Multipliers on Weighted Semigroups and Associated Beurling Banach algebras

P. A. Dabhi

Department of Mathematics, Sardar Patel University, Vallabh Vidyanagar-388120, Gujarat, India

19th December 2014

P. A. Dabhi OTOA 14

This is joint work with S. J. Bhatt, H. V. Dedania and Manish Pandey.

э

э

- 2 Beurling algebra of weighted semigroups
- 3 Multipliers of Beurling algebra

Throughout let S be a non-unital, faithful, abelian semigroup. A map $T: S \rightarrow S$ is a *multiplier* on S if

$$T(st) = sT(t) = T(s)t$$
 $(s, t \in S).$

$$T(st) = sT(t) = T(s)t$$
 $(s, t \in S).$

The class of multipliers on S is denoted by M(S).

$$T(st) = sT(t) = T(s)t$$
 $(s, t \in S).$

The class of multipliers on S is denoted by M(S). The set M(S) is a unital, abelian semigroup under the operation composition.

$$T(st) = sT(t) = T(s)t$$
 $(s, t \in S).$

The class of multipliers on S is denoted by M(S).

The set M(S) is a unital, abelian semigroup under the operation composition.

For $s \in S$, define $\gamma_s : S \to S$ as $\gamma_s(t) = st \ (t \in S)$. Then $\gamma_s \in M(S)$, and $\gamma_s \gamma_t = \gamma_{st} \ (s, t \in S)$.

$$T(st) = sT(t) = T(s)t$$
 $(s, t \in S).$

The class of multipliers on S is denoted by M(S).

The set M(S) is a unital, abelian semigroup under the operation composition.

For $s \in S$, define $\gamma_s : S \to S$ as $\gamma_s(t) = st \ (t \in S)$. Then $\gamma_s \in M(S)$, and $\gamma_s \gamma_t = \gamma_{st} \ (s, t \in S)$. A semigroup S is *faithful* if for $s, t \in S$, su = tu for all $u \in S$ implies s = t.

$$T(st) = sT(t) = T(s)t$$
 $(s, t \in S).$

The class of multipliers on S is denoted by M(S).

The set M(S) is a unital, abelian semigroup under the operation composition.

For $s \in S$, define $\gamma_s : S \to S$ as $\gamma_s(t) = st \ (t \in S)$. Then $\gamma_s \in M(S)$, and $\gamma_s \gamma_t = \gamma_{st} \ (s, t \in S)$. A semigroup S is *faithful* if for $s, t \in S$, su = tu for all $u \in S$ implies s = t. Thus S is identified with an ideal of M(S) via $s \mapsto \gamma_s$.

A weight on a semigroup S is a map $\omega : S \to (0, \infty)$ satisfying $\omega(st) \leq \omega(s)\omega(t)$ $(s, t \in S)$.

-

< A > <

- ₹ 🖬 🕨

э

A weight on a semigroup S is a map $\omega : S \to (0, \infty)$ satisfying $\omega(st) \leq \omega(s)\omega(t)$ $(s, t \in S)$. A semigroup S with a weight ω is a weighted semigroup (S, ω) .

A weight on a semigroup S is a map $\omega : S \to (0, \infty)$ satisfying $\omega(st) \leq \omega(s)\omega(t)$ (s, $t \in S$). A semigroup S with a weight ω is a weighted semigroup (S, ω) . The number $\omega(s)$, for $s \in S$, presumably represents frequency or size of s in S. We regard ω on S as an analogue of a norm on a normed algebra; and the analogy is fruitfully pursued looking to (S, ω) as an intrinsic object. A weight on a semigroup S is a map $\omega : S \to (0, \infty)$ satisfying $\omega(st) \leq \omega(s)\omega(t)$ ($s, t \in S$). A semigroup S with a weight ω is a weighted semigroup (S, ω). The number $\omega(s)$, for $s \in S$, presumably represents frequency or size of s in S. We regard ω on S as an analogue of a norm on a normed algebra; and the analogy is fruitfully pursued looking to (S, ω) as an intrinsic object. We call a multiplier $T \in M(S) \omega$ -bounded if there exists K > 0such that $\omega(Ts) \leq K\omega(s)$ for all $s \in S$. A weight on a semigroup S is a map $\omega : S \to (0, \infty)$ satisfying $\omega(st) \leq \omega(s)\omega(t)$ (s, $t \in S$). A semigroup S with a weight ω is a weighted semigroup (S, ω). The number $\omega(s)$, for $s \in S$, presumably represents frequency or

size of s in S. We regard ω on S as an analogue of a norm on a normed algebra; and the analogy is fruitfully pursued looking to (S, ω) as an intrinsic object.

We call a multiplier $T \in M(S)$ ω -bounded if there exists K > 0 such that $\omega(Ts) \leq K\omega(s)$ for all $s \in S$.

The set of ω -bounded multipliers on *S* will be denoted by $M_{\omega}(S)$.

A weight on a semigroup S is a map $\omega : S \to (0, \infty)$ satisfying $\omega(st) \le \omega(s)\omega(t)$ (s, $t \in S$).

A semigroup S with a weight ω is a weighted semigroup (S, ω) . The number $\omega(s)$, for $s \in S$, presumably represents frequency or size of s in S. We regard ω on S as an analogue of a norm on a normed algebra; and the analogy is fruitfully pursued looking to (S, ω) as an intrinsic object.

We call a multiplier $T \in M(S)$ ω -bounded if there exists K > 0 such that $\omega(Ts) \leq K\omega(s)$ for all $s \in S$.

The set of ω -bounded multipliers on S will be denoted by $M_{\omega}(S)$. We note that $M_{\omega}(S)$ is a subsemigroup of M(S); and S is imbedded in $M_{\omega}(S)$ via $s \mapsto \gamma_s$.

A *-semigroup is a semigroup with involution.

17 ▶

⊸ ≣ ⊁

э

A *-semigroup is a semigroup with involution. Let ω be a symmetric weight (i.e. $\omega(s^*) = \omega(s)$ $(s \in S)$) on S.

A *-semigroup is a semigroup with involution. Let ω be a symmetric weight (i.e. $\omega(s^*) = \omega(s) \ (s \in S)$) on S. For $T \in M_{\omega}(S)$, define $T^* : S \to S$ as

$$T^*(s) = (Ts^*)^* \qquad (s \in S).$$

A *-semigroup is a semigroup with involution. Let ω be a symmetric weight (i.e. $\omega(s^*) = \omega(s) \ (s \in S)$) on S. For $T \in M_{\omega}(S)$, define $T^* : S \to S$ as

$$T^*(s) = (Ts^*)^* \qquad (s \in S).$$

Then $M_{\omega}(S)$ is a *-semigroup and $\{\gamma_s : s \in S\}$ is a *-ideal in $M_{\omega}(S)$.

A *-semigroup is a semigroup with involution. Let ω be a symmetric weight (i.e. $\omega(s^*) = \omega(s) \ (s \in S)$) on S. For $T \in M_{\omega}(S)$, define $T^* : S \to S$ as

$$T^*(s) = (Ts^*)^* \qquad (s \in S).$$

Then $M_{\omega}(S)$ is a *-semigroup and $\{\gamma_s : s \in S\}$ is a *-ideal in $M_{\omega}(S)$. Define $\widetilde{\omega}$ on $M_{\omega}(S)$ by

$$\widetilde{\omega}(T) = \sup\{rac{\omega(Ts)}{\omega(s)} : s \in S\}.$$

A *-semigroup is a semigroup with involution. Let ω be a symmetric weight (i.e. $\omega(s^*) = \omega(s) \ (s \in S)$) on S. For $T \in M_{\omega}(S)$, define $T^* : S \to S$ as

$$T^*(s) = (Ts^*)^* \qquad (s \in S).$$

Then $M_{\omega}(S)$ is a *-semigroup and $\{\gamma_s : s \in S\}$ is a *-ideal in $M_{\omega}(S)$. Define $\widetilde{\omega}$ on $M_{\omega}(S)$ by

$$\widetilde{\omega}(T) = \sup\{\frac{\omega(Ts)}{\omega(s)} : s \in S\}.$$

Then $\omega(Ts) \leq \widetilde{\omega}(T)\omega(s)$ for every $T \in M_{\omega}(S)$ and $s \in S$.

Proposition 1.1

• Let $T : S \to S$ be a map such that $sTt = (Ts)t (s, t \in S)$. Then T is a multiplier.

A 10

Proposition 1.1

- Let $T : S \to S$ be a map such that $sTt = (Ts)t (s, t \in S)$. Then T is a multiplier.
- **2** The set M(S) is a unital abelian semigroup with composition; and S is embedded in M(S) via $s \mapsto \gamma_s$ as an ideal of M(S).

