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Throughout let S be a non-unital, faithful, abelian semigroup. A
map T : S → S is a multiplier on S if

T (st) = sT (t) = T (s)t (s, t ∈ S).

The class of multipliers on S is denoted by M(S).
The set M(S) is a unital, abelian semigroup under the operation
composition.
For s ∈ S , define γs : S → S as γs(t) = st (t ∈ S). Then
γs ∈ M(S), and γsγt = γst (s, t ∈ S).
A semigroup S is faithful if for s, t ∈ S , su = tu for all u ∈ S
implies s = t.
Thus S is identified with an ideal of M(S) via s 7→ γs .
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A weight on a semigroup S is a map ω : S → (0,∞) satisfying
ω(st) ≤ ω(s)ω(t) (s, t ∈ S).

A semigroup S with a weight ω is a weighted semigroup (S , ω).
The number ω(s), for s ∈ S , presumably represents frequency or
size of s in S . We regard ω on S as an analogue of a norm on a
normed algebra; and the analogy is fruitfully pursued looking to
(S , ω) as an intrinsic object.
We call a multiplier T ∈ M(S) ω-bounded if there exists K > 0
such that ω(Ts) ≤ Kω(s) for all s ∈ S .
The set of ω-bounded multipliers on S will be denoted by Mω(S).
We note that Mω(S) is a subsemigroup of M(S); and S is
imbedded in Mω(S) via s 7→ γs .
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A ∗-semigroup is a semigroup with involution.

Let ω be a symmetric weight (i.e. ω(s∗) = ω(s) (s ∈ S)) on S .
For T ∈ Mω(S), define T ∗ : S → S as

T ∗(s) = (Ts∗)∗ (s ∈ S).

Then Mω(S) is a ∗-semigroup and {γs : s ∈ S} is a ∗-ideal in
Mω(S).
Define ω̃ on Mω(S) by

ω̃(T ) = sup{ω(Ts)

ω(s)
: s ∈ S}.

Then ω(Ts) ≤ ω̃(T )ω(s) for every T ∈ Mω(S) and s ∈ S .
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Proposition 1.1

1 Let T : S → S be a map such that sTt = (Ts)t (s, t ∈ S).
Then T is a multiplier.

2 The set M(S) is a unital abelian semigroup with composition;
and S is embedded in M(S) via s 7→ γs as an ideal of M(S).

3 For any weight ω on S, Mω(S) is a subsemigroup of M(S)
and S is an ideal in Mω(S).

4 If S is involutive and ω is symmetric, then each of M(S) and
Mω(S) are involutive and S is a ∗-ideal.
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The following shows that Mω(S) 6= M(S) is essentially a non-unital
phenomenon; and that M(S) and Se are different unitization.

A semigroup S has a finite set of relative units [18] if there exists a
finite subset F of S such that for every s ∈ S there exists f ∈ F
such that sf = s.

Theorem 1.2

1 S = M(S) iff S is unital.
2 If S has a finite set of relative units, then M(S) = Mω(S) for

all weight ω on S.
3 There exists a weighted semigroup (S , ω) such that

Mω(S) 6= M(S).
4 There exists a semigroup S such that Se 6= M(S).
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Definition 1.3

1 A semigroup S is separating [18] if s = t whenever
s2 = t2 = st and s, t ∈ S .

2 S is an inverse semigroup [19] if for every s ∈ S , there exists
unique t ∈ S such that sts = s and tst = t; we denote this
unique element by s∗. An inverse semigroup is an involutive
semigroup with the involution s∗ = t. Notice that if S is
separating (in particular, inverse semigroup), then S is faithful.

3 An involutive semigroup S is ∗-separating if s = t whenever
s∗s = t∗t = s∗t and s, t ∈ S .
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Proposition 1.4

1 ω̃ is a weight Mω(S).

2 S is an inverse semigroup iff Mω(S) is an inverse semigroup.
3 Let S be involutive and ω be symmetric. Then ω̃ is

symmetric; and S is ∗-separating iff Mω(S) is ∗-separating.
4 S is separating iff Mω(S) is separating.
5 There exists a semigroup S such that both S and M(S) are

separating; but the quotient M(S)/S fails to be separating.
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Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

Definition 1.5

A weight ω a uniform weight (respectively a C ∗-weight for an
involutive S) if ω(s2) = ω(s)2 (s ∈ S) (respectively
ω(s∗s) = ω(s)2 (s ∈ S)).

