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Some definitions

I D denotes the unit disk in the complex plane and D its closure.
I The disk algebra, A(D), is the closure of analytic polynomials in C(D), the

space of continuous functions on D with the supremum norm.
I The Neil algebra is the subalgebra of the disk algebra given by

A = {f ∈ A(D) : f ′(0) = 0} = C + z2A(D).

I Constrained algebras, of which A is one of the simplest examples, are of
current interest as a venue for function theoretic operator theory.

I Given 0 < q < 1, let A denotes the annulus {z ∈ C : q < |z| < 1}.
I A(A) consists of those functions continuous on the closure of A and analytic in

A in the uniform norm.
I The annuli can be identified with the distinguished varieties in C2 (ie,

intersecting the boundary of D2 only in the torus T2) determined by

z2 =
w2 − t2

1− t2w2

I The limiting case, z2 = w2 corresponds to two disks intersecting at the origin
(0, 0) ∈ C2.

I The Neil parabola is the distinguished variety given by z2 = w3.
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The rational dilation problem

I The Sz.-Nagy dilation theorem states that on a Hilbert space, every
contraction operator (ie, operator norm less than or equal to 1) dilates to a
unitary operator.

I Unitary operators are normal operators with spectrum contained in the
boundary of D; that is, T.

I A corollary of the Sz.-Nagy dilation theorem is the von Neumann inequality,
which implies that T is a contraction if and only if ‖p(T)‖ ≤ ‖p‖ for every
polynomial p, where ‖p‖ is the again the norm of p in C(D).

I Given a compact subset X of Cd, let R(X) denote the algebra of rational
functions with poles off of X with the norm ‖r‖X equal to the supremum of the
values of |r(x)| for x ∈ X.

I The set X is a spectral set for the commuting d-tuple T of operators on the
Hilbert space H if the spectrum of T lies in X and ‖r(T)‖ ≤ ‖r‖X for each
r ∈ R(X) (that is, a version of the von Neumann inequality holds).

I If N is also a d-tuple of commuting operators with spectrum in X and acting on
the Hilbert space K, then T dilates to N provided there is an isometry
V : H → K such that r(T) = V∗r(N)V for all r ∈ R(X).

I Rational dilation problem: If X is a spectral set for T does T dilate to a tuple N
of commuting normal operators with spectrum in the Shilov boundary of X
relative to the algebra R(X)?
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Known positive cases

I The Sz.-Nagy dilation theorem is just the statement that rational dilation holds
for the closed disk.

I Foias and Lebow extended this to more general simply connected planar
domains.

I Jim Agler showed that rational dilation holds for annuli.
I Andô’s theorem is a two variable version of the Sz.-Nagy dilation theorem.

Hence rational dilation holds on the bidisk D2 in C2.
I Jim Agler and Nicholas Young showed that rational dilation holds for the

symmetrized bidisk.



Known negative cases

I An example due to Parrott shows that rational dilation fails for Dd for d > 2.
I Using computer algebra methods, Agler, Harland and Rafael showed that

rational dilation fails for the unit disk with two particular smaller disks removed
(a triply connected domain).

I Dritschel and McCullough showed that it fails for all compact triply connected
regions with smooth boundary components.

I Pickering extended this to compact planar regions with higher connectivity as
long as the Schottky double is hyperelliptic (automatic in the triply connected
case).

I Sourav Pal has shown that it also fails for the tetrablock.



Arveson’s reformulation of the problem

I Arveson gave a profound reformulation of the rational dilation problem in terms
of contractive and completely contractive representations.

I A tuple T acting on the Hilbert space H with spectrum in X determines a unital
representation of πT of R(X) on H via πT(r) = r(T).

I The condition that X is a spectral set for T is equivalent to the condition that
this representation is contractive.

I A representation π of R(X) is completely contractive if for all n and all
F ∈ Mn(R(X)), π(n)(F) := (π(Fi,j)) is contractive, the norm of F being given by
‖F‖∞ = sup{‖F(x)‖ : x ∈ X} with ‖F(x)‖ the operator norm of F(x).

I Arveson proved that T dilates to a tuple N of normal operators with spectrum
in the (Shilov) boundary of X (with respect to R(X)) if and only if πT is
completely contractive.

