Subnormality of composition operators over directed graphs with one circuit: exotic examples

> Jan Stochel Uniwersytet Jagielloński Kraków

Recent Advances in Operator Theory and Operator Algebras

December 15-19, 2014

Indian Statistical Institute, Bangalore

・ロト ・ 同ト ・ ヨト ・ ヨト

II Bong Jung, Kyungpook National University, Daegu, Korea.
Zenon J. Jabłoński, Uniwersytet Jagielloński, Kraków, Poland.
Piotr Budzyński, Uniwersytet Rolniczy w Krakowie, Poland.

ヘロト ヘアト ヘビト ヘビト

E DQC

Operators

• \mathcal{H} is a complex Hilbert space.

• By an **operator** in \mathcal{H} we mean a linear mapping

 $\mathsf{A}\colon \mathcal{H} \supseteq \mathcal{D}(\mathsf{A}) \to \mathcal{H}$

defined on a vector subspace $\mathcal{D}(A)$ of \mathcal{H} , called the **domain** of A.

• A is said to be **normal** if A is densely defined, closed and

 $A^*A = AA^*$.

ヘロン ヘアン ヘビン ヘビン

1

- \mathcal{H} is a complex Hilbert space.
- By an **operator** in \mathcal{H} we mean a linear mapping

$$\mathsf{A}\colon \mathcal{H}\supseteq \mathcal{D}(\mathsf{A})\to \mathcal{H}$$

defined on a vector subspace $\mathcal{D}(A)$ of \mathcal{H} , called the **domain** of A.

• A is said to be normal if A is densely defined, closed and

 $A^*A = AA^*$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- \mathcal{H} is a complex Hilbert space.
- By an **operator** in \mathcal{H} we mean a linear mapping

$$\mathsf{A}\colon \mathcal{H}\supseteq \mathcal{D}(\mathsf{A})\to \mathcal{H}$$

defined on a vector subspace $\mathcal{D}(A)$ of \mathcal{H} , called the **domain** of A.

• A is said to be **normal** if A is densely defined, closed and

$$A^*A = AA^*.$$

ヘロト ヘアト ヘビト ヘビト

1

• An operator *S* in \mathcal{H} is **subnormal** if *S* is densely defined and there exists a complex Hilbert space \mathcal{K} and a normal operator *N* in \mathcal{K} such that $\mathcal{H} \subseteq \mathcal{K}$ (isometric embedding) and Sh = Nh for every $h \in \mathcal{D}(S)$, or simply

$S \subseteq N$.

- An operator *A* in \mathcal{H} is **hyponormal** if *A* is densely defined, $\mathcal{D}(A) \subseteq \mathcal{D}(A^*)$ and $||A^*f|| \leq ||Af||$ for every $f \in \mathcal{D}(A)$.
- An operator A in H is paranormal if ||Af||² ≤ ||f|| ||A²f|| for all f ∈ D(A²).
- The following holds:

 $\{normal\} \varsubsetneq \{subnormal\} \varsubsetneq \{hyponormal\} \varsubsetneq \{paranormal\}.$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

• An operator *S* in \mathcal{H} is **subnormal** if *S* is densely defined and there exists a complex Hilbert space \mathcal{K} and a normal operator *N* in \mathcal{K} such that $\mathcal{H} \subseteq \mathcal{K}$ (isometric embedding) and Sh = Nh for every $h \in \mathcal{D}(S)$, or simply

$S \subseteq N$.

- An operator A in \mathcal{H} is **hyponormal** if A is densely defined, $\mathcal{D}(A) \subseteq \mathcal{D}(A^*)$ and $||A^*f|| \leq ||Af||$ for every $f \in \mathcal{D}(A)$.
- An operator A in H is paranormal if ||Af||² ≤ ||f|||A²f|| for all f ∈ D(A²).
- The following holds:

 $\{normal\} \varsubsetneq \{subnormal\} \varsubsetneq \{hyponormal\} \varsubsetneq \{paranormal\}.$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - の�?