For examples, ω(n) = en (n ∈ N) is a uniform weight on N; and
ω(m + λn) = e−m−n is a C ∗-weight on S := {m + λn : m, n ∈ N},
λ ∈ R \Q fixed, having involution (m + λn)∗ = n + λm. In the
present case, a uniform weight is a C ∗-weight for the trivial
involution s∗ = s on S .
If S is involutive and ω is a C ∗-weight on S , then ω is symmetric
as well as a uniform weight.
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Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

Proposition 1.6

1 For all s ∈ S, ω̃(γs) ≤ ω(s); and the equality does not hold.

2 If ω is a C ∗-weight or a uniform weight on S, then
ω̃(γs) = ω(s) for all s ∈ S; and ω̃ is respectively a C ∗-weight
or a uniform weight on Mω(S).

3 ω̃(T ) = inf{K > 0 : ω(Ts) ≤ Kω(s) (s ∈ S)} (T ∈
Mω(S)).
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Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

The following classes of weights arise in the study of associated
Beurling algebras.

Definition 1.7

Let ω be a weight on S . Then ω is

1 semisimple [13] if lim
n→∞

ω(sn)
1
n > 0 (s ∈ S).

2 radical [13] if lim
n→∞

ω(sn)
1
n = 0 (s ∈ S).

3 Beurling-Domar [16] if ω ≥ 1 and
∑
n∈N

logω(sn)
1+n2

<∞ (s ∈ S).

4 GRS [17] if lim
n→∞

ω(sn)
1
n = 1 (s ∈ S).

Thus a Beuling-Domar weight is a GRS-weight, and there exists a
GRS-weight which is not a Beurling-Domar weight.

Indeed, let S = ([2,∞),+), and let ω(n) = e
n

log n (n ∈ S). Then ω
is a GRS-weight but it is not a Beurling-Domar weight.
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Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

Theorem 1.8

1 ω is semisimple on S iff ω̃ is semisimple on Mω(S). If ω is a
uniform weight or a C ∗-weight on S, then ω is a semisimple
weight on S.

2 If ω̃ is a Beurling-Domar weight on Mω(S), then ω is a
Beurling-Domar weight on S.

3 Let (S , ω) satisfy any of the following conditions.
1 For each T ∈ Mω(S), there exists m ∈ N such that Tm ∈ S.
2 Every element of S is idempotent.

If ω is a Beurling-Domar weight, then ω̃ is a Beurling-Domar
weight.

4 Let ω be semisimple. Then νω(s) := lim
n→∞

ω(sn)
1
n (s ∈ S) is a

uniform weight, and it is the largest uniform weight
dominated by ω.

5 Let ω be semisimple. Then µω(s) = νω(s∗s)
1
2 (s ∈ S) is a

C ∗-weight, and it is the largest C ∗-weight dominated by ω.
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Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

A weight ω on S regular if ω̃ restricted to S is ω.

More generally, ω is weakly regular if for some m > 0, M > 0,
mω(s) ≤ ω̃(γs) ≤ Mω(s) (s ∈ S).
The weight ω1(s) = es on N is regular; whereas ω2(s) = 1 + s on
N is weakly regular and non-regular.
Let ω be a weight on S such that ω0 := inf{ω(s) : s ∈ S} > 0, and
let ω̃q : Mω(S)/S → (0,∞) be defined as ω̃q([T ]) = 1 (T ∈ S)
and ω̃q([T ]) = ω̃(T ) (T /∈ S).Then ω̃q is a weight on Mω(S)/S .
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Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

The Beurling algebra associated with a weighted semigroup (S , ω)
is

`1(S , ω) = {f : S → C : ‖f ‖ω =
∑
s∈S
|f (s)|ω(s) <∞}.

It is a Banach space.It is a commutative Banach algebra with the
convolution multiplication

(f ? g)(s) =
∑
uv=s

f (u)g(v)

and (f ? g)(s) = 0 if uv = s has no solution.
The following exhibits the relationship between the Beurling
algebras `1(S , ω) and `1(Mω(S), ω̃).
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convolution multiplication

(f ? g)(s) =
∑
uv=s

f (u)g(v)

and (f ? g)(s) = 0 if uv = s has no solution.
The following exhibits the relationship between the Beurling
algebras `1(S , ω) and `1(Mω(S), ω̃).
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Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

Let ω0 = inf{ω(s) : s ∈ S}.

