

• When \mathscr{X} is a Hilbert space, this is the same as usual orthogonality.

Note that we can also have

 $||x + ty|| \ge ||x||$ for all $t \in \mathbb{R}$.

Notation $x \perp_{BJ}^{(real)} y$

- This orthogonality is clearly homogeneous: x orthogonal to y ⇒ λx orthogonal to μy for all scalars λ, μ.
- Not symmetric: x orthogonal to $y \neq y$ orthogonal to x.
- Not additive: x orthogonal to $y, z \neq x$ orthogonal to y + z.

New method

$\|x + ty\| \ge \|x\|$ for all $t \in \mathbb{R}$

- Let f(t) = ||x + ty|| mapping \mathbb{R} into \mathbb{R}_+ .
- To say that $||x + ty|| \ge ||x||$ for all $t \in \mathbb{R}$ is to say that f attains its minimum at the point 0.
- A calculus problem?
- If *f* were differentiable, then a necessary and sufficient condition for this would have been that the derivative D *f*(0) = 0.
- But the norm function may not be differentiable at *x*.
- However, *f* is a convex function, that is,

 $f(\alpha x+(1-\alpha)y) \leq \alpha f(x)+(1-\alpha) f(y)$ for all $x, y \in \mathcal{X}, 0 \leq \alpha \leq 1$.

• The tools of convex analysis are available.

Subdifferential

Definition

Let $f : \mathscr{X} \to \mathbb{R}$ be a convex function. The *subdifferential* of f at a point $a \in \mathscr{X}$, denoted by $\partial f(a)$, is the set of continuous linear functionals $\varphi \in \mathscr{X}^*$ such that

$$f(y) - f(a) \ge \operatorname{Re} \varphi(y - a)$$
 for all $y \in \mathscr{X}$.

Examples

Let $f : \mathbb{R} \to \mathbb{R}$ be defined as

$$f(x)=|x|.$$

This function is differentiable at all $a \neq 0$ and D f(a) = sign(a). At zero, it is not differentiable.

Examples

Let $f : \mathbb{R} \to \mathbb{R}$ be defined as

$$f(x)=|x|.$$

This function is differentiable at all $a \neq 0$ and D f(a) = sign(a). At zero, it is not differentiable.

Note that for $v \in \mathbb{R}$,

 $f(y) = |y| \ge f(0) + v.y = v.y$

holds for all $y \in \mathbb{R}$ if and only if $|v| \leq 1$.

Let $f : \mathscr{X} \to \mathbb{R}$ be defined as

$$f(a)=\|a\|.$$

Then for $a \neq 0$,

$$\partial f(a) = \{ \varphi \in \mathscr{X}^* : \operatorname{\mathsf{Re}} \varphi(a) = \|a\|, \|\varphi\| \leq 1 \},$$

and

$$\partial f(\mathbf{0}) = \{ \varphi \in \mathscr{X}^* : \|\varphi\| \leq \mathbf{1} \}.$$

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>

Let $f : \mathbb{R}^n \to \mathbb{R}$ be defined as

$$f(a) = ||a||_{\infty} = \max\{|a_1|, \ldots, |a_n|\}.$$

Then for $a \neq 0$,

$$\partial f(a) = \operatorname{conv}\{\pm e_i : |a_i| = ||a||_{\infty}\}.$$

$\partial f(a) = \{ \varphi \in \mathscr{X}^* : f(y) - f(a) \ge \operatorname{\mathsf{Re}} \varphi(y - a) \quad \text{for all } y \in X \}.$

Proposition

A convex function $f : \mathscr{X} \to \mathbb{R}$ attains its minimum value at $a \in \mathscr{X}$ if and only if $0 \in \partial f(a)$.

Positive combinations

Let $f_1, f_2 : \mathscr{X} \to \mathbb{R}$ be two convex functions and let t_1, t_2 be positive numbers. Then

 $\partial(t_1f_1+t_2f_2)(a)=t_1\partial f_1(a)+t_2\partial f_2(a)$ for all $a\in\mathscr{X}$.