• An operator *S* in \mathcal{H} is **subnormal** if *S* is densely defined and there exists a complex Hilbert space \mathcal{K} and a normal operator *N* in \mathcal{K} such that $\mathcal{H} \subseteq \mathcal{K}$ (isometric embedding) and Sh = Nh for every $h \in \mathcal{D}(S)$, or simply

$S \subseteq N$.

- An operator A in \mathcal{H} is **hyponormal** if A is densely defined, $\mathcal{D}(A) \subseteq \mathcal{D}(A^*)$ and $||A^*f|| \leq ||Af||$ for every $f \in \mathcal{D}(A)$.
- An operator A in H is paranormal if ||Af||² ≤ ||f|| ||A²f|| for all f ∈ D(A²).
- The following holds:

 $\{normal\} \subsetneq \{subnormal\} \varsubsetneq \{hyponormal\} \subsetneq \{paranormal\}.$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

• An operator *S* in \mathcal{H} is **subnormal** if *S* is densely defined and there exists a complex Hilbert space \mathcal{K} and a normal operator *N* in \mathcal{K} such that $\mathcal{H} \subseteq \mathcal{K}$ (isometric embedding) and Sh = Nh for every $h \in \mathcal{D}(S)$, or simply

$$S \subseteq N$$
.

- An operator A in \mathcal{H} is **hyponormal** if A is densely defined, $\mathcal{D}(A) \subseteq \mathcal{D}(A^*)$ and $||A^*f|| \leq ||Af||$ for every $f \in \mathcal{D}(A)$.
- An operator A in H is paranormal if ||Af||² ≤ ||f|| ||A²f|| for all f ∈ D(A²).
- The following holds:

```
\{normal\} \subsetneq \{subnormal\} \varsubsetneq \{hyponormal\} \subsetneq \{paranormal\}.
```

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- The theory of unbounded subnormal operators subsumes the theories of bounded subnormal operators and unbounded symmetric operators.
- bounded operators: Halmos (1950), Bram (1955), ...
 J. Conway (two monographs)
- unbounded operators: Bishop (1957), Foiaş (1962), McDonald & Sundberg (1986), JS & Szafraniec (1985-89), ...

イロト イポト イヨト イヨト

The creation operator of quantum mechanics

The creation operator a₊ is defined in L²(ℝ) by

$$a_+=\frac{1}{\sqrt{2}}\Big(x-\frac{d}{dx}\Big).$$

- a_+ is subnormal.
- a₊ is unitarily equivalent to the operator of multiplication by the independent variable "z" in the Segal-Bargmann space

(= the Hilbert space of entire functions that are square integrable with respect to the Gaussian measure on the complex plane [Segal, Bargmann 1961]).

ヘロト ヘワト ヘビト ヘビト

The creation operator of quantum mechanics

The creation operator a₊ is defined in L²(ℝ) by

$$a_+=\frac{1}{\sqrt{2}}\Big(x-\frac{d}{dx}\Big).$$

- a₊ is subnormal.
- a₊ is unitarily equivalent to the operator of multiplication by the independent variable "z" in the Segal-Bargmann space

(= the Hilbert space of entire functions that are square integrable with respect to the Gaussian measure on the complex plane [Segal, Bargmann 1961]).

ヘロト ヘワト ヘビト ヘビト

The creation operator of quantum mechanics

The creation operator a₊ is defined in L²(ℝ) by

$$a_+=\frac{1}{\sqrt{2}}\Big(x-\frac{d}{dx}\Big).$$

- a₊ is subnormal.
- a₊ is unitarily equivalent to the operator of multiplication by the independent variable "z" in the Segal-Bargmann space

(= the Hilbert space of entire functions that are square integrable with respect to the Gaussian measure on the complex plane [Segal, Bargmann 1961]).

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

- An operator S in H is said to be symmetric (resp., selfadjoint) if S is densely defined and S ⊆ S* (respectively, S = S*).
- A symmetric operator *S* in *H* is subnormal because it has a selfadjoint extension possibly in a larger Hilbert space [Naimark].