Theorem 2.1

Let ω be weakly regular with ω0 > 0. Then `1(S , ω) is a closed
ideal of `1(Mω(S), ω̃) and the quotient algebra
`1 (Mω(S), ω̃) /`1(S , ω) is isomorphic to the Beurling algebra of the
Rees quotient semigroup Mω(S)/S with the quotient weight ω̃q.
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Multipliers of Beurling algebra
Vector valued case

To describe the Gel’fand spaces of the Banach algebras involved,
we consider generalized semicharacters.

A generalized semicharacter on S is a non-zero map α : S → C
satisfying α(st) = α(s)α(t) (s, t ∈ S).
An ω-bounded generalized semicharacter on (S , ω) is a generalized
semicharacter on S satisfying |α(s)| ≤ ω(s) (s ∈ S).
Let Φωs(S) denote the set of all ω-bounded generalized
semicharacters on S with the point open topology.
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Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

Let ω be a symmetric weight on a ∗-semigroup S , and let α be a
generalized semicharacter on S .

The adjoint α∗ of α is a map on S defined as
α∗(s) = α(s∗) (s ∈ S).
Then α∗ is a generalized semicharacter on S .
A generalized semicharacter on S is self adjoint if α = α∗.
Let Ψωs(S) denote the set of all self adjoint generalized
semicharacters on S with the point open topology.
Our next three results contain the semigroup multiplier analogues
of a couple of results on multipliers on commutative Banach
algebras [22, Theorems 1.4.1, 1.4.2, Corollary 1.4.1].

P. A. Dabhi OTOA 14



Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

Let ω be a symmetric weight on a ∗-semigroup S , and let α be a
generalized semicharacter on S .
The adjoint α∗ of α is a map on S defined as
α∗(s) = α(s∗) (s ∈ S).

Then α∗ is a generalized semicharacter on S .
A generalized semicharacter on S is self adjoint if α = α∗.
Let Ψωs(S) denote the set of all self adjoint generalized
semicharacters on S with the point open topology.
Our next three results contain the semigroup multiplier analogues
of a couple of results on multipliers on commutative Banach
algebras [22, Theorems 1.4.1, 1.4.2, Corollary 1.4.1].

P. A. Dabhi OTOA 14



Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

Let ω be a symmetric weight on a ∗-semigroup S , and let α be a
generalized semicharacter on S .
The adjoint α∗ of α is a map on S defined as
α∗(s) = α(s∗) (s ∈ S).
Then α∗ is a generalized semicharacter on S .

A generalized semicharacter on S is self adjoint if α = α∗.
Let Ψωs(S) denote the set of all self adjoint generalized
semicharacters on S with the point open topology.
Our next three results contain the semigroup multiplier analogues
of a couple of results on multipliers on commutative Banach
algebras [22, Theorems 1.4.1, 1.4.2, Corollary 1.4.1].

P. A. Dabhi OTOA 14



Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

Let ω be a symmetric weight on a ∗-semigroup S , and let α be a
generalized semicharacter on S .
The adjoint α∗ of α is a map on S defined as
α∗(s) = α(s∗) (s ∈ S).
Then α∗ is a generalized semicharacter on S .
A generalized semicharacter on S is self adjoint if α = α∗.

Let Ψωs(S) denote the set of all self adjoint generalized
semicharacters on S with the point open topology.
Our next three results contain the semigroup multiplier analogues
of a couple of results on multipliers on commutative Banach
algebras [22, Theorems 1.4.1, 1.4.2, Corollary 1.4.1].

P. A. Dabhi OTOA 14



Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

Let ω be a symmetric weight on a ∗-semigroup S , and let α be a
generalized semicharacter on S .
The adjoint α∗ of α is a map on S defined as
α∗(s) = α(s∗) (s ∈ S).
Then α∗ is a generalized semicharacter on S .
A generalized semicharacter on S is self adjoint if α = α∗.
Let Ψωs(S) denote the set of all self adjoint generalized
semicharacters on S with the point open topology.

Our next three results contain the semigroup multiplier analogues
of a couple of results on multipliers on commutative Banach
algebras [22, Theorems 1.4.1, 1.4.2, Corollary 1.4.1].