Precomposition with an affine map

Let \mathscr{X}, \mathscr{Y} be any two Banach spaces. Let $g : \mathscr{Y} \to \mathbb{R}$ be a convex function. Let $S : \mathscr{X} \to \mathscr{Y}$ be a linear map and let $L : \mathscr{X} \to \mathscr{Y}$ be the affine map defined by $L(x) = S(x) + y_0$, for some $y_0 \in \mathscr{Y}$. Then

$$\partial (g \circ L)(a) = S^* \partial g(L(a))$$
 for all $a \in \mathscr{X}$.

Birkhoff-James orthogonality by subdifferential calculus

$$\|x + \lambda y\| \ge \|x\|$$
 for all $\lambda \in \mathbb{C}$ (1)

• Reduce the problem to solving $x \perp_{BJ}^{(real)} y$

(1) is equivalent to saying that for each fixed $\theta \in \mathbb{R}$

 $\|x + ty_{\theta}\| \ge \|x\|$ for all $t \in \mathbb{R}$,

where $y_{\theta} = e^{i\theta}y$

• Let f(t) = ||x + ty||. Then $0 \in \partial f(0)$

 $||x + ty|| \ge ||x||$ for all $t \in \mathbb{R} \Leftrightarrow f(t) \ge f(0)$ for all $t \in \mathbb{R} \Leftrightarrow 0 \in \partial f(0)$

Birkhoff-James orthogonality by subdifferential calculus

• f is precomposition with an affine map

 $S: t \mapsto ty$ $L: t \mapsto x + S(t)$ affine map $g: a \mapsto ||a||$ convex map

 $f(t)=(g\circ L)(t)$

くロン (行) (日) (日) (日)

14/36

• $0 \in S^* \partial \|x\|$

 $\partial f(0) = \partial (g \circ L)(0) = S^* \partial g(L(0)) = S^* \partial \|x\|$

Birkhoff-James orthogonality by subdifferential calculus

 $\|x + ty\| \ge \|x\|$ for all $t \in \mathbb{R}$ if and only if $0 \in S^* \partial \|x\|$, where S(t) = ty for all $t \in \mathbb{R}$. $\mathbb{M}(n)$: the space of $n \times n$ complex matrices

 $\langle A,B\rangle = tr(A^*B)$

 $\|\cdot\|$ is the operator norm, $\|A\| = \sup_{\|x\|=1} \|Ax\|$.

Theorem (Bhatia, Šemrl; 1999)

Let $A, B \in \mathbb{M}(n)$. Then $A \perp_{BJ} B$ if and only if there exists x : ||x|| = 1, ||Ax|| = ||A|| and $\langle Ax, Bx \rangle = 0$.

Importance: It connects the more complicated Birkhoff-James orthogonality in the space $\mathbb{M}(n)$ to the standard orthogonality in the space \mathbb{C}^n .

Bhatia-Šemrl Theorem

Sufficient to prove that if $A \ge 0$, $||A + tB|| \ge ||A||$ for all $t \in \mathbb{R}$ if and only if there exists x : ||x|| = 1, Ax = ||A||x and Re $\langle Ax, Bx \rangle = 0$.

Let $A = U\Sigma V$ (*U* and *V* unitary matrices) be a singular value decomposition of *A*.

$$\|\Sigma + tU^*BV^*\| \ge \|\Sigma\|$$
 for all $t \in \mathbb{R}$.

If there exists a unit vector y such that

$$\Sigma y = \|\Sigma\|y \text{ and } \operatorname{Re} \langle \Sigma y, U^* B V^* y \rangle = 0,$$

then for $x = V^*y$ we have

$$||Ax|| = ||A||$$
 and Re $\langle Ax, Bx \rangle = 0$.

Orthogonality in matrices

 $A \ge 0$, $||A + tB|| \ge ||A||$ for all $t \in \mathbb{R}$ if and only if there exists x : ||x|| = 1, Ax = ||A||x and $\text{Re } \langle Ax, Bx \rangle = 0$.