Proposition 1.1

- Let $T : S \to S$ be a map such that $sTt = (Ts)t (s, t \in S)$. Then T is a multiplier.
- **2** The set M(S) is a unital abelian semigroup with composition; and S is embedded in M(S) via $s \mapsto \gamma_s$ as an ideal of M(S).
- So For any weight ω on S, M_ω(S) is a subsemigroup of M(S) and S is an ideal in M_ω(S).

Proposition 1.1

- Let $T : S \to S$ be a map such that $sTt = (Ts)t (s, t \in S)$. Then T is a multiplier.
- **2** The set M(S) is a unital abelian semigroup with composition; and S is embedded in M(S) via $s \mapsto \gamma_s$ as an ideal of M(S).
- So For any weight ω on S, M_ω(S) is a subsemigroup of M(S) and S is an ideal in M_ω(S).
- If S is involutive and ω is symmetric, then each of M(S) and M_ω(S) are involutive and S is a *-ideal.

The following shows that $M_{\omega}(S) \neq M(S)$ is essentially a non-unital phenomenon; and that M(S) and S_e are different unitization.

The following shows that $M_{\omega}(S) \neq M(S)$ is essentially a non-unital phenomenon; and that M(S) and S_e are different unitization. A semigroup S has a *finite set of relative units* [18] if there exists a finite subset F of S such that for every $s \in S$ there exists $f \in F$ such that sf = s.

The following shows that $M_{\omega}(S) \neq M(S)$ is essentially a non-unital phenomenon; and that M(S) and S_e are different unitization. A semigroup S has a *finite set of relative units* [18] if there exists a finite subset F of S such that for every $s \in S$ there exists $f \in F$ such that sf = s.

•
$$S = M(S)$$
 iff S is unital.

The following shows that $M_{\omega}(S) \neq M(S)$ is essentially a non-unital phenomenon; and that M(S) and S_e are different unitization. A semigroup S has a *finite set of relative units* [18] if there exists a finite subset F of S such that for every $s \in S$ there exists $f \in F$ such that sf = s.

- S = M(S) iff S is unital.
- **2** If S has a finite set of relative units, then $M(S) = M_{\omega}(S)$ for all weight ω on S.

The following shows that $M_{\omega}(S) \neq M(S)$ is essentially a non-unital phenomenon; and that M(S) and S_e are different unitization. A semigroup S has a *finite set of relative units* [18] if there exists a finite subset F of S such that for every $s \in S$ there exists $f \in F$ such that sf = s.

- S = M(S) iff S is unital.
- **2** If S has a finite set of relative units, then $M(S) = M_{\omega}(S)$ for all weight ω on S.
- So There exists a weighted semigroup (S, ω) such that $M_{\omega}(S) \neq M(S)$.

The following shows that $M_{\omega}(S) \neq M(S)$ is essentially a non-unital phenomenon; and that M(S) and S_e are different unitization. A semigroup S has a *finite set of relative units* [18] if there exists a finite subset F of S such that for every $s \in S$ there exists $f \in F$ such that sf = s.

- S = M(S) iff S is unital.
- **2** If S has a finite set of relative units, then $M(S) = M_{\omega}(S)$ for all weight ω on S.
- There exists a weighted semigroup (S, ω) such that $M_{\omega}(S) \neq M(S)$.
- There exists a semigroup S such that $S_e \neq M(S)$.

Definition 1.3

• A semigroup S is separating [18] if s = t whenever $s^2 = t^2 = st$ and $s, t \in S$.

- ▲ - □

Definition 1.3

- A semigroup S is separating [18] if s = t whenever $s^2 = t^2 = st$ and $s, t \in S$.
- S is an *inverse semigroup* [19] if for every s ∈ S, there exists unique t ∈ S such that sts = s and tst = t; we denote this unique element by s*. An inverse semigroup is an involutive semigroup with the involution s* = t. Notice that if S is separating (in particular, inverse semigroup), then S is faithful.

Definition 1.3

- A semigroup S is separating [18] if s = t whenever $s^2 = t^2 = st$ and $s, t \in S$.
- S is an *inverse semigroup* [19] if for every s ∈ S, there exists unique t ∈ S such that sts = s and tst = t; we denote this unique element by s*. An inverse semigroup is an involutive semigroup with the involution s* = t. Notice that if S is separating (in particular, inverse semigroup), then S is faithful.
- Solution An involutive semigroup S is *s*-separating if s = t whenever s^{*}s = t^{*}t = s^{*}t and s, t ∈ S.

Proposition 1.4

1 $\widetilde{\omega}$ is a weight $M_{\omega}(S)$.

æ

- 4 聞 と 4 臣 と 4 臣 と

Proposition 1.4

- **1** $\widetilde{\omega}$ is a weight $M_{\omega}(S)$.
- **2** *S* is an inverse semigroup iff $M_{\omega}(S)$ is an inverse semigroup.

э

=
- **1** $\widetilde{\omega}$ is a weight $M_{\omega}(S)$.
- **2** *S* is an inverse semigroup iff $M_{\omega}(S)$ is an inverse semigroup.
- Let S be involutive and ω be symmetric. Then ω̃ is symmetric; and S is *-separating iff M_ω(S) is *-separating.

- **1** $\widetilde{\omega}$ is a weight $M_{\omega}(S)$.
- **2** S is an inverse semigroup iff $M_{\omega}(S)$ is an inverse semigroup.
- Let S be involutive and ω be symmetric. Then ω̃ is symmetric; and S is *-separating iff M_ω(S) is *-separating.
- S is separating iff $M_{\omega}(S)$ is separating.

- **1** $\widetilde{\omega}$ is a weight $M_{\omega}(S)$.
- **2** S is an inverse semigroup iff $M_{\omega}(S)$ is an inverse semigroup.
- Let S be involutive and ω be symmetric. Then ω̃ is symmetric; and S is *-separating iff M_ω(S) is *-separating.
- S is separating iff $M_{\omega}(S)$ is separating.
- There exists a semigroup S such that both S and M(S) are separating; but the quotient M(S)/S fails to be separating.

Definition 1.5

A weight ω a *uniform weight* (respectively a *C**-*weight* for an involutive *S*) if $\omega(s^2) = \omega(s)^2$ ($s \in S$) (respectively $\omega(s^*s) = \omega(s)^2$ ($s \in S$)).

э

< A ▶

Definition 1.5

A weight ω a *uniform weight* (respectively a *C***-weight* for an involutive *S*) if $\omega(s^2) = \omega(s)^2$ ($s \in S$) (respectively $\omega(s^*s) = \omega(s)^2$ ($s \in S$)).

For examples, $\omega(n) = e^n$ $(n \in \mathbb{N})$ is a uniform weight on \mathbb{N} ; and $\omega(m + \lambda n) = e^{-m-n}$ is a C^* -weight on $S := \{m + \lambda n : m, n \in \mathbb{N}\}$, $\lambda \in \mathbb{R} \setminus \mathbb{Q}$ fixed, having involution $(m + \lambda n)^* = n + \lambda m$. In the present case, a uniform weight is a C^* -weight for the trivial involution $s^* = s$ on S.

Definition 1.5

A weight ω a *uniform weight* (respectively a *C***-weight* for an involutive *S*) if $\omega(s^2) = \omega(s)^2$ ($s \in S$) (respectively $\omega(s^*s) = \omega(s)^2$ ($s \in S$)).

For examples, $\omega(n) = e^n$ $(n \in \mathbb{N})$ is a uniform weight on \mathbb{N} ; and $\omega(m + \lambda n) = e^{-m-n}$ is a C^* -weight on $S := \{m + \lambda n : m, n \in \mathbb{N}\}$, $\lambda \in \mathbb{R} \setminus \mathbb{Q}$ fixed, having involution $(m + \lambda n)^* = n + \lambda m$. In the present case, a uniform weight is a C^* -weight for the trivial involution $s^* = s$ on S. If S is involutive and ω is a C^* -weight on S, then ω is symmetric as well as a uniform weight.

Proposition 1.6

• For all $s \in S$, $\widetilde{\omega}(\gamma_s) \leq \omega(s)$; and the equality does not hold.

- For all $s \in S$, $\widetilde{\omega}(\gamma_s) \leq \omega(s)$; and the equality does not hold.
- ② If ω is a C^{*}-weight or a uniform weight on S, then $\widetilde{\omega}(\gamma_s) = \omega(s)$ for all s ∈ S; and $\widetilde{\omega}$ is respectively a C^{*}-weight or a uniform weight on $M_{\omega}(S)$.

- For all $s \in S$, $\widetilde{\omega}(\gamma_s) \leq \omega(s)$; and the equality does not hold.
- ② If ω is a C^{*}-weight or a uniform weight on S, then $\widetilde{\omega}(\gamma_s) = \omega(s)$ for all s ∈ S; and $\widetilde{\omega}$ is respectively a C^{*}-weight or a uniform weight on $M_{\omega}(S)$.

$$\begin{array}{l} \textcircled{o} \quad \widetilde{\omega}(T) = \inf\{K > 0 : \omega(Ts) \leq K\omega(s) \; (s \in S)\} \quad (T \in M_{\omega}(S)). \end{array}$$

The following classes of weights arise in the study of associated Beurling algebras.