P. A. Dabhi OTOA 14



Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

Let ω be a symmetric weight on a ∗-semigroup S , and let α be a
generalized semicharacter on S .
The adjoint α∗ of α is a map on S defined as
α∗(s) = α(s∗) (s ∈ S).
Then α∗ is a generalized semicharacter on S .
A generalized semicharacter on S is self adjoint if α = α∗.
Let Ψωs(S) denote the set of all self adjoint generalized
semicharacters on S with the point open topology.
Our next three results contain the semigroup multiplier analogues
of a couple of results on multipliers on commutative Banach
algebras [22, Theorems 1.4.1, 1.4.2, Corollary 1.4.1].

P. A. Dabhi OTOA 14



Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

Theorem 2.2

If α ∈ Φωs(S), then there exits unique α̃ ∈ Φω̃s(Mω(S)) such that
α̃(γs) = α(s) for all s ∈ S. If β ∈ Φω̃s(Mω(S)), then either
β(γs) = 0 for all s ∈ S or there is α̃ ∈ Φω̃s(Mω(S)) such that
β = α̃.

Let Φ̃ω̃s(S) = {α̃ ∈ Φω̃s(Mω(S)) : α̃(γs) 6= 0 for some s ∈ S}, and
let hωs(S) = {α̃ ∈ Φω̃s(Mω(S)) : α̃(γs) = 0 (s ∈ S)}.

The previous
result asserts that the correspondence α 7→ α̃ defines a bijective
mapping of Φωs(S) onto those points of Φω̃s(Mω(S)) which do not
contain the ideal {γs : s ∈ S}, that is, those ω-bounded
generalized semicharacters on Mω(S) which do not vanish
identically on {γs : s ∈ S}. We shall denote this subset of

Φω̃s(Mω(S)) by Φ̃ωs(S).
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Multipliers of Beurling algebra
Vector valued case

Corollary 2.3

Let ω be a weight on a semigroup S.

1 Then Φω̃s(Mω(S)) = Φ̃ωs(S) ∪ hωs(S).
2 Let S be involutive, and let ω be symmetric. Let

h∗ωs(S) = {α ∈ Ψωs(Mω(S)) : α(S) = {0}}. Then

Ψω̃s(Mω(S)) = Ψ̃ωs(S) ∪ h∗ωs(S).
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Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

The following corresponds to the result that for a weighted locally
compact abelian group (G , ω), the Gel’fand space ∆(L1(G , ω)) is
identified with the space of ω-bounded generalized characters on
G . We omit the straightforward proof.

Corollary 2.4

1 ∆(`1(S , ω)) ∼= Φωs(S), topologically as well.

2 ∆(`1(Mω(S), ω̃)) ∼= Φ̃ωs(S) ∪ hωs(S).
3 Let ω be weakly regular. Then

∆
(
`1 (Mω(S)/S , ω̃q)

) ∼= hωs(S).
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Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

Semisimplicity of a Beurling algebra is an important problem. For
a locally compact group G , L1(G , ω) is semisimple if G is abelian
[7]; for non-abelian G , it is not known whether L1(G , ω) is
semisimple or not [14, Page-175]. For an abelian semigroup S ,
`1(S , ω) is semisimple iff S is separating and ω is semisimple [13,
Prop. 4.8]. This quickly gives the following.

Theorem 2.5

The Banach algebra `1(S , ω) is semisimple iff `1(Mω(S), ω̃) is
semisimple. The quotient `1(Mω(S), ω̃)/`1(S , ω) may fail to be
semisimple.
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Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

A Banach algebra (A, ‖ · ‖) has UUNP if it admits exactly one
uniform norm, not necessarily complete.

A uniform norm on a
Banach algebra (A, ‖ · ‖) is a norm | · | satisfying
|x2| = |x |2 (x ∈ A).
The UUNP turns out to be closely related with regularity [8, 23]
and have applications to abelian Harmonic Analysis [5, 6, 11].A
Banach algebra A is regular if in the Gel’fand space ∆(A), a point
and a closed set can be separated by a Gel’fand transform [23].
For an abelian G , the algebra `1(G ) is regular; and for a weighted
group G , `1(G , ω) is regular iff `1(G , ω) has UUNP iff ω is a
Beurling-Domar weight [8]. It would be interesting to search for a
weighted semigroup (S , ω) such that `1(S , ω) has UUNP but is not
regular.
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Multipliers of Beurling algebra
Vector valued case

Theorem 2.6

1 If `1(Mω(S), ω̃) has UUNP, then `1(S , ω) has UUNP.
2 If `1(Mω(S), ω̃) is regular, then `1(S , ω) is regular.
3 Let S be an inverse semigroup. Let ω be a Beurling-Domar

weight on S. Then `1(S , ω) is regular.
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Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

A Banach ∗-algebra (B, ‖ · ‖) has Unique C ∗-Norm Property
(UC ∗NP) [2] if B admits exactly one C ∗-norm.