- $S : \mathbb{R} \to \mathbb{M}(n)$ is the map S(t) = tB.
- $||A + tB|| \ge ||A||$ for all $t \in \mathbb{R}$ if and only if $0 \in S^* \partial ||A||$, where $S^*(T) = \text{Re } tr(B^*T)$

Watson, 1992

For $A \ge 0$

$$\partial \|\boldsymbol{A}\| = \operatorname{conv}\{\boldsymbol{u}\boldsymbol{u}^* : \|\boldsymbol{u}\| = 1, \boldsymbol{A}\boldsymbol{u} = \|\boldsymbol{A}\|\boldsymbol{u}\}.$$

Bhatia-Šemrl Theorem

- $0 \in \partial f(0) = S^* \partial ||A||$ if and only if $0 \in \text{conv}\{ \text{ Re } \langle u, Bu \rangle : ||u|| = 1, Au = ||A||u\}.$
- By Hausdorff-Toeplitz Theorem, { Re $\langle u, Bu \rangle$: ||u|| = 1, Au = ||A||u} is convex.
- $0 \in S^* \partial ||A||$ if and only if $0 \in \{ \operatorname{Re} \langle u, Bu \rangle : ||u|| = 1, Au = ||A||u \}.$
- There exists x : ||x|| = 1, Ax = ||A||x and $\text{Re } \langle Ax, Bx \rangle = 0$.

Distance of A from $\mathbb{C}I$:

$$dist(\boldsymbol{A}, \mathbb{C}\boldsymbol{I}) = min\{\|\boldsymbol{A} - \lambda\boldsymbol{I}\| : \lambda \in \mathbb{C}\}\$$

Variance of *A* with respect to *x*: For x : ||x|| = 1,

$$\operatorname{var}_{X}(A) = \|Ax\|^{2} - |\langle x, Ax \rangle|^{2}.$$

Corollary

Let $A \in \mathbb{M}(n)$. With notations as above, we have

$$\operatorname{dist}(A,\mathbb{C}I)^2 = \max_{\|x\|=1} \operatorname{var}_x(A).$$

Distance to ℂI

Idea:

- Let dist(A, $\mathbb{C}I$) = $||A_0||$, where $A_0 = A \lambda_0 I$, for some $\lambda_0 \in \mathbb{C}$
- $A_0 \perp_{BJ} I$
- There exists x : ||x|| = 1 such that $||A_0x|| = ||A_0||$ and $\langle x, A_0x \rangle = 0$.
- dist $(A, \mathbb{C}I)^2 = ||A_0||^2 = ||A_0x||^2 = ||Ax||^2 |\langle x, Ax \rangle|^2$.
- dist $(A, \mathbb{C}I)^2 \leq \max_{\|x\|=1} \operatorname{var}_x(A)$.
- For every x : ||x|| = 1, $\operatorname{var}_{x}(A) = ||Ax||^{2} |\langle x, Ax \rangle|^{2} \le ||A||^{2}$.
- Let λ ∈ C. Change A → A − λI. Since variance is translation invariant, we get

$$\operatorname{var}_{X}(A) \leq \|A - \lambda I\|^{2}.$$

 \mathscr{W} : subspace of $\mathbb{M}(n)$

A is said to be Birkhoff-James orthogonal to \mathscr{W} ($A \perp_{BJ} \mathscr{W}$) if

 $\|A + W\| \ge \|A\|$ for all $W \in \mathcal{W}$.

 \mathscr{W}^{\perp} : the orthogonal complement of \mathscr{W} , under the usual Hilbert space orthogonality in $\mathbb{M}(n)$ with the inner product $\langle A, B \rangle = \operatorname{tr}(A^*B)$.

Bhatia-Šemrl theorem: $A \perp_{BJ} \mathbb{C}B$ if and only if there exists a positive semidefinite matrix *P* of rank one such that tr P = 1, tr $A^*AP = ||A||^2$ and $AP \in (\mathbb{C}B)^{\perp}$.

 $\mathbb{D}(n; \mathbb{R})$: the space of real diagonal $n \times n$ matrices

A matrix *A* is said to be minimal if $||A + D|| \ge ||A||$ for all $D \in \mathbb{D}(n; \mathbb{R})$, i.e. *A* is orthogonal to the subspace $\mathbb{D}(n; \mathbb{R})$.

Theorem (Andruchow, Larotonda, Recht, Varela; 2012)

A Hermitian matrix A is minimal if and only if there exists a $P \ge 0$ such that

$$A^2P = \|A\|^2P$$

and

all the diagonal elements of AP are zero.

Question: Similar characterizations for other subspaces?