ヘロン 人間 とくほ とくほ とう

3

- An operator S in H is said to be symmetric (resp., selfadjoint) if S is densely defined and S ⊆ S* (respectively, S = S*).
- A symmetric operator *S* in *H* is subnormal because it has a selfadjoint extension possibly in a larger Hilbert space [Naimark].

ヘロン 人間 とくほ とくほ とう

э.

symmetric ~> selfadjoint

- ? ~→ normal
- formally normal ~~ normal
- An operator A in H is said to be formally normal if A is densely defined, D(A) ⊆ D(A*) and ||Af|| = ||A*f|| for every f ∈ D(A).
- The following holds:

 $\{\text{normal}\} \varsubsetneq \{\text{formally normal}\} \varsubsetneq \{\text{hyponormal}\},$

 $\{$ symmetric $\} \subsetneq \{$ formally normal $\}.$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- symmetric ~> selfadjoint
- ? ~→ normal
- formally normal ~→ normal
- An operator A in H is said to be formally normal if A is densely defined, D(A) ⊆ D(A*) and ||Af|| = ||A*f|| for every f ∈ D(A).
- The following holds:

 $\{normal\} \varsubsetneq \{formally normal\} \varsubsetneq \{hyponormal\},\$

 $\{$ symmetric $\} \subsetneq \{$ formally normal $\}.$

・ロト ・ 理 ト ・ ヨ ト ・

- symmetric ~> selfadjoint
- ? ~→ normal
- formally normal ~→ normal
- An operator A in H is said to be formally normal if A is densely defined, D(A) ⊆ D(A*) and ||Af|| = ||A*f|| for every f ∈ D(A).
- The following holds:

 $\{normal\} \varsubsetneq \{formally normal\} \varsubsetneq \{hyponormal\},$

 $\{$ symmetric $\} \subsetneq \{$ formally normal $\}.$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- symmetric ~> selfadjoint
- ? ~→ normal
- formally normal ~→ normal
- An operator A in H is said to be formally normal if A is densely defined, D(A) ⊆ D(A*) and ||Af|| = ||A*f|| for every f ∈ D(A).
- The following holds:

 $\{normal\} \subsetneq \{formally normal\} \varsubsetneq \{hyponormal\},\$

 $\{symmetric\} \subsetneq \{formally normal\}.$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

- symmetric ~> selfadjoint
- ? ~→ normal
- formally normal ~→ normal
- An operator A in H is said to be formally normal if A is densely defined, D(A) ⊆ D(A*) and ||Af|| = ||A*f|| for every f ∈ D(A).
- The following holds:

 $\{\text{normal}\} \varsubsetneq \{\text{formally normal}\} \varsubsetneq \{\text{hyponormal}\},$

 $\{symmetric\} \subsetneq \{formally normal\}.$

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Formal normality and subnormality

- Formally normal operators **may not be** subnormal [Coddington 1965].
- There exist a nonsubnormal formally normal operator A and a polynomial p ∈ C[Z, Z] of degree 3 such that D(A) is invariant for A and A*, and

$$p(A, A^*)f = 0$$
 for every $f \in \mathcal{D}(A)$;

3 is the smallest possible degree [JS 1991].

• $p = Y(Y - X^2)$ where $X = \frac{1}{2}(Z + \overline{Z})$ and $Y = \frac{1}{2i}(Z - \overline{Z})$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Formal normality and subnormality

- Formally normal operators may not be subnormal [Coddington 1965].
- There exist a nonsubnormal formally normal operator A and a polynomial p ∈ C[Z, Z] of degree 3 such that D(A) is invariant for A and A*, and

$$p(A, A^*)f = 0$$
 for every $f \in \mathcal{D}(A)$;

3 is the smallest possible degree [JS 1991].

• $p = Y(Y - X^2)$ where $X = \frac{1}{2}(Z + \overline{Z})$ and $Y = \frac{1}{2i}(Z - \overline{Z})$.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - の�?