Definition 1.7

Let ω be a weight on S. Then ω is

• semisimple [13] if
$$\lim_{n \to \infty} \omega(s^n)^{\frac{1}{n}} > 0 \ (s \in S).$$

The following classes of weights arise in the study of associated Beurling algebras.

Definition 1.7

Let ω be a weight on S. Then ω is

• semisimple [13] if
$$\lim_{n\to\infty} \omega(s^n)^{\frac{1}{n}} > 0 \ (s\in S).$$

2 radical [13] if
$$\lim_{n\to\infty} \omega(s^n)^{\frac{1}{n}} = 0 \ (s \in S).$$

The following classes of weights arise in the study of associated Beurling algebras.

Definition 1.7

Let ω be a weight on S. Then ω is

• semisimple [13] if $\lim_{n\to\infty} \omega(s^n)^{\frac{1}{n}} > 0 \ (s \in S).$

2 radical [13] if
$$\lim_{n\to\infty} \omega(s^n)^{\frac{1}{n}} = 0$$
 ($s \in S$).

3 Beurling-Domar [16] if
$$\omega \ge 1$$
 and $\sum_{n \in \mathbb{N}} \frac{\log \omega(s^n)}{1+n^2} < \infty$ $(s \in S)$.

The following classes of weights arise in the study of associated Beurling algebras.

Definition 1.7

Let ω be a weight on S. Then ω is

• semisimple [13] if $\lim_{n\to\infty} \omega(s^n)^{\frac{1}{n}} > 0 \ (s \in S).$

2 radical [13] if
$$\lim_{n\to\infty} \omega(s^n)^{\frac{1}{n}} = 0$$
 ($s \in S$).

• Beurling-Domar [16] if $\omega \ge 1$ and $\sum_{n \in \mathbb{N}} \frac{\log \omega(s^n)}{1+n^2} < \infty \ (s \in S).$

• GRS [17] if
$$\lim_{n\to\infty} \omega(s^n)^{\frac{1}{n}} = 1 \ (s \in S).$$

The following classes of weights arise in the study of associated Beurling algebras.

Definition 1.7

Let ω be a weight on S. Then ω is

• semisimple [13] if $\lim_{n\to\infty} \omega(s^n)^{\frac{1}{n}} > 0 \ (s \in S).$

2 radical [13] if
$$\lim_{n\to\infty} \omega(s^n)^{\frac{1}{n}} = 0$$
 $(s \in S)$.

3 Beurling-Domar [16] if
$$\omega \ge 1$$
 and $\sum_{n \in \mathbb{N}} \frac{\log \omega(s^n)}{1+n^2} < \infty$ $(s \in S)$.

• GRS [17] if
$$\lim_{n\to\infty}\omega(s^n)^{\frac{1}{n}}=1~(s\in S).$$

Thus a Beuling-Domar weight is a GRS-weight, and there exists a GRS-weight which is not a Beurling-Domar weight.

The following classes of weights arise in the study of associated Beurling algebras.

Definition 1.7

Let ω be a weight on S. Then ω is

• semisimple [13] if $\lim_{n\to\infty} \omega(s^n)^{\frac{1}{n}} > 0 \ (s \in S).$

2 radical [13] if
$$\lim_{n\to\infty} \omega(s^n)^{\frac{1}{n}} = 0$$
 $(s \in S)$.

3 Beurling-Domar [16] if
$$\omega \ge 1$$
 and $\sum_{n \in \mathbb{N}} \frac{\log \omega(s^n)}{1+n^2} < \infty$ $(s \in S)$.

• GRS [17] if
$$\lim_{n\to\infty}\omega(s^n)^{\frac{1}{n}}=1~(s\in S).$$

Thus a Beuling-Domar weight is a GRS-weight, and there exists a GRS-weight which is not a Beurling-Domar weight. Indeed, let $S = ([2, \infty), +)$, and let $\omega(n) = e^{\frac{n}{\log n}}$ $(n \in S)$. Then ω is a GRS-weight but it is not a Beurling-Domar weight.

Theorem 1.8

ω is semisimple on S iff ω̃ is semisimple on M_ω(S). If ω is a uniform weight or a C*-weight on S, then ω is a semisimple weight on S.

- ω is semisimple on S iff ω̃ is semisimple on M_ω(S). If ω is a uniform weight or a C*-weight on S, then ω is a semisimple weight on S.
- 2 If $\tilde{\omega}$ is a Beurling-Domar weight on $M_{\omega}(S)$, then ω is a Beurling-Domar weight on S.

- ω is semisimple on S iff ω is semisimple on M_ω(S). If ω is a uniform weight or a C*-weight on S, then ω is a semisimple weight on S.
- **2** If $\tilde{\omega}$ is a Beurling-Domar weight on $M_{\omega}(S)$, then ω is a Beurling-Domar weight on S.
- Let (S, ω) satisfy any of the following conditions.

- ω is semisimple on S iff ω is semisimple on M_ω(S). If ω is a uniform weight or a C*-weight on S, then ω is a semisimple weight on S.
- If ω̃ is a Beurling-Domar weight on M_ω(S), then ω is a Beurling-Domar weight on S.
- Let (S, ω) satisfy any of the following conditions.
 - For each $T \in M_{\omega}(S)$, there exists $m \in \mathbb{N}$ such that $T^m \in S$.

- ω is semisimple on S iff ω is semisimple on M_ω(S). If ω is a uniform weight or a C*-weight on S, then ω is a semisimple weight on S.
- If ω̃ is a Beurling-Domar weight on M_ω(S), then ω is a Beurling-Domar weight on S.
- Let (S, ω) satisfy any of the following conditions.
 - For each $T \in M_{\omega}(S)$, there exists $m \in \mathbb{N}$ such that $T^m \in S$.
 - **2** Every element of \hat{S} is idempotent.

Theorem 1.8

- ω is semisimple on S iff $\tilde{\omega}$ is semisimple on $M_{\omega}(S)$. If ω is a uniform weight or a C*-weight on S, then ω is a semisimple weight on S.
- If ω̃ is a Beurling-Domar weight on M_ω(S), then ω is a Beurling-Domar weight on S.
- Let (S, ω) satisfy any of the following conditions.
 - For each $T \in M_{\omega}(S)$, there exists $m \in \mathbb{N}$ such that $T^m \in S$.
 - **2** Every element of \hat{S} is idempotent.

If ω is a Beurling-Domar weight, then $\widetilde{\omega}$ is a Beurling-Domar weight.

Theorem 1.8

- ω is semisimple on S iff ω is semisimple on M_ω(S). If ω is a uniform weight or a C*-weight on S, then ω is a semisimple weight on S.
- **2** If $\tilde{\omega}$ is a Beurling-Domar weight on $M_{\omega}(S)$, then ω is a Beurling-Domar weight on S.
- Let (S, ω) satisfy any of the following conditions.
 - For each $T \in M_{\omega}(S)$, there exists $m \in \mathbb{N}$ such that $T^m \in S$.
 - **2** Every element of \hat{S} is idempotent.

If ω is a Beurling-Domar weight, then $\widetilde{\omega}$ is a Beurling-Domar weight.

Let ω be semisimple. Then ν_ω(s) := lim_{n→∞} ω(sⁿ)^{1/n} (s ∈ S) is a uniform weight, and it is the largest uniform weight dominated by ω.

Theorem 1.8

- ω is semisimple on S iff ω is semisimple on M_ω(S). If ω is a uniform weight or a C*-weight on S, then ω is a semisimple weight on S.
- **2** If $\tilde{\omega}$ is a Beurling-Domar weight on $M_{\omega}(S)$, then ω is a Beurling-Domar weight on S.
- Let (S, ω) satisfy any of the following conditions.
 - For each $T \in M_{\omega}(S)$, there exists $m \in \mathbb{N}$ such that $T^m \in S$.
 - **2** Every element of \hat{S} is idempotent.

If ω is a Beurling-Domar weight, then $\widetilde{\omega}$ is a Beurling-Domar weight.

Let ω be semisimple. Then ν_ω(s) := lim_{n→∞} ω(sⁿ)^{1/n} (s ∈ S) is a uniform weight, and it is the largest uniform weight dominated by ω.

5 Let ω be semisimple. Then $\mu_{\omega}(s) = \nu_{\omega}(s^*s)^{\frac{1}{2}}$ $(s \in S)$ is a *C**-weight and it is the largest *C**-weight dominated by ω P.A. Dabii OTOA 14

A weight ω on *S* regular if $\widetilde{\omega}$ restricted to *S* is ω .