I Reformulated rational dilation problem: Is every contractive representation of
R(X) completely contractive?
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The Schur-Agler class over D3

I As a special example, consider the tridisk D3. Define the admissible kernels to
be K = {k ≥ 0 : (1− zjz∗j ) ∗ k ≥ 0}.

I The Schur-Agler algebra H∞(K,H) consists of those L(H)-valued functions ϕ
on D3 for which there is a c > 0 such that

(c1L(H) − ϕϕ∗) ∗ (k ⊗ 1L(H)) ≥ 0.

I We write H∞(K) when H = C.

I The algebra H∞(K) is an operator algebra when the operator space structure
is defined as above. Write A(K) for the subalgebra of those functions
extending continuously to T3.

I It can be shown that any contractive representation of A(K) is completely
contractive.

I Any representation mapping the coordinate functions to irreducible commuting
unitaries is an example of a boundary representation. These correspond to
irreducible completely contractive representations with the property that they
can only be dilated by direct sums.



The Schur-Agler class over D3

I As a special example, consider the tridisk D3. Define the admissible kernels to
be K = {k ≥ 0 : (1− zjz∗j ) ∗ k ≥ 0}.

I The Schur-Agler algebra H∞(K,H) consists of those L(H)-valued functions ϕ
on D3 for which there is a c > 0 such that

(c1L(H) − ϕϕ∗) ∗ (k ⊗ 1L(H)) ≥ 0.

I We write H∞(K) when H = C.
I The algebra H∞(K) is an operator algebra when the operator space structure

is defined as above. Write A(K) for the subalgebra of those functions
extending continuously to T3.

I It can be shown that any contractive representation of A(K) is completely
contractive.

I Any representation mapping the coordinate functions to irreducible commuting
unitaries is an example of a boundary representation. These correspond to
irreducible completely contractive representations with the property that they
can only be dilated by direct sums.



The Parrott representation and the Schur-Agler class over D3

I Consider the Parrott representation π with

π(z1) =

(
0 I2

0 0

)
, π(z2) =

(
0 U
0 0

)
, π(z1) =

(
0 V
0 0

)
,

U =

(
1 0
0 −1

)
, V =

(
0 1
1 0

)
.

I This is irreducible and a straightforward calculation shows not only does it not
have a unitary dilation, but that the only contractive dilations are by means of
direct sums.

I Hence it is a boundary representation for H∞(K).
I Kalyuzhnyi-Verbovetskii showed that this representation is not contractive for

H∞(D3,M2(C)).
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The Neil algebra and the Neil parabola

I Recall that W = {(z,w) ∈ D2 : z2 = w3} in C2 is called the Neil parabola. It is a
distinguished variety, and is a manifold except near the origin, where it has a
cusp.

I Write R(W) for the algebra of rational functions in two variables with poles off
of W.

I The mapping from R(W) to the Neil algebra A sending p(z,w) to p(t2, t3) is a
(complete) isometry.

I Hence any (completely) contractive representation of A induces a (completely)
contractive representation of R(W), and dilations translate as well.

I So if we can solve the reformulated rational dilation problem for A, this will
lead to a solution of the rational dilation problem for R(W).

I Studying the rational dilation problem on such varieties helps us to begin to
understand more generally why rational dilation holds for some sets and not
for others.
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Completely contractive representations of A

I As a (unital) Banach algebra, A is generated by the functions z2 and z3.
I Hence any bounded unital representation is determined by its values on these

two functions. If π : A → B(H) is a bounded representation, X = π(z2) and
Y = π(z3), then X, Y are commuting operators which satisfy X3 = Y2.

I If we further insist that π is contractive, then X and Y are contractions

Theorem 1 (Broshinski).
A representation π : A → B(H) is completely contractive if and only if there is a

Hilbert space K ⊃ H and a unitary operator U ∈ B(K) such that for all n ≥ 0, n 6= 1,

π(zn) = PHUn|H. (1)



Example

I Let K be a separable Hilbert space with orthonormal basis {ej}j∈Z, and let U
be the bilateral shift.

I Let H ⊂ K be defined as H = e0 ∨
∨∞

n=2 en.
I H is invariant for U2 and U3, and so by the above theorem, π given by
π(zn) = PHUn|H = Un|H , n ≥ 0, n 6= 1, is a completely contractive
representation of A.