Formal normality and subnormality

- Formally normal operators may not be subnormal [Coddington 1965].
- There exist a nonsubnormal formally normal operator A and a polynomial p ∈ C[Z, Z] of degree 3 such that D(A) is invariant for A and A*, and

$$p(A, A^*)f = 0$$
 for every $f \in \mathcal{D}(A)$;

3 is the smallest possible degree [JS 1991].

•
$$p = Y(Y - X^2)$$
 where $X = \frac{1}{2}(Z + \overline{Z})$ and $Y = \frac{1}{2i}(Z - \overline{Z})$.

くロト (過) (目) (日)

A sequence γ = {γ_n}[∞]_{n=0} of real numbers is called a Hamburger moment sequence if there exists a (positive) Borel measure μ on ℝ such that

$$\gamma_n = \int_{\mathbb{R}} x^n d\mu(x), \quad n \ge 0;$$

such a μ is called an **H-representing measure** of γ .

- We say that a Hamburger moment sequence is
 H-determinate if it has a unique H-representing measure; otherwise, we call it H-indeterminate.
- Replacing the real line R by the half-line [0,∞) in the above definitions, we get the notions of a Stieltjes moment sequence, S-representing measure, S-determinacy and S-indeterminacy.

・ロット (雪) () () () ()

A sequence γ = {γ_n}[∞]_{n=0} of real numbers is called a Hamburger moment sequence if there exists a (positive) Borel measure μ on ℝ such that

$$\gamma_n = \int_{\mathbb{R}} x^n \,\mathrm{d}\,\mu(x), \quad n \geqslant 0;$$

such a μ is called an **H-representing measure** of γ .

- We say that a Hamburger moment sequence is
 H-determinate if it has a unique H-representing measure; otherwise, we call it H-indeterminate.
- Replacing the real line R by the half-line [0,∞) in the above definitions, we get the notions of a Stieltjes moment sequence, S-representing measure, S-determinacy and S-indeterminacy.

ヘロア ヘビア ヘビア・

A sequence γ = {γ_n}[∞]_{n=0} of real numbers is called a Hamburger moment sequence if there exists a (positive) Borel measure μ on ℝ such that

$$\gamma_n = \int_{\mathbb{R}} x^n \,\mathrm{d}\,\mu(x), \quad n \geqslant 0;$$

such a μ is called an **H-representing measure** of γ .

- We say that a Hamburger moment sequence is
 H-determinate if it has a unique H-representing measure; otherwise, we call it H-indeterminate.
- Replacing the real line ℝ by the half-line [0,∞) in the above definitions, we get the notions of a Stieltjes moment sequence, S-representing measure, S-determinacy and S-indeterminacy.

ヘロン 人間 とくほど くほとう

A sequence γ = {γ_n}[∞]_{n=0} of real numbers is called a Hamburger moment sequence if there exists a (positive) Borel measure μ on ℝ such that

$$\gamma_n = \int_{\mathbb{R}} x^n \,\mathrm{d}\,\mu(x), \quad n \geqslant 0;$$

such a μ is called an **H-representing measure** of γ .

- We say that a Hamburger moment sequence is
 H-determinate if it has a unique H-representing measure; otherwise, we call it H-indeterminate.
- Replacing the real line ℝ by the half-line [0,∞) in the above definitions, we get the notions of a Stieltjes moment sequence, S-representing measure, S-determinacy and S-indeterminacy.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

1

Generating Stieltjes moment sequences

• We say that an operator S in \mathcal{H} generates Stieltjes moment sequences if the set $\mathcal{D}^{\infty}(S) := \bigcap_{n=0}^{\infty} \mathcal{D}(S^n)$ is dense in \mathcal{H} and $\{\|S^n f\|^2\}_{n=0}^{\infty}$ is a Stieltjes moment sequence for every $f \in \mathcal{D}^{\infty}(S)$.