Theorem

Let $A \in \mathbb{M}(n)$ and let \mathscr{W} be a subspace of $\mathbb{M}(n)$. Then $A \perp_{BJ} \mathscr{W}$ if and only if there exists $P \ge 0$, tr P = 1, such that

$$A^*AP = \|A\|^2P$$

and

$$AP \in \mathscr{W}^{\perp}.$$

Moreover, we can choose P such that rank $P \le m(A)$, where m(A) is the multiplicity of the maximum singular value ||A|| of A.

m(A) is the best possible upper bound on rank P.

Consider $\mathscr{W} = \{X : \text{tr } X = 0\}.$

Then $\{A : A \perp_{BJ} \mathscr{W}\} = \mathscr{W}^{\perp} = \mathbb{C}I.$

If $A \perp_{BJ} \mathscr{W}$, then it has to be of the form $A = \lambda I$, for some $\lambda \in \mathbb{C}$.

When $A \neq 0$ then m(A) = n.

Let *P* be any density matrix satisfying $AP \in \mathcal{W}^{\perp}$. Then $AP = \mu I$, for some $\mu \in \mathbb{C}, \mu \neq 0$.

If *P* also satisfies $A^*AP = ||A||^2P$, then we get $P = \frac{\mu}{\lambda}I$. Hence rank P = n = m(A).

Orthogonality to a subspace

Observation: In general, the set $\{A : A \perp_{BJ} \mathcal{W}\}$ need not be a subspace.

Consider the subspace $\mathscr{W} = \mathbb{C}I$ of $\mathbb{M}(3)$. Let

$$A_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \text{ and } A_2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}.$$

Then $A_1, A_2 \perp_{BJ} \mathscr{W}$.

Then
$$A_1 + A_2 = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$
, $||A_1 + A_2|| = 2$.

But $||A_1 + A_2 - \frac{1}{2}I|| = \frac{3}{2} < ||A_1 + A_2||$. Hence $A_1 + A_2 \not\perp_{BJ} \mathscr{W}$.

Distance to any subalgebra of $\mathbb{M}(n)$

dist(A, \mathscr{W}) : distance of a matrix A from the subspace \mathscr{W}

$$\operatorname{dist}(A, \mathscr{W}) = \min \left\{ \|A - W\| : W \in \mathscr{W} \right\}.$$

We have seen that

$$\operatorname{dist}(A,\mathbb{C}I)^2 = \max_{\|x\|=1} \operatorname{var}_x(A).$$

This is equivalent to saying that

$$\begin{split} \text{dist}(A,\mathbb{C}I)^2 &= \\ &\max\Big\{\text{tr}(A^*AP) - |\operatorname{tr}(AP)|^2: P \geq 0, \text{tr}\ P = 1, \text{rank}\ P = 1\Big\}. \end{split}$$

Let \mathscr{B} be any C^* -subalgebra of $\mathbb{M}(n)$.

Similar distance formula?

(This question has been raised by Rieffel)

 $\mathcal{C}_{\mathscr{B}}: \mathbb{M}(n) \to \mathscr{B}$ denote the projection of $\mathbb{M}(n)$ onto \mathscr{B} .

Theorem

For any $A \in \mathbb{M}(n)$

$$dist(A, \mathscr{B})^{2} = max\{tr(A^{*}AP - \mathcal{C}_{\mathscr{B}}(AP)^{*}\mathcal{C}_{\mathscr{B}}(AP)\mathcal{C}_{\mathscr{B}}(P)^{-1}) : P \geq 0, tr P = 1\},\$$

where $C_{\mathscr{B}}(P)^{-1}$ denotes the Moore-Penrose inverse of $C_{\mathscr{B}}(P)$. The maximum on the right hand side can be restricted to rank $P \leq m(A)$.

Bhatia and Šemrl, 1999

 $A, B \in \mathcal{B}(\mathcal{H}), A \perp_{BJ} B$ if and only if there exists a sequence $\{x_n\}$ of unit vectors such that $||Ax_n|| \rightarrow ||A||$, and $\langle Ax_n, Bx_n \rangle \rightarrow 0$ as $n \rightarrow \infty$.

Theorem

Let A be a C^* -algebra. Let $a, b \in A$. Then $a \perp_{BJ} b$ if and only if there exists a state φ on A such that

$$\varphi(a^*a) = ||a||^2$$
 and $\varphi(a^*b) = 0$.

 $\mathcal{S}(\mathcal{A})$: the state space of \mathcal{A} $arphi \in \mathcal{S}(\mathcal{A})$.