< 1 →

A weight ω on *S* regular if $\widetilde{\omega}$ restricted to *S* is ω . More generally, ω is weakly regular if for some m > 0, M > 0, $m\omega(s) \le \widetilde{\omega}(\gamma_s) \le M\omega(s)$ ($s \in S$).

A weight ω on *S* regular if $\widetilde{\omega}$ restricted to *S* is ω . More generally, ω is weakly regular if for some m > 0, M > 0, $m\omega(s) \le \widetilde{\omega}(\gamma_s) \le M\omega(s)$ ($s \in S$). The weight $\omega_1(s) = e^s$ on \mathbb{N} is regular; whereas $\omega_2(s) = 1 + s$ on \mathbb{N} is weakly regular and non-regular. A weight ω on S regular if $\widetilde{\omega}$ restricted to S is ω . More generally, ω is weakly regular if for some m > 0, M > 0, $m\omega(s) \le \widetilde{\omega}(\gamma_s) \le M\omega(s) \ (s \in S)$. The weight $\omega_1(s) = e^s$ on \mathbb{N} is regular; whereas $\omega_2(s) = 1 + s$ on \mathbb{N} is weakly regular and non-regular. Let ω be a weight on S such that $\omega_0 := \inf\{\omega(s) : s \in S\} > 0$, and let $\widetilde{\omega}_q : M_\omega(S)/S \to (0, \infty)$ be defined as $\widetilde{\omega}_q([T]) = 1 \ (T \in S)$ and $\widetilde{\omega}_q([T]) = \widetilde{\omega}(T) \ (T \notin S)$. A weight ω on S regular if $\widetilde{\omega}$ restricted to S is ω . More generally, ω is weakly regular if for some m > 0, M > 0, $m\omega(s) \le \widetilde{\omega}(\gamma_s) \le M\omega(s) \ (s \in S)$. The weight $\omega_1(s) = e^s$ on \mathbb{N} is regular; whereas $\omega_2(s) = 1 + s$ on \mathbb{N} is weakly regular and non-regular. Let ω be a weight on S such that $\omega_0 := \inf\{\omega(s) : s \in S\} > 0$, and let $\widetilde{\omega}_q : M_\omega(S)/S \to (0, \infty)$ be defined as $\widetilde{\omega}_q([T]) = 1 \ (T \in S)$ and $\widetilde{\omega}_q([T]) = \widetilde{\omega}(T) \ (T \notin S)$. Then $\widetilde{\omega}_q$ is a weight on $M_\omega(S)/S$.

The Beurling algebra associated with a weighted semigroup (S,ω) is

-

The Beurling algebra associated with a weighted semigroup (S, ω) is

$$\ell^1(S,\omega) = \{f: S o \mathbb{C} : \|f\|_\omega = \sum_{s \in S} |f(s)|\omega(s) < \infty\}.$$

It is a Banach space.

The Beurling algebra associated with a weighted semigroup (S, ω) is

$$\ell^1(S,\omega) = \{f: S \to \mathbb{C} : \|f\|_\omega = \sum_{s \in S} |f(s)|\omega(s) < \infty\}.$$

It is a Banach space. It is a commutative Banach algebra with the *convolution* multiplication

$$(f \star g)(s) = \sum_{uv=s} f(u)g(v)$$

and $(f \star g)(s) = 0$ if uv = s has no solution. The following exhibits the relationship between the Beurling algebras $\ell^1(S, \omega)$ and $\ell^1(M_{\omega}(S), \widetilde{\omega})$.

Let
$$\omega_0 = \inf\{\omega(s) : s \in S\}.$$

Theorem 2.1

Let ω be weakly regular with $\omega_0 > 0$. Then $\ell^1(S, \omega)$ is a closed ideal of $\ell^1(M_{\omega}(S), \widetilde{\omega})$ and the quotient algebra $\ell^1(M_{\omega}(S), \widetilde{\omega}) / \ell^1(S, \omega)$ is isomorphic to the Beurling algebra of the Rees quotient semigroup $M_{\omega}(S)/S$ with the quotient weight $\widetilde{\omega}_q$.

A generalized semicharacter on S is a non-zero map $\alpha : S \to \mathbb{C}$ satisfying $\alpha(st) = \alpha(s)\alpha(t)$ $(s, t \in S)$.

A generalized semicharacter on S is a non-zero map $\alpha : S \to \mathbb{C}$ satisfying $\alpha(st) = \alpha(s)\alpha(t)$ $(s, t \in S)$.

An ω -bounded generalized semicharacter on (S, ω) is a generalized semicharacter on S satisfying $|\alpha(s)| \le \omega(s)$ $(s \in S)$.

A generalized semicharacter on S is a non-zero map $\alpha : S \to \mathbb{C}$ satisfying $\alpha(st) = \alpha(s)\alpha(t)$ $(s, t \in S)$. An ω -bounded generalized semicharacter on (S, ω) is a generalized

semicharacter on S satisfying $|\alpha(s)| \le \omega(s)$ ($s \in S$). Let $\Phi_{\omega s}(S)$ denote the set of all ω -bounded generalized semicharacters on S with the point open topology.
Let ω be a symmetric weight on a *-semigroup *S*, and let α be a generalized semicharacter on *S*.

Let ω be a symmetric weight on a *-semigroup S, and let α be a generalized semicharacter on S. The *adjoint* α^* of α is a map on S defined as $\alpha^*(s) = \overline{\alpha(s^*)} \ (s \in S)$.

Let ω be a symmetric weight on a *-semigroup S, and let α be a generalized semicharacter on S. The *adjoint* α^* of α is a map on S defined as $\alpha^*(s) = \overline{\alpha(s^*)} \ (s \in S)$. Then α^* is a generalized semicharacter on S.

Let ω be a symmetric weight on a *-semigroup *S*, and let α be a generalized semicharacter on *S*. The *adjoint* α^* of α is a map on *S* defined as

 $\alpha^*(s) = \overline{\alpha(s^*)} \ (s \in S).$

Then α^* is a generalized semicharacter on *S*.

A generalized semicharacter on S is self adjoint if $\alpha = \alpha^*$.

Let ω be a symmetric weight on a *-semigroup *S*, and let α be a generalized semicharacter on *S*.

The *adjoint* α^* of α is a map on *S* defined as

 $\alpha^*(s) = \alpha(\overline{s^*}) \ (s \in S).$

Then α^* is a generalized semicharacter on *S*.

A generalized semicharacter on S is self adjoint if $\alpha = \alpha^*$. Let $\Psi_{\omega s}(S)$ denote the set of all self adjoint generalized semicharacters on S with the point open topology. Let ω be a symmetric weight on a *-semigroup *S*, and let α be a generalized semicharacter on *S*.

The *adjoint* α^* of α is a map on *S* defined as

 $\alpha^*(s) = \overline{\alpha(s^*)} \ (s \in S).$

Then α^* is a generalized semicharacter on S. A generalized semicharacter on S is *self adjoint* if $\alpha = \alpha^*$. Let $\Psi_{\omega s}(S)$ denote the set of all self adjoint generalized semicharacters on S with the point open topology.

Our next three results contain the semigroup multiplier analogues of a couple of results on multipliers on commutative Banach algebras [22, Theorems 1.4.1, 1.4.2, Corollary 1.4.1].

Theorem 2.2

If $\alpha \in \Phi_{\omega s}(S)$, then there exits unique $\widetilde{\alpha} \in \Phi_{\widetilde{\omega}s}(M_{\omega}(S))$ such that $\widetilde{\alpha}(\gamma_s) = \alpha(s)$ for all $s \in S$. If $\beta \in \Phi_{\widetilde{\omega}s}(M_{\omega}(S))$, then either $\beta(\gamma_s) = 0$ for all $s \in S$ or there is $\widetilde{\alpha} \in \Phi_{\widetilde{\omega}s}(M_{\omega}(S))$ such that $\beta = \widetilde{\alpha}$.

Let $\Phi_{\widetilde{\omega}s}(S) = \{\widetilde{\alpha} \in \Phi_{\widetilde{\omega}s}(M_{\omega}(S)) : \widetilde{\alpha}(\gamma_s) \neq 0 \text{ for some } s \in S\}$, and let $h_{\omega s}(S) = \{\widetilde{\alpha} \in \Phi_{\widetilde{\omega}s}(M_{\omega}(S)) : \widetilde{\alpha}(\gamma_s) = 0 (s \in S)\}.$

Theorem 2.2

If $\alpha \in \Phi_{\omega s}(S)$, then there exits unique $\widetilde{\alpha} \in \Phi_{\widetilde{\omega} s}(M_{\omega}(S))$ such that $\widetilde{\alpha}(\gamma_{s}) = \alpha(s)$ for all $s \in S$. If $\beta \in \Phi_{\widetilde{\omega} s}(M_{\omega}(S))$, then either $\beta(\gamma_{s}) = 0$ for all $s \in S$ or there is $\widetilde{\alpha} \in \Phi_{\widetilde{\omega} s}(M_{\omega}(S))$ such that $\beta = \widetilde{\alpha}$.