I Suppose there were some T ∈ B(H) with T2 = π(z2) and T3 = π(z3).
I Then e3 = U3e0 = π(z3)e0 = π(z2)Te0.
I However,

〈
π(z2)en, e3

〉
=
〈
U2en, e3

〉
= 0 for n ≥ 0, n 6= 1, and hence e3 is

orthogonal to the range of π(z2).
I Hence there is no way to define Te0 so that e3 = π(z2)Te0, and so there can be

no such T.



A set of test functions for A

I For λ ∈ D, let

ϕλ(z) =
z− λ

1− λ∗z ,

and
ψλ(z) = z2ϕλ(z).

Write∞ for the point at infinity in the one point compactification D∞ of D and
set ψ∞ = z2.

I The set
Ψ = {ψλ : λ ∈ D∞},

with the topology and Borel structure inherited from D∞ is called a set of test
functions.

I That is, for any x ∈ D, the supψ∈Ψ |ψ(x)| < 1 and the elements of Ψ separate
the points of D.



Kernels

I For a set X and C∗-algebra A, a function k : X × X → A is called a kernel. It is
a positive kernel if for every finite subset {x1, . . . , xn} of X, (k(xi, xj)) ∈ Mn(A) is
positive semidefinite.

I Let M(Ψ) be the space of finite Borel measures on the set of test functions.
Given S ⊆ D, denote by M+(S) = {µ : S× S→ M(Ψ)} the collection of positive
kernels on S× S into M(Ψ). Write µxy for the value of µ at the pair (x, y).

I By µ being positive, we mean that for all finite sets G ⊂ S and all Borel sets
ω ⊂ Ψ, the matrix

(µx,y(ω))x,y∈G

is positive semidefinite.
I For example, µ could be identically equal to a fixed positive measure ν, or

more generally be of the form µxy = f (x)f (y)∗ν for a fixed positive measure ν
and bounded measurable function f : C→ D, or more generally still be a finite
sum of such terms.
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Agler decomposition and minimality of the set of test functions

Theorem 2 (Dritschel, Pickering).
An analytic function f in the disk belongs to A and satisfies ‖f‖∞ ≤ 1 if and only

if there is a positive kernel µ ∈ M+(D) such that

1− f (x)f (y)∗ =

∫
Ψ

(1− ψ(x)ψ(y)∗) dµxy(ψ). (2)

for all x, y ∈ D. Furthermore, Ψ is minimal, in the sense that there is no proper
closed subset of E ⊂ Ψ such that for each such f , there exists a µ such that

1− f (x)f (y)∗ =

∫
E
(1− ψ(x)ψ(y)∗) dµxy(ψ). (3)



A Kaiser-Varopoulos type example

I Recall that Kaiser and Varopoulos first showed that there exist three
commuting contractions (T1, T2, T3) such that the unital representation π of
R(D3) given by π(zj) = Tj is not contractive.

I Coming back to the last theorem, for E ⊂ Ψ a closed subset, let C1,E denote
the cone consisting of the kernels(∫

E
(1− ψ(x)ψ(y)∗) dµx,y(ψ)

)
x,y∈D

. (4)

I In particular, if we choose E = {z2, z3}, it follows from this theorem that there
exists a function f ∈ A with ‖f‖∞ ≤ 1 such that 1− f (x)f (y)∗ /∈ C1,E.

We therefore have

Corollary 3.
There exists a pair of commuting contractive matrices X, Y with X3 = Y2, but such

that the representation of A determined by π(z2) = X, π(z3) = Y is not contractive.
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How to disprove rational dilation

I Given F ∈ M2(A), let ΣF,F denote the kernel

ΣF,F = (1− F(x)F(y)∗)x,y∈F .

I Let I denote the ideal of functions in A which vanish on F . Write q : A → A/I
for the canonical projection, which is completely contractive.

Lemma 4.
If F ∈ M2(A), but ΣF,F /∈ C2,F , then there exists a Hilbert space H and

representation τ : A/I → B(H) such that

(i) For a ∈ A, σ(τ(a)) ⊂ a(F);

(ii) For a ∈ A with ‖a‖ ≤ 1, ‖τ(q(a))‖ ≤ 1; but

(iii) ‖τ (2)(q(Ft))‖ > 1.