Theorem (Lambert 1976)

A **bounded** operator on \mathcal{H} is subnormal if and only if it generates Stieltjes moment sequences.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Generating Stieltjes moment sequences

• We say that an operator S in \mathcal{H} generates Stieltjes moment sequences if the set $\mathcal{D}^{\infty}(S) := \bigcap_{n=0}^{\infty} \mathcal{D}(S^n)$ is dense in \mathcal{H} and $\{\|S^n f\|^2\}_{n=0}^{\infty}$ is a Stieltjes moment sequence for every $f \in \mathcal{D}^{\infty}(S)$.

Theorem (Lambert 1976)

A **bounded** operator on \mathcal{H} is subnormal if and only if it generates Stieltjes moment sequences.

イロト イポト イヨト イヨト 三日

• Lambert's theorem is not true for unbounded operators.

- Recall that there are nonsubnormal formally normal (hence hyponormal) operators which generate Stieltjes moment sequences.
- The question is whether there are closed nonhyponormal operators that generate Stieltjes moment sequences?

ヘロト ヘワト ヘビト ヘビト

- Lambert's theorem is not true for unbounded operators.
- Recall that there are nonsubnormal formally normal (hence hyponormal) operators which generate Stieltjes moment sequences.
- The question is whether there are closed nonhyponormal operators that generate Stieltjes moment sequences?

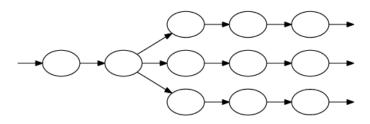
・ロト ・四ト ・ヨト ・ヨト

- Lambert's theorem is not true for unbounded operators.
- Recall that there are nonsubnormal formally normal (hence hyponormal) operators which generate Stieltjes moment sequences.
- The question is whether there are closed nonhyponormal operators that generate Stieltjes moment sequences?

ヘロト 人間 ト ヘヨト ヘヨト

The directed tree $\mathscr{T}_{\eta,\kappa}$.

 $\eta \in \{\mathbf{2},\mathbf{3},\mathbf{4},\ldots\} \cup \{\infty\} \text{ and } \kappa \in \{\mathbf{0},\mathbf{1},\mathbf{2},\ldots\} \cup \{\infty\}.$



 $\mathscr{T}_{\eta,\kappa}$ is a directed tree with one branching vertex and η branches; its trunk consists of $\kappa + 1$ vertices (counting the branching vertex).

<ロ> (四) (四) (三) (三) (三)

Theorem (Jabłoński, Jung & JS – J. Funct. Anal. 2012)

For every $\kappa \in \{0, 1, 2, ...\} \cup \{\infty\}$ there exists an injective weighted shift S_{λ} on $\mathscr{T}_{\infty,\kappa}$ such that:

- S_{λ} generates Stieltjes moment sequences,
- S_{λ} is not hyponormal, hence it is not subnormal,
- S_{λ} is a paranormal operator,
- $\mathcal{D}^{\infty}(S_{\lambda})$ is a core for S_{λ}^{n} for every $n \ge 0$.
- The proof of the above theorem depends heavily on some subtle properties of N-extremal measures.

ヘロト ヘワト ヘビト ヘビト

Theorem (Jabłoński, Jung & JS – J. Funct. Anal. 2012)

For every $\kappa \in \{0, 1, 2, ...\} \cup \{\infty\}$ there exists an injective weighted shift S_{λ} on $\mathscr{T}_{\infty,\kappa}$ such that:

- S_λ generates Stieltjes moment sequences,
- S_{λ} is not hyponormal, hence it is not subnormal,
- S_{λ} is a paranormal operator,
- $\mathcal{D}^{\infty}(S_{\lambda})$ is a core for S_{λ}^{n} for every $n \ge 0$.
- The proof of the above theorem depends heavily on some subtle properties of N-extremal measures.