Let $\Phi_{\widetilde{\omega}s}(S) = \{\widetilde{\alpha} \in \Phi_{\widetilde{\omega}s}(M_{\omega}(S)) : \widetilde{\alpha}(\gamma_s) \neq 0 \text{ for some } s \in S\}$, and let $h_{\omega s}(S) = \{\widetilde{\alpha} \in \Phi_{\widetilde{\omega}s}(M_{\omega}(S)) : \widetilde{\alpha}(\gamma_s) = 0 \ (s \in S)\}$. The previous result asserts that the correspondence $\alpha \mapsto \widetilde{\alpha}$ defines a bijective mapping of $\Phi_{\omega s}(S)$ onto those points of $\Phi_{\widetilde{\omega}s}(M_{\omega}(S))$ which do not contain the ideal $\{\gamma_s : s \in S\}$, that is, those ω -bounded generalized semicharacters on $M_{\omega}(S)$ which do not vanish identically on $\{\gamma_s : s \in S\}$. We shall denote this subset of $\Phi_{\widetilde{\omega}s}(M_{\omega}(S))$ by $\widetilde{\Phi}_{\omega s}(S)$.

Corollary 2.3

Let ω be a weight on a semigroup S.

• Then
$$\Phi_{\widetilde{\omega}s}(M_{\omega}(S)) = \widetilde{\Phi}_{\omega s}(S) \cup h_{\omega s}(S)$$
.

2 Let S be involutive, and let
$$\omega$$
 be symmetric. Let $h^*_{\omega s}(S) = \{ \alpha \in \Psi_{\omega s}(M_{\omega}(S)) : \alpha(S) = \{0\} \}$. Then $\Psi_{\widetilde{\omega}s}(M_{\omega}(S)) = \widetilde{\Psi}_{\omega s}(S) \cup h^*_{\omega s}(S)$.

æ

∃ >

< □ > <

The following corresponds to the result that for a weighted locally compact abelian group (G, ω) , the Gel'fand space $\Delta(L^1(G, \omega))$ is identified with the space of ω -bounded generalized characters on G. We omit the straightforward proof.

Corollary 2.4

•
$$\Delta(\ell^1(S,\omega)) \cong \Phi_{\omega s}(S)$$
, topologically as well.

3 Let
$$\omega$$
 be weakly regular. Then
 $\Delta \left(\ell^1 \left(M_{\omega}(S)/S, \widetilde{\omega}_q \right) \right) \cong h_{\omega s}(S).$

Semisimplicity of a Beurling algebra is an important problem. For a locally compact group G, $L^1(G, \omega)$ is semisimple if G is abelian [7]; for non-abelian G, it is not known whether $L^1(G, \omega)$ is semisimple or not [14, Page-175]. For an abelian semigroup S, $\ell^1(S, \omega)$ is semisimple iff S is separating and ω is semisimple [13, Prop. 4.8]. This quickly gives the following.

Theorem 2.5

The Banach algebra $\ell^1(S, \omega)$ is semisimple iff $\ell^1(M_{\omega}(S), \widetilde{\omega})$ is semisimple. The quotient $\ell^1(M_{\omega}(S), \widetilde{\omega})/\ell^1(S, \omega)$ may fail to be semisimple.

A Banach algebra $(\mathcal{A}, \|\cdot\|)$ has *UUNP* if it admits exactly one uniform norm, not necessarily complete.

A Banach algebra $(\mathcal{A}, \|\cdot\|)$ has *UUNP* if it admits exactly one uniform norm, not necessarily complete. A *uniform norm* on a Banach algebra $(\mathcal{A}, \|\cdot\|)$ is a norm $|\cdot|$ satisfying $|x^2| = |x|^2 \ (x \in \mathcal{A})$.

A Banach algebra $(\mathcal{A}, \|\cdot\|)$ has *UUNP* if it admits exactly one uniform norm, not necessarily complete. A *uniform norm* on a Banach algebra $(\mathcal{A}, \|\cdot\|)$ is a norm $|\cdot|$ satisfying $|x^2| = |x|^2 \ (x \in \mathcal{A})$. The UUNP turns out to be closely related with regularity [8, 23]

and have applications to abelian Harmonic Analysis [5, 6, 11].

A Banach algebra $(\mathcal{A}, \|\cdot\|)$ has UUNP if it admits exactly one uniform norm, not necessarily complete. A *uniform norm* on a Banach algebra $(\mathcal{A}, \|\cdot\|)$ is a norm $|\cdot|$ satisfying $|x^2| = |x|^2$ ($x \in \mathcal{A}$). The UUNP turns out to be closely related with regularity [8, 23] and have applications to abelian Harmonic Analysis [5, 6, 11]. A Banach algebra \mathcal{A} is *regular* if in the Gel'fand space $\Delta(\mathcal{A})$, a point and a closed set can be separated by a Gel'fand transform [23].

A Banach algebra $(\mathcal{A}, \|\cdot\|)$ has UUNP if it admits exactly one uniform norm, not necessarily complete. A uniform norm on a Banach algebra $(\mathcal{A}, \|\cdot\|)$ is a norm $|\cdot|$ satisfying $|x^2| = |x|^2 \ (x \in \mathcal{A}).$ The UUNP turns out to be closely related with regularity [8, 23] and have applications to abelian Harmonic Analysis [5, 6, 11].A Banach algebra \mathcal{A} is *regular* if in the Gel'fand space $\Delta(\mathcal{A})$, a point and a closed set can be separated by a Gel'fand transform [23]. For an abelian G, the algebra $\ell^1(G)$ is regular; and for a weighted group G, $\ell^1(G, \omega)$ is regular iff $\ell^1(G, \omega)$ has UUNP iff ω is a Beurling-Domar weight [8]. It would be interesting to search for a weighted semigroup (S, ω) such that $\ell^1(S, \omega)$ has UUNP but is not regular.

Theorem 2.6

- If $\ell^1(M_{\omega}(S), \widetilde{\omega})$ has UUNP, then $\ell^1(S, \omega)$ has UUNP.
- 2 If $\ell^1(M_{\omega}(S), \widetilde{\omega})$ is regular, then $\ell^1(S, \omega)$ is regular.
- **3** Let S be an inverse semigroup. Let ω be a Beurling-Domar weight on S. Then $\ell^1(S, \omega)$ is regular.

A Banach *-algebra $(\mathcal{B}, \|\cdot\|)$ has Unique C*-Norm Property (UC^*NP) [2] if \mathcal{B} admits exactly one C*-norm.

- ₹ 🖬 🕨

A Banach *-algebra $(\mathcal{B}, \|\cdot\|)$ has Unique C*-Norm Property (UC^*NP) [2] if \mathcal{B} admits exactly one C^* -norm. A commutative Banach *-algebra \mathcal{B} is *-regular [2] if given $F \subset \widetilde{\Delta}(\mathcal{B})$ closed and $\varphi \notin F$, there exists $x \in \mathcal{B}$ such that $\hat{x}(\varphi) \neq 0$ and $\hat{x}(F) = \{0\}$. In fact, UC*NP and *-regularity (appropriately defined) acquires much greater significance in non-commutative Banach *-algebras [2]. Their role in commutative Banach *-algebras is discussed in [2, Section 2], [8, 11]. By [17], for a weighted compactly generated (not necessarily abelian) group (G, ω) , $L^1(G, \omega)$ is symmetric iff ω is a GRS-weight. By [2], a commutative Banach *- algebra is regular iff it is *-regular and symmetric.

Theorem 2.7

Let S be be involutive, and let ω be symmetric. If $\ell^1(M_{\omega}(S), \widetilde{\omega})$ has UC*NP, then $\ell^1(S, \omega)$ has UC*NP. If $\ell^1(M_{\omega}(S), \widetilde{\omega})$ is *-regular, then $\ell^1(S, \omega)$ is *-regular.

The multiplier Banach algebra $M(\mathcal{A})$ of a commutative Banach algebra $(\mathcal{A}, \|\cdot\|)$ is the unital Banach algebra consisting of all $T : \mathcal{A} \to \mathcal{A}$ satisfying T(ab) = aTb = (Ta)b $(a, b \in \mathcal{A})$ with the operator norm $\|T\| = \sup\{\|Ta\| : a \in \mathcal{A}, \|a\| \le 1\}$.