Therefore if it is the case that ‖F‖ ≤ 1, then the representation τ ◦ q is contractive,
but not 2-contractive, and hence not completely contractive.
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The counterexample for the Neil algebra

I Arveson’s theorem tells us that for rational dilation to hold, contractive
representations must be completely contractive.

I Roughly speaking, this will imply that when rational dilation holds, any matrix
valued function on which the von Neumann inequality holds must
“diagonalise”, thus reducing the matrix case back to the scalar case.

I For the Neil algebra, set

Φ =
1√
2

(
ϕ1 0
0 1

)
U
(

1 0
0 ϕ2

)
,

where 1√
2
U is a 2× 2 unitary matrix with all non-zero entries. To be concrete,

choose

U =

(
1 1
1 −1

)
.

I Then Φ is a 2× 2 matrix inner function with det Φ(λ) = 0 at precisely the two
nonzero points λ1 and λ2.

I The function
F = z2Φ

is in M2(A) and is a rational inner function, so ‖F‖∞ = 1.
I Ultimately we identify a set of six points F which is a set of uniqueness for F

and show that ΣF,F is not in a certain cone.
I We do this by showing that if ΣF,F were in this cone, then it it would have to

diagonalise, which is impossible with the choice of U we made in defining Φ.
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representations must be completely contractive.

I Roughly speaking, this will imply that when rational dilation holds, any matrix
valued function on which the von Neumann inequality holds must
“diagonalise”, thus reducing the matrix case back to the scalar case.

I For the Neil algebra, set

Φ =
1√
2

(
ϕ1 0
0 1

)
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1 0
0 ϕ2

)
,

where 1√
2
U is a 2× 2 unitary matrix with all non-zero entries. To be concrete,

choose

U =

(
1 1
1 −1

)
.

I Then Φ is a 2× 2 matrix inner function with det Φ(λ) = 0 at precisely the two
nonzero points λ1 and λ2.

I The function
F = z2Φ

is in M2(A) and is a rational inner function, so ‖F‖∞ = 1.

I Ultimately we identify a set of six points F which is a set of uniqueness for F
and show that ΣF,F is not in a certain cone.

I We do this by showing that if ΣF,F were in this cone, then it it would have to
diagonalise, which is impossible with the choice of U we made in defining Φ.



The counterexample for the Neil algebra

I Arveson’s theorem tells us that for rational dilation to hold, contractive
representations must be completely contractive.

I Roughly speaking, this will imply that when rational dilation holds, any matrix
valued function on which the von Neumann inequality holds must
“diagonalise”, thus reducing the matrix case back to the scalar case.

I For the Neil algebra, set

Φ =
1√
2

(
ϕ1 0
0 1

)
U
(

1 0
0 ϕ2

)
,

where 1√
2
U is a 2× 2 unitary matrix with all non-zero entries. To be concrete,

choose

U =

(
1 1
1 −1

)
.

I Then Φ is a 2× 2 matrix inner function with det Φ(λ) = 0 at precisely the two
nonzero points λ1 and λ2.

I The function
F = z2Φ

is in M2(A) and is a rational inner function, so ‖F‖∞ = 1.
I Ultimately we identify a set of six points F which is a set of uniqueness for F

and show that ΣF,F is not in a certain cone.
I We do this by showing that if ΣF,F were in this cone, then it it would have to

diagonalise, which is impossible with the choice of U we made in defining Φ.



Annuli

I Recall that given 0 < q < 1, let A denotes the annulus {z ∈ C : r < |z| < 1},
and that these can be identified with the distinguished varieties in C2

determined by

z2 =
w2 − t2

1− t2w2

I The limiting case, V := {(z,w) ∈ D2 : z2 = w2} corresponds to two disks
intersecting at the origin (0, 0) ∈ C2.

I The variety V has a crossing singularity at the origin.
I Agler first showed that rational dilation holds for annuli.

I A diagonalisation argument can be used to prove Agler’s theorem.
I Is there a geometric characterization of distinguished varieties of the bidisk

where rational dilation holds/fails?
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H∞ dilation

I As noted, by the Sz-Nagy dilation theorem, every contractive representation of
the disk algebra A(D) is completely contractive.