・ロト ・ 日本・ ・ 日本・

Theorem (Jabłoński, Jung & JS – J. Funct. Anal. 2012)

For every $\kappa \in \{0, 1, 2, ...\} \cup \{\infty\}$ there exists an injective weighted shift S_{λ} on $\mathscr{T}_{\infty,\kappa}$ such that:

- S_λ generates Stieltjes moment sequences,
- S_{λ} is not hyponormal, hence it is not subnormal,
- S_{λ} is a paranormal operator,
- $\mathcal{D}^{\infty}(S_{\lambda})$ is a core for S_{λ}^{n} for every $n \ge 0$.
- The proof of the above theorem depends heavily on some subtle properties of N-extremal measures.

イロト イポト イヨト イヨト

For every $\kappa \in \{0, 1, 2, ...\} \cup \{\infty\}$ there exists an injective weighted shift S_{λ} on $\mathscr{T}_{\infty,\kappa}$ such that:

- S_λ generates Stieltjes moment sequences,
- S_{λ} is not hyponormal, hence it is not subnormal,
- S_{λ} is a paranormal operator,
- $\mathcal{D}^{\infty}(S_{\lambda})$ is a core for S_{λ}^{n} for every $n \ge 0$.
- The proof of the above theorem depends heavily on some subtle properties of N-extremal measures.

ヘロト ヘワト ヘビト ヘビト

For every $\kappa \in \{0, 1, 2, ...\} \cup \{\infty\}$ there exists an injective weighted shift S_{λ} on $\mathscr{T}_{\infty,\kappa}$ such that:

- S_λ generates Stieltjes moment sequences,
- S_{λ} is not hyponormal, hence it is not subnormal,
- S_{λ} is a paranormal operator,
- $\mathfrak{D}^{\infty}(S_{\lambda})$ is a core for S_{λ}^{n} for every $n \ge 0$.
- The proof of the above theorem depends heavily on some subtle properties of N-extremal measures.

◆□ > ◆□ > ◆豆 > ◆豆 > →

For every $\kappa \in \{0, 1, 2, ...\} \cup \{\infty\}$ there exists an injective weighted shift S_{λ} on $\mathscr{T}_{\infty,\kappa}$ such that:

- S_λ generates Stieltjes moment sequences,
- S_{λ} is not hyponormal, hence it is not subnormal,
- S_{λ} is a paranormal operator,
- $\mathfrak{D}^{\infty}(S_{\lambda})$ is a core for S_{λ}^{n} for every $n \ge 0$.
- The proof of the above theorem depends heavily on some subtle properties of N-extremal measures.

ヘロト ヘアト ヘビト ヘビト

- (X, A, μ) is a σ -finite measure space.
- $\phi: X \to X$ is an \mathcal{A} -measurable transformation, i.e., $\phi^{-1}(\Delta) \in \mathcal{A}$ for every $\Delta \in \mathcal{A}$.
- If φ is nonsingular, i.e., the measure μ ∘ φ⁻¹ given by μ ∘ φ⁻¹(Δ) = μ(φ⁻¹(Δ)) for Δ ∈ A is absolutely continuous with respect to μ, then the operator C_φ in L²(μ) given by

$$\mathcal{D}(C_{\phi}) = \{ f \in L^{2}(\mu) : f \circ \phi \in L^{2}(\mu) \},\$$
$$C_{\phi}f = f \circ \phi, \quad f \in \mathcal{D}(C_{\phi}),$$

is well-defined.

• We call it a **composition** operator with a **symbol** ϕ .

イロト イポト イヨト イヨト

- (X, A, μ) is a σ -finite measure space.
- $\phi: X \to X$ is an \mathcal{A} -measurable transformation, i.e., $\phi^{-1}(\Delta) \in \mathcal{A}$ for every $\Delta \in \mathcal{A}$.
- If φ is nonsingular, i.e., the measure μ ∘ φ⁻¹ given by μ ∘ φ⁻¹(Δ) = μ(φ⁻¹(Δ)) for Δ ∈ A is absolutely continuous with respect to μ, then the operator C_φ in L²(μ) given by

$$\mathcal{D}(C_{\phi}) = \{ f \in L^{2}(\mu) : f \circ \phi \in L^{2}(\mu) \},\$$
$$C_{\phi}f = f \circ \phi, \quad f \in \mathcal{D}(C_{\phi}),$$

is well-defined.