The multiplier Banach algebra $M(\mathcal{A})$ of a commutative Banach algebra $(\mathcal{A}, \|\cdot\|)$ is the unital Banach algebra consisting of all $T : \mathcal{A} \to \mathcal{A}$ satisfying T(ab) = aTb = (Ta)b $(a, b \in \mathcal{A})$ with the operator norm $\|T\| = \sup\{\|Ta\| : a \in \mathcal{A}, \|a\| \le 1\}$. Multipliers, either at the level of semigroups or at the level of algebras, constitute a kind of maximal unitization. Our question is:

The multiplier Banach algebra $M(\mathcal{A})$ of a commutative Banach algebra $(\mathcal{A}, \|\cdot\|)$ is the unital Banach algebra consisting of all $T : \mathcal{A} \to \mathcal{A}$ satisfying T(ab) = aTb = (Ta)b $(a, b \in \mathcal{A})$ with the operator norm $\|T\| = \sup\{\|Ta\| : a \in \mathcal{A}, \|a\| \le 1\}$. Multipliers, either at the level of semigroups or at the level of algebras, constitute a kind of maximal unitization. Our question is: When is $M(\ell^1(S, \omega)) = \ell^1(M_\omega(S), \widetilde{\omega})$? The multiplier Banach algebra $M(\mathcal{A})$ of a commutative Banach algebra $(\mathcal{A}, \|\cdot\|)$ is the unital Banach algebra consisting of all $T : \mathcal{A} \to \mathcal{A}$ satisfying T(ab) = aTb = (Ta)b $(a, b \in \mathcal{A})$ with the operator norm $\|T\| = \sup\{\|Ta\| : a \in \mathcal{A}, \|a\| \le 1\}$. Multipliers, either at the level of semigroups or at the level of algebras, constitute a kind of maximal unitization. Our question is: When is $M(\ell^1(S, \omega)) = \ell^1(M_\omega(S), \tilde{\omega})$? A semigroup S is cancellative if whenever for $s, t, u \in S$, su = tuimplies s = t. The multiplier Banach algebra $M(\mathcal{A})$ of a commutative Banach algebra $(\mathcal{A}, \|\cdot\|)$ is the unital Banach algebra consisting of all $T : \mathcal{A} \to \mathcal{A}$ satisfying T(ab) = aTb = (Ta)b $(a, b \in \mathcal{A})$ with the operator norm $\|T\| = \sup\{\|Ta\| : a \in \mathcal{A}, \|a\| \le 1\}$. Multipliers, either at the level of semigroups or at the level of algebras, constitute a kind of maximal unitization. Our question is: When is $M(\ell^1(S, \omega)) = \ell^1(M_\omega(S), \widetilde{\omega})$? A semigroup S is cancellative if whenever for $s, t, u \in S$, su = tuimplies s = t.

Cancellative semigroups are precisely the subsemigroups of groups.

Lemma 1

Let S be an abelian faithful semigroup. Then the natural homomorphism $s \mapsto \gamma_s$ of S into $M_{\omega}(S)$ induces a homomorphism of $\ell^1(S, \omega)$ into $\ell^1(M_{\omega}(S), \widetilde{\omega})$ which is one-one if and only if $s \mapsto \gamma_s$ is one-one and onto if and only if $s \mapsto \gamma_s$ is onto.

Lemma 1

Let S be an abelian faithful semigroup. Then the natural homomorphism $s \mapsto \gamma_s$ of S into $M_{\omega}(S)$ induces a homomorphism of $\ell^1(S, \omega)$ into $\ell^1(M_{\omega}(S), \widetilde{\omega})$ which is one-one if and only if $s \mapsto \gamma_s$ is one-one and onto if and only if $s \mapsto \gamma_s$ is onto.

Lemma 2

Let ω be a weight on an abelian semigroup S, and let $\mu \in \ell^1(M_{\omega}(S), \widetilde{\omega})$. Then the map $T_{\mu} : \ell^1(S, \omega) \to \ell^1(S, \omega)$ defined by $T_{\mu}(f) = \mu \star f$ is a multiplier of $\ell^1(S, \omega)$. The map $\mu \mapsto T_{\mu}$ of $\ell^1(M_{\omega}(S), \widetilde{\omega})$ into $M(\ell^1(S, \omega))$ is a norm-decreasing homomorphism.

▲ □ ► < □ ►</p>

Lemma 3

Let S be an abelian semigroup with the property: Given $\alpha \in M_{\omega}(S)$, there exists $s_{\alpha} \in S$ such that for any $\beta \in M_{\omega}(S)$, $\alpha(s_{\alpha}) = \beta(s_{\alpha})$ implies $\alpha = \beta$ (This holds in particular when S is cancellative). Then the map $\mu \mapsto T_{\mu}$ from $\ell^{1}(M_{\omega}(S), \widetilde{\omega})$ to $M(\ell^{1}(S, \omega))$ is one-one.

Let S be a cancellative semigroup. Then S, $M_{\omega}(S)$ and M(S) can be embedded in a group Q(S), called *the group of the semigroup* S, which has the property that $M(S) = \{\alpha \in Q(S) : \alpha S \subset S\}$.

Let *S* be a cancellative semigroup. Then *S*, $M_{\omega}(S)$ and M(S) can be embedded in a group Q(S), called *the group of the semigroup S*, which has the property that $M(S) = \{\alpha \in Q(S) : \alpha S \subset S\}$. The group Q(S) is constructed as follows [12, p.15]. Let $(s, t), (u, v) \in S \times S$. We say $(s, t) \sim (u, v)$ if sv = tu.

Let S be a cancellative semigroup. Then S, $M_{\omega}(S)$ and M(S) can be embedded in a group Q(S), called the group of the semigroup S, which has the property that $M(S) = \{\alpha \in Q(S) : \alpha S \subset S\}$. The group Q(S) is constructed as follows [12, p.15]. Let $(s, t), (u, v) \in S \times S$. We say $(s, t) \sim (u, v)$ if sv = tu. Then \sim is an equivalence relation on $S \times S$. Let [s, t] be the equivalence class containing (s, t), i.e.,

$$[s,t] = \{(u,v) \in S \times S : (u,v) \sim (s,t)\}.$$

Let S be a cancellative semigroup. Then S, $M_{\omega}(S)$ and M(S) can be embedded in a group Q(S), called the group of the semigroup S, which has the property that $M(S) = \{\alpha \in Q(S) : \alpha S \subset S\}$. The group Q(S) is constructed as follows [12, p.15]. Let $(s, t), (u, v) \in S \times S$. We say $(s, t) \sim (u, v)$ if sv = tu. Then \sim is an equivalence relation on $S \times S$. Let [s, t] be the equivalence class containing (s, t), i.e.,

$$[s,t] = \{(u,v) \in S \times S : (u,v) \sim (s,t)\}.$$

Then $Q(S) = (S \times S) / \sim$ is a group with the binary operation

$$[s, t][u, v] = [su, tv] \quad ([s, t], [u, v] \in Q(S)).$$

The semigroup S is embedded in Q(S) via the map $s \mapsto [su, u]$.

Let ω be a weight on S. Define $\omega_Q : Q(S) \to (0, \infty)$ as $\omega_Q([s, t]) = \sup \left\{ \frac{\widetilde{\omega}(su)}{\widetilde{\omega}(tu)} : u \in M_{\omega}(S) \right\}.$

글 > - < 글 >

< A > <

э

Let ω be a weight on S. Define $\omega_Q : Q(S) \to (0, \infty)$ as $\omega_Q([s, t]) = \sup \left\{ \frac{\widetilde{\omega}(su)}{\widetilde{\omega}(tu)} : u \in M_{\omega}(S) \right\}.$ Let $[s, t], [u, v] \in Q(S)$. By definition $\omega_Q([s, t]) > 0$. Let $x \in M_{\omega}(S)$. Then

$$\frac{\widetilde{\omega}(sux)}{\widetilde{\omega}(tvx)} = \frac{\widetilde{\omega}(sux)}{\widetilde{\omega}(tux)}\frac{\widetilde{\omega}(utx)}{\widetilde{\omega}(vtx)} \leq \omega_Q([s,t])\omega_Q([u,v]).$$

Therefore

$$\omega_Q([s,t][u,v]) = \omega_Q([su,tv]) \le \omega_Q([s,t])\omega_Q([u,v]).$$

Let ω be a weight on S. Define $\omega_Q : Q(S) \to (0, \infty)$ as $\omega_Q([s, t]) = \sup \left\{ \frac{\widetilde{\omega}(su)}{\widetilde{\omega}(tu)} : u \in M_{\omega}(S) \right\}.$

Let $[s, t], [u, v] \in Q(S)$. By definition $\omega_Q([s, t]) > 0$. Let $x \in M_\omega(S)$. Then

$$rac{\widetilde{\omega}(\mathit{sux})}{\widetilde{\omega}(\mathit{tvx})} = rac{\widetilde{\omega}(\mathit{sux})}{\widetilde{\omega}(\mathit{tux})} rac{\widetilde{\omega}(\mathit{utx})}{\widetilde{\omega}(\mathit{vtx})} \leq \omega_Q([\mathit{s},t]) \omega_Q([\mathit{u},\mathit{v}]).$$