Let *variance* of *a* with respect to φ , denoted by $var_{\varphi}(a)$, be defined as

$$\operatorname{var}_{\varphi}(a) = \varphi(a^*a) - |\varphi(a)|^2.$$

Theorem (Rieffel, 2012)

Let $a \in A$. Let S(A) denote the state space of A.

$$\operatorname{dist}(a,\mathbb{C}1)^2 = \max\{\operatorname{var}_{\varphi}(a) : \varphi \in S(\mathcal{A})\}.$$

When $\mathcal{A} = \mathbb{M}(n)$, then

$$\operatorname{dist}(A,\mathbb{C}I)^2 = \max\left\{\operatorname{tr}(A^*AP) - |\operatorname{tr}(AP)|^2 : P \ge 0, \operatorname{tr} P = 1\right\}.$$

Hilbert C*-modules

Let \mathcal{A} be a C*-algebra. An inner-product \mathcal{A} -module is a vector space \mathscr{E} which is a (right) \mathcal{A} -module (with compatible scalar multiplication:

$$\lambda(xa) = (\lambda x)a = x(\lambda a)$$
 for $x \in \mathscr{E}, a \in \mathcal{A}, \lambda \in \mathbb{C}),$

together with a map $(x, y) \mapsto \langle x, y \rangle : \mathscr{E} \times \mathscr{E} \to \mathcal{A}$ such that

(i)
$$\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle$$
 for all $x, y, z \in \mathscr{E}, \alpha, \beta \in \mathbb{C}$
(ii) $\langle x, ya \rangle = \langle x, y \rangle a$ for all $x, y \in \mathscr{E}, a \in \mathcal{A}$
(iii) $\langle y, x \rangle = \langle x, y \rangle^*$ for all $x, y \in \mathscr{E}$
(iv) $\langle x, x \rangle \ge 0$; if $\langle x, x \rangle = 0$ then $x = 0$.
For $x \in \mathscr{E}$,
 $\|x\| = \|\langle x, x \rangle\|^{1/2}$

An inner-product A-module which is complete with respect to this norm is called a Hilbert A-module.

31/36

Example: $\mathbb{M}(m, n)$ is a Hilbert $\mathbb{M}(n)$ -module, with the inner product

$$\langle A,B
angle=A^*B$$
 for all $A,B\in\mathbb{M}(m,n).$

Similarly for infinite dimensional Hilbert spaces \mathcal{H}, \mathcal{K} ,

 $\mathcal{B}(\mathcal{H},\mathcal{K})$ is a Hilbert $\mathcal{B}(\mathcal{H})$ -module.

Orthogonality in $\mathcal{B}(\mathcal{H},\mathcal{K})$

Theorem

Let \mathcal{H} and \mathcal{K} be two Hilbert spaces. Let $A, B \in \mathcal{B}(\mathcal{H}, \mathcal{K})$. Then $A \perp_{BJ} B$ if and only if there exists a state φ on $\mathcal{B}(\mathcal{H})$ such that $\varphi(A^*A) = ||A||^2$ and $\varphi(A^*B) = 0$.

Orthogonality in Hilbert C*-modules

Let \mathscr{E} be a (right) Hilbert \mathcal{A} -module.

Theorem (Blecher; 1997)

 \mathscr{E} can be isometrically embedded in $\mathscr{B}(\mathcal{H},\mathcal{K})$ for some Hilbert spaces \mathcal{H},\mathcal{K} .

As a consequence, we obtain the following.

Theorem

Let $e_1, e_2 \in \mathscr{E}$. Then $e_1 \perp_{BJ} e_2$ if and only if there exists a state φ on \mathcal{A} such that

$$\varphi(\langle e_1, e_1 \rangle) = \|e_1\|^2$$
 and $\varphi(\langle e_1, e_2 \rangle) = 0$.

REFERENCES:

- T. Bhattacharyya, P. Grover, Characterization of Birkhoff-James orthogonality, J. Math. Anal. Appl. 407 (2013) 350–358.
- P. Grover, Orthogonality to matrix subspaces, and a distance formula, *Linear Algebra Appl.* 445 (2014) 280–288.
- P. Grover, Some problems in differential and subdifferential calculus of matrices, Ph. D. thesis, Indian Statistical Institute, 2014.

THANK YOU