• We call it a **composition** operator with a **symbol** ϕ .

ヘロト ヘワト ヘビト ヘビト

- (X, A, μ) is a σ -finite measure space.
- $\phi: X \to X$ is an \mathcal{A} -measurable transformation, i.e., $\phi^{-1}(\Delta) \in \mathcal{A}$ for every $\Delta \in \mathcal{A}$.
- If φ is nonsingular, i.e., the measure μ ∘ φ⁻¹ given by μ ∘ φ⁻¹(Δ) = μ(φ⁻¹(Δ)) for Δ ∈ A is absolutely continuous with respect to μ, then the operator C_φ in L²(μ) given by

$$\mathcal{D}(\mathcal{C}_{\phi}) = \{ f \in L^2(\mu) \colon f \circ \phi \in L^2(\mu) \}, \ \mathcal{C}_{\phi}f = f \circ \phi, \quad f \in \mathcal{D}(\mathcal{C}_{\phi}),$$

is well-defined.

• We call it a **composition** operator with a **symbol** ϕ .

ヘロト ヘアト ヘビト ヘビト

- (X, A, μ) is a σ -finite measure space.
- $\phi: X \to X$ is an \mathcal{A} -measurable transformation, i.e., $\phi^{-1}(\Delta) \in \mathcal{A}$ for every $\Delta \in \mathcal{A}$.
- If φ is nonsingular, i.e., the measure μ ∘ φ⁻¹ given by μ ∘ φ⁻¹(Δ) = μ(φ⁻¹(Δ)) for Δ ∈ A is absolutely continuous with respect to μ, then the operator C_φ in L²(μ) given by

$$\mathcal{D}(\mathcal{C}_{\phi}) = \{ f \in L^2(\mu) \colon f \circ \phi \in L^2(\mu) \}, \ \mathcal{C}_{\phi}f = f \circ \phi, \quad f \in \mathcal{D}(\mathcal{C}_{\phi}),$$

is well-defined.

• We call it a **composition** operator with a **symbol** ϕ .

ヘロト ヘアト ヘビト ヘビト

Let C_{ϕ} be a **bounded** composition operator on $L^{2}(\mu)$. Then the following two conditions are equivalent:

- C_{ϕ} is subnormal,
- for μ-a.e. x ∈ X, {h_n(x)}_{n=0}[∞] is a Stieltjes moment sequence, where

$$h_n := \frac{\mathsf{d}\,\mu \circ \phi^{-n}}{\mathsf{d}\,\mu}$$

the Radon-Nikodym derivative).

・ロト ・ 同ト ・ ヨト ・ ヨト

There are two more conditions characterizing the subnormality of bounded composition operators; however all of them are equivalent even in the unbounded case.

Let C_{ϕ} be a **bounded** composition operator on $L^{2}(\mu)$. Then the following two conditions are equivalent:

- C_{ϕ} is subnormal,
- for μ-a.e. x ∈ X, {h_n(x)}[∞]_{n=0} is a Stieltjes moment sequence, where

$$h_n := \frac{\mathsf{d}\,\mu \circ \phi^{-n}}{\mathsf{d}\,\mu}$$

the Radon-Nikodym derivative).

・ロト ・ 同ト ・ ヨト ・ ヨト

There are two more conditions characterizing the subnormality of bounded composition operators; however all of them are equivalent even in the unbounded case.

Let C_{ϕ} be a **bounded** composition operator on $L^{2}(\mu)$. Then the following two conditions are equivalent:

- C_{ϕ} is subnormal,
- for μ-a.e. x ∈ X, {h_n(x)}_{n=0}[∞] is a Stieltjes moment sequence, where

$$h_n := rac{\mathsf{d}\,\mu \circ \phi^{-n}}{\mathsf{d}\,\mu}$$
 (the Radon-Nikodym derivative).