A commutative Banach ∗-algebra B is ∗-regular [2] if given

F ⊂ ∆̃(B) closed and ϕ /∈ F , there exists x ∈ B such that
x̂(ϕ) 6= 0 and x̂(F ) = {0}. In fact, UC ∗NP and ∗-regularity
(appropriately defined) acquires much greater significance in
non-commutative Banach ∗-algebras [2]. Their role in
commutative Banach ∗-algebras is discussed in [2, Section 2],
[8, 11]. By [17], for a weighted compactly generated (not
necessarily abelian) group (G , ω), L1(G , ω) is symmetric iff ω is a
GRS-weight. By [2], a commutative Banach ∗- algebra is regular iff
it is ∗-regular and symmetric.
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Theorem 2.7

Let S be be involutive, and let ω be symmetric.
1 If `1(Mω(S), ω̃) has UC ∗NP, then `1(S , ω) has UC ∗NP.
2 If `1(Mω(S), ω̃) is ∗-regular, then `1(S , ω) is ∗-regular.

P. A. Dabhi OTOA 14



Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

The multiplier Banach algebra M(A) of a commutative Banach
algebra (A, ‖ · ‖) is the unital Banach algebra consisting of all
T : A → A satisfying T (ab) = aTb = (Ta)b (a, b ∈ A) with the
operator norm ‖T‖ = sup{‖Ta‖ : a ∈ A, ‖a‖ ≤ 1}.

Multipliers,
either at the level of semigroups or at the level of algebras,
constitute a kind of maximal unitization.
Our question is: When is M(`1(S , ω)) = `1(Mω(S), ω̃)?
A semigroup S is cancellative if whenever for s, t, u ∈ S , su = tu
implies s = t.
Cancellative semigroups are precisely the subsemigroups of groups.
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Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

Lemma 1

Let S be an abelian faithful semigroup. Then the natural
homomorphism s 7→ γs of S into Mω(S) induces a homomorphism
of `1(S , ω) into `1(Mω(S), ω̃) which is one-one if and only if
s 7→ γs is one-one and onto if and only if s 7→ γs is onto.

Lemma 2

Let ω be a weight on an abelian semigroup S, and let
µ ∈ `1(Mω(S), ω̃). Then the map Tµ : `1(S , ω)→ `1(S , ω) defined
by Tµ(f ) = µ ? f is a multiplier of `1(S , ω). The map µ 7→ Tµ of
`1(Mω(S), ω̃) into M(`1(S , ω)) is a norm-decreasing
homomorphism.
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Lemma 3

Let S be an abelian semigroup with the property: Given
α ∈ Mω(S), there exists sα ∈ S such that for any β ∈ Mω(S),
α(sα) = β(sα) implies α = β (This holds in particular when S is
cancellative). Then the map µ 7→ Tµ from `1(Mω(S), ω̃) to
M(`1(S , ω)) is one-one.
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Let S be a cancellative semigroup. Then S , Mω(S) and M(S) can
be embedded in a group Q(S), called the group of the semigroup
S , which has the property that M(S) = {α ∈ Q(S) : αS ⊂ S}.

The group Q(S) is constructed as follows [12, p.15]. Let
(s, t), (u, v) ∈ S × S . We say (s, t) ∼ (u, v) if sv = tu.Then ∼ is
an equivalence relation on S × S . Let [s, t] be the equivalence
class containing (s, t), i.e.,

[s, t] = {(u, v) ∈ S × S : (u, v) ∼ (s, t)}.

Then Q(S) = (S × S)/ ∼ is a group with the binary operation

[s, t][u, v ] = [su, tv ] ([s, t], [u, v ] ∈ Q(S)).

The semigroup S is embedded in Q(S) via the map s 7→ [su, u].