I It then follows that if π is a contractive, weak-∗ continuous representation of
H∞, then π is completely contractive.

I In this case, the representation has the form π(f ) = f (T) for some completely
nonunitary contraction T (or rather the operator is T ⊕ U, where T is c.n.u. and
U is a unitary with absolutely continuous spectrum).

I Because of the complicated nature of the maximal ideal space of H∞(D),
there are contractive unital representations which are not weak-∗ continuous.
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Basics of the maximal ideal space of H∞(D)

I Write M for the maximal ideal space of H∞ equipped with the hull-kernel
topology.

I View f ∈ H∞ as a continuous function on M via f̂ (φ) = φ(f ).
I Embed D in M by sending λ ∈ D to the ideal {f ∈ H∞ : f (λ) = 0}.

I Everything else in M is fibered over the circle: for α ∈ T, the fiber Mα consists
of all those φ for which φ(z) = α.

I The Shilov boundary of H∞ lies entirely in the fibers and is canonically
identified with the maximal ideal space of L∞.
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Gleason parts

I Each point m ∈M lies in a unique Gleason part P(m).
I For m ∈ D, P(m) = D. Otherwise, P(m) is either a one-point part or an analytic

disk. Such disks are the images of 1-1 mappings L : D →M, where D is
another copy of D used to parameterize mappings.

I The map L is analytic in the sense that for all f ∈ H∞, the function f̂ ◦ L is
analytic in D .

I If m lies in an analytic disk, then there is an interpolating sequence
S = {αn} ⊂ D such that m lies in the closure of S; moreover there is a net αn(i)

such that the maps Lα : D →M

Lα(z) =
z + α

1 + α∗z
(5)

converge pointwise to an analytic map Lm taking D bijectively to the Gleason
part P(m).

I Note that there need not exist an H∞ function f with f ◦ Lm(z) = z; this happens
if and only if the map Lm is a homeomorphism, which is not always the case.
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Basic representations

I We consider representations of H∞ having finite rank; that is π : H∞ → Mn.
More precisely:

I A representation π will be called basic if there exists a finite set F ⊂M and a
positive kernel k : F× F→ C such that

π(f )∗km = f̂ (m)∗km, (6)

where the functions km = k(·,m) are not identically 0.
I In this case, say π is supported in F.

I Note that kerπ =
⋂

m∈F m. Let IF ⊂ H∞ denote the ideal of functions vanishing
on F.

I A basic representation factors through the quotient map qF : H∞ → H∞/IF.
I A basic representation with kernel k is contractive if and only if the matrices

(1− f̂ (mi)̂f (mj)
∗)k(mi,mj)

are positive semidefinite for all f ∈ H∞.
I We can show that for a contractive basic representation, if m1,m2 ∈ F lie in

distinct Gleason parts of M, then k(m1,m2) = 0, and so any contractive basic
representation splits as a direct sum of contractive basic representations
supported in distinct Gleason parts.
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Contractive implies completely contractive for basic representations

Theorem 5.
Every contractive basic representation of H∞(D) is completely contractive.

I Idea of the proof: A contractive basic representation splits into direct sums
over distinct Gleason parts. Three cases:

I If one part is D, the direct summand is weak-∗ continuous.
I If the Gleason part consists of one point, the direct summand is scalar valued

and thus completely contractive.
I Finally, if the Gleason part is an analytic disk P(m) ⊂M \ D, we pull back the

kernel over these points to D via Lm, and the induced representation is
completely contractive. Then the direct summand is a composition of
completely contractive maps, and so is completely contractive.
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Motivation and questions

I Let AF denote the (operator) subalgebra of H∞(D) consisting of those
functions f which extend continuously to T at the points in F and satisfy
f (z) = f (0) for all z ∈ F.

I This is sort of like the Neil algebra.
I However, unlike the Neil algebra, we discovered that every contractive

representation of AF is completely contractive!

I There are various directions one can pursue in trying to extend the result on
contractive basic representations to all contractive representations:

I Some sort of compactness argument?
I Use Blaschke products associated to interpolating sequences as test

functions and . . . ?
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