Therefore

$$\omega_Q([s,t][u,v]) = \omega_Q([su,tv]) \le \omega_Q([s,t])\omega_Q([u,v]).$$

Note that $\omega_Q([su, u]) = \sup\{ \frac{\widetilde{\omega}(suv)}{\widetilde{\omega}(uv)} : v \in M_{\omega}(S) \} \leq \widetilde{\omega}(s) \ (s \in M_{\omega}(S)).$

Let ω be a weight on S. Define $\omega_Q : Q(S) \to (0, \infty)$ as $\omega_Q([s, t]) = \sup \left\{ \frac{\widetilde{\omega}(su)}{\widetilde{\omega}(tu)} : u \in M_{\omega}(S) \right\}.$

Let $[s, t], [u, v] \in Q(S)$. By definition $\omega_Q([s, t]) > 0$. Let $x \in M_\omega(S)$. Then

$$rac{\widetilde{\omega}(\mathit{sux})}{\widetilde{\omega}(\mathit{tvx})} = rac{\widetilde{\omega}(\mathit{sux})}{\widetilde{\omega}(\mathit{tux})} rac{\widetilde{\omega}(\mathit{utx})}{\widetilde{\omega}(\mathit{vtx})} \leq \omega_Q([s,t]) \omega_Q([u,v]).$$

Therefore

$$\omega_Q([s,t][u,v]) = \omega_Q([su,tv]) \le \omega_Q([s,t])\omega_Q([u,v]).$$

Note that $\omega_Q([su, u]) = \sup\{ \frac{\widetilde{\omega}(suv)}{\widetilde{\omega}(uv)} : v \in M_{\omega}(S) \} \le \widetilde{\omega}(s) \ (s \in M_{\omega}(S)). \text{ Since }$ $\widetilde{\omega}(\gamma_s) \le \omega(s), \text{ it follows that } \omega_Q([su, u]) \le \omega(s) \ (s \in S).$
Let ω be a weight on S. Define $\omega_Q : Q(S) \to (0, \infty)$ as $\omega_Q([s, t]) = \sup \left\{ \frac{\widetilde{\omega}(su)}{\widetilde{\omega}(tu)} : u \in M_\omega(S) \right\}.$

Let $[s, t], [u, v] \in Q(S)$. By definition $\omega_Q([s, t]) > 0$. Let $x \in M_\omega(S)$. Then

$$rac{\widetilde{\omega}(\mathit{sux})}{\widetilde{\omega}(\mathit{tvx})} = rac{\widetilde{\omega}(\mathit{sux})}{\widetilde{\omega}(\mathit{tux})} rac{\widetilde{\omega}(\mathit{utx})}{\widetilde{\omega}(\mathit{vtx})} \leq \omega_Q([s,t]) \omega_Q([u,v]).$$

Therefore

$$\omega_Q([s,t][u,v]) = \omega_Q([su,tv]) \le \omega_Q([s,t])\omega_Q([u,v]).$$

Note that

 $\omega_Q([su, u]) = \sup\{\frac{\widetilde{\omega}(suv)}{\widetilde{\omega}(uv)} : v \in M_{\omega}(S)\} \le \widetilde{\omega}(s) \ (s \in M_{\omega}(S)). \text{ Since } \widetilde{\omega}(\gamma_s) \le \omega(s), \text{ it follows that } \omega_Q([su, u]) \le \omega(s) \ (s \in S). \text{ Thus given a weight } \omega \text{ on a cancellative semigroup } S, \text{ there exists a natural weight } \omega_Q \text{ on } Q(S) \text{ whose restriction on } S \text{ is dominated by } \omega.$

Lemma 4

Let (S, ω) be a cancellative, abelian weighted semigroup, and let Q(S) be the group of the semigroup S. Then

 $M_{\omega}(S) = \{g \in Q(S) : gS \subset S, \ \omega(gs) \leq K_g \omega(s) \ (s \in S)\}.$

< □ > < □ >

- ∢ ≣ ▶

Lemma 4

Let (S, ω) be a cancellative, abelian weighted semigroup, and let Q(S) be the group of the semigroup S. Then

 $M_{\omega}(S) = \{g \in Q(S) : gS \subset S, \ \omega(gs) \leq K_g \omega(s) \ (s \in S)\}.$

Lemma 5

Let S be cancellative, abelian semigroup. Then both $\ell^1(S,\omega)$ and $\ell^1(M_{\omega}(S),\widetilde{\omega})$ are subalgebras of $\ell^1(Q(S),\omega_Q)$.

Theorem 3.1

Let S be cancellative. Then $M(\ell^1(S,\omega))$ is homeomorphically isomorphic to $\ell^1(M_{\omega}(S), \tilde{\omega})$.

э

The annihilator S_{ω}° of S with a zero element 0 (i.e. $0 \in S$ such that 0s = s0 = 0 for all $s \in S$ [19]) in $M_{\omega}(S)$ is a semigroup ideal of $M_{\omega}(S)$ given by

$$S^{\circ}_{\omega} = \{ \alpha \in M_{\omega}(S) : \alpha \gamma_{s} = 0 \text{ for all } s \in S \},\$$

and it contains γ_0 .

The annihilator S_{ω}° of S with a zero element 0 (i.e. $0 \in S$ such that 0s = s0 = 0 for all $s \in S$ [19]) in $M_{\omega}(S)$ is a semigroup ideal of $M_{\omega}(S)$ given by

$$S^{\circ}_{\omega} = \{ \alpha \in M_{\omega}(S) : \alpha \gamma_{s} = 0 \text{ for all } s \in S \},\$$

and it contains γ_0 . Analogously, the annihilator $\ell^1(S,\omega)^\circ$ of $\ell^1(S,\omega)$ in $\ell^1(M_\omega(S),\widetilde{\omega})$ is a closed algebra ideal of $\ell^1(M_\omega(S),\widetilde{\omega})$ given by

$$\ell^1(\mathcal{S},\omega)^\circ = \{\mu \in \ell^1(M_\omega(\mathcal{S}),\widetilde{\omega}) : \mu \star f = 0 \ (f \in \ell^1(\mathcal{S},\omega))\}.$$

When S is a semigroup with zero element 0, $M_{\omega}(S)$ is also a semigroup having zero element γ_0 . Also, $\alpha(0) = 0$ for all $\alpha \in M_{\omega}(S)$. When S has a zero element, we define

$$\ell^1(S,\omega)=\{f:S
ightarrow\mathbb{C}:f(0)=0,\;\sum_{s\in S}|f(s)|\omega(s)<\infty\}$$

Theorem 3.2

Let S be a semigroup with zero element. Let $\widetilde{\omega}$ (in particular, ω) be bounded away from 0. Then $\ell^1(S, \omega)^\circ = \ell^1(S^\circ_\omega, \widetilde{\omega})$ and $\ell^1(M_\omega(S), \widetilde{\omega})/\ell^1(S^\circ_\omega, \widetilde{\omega})$ is isomorphic to the Beurling algebra $\ell^1(M_\omega(S)/S^\circ_\omega, \widetilde{\omega}_q)$.

Theorem 3.3

Let S be separating and ω be semisimple, and let $\tilde{\omega}$ be bounded away from 0. Then the following holds.

Theorem 3.3

Let S be separating and ω be semisimple, and let $\tilde{\omega}$ be bounded away from 0. Then the following holds.

• The map $f \mapsto f + \ell^1(S, \omega)^\circ$ from $\ell^1(S, \omega)$ into $\ell^1(M_\omega(S), \widetilde{\omega})/\ell^1(S, \omega)^\circ$ is one-one and $\ell^1(M_\omega(S), \widetilde{\omega})/\ell^1(S, \omega)^\circ$ is semisimple.

Theorem 3.3

Let S be separating and ω be semisimple, and let $\tilde{\omega}$ be bounded away from 0. Then the following holds.

- The map $f \mapsto f + \ell^1(S, \omega)^\circ$ from $\ell^1(S, \omega)$ into $\ell^1(M_\omega(S), \widetilde{\omega})/\ell^1(S, \omega)^\circ$ is one-one and $\ell^1(M_\omega(S), \widetilde{\omega})/\ell^1(S, \omega)^\circ$ is semisimple.
- ② If $\ell^1(S, \omega)$ has a bounded approximate identity, then the map $\mu + \ell^1(S, \omega)^\circ \mapsto T_\mu$ is a homeomorphic isomorphism from $\ell^1(M_\omega(S), \widetilde{\omega})/\ell^1(S, \omega)^\circ$ onto $M(\ell^1(S, \omega))$.