P. A. Dabhi OTOA 14



Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

Let S be a cancellative semigroup. Then S , Mω(S) and M(S) can
be embedded in a group Q(S), called the group of the semigroup
S , which has the property that M(S) = {α ∈ Q(S) : αS ⊂ S}.
The group Q(S) is constructed as follows [12, p.15]. Let
(s, t), (u, v) ∈ S × S . We say (s, t) ∼ (u, v) if sv = tu.

Then ∼ is
an equivalence relation on S × S . Let [s, t] be the equivalence
class containing (s, t), i.e.,

[s, t] = {(u, v) ∈ S × S : (u, v) ∼ (s, t)}.

Then Q(S) = (S × S)/ ∼ is a group with the binary operation

[s, t][u, v ] = [su, tv ] ([s, t], [u, v ] ∈ Q(S)).

The semigroup S is embedded in Q(S) via the map s 7→ [su, u].

P. A. Dabhi OTOA 14



Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

Let S be a cancellative semigroup. Then S , Mω(S) and M(S) can
be embedded in a group Q(S), called the group of the semigroup
S , which has the property that M(S) = {α ∈ Q(S) : αS ⊂ S}.
The group Q(S) is constructed as follows [12, p.15]. Let
(s, t), (u, v) ∈ S × S . We say (s, t) ∼ (u, v) if sv = tu.Then ∼ is
an equivalence relation on S × S . Let [s, t] be the equivalence
class containing (s, t), i.e.,

[s, t] = {(u, v) ∈ S × S : (u, v) ∼ (s, t)}.

Then Q(S) = (S × S)/ ∼ is a group with the binary operation

[s, t][u, v ] = [su, tv ] ([s, t], [u, v ] ∈ Q(S)).

The semigroup S is embedded in Q(S) via the map s 7→ [su, u].

P. A. Dabhi OTOA 14



Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

Let S be a cancellative semigroup. Then S , Mω(S) and M(S) can
be embedded in a group Q(S), called the group of the semigroup
S , which has the property that M(S) = {α ∈ Q(S) : αS ⊂ S}.
The group Q(S) is constructed as follows [12, p.15]. Let
(s, t), (u, v) ∈ S × S . We say (s, t) ∼ (u, v) if sv = tu.Then ∼ is
an equivalence relation on S × S . Let [s, t] be the equivalence
class containing (s, t), i.e.,

[s, t] = {(u, v) ∈ S × S : (u, v) ∼ (s, t)}.

Then Q(S) = (S × S)/ ∼ is a group with the binary operation

[s, t][u, v ] = [su, tv ] ([s, t], [u, v ] ∈ Q(S)).

The semigroup S is embedded in Q(S) via the map s 7→ [su, u].

P. A. Dabhi OTOA 14



Semigroup multipliers
Beurling algebra of weighted semigroups

Multipliers of Beurling algebra
Vector valued case

Let ω be a weight on S . Define ωQ : Q(S)→ (0,∞) as

ωQ([s, t]) = sup

{
ω̃(su)

ω̃(tu)
: u ∈ Mω(S)

}
.

Let [s, t], [u, v ] ∈ Q(S). By definition ωQ([s, t]) > 0. Let
x ∈ Mω(S). Then

ω̃(sux)

ω̃(tvx)
=
ω̃(sux)

ω̃(tux)

ω̃(utx)

ω̃(vtx)
≤ ωQ([s, t])ωQ([u, v ]).

Therefore

ωQ([s, t][u, v ]) = ωQ([su, tv ]) ≤ ωQ([s, t])ωQ([u, v ]).

Note that
ωQ([su, u]) = sup{ ω̃(suv)ω̃(uv) : v ∈ Mω(S)} ≤ ω̃(s) (s ∈ Mω(S)). Since

ω̃(γs) ≤ ω(s), it follows that ωQ([su, u]) ≤ ω(s) (s ∈ S).Thus
given a weight ω on a cancellative semigroup S , there exists a
natural weight ωQ on Q(S) whose restriction on S is dominated by
ω.
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Lemma 4

Let (S , ω) be a cancellative, abelian weighted semigroup, and let
Q(S) be the group of the semigroup S. Then

Mω(S) = {g ∈ Q(S) : gS ⊂ S , ω(gs) ≤ Kgω(s) (s ∈ S)}.

