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Weighted shifts on directed trees

Directed trees

I T = (V,E) – directed tree,
I par(u) = {v ∈ V : (v, u) ∈ E} – parent of u ∈ V ,
I Chi(u) = {v ∈ V : (u, v) ∈ E} – children of u ∈ V ,
I root – root of T (provided it exists),
I V◦ = V \ {root},
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Weighted shifts on directed trees

Let λ = {λv}v∈V◦ ⊆ C. Define ΛT : CV → CV by

(ΛT f )(v) =

{
λv · f

(
par(v)

)
if v ∈ V◦,

0 if v = root .

Define S = Sλ : `
2(V) ⊆ D(S)→ `2(V) by

D(S) = {f ∈ `2(V) : ΛT f ∈ `2(V)},
Sf = ΛT f , f ∈ D(S).
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Weighted shifts on directed trees

I Weighted shifts on directed trees are generalizations of classical
weighted shifts.

I Weighted shifts on directed trees are concrete.
I Weighted shifts on rootless and leafless directed trees are

unitarily equivalent to composition operators in `2-spaces.
I Weighted shifts on directed trees have interesting properties.
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Subnormality

S inH is subnormal if S is densely defined and there exists a Hilbert
space K and a normal operator N in K such thatH ⊆ K (isometric
embedding) and Sh = Nh for all h ∈ D(S).

N inH is said to be normal iff N is closed, densely defined and
NN∗ = N∗N.
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Subnormality

Theorem [Lambert]
Let S be a bounded operator onH. Then S is subnormal iff for every
f ∈ H there exists a positive Borel measure ϑf on R+ such that

‖Snf‖2 =

∫
0∞

tn ϑf (d t), n ∈ Z+. (1)

Generating Stieltjes moment sequences
Let S be an operator inH. Then S generates Stieltjes moment
sequences iff (1) is satisfied for every f ∈ D∞(S) =

⋂
n∈ND(Sn).
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Subnormality

If S is a subnormal operator in a complex Hilbert spaceH, then S
generates Stieltjes moment sequences.

Theorem [Jabłoński-Jung-Stochel]
There exist a non-hyponormal weighted shift S on a directed tree
T = (V,E) such that S generates Stieltjes moment sequences and
D∞(S) is dense in `2(V).
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Subnormality

I Invariance of the domain is assumed in most of the applicable
criteria for subnormality (Albrecht-Vasilescu,
Cichoń-Stochel-Szafraniec, Stochel-Szafraniec).

I There exist closed symmetric operators whose squares have
trivial domains (Naimark, Chernoff, Schmüdgen).

I Symmetric weighted shifts on directed trees are automatically
normal (B.-Jabłoński-Jung-Stochel).

I Symmetric operators are subnormal.
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Subnormality

Problem
Does there exist a weighted shift S on a directed tree, which has the
following properties:

I D(S2) = {0},
I S is subnormal?
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Criterion

Theorem (B.-Dymek-Jabłoński-Stochel)
Let T = (V,E) be countably infinite and S be densely defined
weighted shift on T with weights λ = {λv}v∈V◦ ⊆ C. If there exist a
family {µv}v∈V of Borel probability measures on R+ and a family
{εv}v∈V of nonnegative real numbers such that

µu(σ) =
∑

v∈Chi(u)

|λv|2
∫
σ

1
t
µv(d t) + εuδ0(σ), σ ∈ B(R+), u ∈ V,

then S is subnormal.
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Criterion

I The criterion becomes a characterization in the bounded case.
I The criterion do not appeal to density of the domain of any

power of S greater or equal to 2.
I The criterion has its origin in a criterion for subnormality of

unbounded composition operators.
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Criterion

Theorem (B.-Dymek-Jabłoński-Stochel)
Let n ∈ N. Let T = (V,E) be countably infinite and S be densely
defined weighted shift on T with weights λ = {λv}v∈V◦ ⊆ C. If
there exist a family {µv}v∈V of Borel probability measures on R+ and
a family {εv}v∈V of nonnegative real numbers such that

µu(σ) =
∑

v∈Chi(u)

|λv|2
∫
σ

1
t
µv(d t) + εuδ0(σ), σ ∈ B(R+), u ∈ V,

holds, then Sn is densely defined if and only if∫ ∞
0

sn dµu(s) <∞, u ∈ V.
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Example

Theorem (B.-Jabłoński-Jung-Stochel)
Let n ∈ N. Then there exists a weighted shift S on a directed tree
such that

(i) S is subnormal,

(ii) Sn is densely defined,

(iii) D(Sn+1) = {0}.
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Example

I The proof is constructive.
I S acts on the extremal directed tree.
I The measures µv are discrete.
I The criterion is indispensable.
I There exists a composition operator with analogous properties.
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