Let \mathcal{A} be a commutative Banach algebra with identity. The following theorem shows the relationship between the Beurling algebras $\ell^1(S, \omega, \mathcal{A})$ and $\ell^1(M_{\omega}(S), \widetilde{\omega}, \mathcal{A})$.

Let \mathcal{A} be a commutative Banach algebra with identity. The following theorem shows the relationship between the Beurling algebras $\ell^1(S, \omega, \mathcal{A})$ and $\ell^1(M_{\omega}(S), \widetilde{\omega}, \mathcal{A})$.

Theorem 4.1

Let ω be weakly regular with $\omega_0 > 0$. Then $\ell^1(S, \omega, \mathcal{A})$ is a closed ideal of $\ell^1(\mathcal{M}_{\omega}(S), \widetilde{\omega}, \mathcal{A})$ and the quotient algebra $\ell^1(\mathcal{M}_{\omega}(S), \widetilde{\omega}, \mathcal{A})/\ell^1(S, \omega, \mathcal{A})$ is isomorphic to $\ell^1(\mathcal{M}_{\omega}(S)/S, \widetilde{\omega}_q, \mathcal{A})$.

Theorem 4.2

Let \mathcal{A} be a commutative Banach algebra with identity, and ω be weakly regular with $\omega_0 > 0$. Then $\ell^1(S, \omega, \mathcal{A})$ is a closed ideal in $\ell^1(M_{\omega}(S), \tilde{\omega}, \mathcal{A})$.

3) 3

Theorem 4.2

Let \mathcal{A} be a commutative Banach algebra with identity, and ω be weakly regular with $\omega_0 > 0$. Then $\ell^1(S, \omega, \mathcal{A})$ is a closed ideal in $\ell^1(\mathcal{M}_{\omega}(S), \widetilde{\omega}, \mathcal{A})$.

Lemma 4.3

Let ω be a weight on an abelian semigroup S, \mathcal{A} be a commutative Banach algebra with identity, and let $\mu \in \ell^1(M_{\omega}(S), \widetilde{\omega}, \mathcal{A})$. Then the map $T_{\mu} : \ell^1(S, \omega, \mathcal{A}) \to \ell^1(S, \omega, \mathcal{A})$ defined by $T_{\mu}(f) = \mu * f$ is a multiplier of $\ell^1(S, \omega, \mathcal{A})$. The map $\mu \to T_{\mu}$ of $\ell^1(M_{\omega}(S), \widetilde{\omega}, \mathcal{A})$ into $M(\ell^1(S, \omega, \mathcal{A}))$ is a norm decreasing homomorphism.

Theorem 4.4

Let S be cancellative abelian semigroup and A be a commutative Banach algebra with identity. Then $M(\ell^1(S, \omega, A))$ is homeomorphically isomorphic to $\ell^1(M_{\omega}(S), \widetilde{\omega}, A)$.

Theorem 4.5

Let S be separating, ω semisimple and A be a semisimple commutative Banach algebra with identity and let $\tilde{\omega}$ be bounded away from zero. Then the following holds

Theorem 4.5

Let S be separating, ω semisimple and A be a semisimple commutative Banach algebra with identity and let $\tilde{\omega}$ be bounded away from zero. Then the following holds

• The map
$$f \mapsto f + \ell^1(S, \omega, \mathcal{A})^0$$
 from $\ell^1(S, \omega, \mathcal{A})$ into $\ell^1(\mathcal{M}_{\omega}(S), \widetilde{\omega}, \mathcal{A})/\ell^1(S, \omega, \mathcal{A})^0$ is one-one and $\ell^1(\mathcal{M}_{\omega}(S), \widetilde{\omega}, \mathcal{A})/\ell^1(S, \omega, \mathcal{A})^0$ is semisimple.

Theorem 4.5

Let S be separating, ω semisimple and A be a semisimple commutative Banach algebra with identity and let $\tilde{\omega}$ be bounded away from zero. Then the following holds

- The map $f \mapsto f + \ell^1(S, \omega, \mathcal{A})^0$ from $\ell^1(S, \omega, \mathcal{A})$ into $\ell^1(\mathcal{M}_{\omega}(S), \widetilde{\omega}, \mathcal{A})/\ell^1(S, \omega, \mathcal{A})^0$ is one-one and $\ell^1(\mathcal{M}_{\omega}(S), \widetilde{\omega}, \mathcal{A})/\ell^1(S, \omega, \mathcal{A})^0$ is semisimple.
- If l¹(S, ω, A) has a bounded approximate identity, then the map µ + l¹(S, ω, A)⁰ → T_µ is a homeomorphic isomorphism from l¹(M_ω(S), ω̃, A)/l¹(S, ω, A)⁰ onto M(l¹(S, ω, A)).

- E. Albrecht, Decomposable systems of operators in Harmonic Analysis, in: Toeplitz Centannia, I. Gohberg (ed.), Oper. Theory Adv. Appl.4, Birkhäuser, Basel, 1982, 19-35.
- B. A. Barnes, The properties of *-regularity and uniqueness of C*-norm in general *-algebras, Trans. American Math. Soc., 279(1983) 841-859.
- S. J. Bhatt, P. A. Dabhi and H. V. Dedania, Multipliers of weighted semigroups and associated Beurling Banach algebras, Proc. Indian Acad. Sci.(Math. Sci.) 121(4)(2011), 417433.
- S. J. Bhatt, P. A. Dabhi and H. V. Dedania, *The multiplier algebra of a Beurling algebra*, Bull. Aust. Math. Soc. 90(2014), 113120,
- S. J. Bhatt and H. V. Dedania, *Weighted measure algebras and uniform norms*, Studia Mathematica, 177(2)(2006) 133-139.

・ロト ・同ト ・ヨト ・ヨト

- S. J. Bhatt and H. V. Dedania, *Beurling algebras and uniform norms*, Studia Mathematica, 160(2)(2004), 179-183.
- S. J. Bhatt and H. V. Dedania, *A Beurling algebra is semisimple: An elementary proof*, Bull. Australian Math. Soc., 66(2002) 91-93.
- S. J. Bhatt and H. V. Dedania, *Banach algebras with unique uniform norm II*, Studia Mathematica, 147(3)(2001) 211-235.
- S. J. Bhatt and H. V. Dedania, *Banach algebras with unique uniform norm*, Proc. American Math. Soc., 124(2)(1996) 579-584.
- S. J. Bhatt and H. V. Dedania, *Uniqueness of the uniform norm and adjoining identity in Banach algebras*, Proc. Indian Acad. Sci. (Math. Sci.), 105(4)(1995) 405-409.

- P. A. Dabhi and H. V. Dedania, On the uniqueness of uniform norms and C*-norms, Studia Mathematica, 191(3)(2009) 263-270.
- H. G. Dales, *Banach Algebras and Automatic Continuity*, London Math. Soc. Monographs New Series 24, Oxford Sci. Publ., 2000.
- H. G. Dales and H. V. Dedania, *Weighted convolution algebras* on subsemigroups of the real line, Dissertationes Mathematicae (Rozprawy Matematyczne), 459(2009) 1-60.
- H. G. Dales and A. T. -M. Lau, *The second duals of Beurling algebras*, Memoirs of the American Math. Soc., Vol 177(836)(2005).
- H. G. Dales, A. T. -M. Lau and D. Strauss, *Banach algebras* on semigroups and on their compactifications, Memoirs of the American Math. Soc., 205(966)(2010).

< ロ > < 同 > < 回 > < 回 >

- Y. Domar, Harmonic analysis based on certain commutative Banach algebras, Acta Math., 96(1956) 1-66.
- G. Fendler, K. Gröchenig and M. Leinert, Symmetry of weighted L¹-algebras and the GRS-condition, Bull. London Math. Soc., 38(4)(2006), 625-635.
- E. Hewitt and H. S. Zuckerman, The ℓ_1 algebra of a commutative semigroup, Tran. American Math. Soc., 83(1956) 70-97.
- - J. M. Howie, Fundamentals of semigroup theory, Clarendon Press, Oxford, 1995.
 - C. D. Lahr, Multipliers of certain convolution measure algebras, Trans. American Math. Soc., 185(1976), 165-181.

- C. D. Lahr, Multipliers for ℓ₁-algebras with approximate identities, Proc.of the American Math. Soc., 42(2)(1974), 501–506.
- R. Larsen, An introduction to the theory of multipliers, Springer, Berlin, 1971.
- E. Kaniuth, *A course in commutative Banach algebras*, Springer, New York, 2009.
- T. W. Palmer, Banach algebras and the general theory of *-algebras, Vol. 2, Cambrigde University Press, U. S. A., 2001.
- H. Reiter and J. D. Stegeman, *Classical harmonic analysis and locally compact abelian groups*, Oxford, Claredon Press, 2000.

THANK YOU

P. A. Dabhi OTOA 14

Image: A image: A

- ∢ ⊒ →

æ