Lemma 5

Let S be cancellative, abelian semigroup. Then both `1(S , ω) and
`1(Mω(S), ω̃) are subalgebras of `1(Q(S), ωQ).
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Theorem 3.1

Let S be cancellative. Then M(`1(S , ω)) is homeomorphically
isomorphic to `1(Mω(S), ω̃).
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The annihilator S◦ω of S with a zero element 0 (i.e. 0 ∈ S such
that 0s = s0 = 0 for all s ∈ S [19]) in Mω(S) is a semigroup ideal
of Mω(S) given by

S◦ω = {α ∈ Mω(S) : αγs = 0 for all s ∈ S},

and it contains γ0.

Analogously, the annihilator `1(S , ω)◦ of `1(S , ω)
in `1(Mω(S), ω̃) is a closed algebra ideal of `1(Mω(S), ω̃) given by

`1(S , ω)◦ = {µ ∈ `1(Mω(S), ω̃) : µ ? f = 0 (f ∈ `1(S , ω))}.
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When S is a semigroup with zero element 0, Mω(S) is also a
semigroup having zero element γ0. Also, α(0) = 0 for all
α ∈ Mω(S). When S has a zero element, we define

`1(S , ω) = {f : S → C : f (0) = 0,
∑
s∈S
|f (s)|ω(s) <∞}
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Theorem 3.2

Let S be a semigroup with zero element. Let ω̃ (in particular, ω)
be bounded away from 0. Then `1(S , ω)◦ = `1(S◦ω, ω̃) and
`1(Mω(S), ω̃)/`1(S◦ω, ω̃) is isomorphic to the Beurling algebra
`1(Mω(S)/S◦ω, ω̃q).
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Theorem 3.3

Let S be separating and ω be semisimple, and let ω̃ be bounded
away from 0. Then the following holds.

1 The map f 7→ f + `1(S , ω)◦ from `1(S , ω) into
`1(Mω(S), ω̃)/`1(S , ω)◦ is one-one and
`1(Mω(S), ω̃)/`1(S , ω)◦ is semisimple.

2 If `1(S , ω) has a bounded approximate identity, then the map
µ+ `1(S , ω)◦ 7→ Tµ is a homeomorphic isomorphism from
`1(Mω(S), ω̃)/`1(S , ω)◦ onto M(`1(S , ω)).
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Let A be a commutative Banach algebra with identity. The
following theorem shows the relationship between the Beurling
algebras `1(S , ω,A) and `1(Mω(S), ω̃,A).

Theorem 4.1

Let ω be weakly regular with ω0 > 0. Then `1(S , ω,A) is a closed
ideal of `1(Mω(S), ω̃,A) and the quotient algebra
`1(Mω(S), ω̃,A)/`1(S , ω,A) is isomorphic to `1(Mω(S)/S , ω̃q,A).
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Theorem 4.2

Let A be a commutative Banach algebra with identity, and ω be
weakly regular with ω0 > 0. Then `1(S , ω,A) is a closed ideal in
`1(Mω(S), ω̃,A).

Lemma 4.3

Let ω be a weight on an abelian semigroup S, A be a commutative
Banach algebra with identity, and let µ ∈ `1(Mω(S), ω̃,A). Then
the map Tµ : `1(S , ω,A)→ `1(S , ω,A) defined by Tµ(f ) = µ ∗ f
is a multiplier of `1(S , ω,A). The map µ→ Tµ of `1(Mω(S), ω̃,A)
into M(`1(S , ω,A)) is a norm decreasing homomorphism.
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Theorem 4.4

Let S be cancellative abelian semigroup and A be a commutative
Banach algebra with identity. Then M(`1(S , ω,A)) is
homeomorphically isomorphic to `1(Mω(S), ω̃,A).
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Theorem 4.5

Let S be separating, ω semisimple and A be a semisimple
commutative Banach algebra with identity and let ω̃ be bounded
away from zero. Then the following holds

1 The map f 7→ f + `1(S , ω,A)0 from `1(S , ω,A) into
`1(Mω(S), ω̃,A)/`1(S , ω,A)0 is one-one and
`1(Mω(S), ω̃,A)/`1(S , ω,A)0 is semisimple.

2 If `1(S , ω,A) has a bounded approximate identity, then the
map µ+ `1(S , ω,A)0 7→ Tµ is a homeomorphic isomorphism
from `1(Mω(S), ω̃,A)/`1(S , ω,A)0 onto M(`1(S , ω,A)).
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