There are two more conditions characterizing the subnormality of bounded composition operators; however all of them are equivalent even in the unbounded case.

イロト イポト イヨト イヨト

Let C_{ϕ} be a **bounded** composition operator on $L^{2}(\mu)$. Then the following two conditions are equivalent:

- C_{ϕ} is subnormal,
- for μ-a.e. x ∈ X, {h_n(x)}_{n=0}[∞] is a Stieltjes moment sequence, where

$$h_n := \frac{\mathsf{d}\,\mu \circ \phi^{-n}}{\mathsf{d}\,\mu}$$
 (the Radon-Nikodym derivative).

There are two more conditions characterizing the subnormality of bounded composition operators; however all of them are equivalent even in the unbounded case.

ヘロト 人間 ト ヘヨト ヘヨト

- Does Lambert's theorem remain true for unbounded composition operators in *L*²-spaces?
- Formally normal (in particular, symmetric) composition operators in *L*² spaces are always normal.
- This means that there is no way to adapt any example of a nonsubnormal formally normal operator generating Stieltjes moment sequences to the context of composition operators in L²-spaces.

イロト イポト イヨト イヨト

- Does Lambert's theorem remain true for unbounded composition operators in *L*²-spaces?
- Formally normal (in particular, symmetric) composition operators in L² spaces are always normal.
- This means that there is no way to adapt any example of a nonsubnormal formally normal operator generating Stieltjes moment sequences to the context of composition operators in L²-spaces.

イロト イポト イヨト イヨト

- Does Lambert's theorem remain true for unbounded composition operators in *L*²-spaces?
- Formally normal (in particular, symmetric) composition operators in L² spaces are always normal.
- This means that there is no way to adapt any example of a nonsubnormal formally normal operator generating Stieltjes moment sequences to the context of composition operators in L²-spaces.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Jabłoński, Jung & JS – J. Funct. Anal. 2012)

There exists an injective composition operator C in an L^2 -space over a σ -finite measure space such that:

- for μ-a.e. x ∈ X, {h_n(x)}_{n=0}[∞] is a Stieltjes moment sequence,
- C is not hyponormal, thus it is not subnormal,
- C is paranormal,
- $\mathcal{D}^{\infty}(C)$ is a core for C^n for every $n \ge 0$.
- The above can be derived from the previous counterexample (the weighted shift S_λ on T_{∞,∞}) by using the fact that weighted shifts on **rootless** directed trees with nonzero weights are unitary equivalent to some composition operators in L² spaces.

イロン 不同 とくほう イヨン

Theorem (Jabłoński, Jung & JS – J. Funct. Anal. 2012)

There exists an injective composition operator C in an L^2 -space over a σ -finite measure space such that:

- for μ-a.e. x ∈ X, {h_n(x)}_{n=0}[∞] is a Stieltjes moment sequence,
- C is not hyponormal, thus it is not subnormal,
- C is paranormal,
- $\mathcal{D}^{\infty}(C)$ is a core for C^n for every $n \ge 0$.
- The above can be derived from the previous counterexample (the weighted shift S_λ on T_{∞,∞}) by using the fact that weighted shifts on **rootless** directed trees with nonzero weights are unitary equivalent to some composition operators in L² spaces.

イロン 不同 とくほう イヨン

Theorem (Jabłoński, Jung & JS – J. Funct. Anal. 2012)

There exists an injective composition operator C in an L^2 -space over a σ -finite measure space such that:

- for μ-a.e. x ∈ X, {h_n(x)}_{n=0}[∞] is a Stieltjes moment sequence,
- C is not hyponormal, thus it is not subnormal,
- C is paranormal,
- $\mathcal{D}^{\infty}(C)$ is a core for C^n for every $n \ge 0$.
- The above can be derived from the previous counterexample (the weighted shift S_λ on T_{∞,∞}) by using the fact that weighted shifts on **rootless** directed trees with nonzero weights are unitary equivalent to some composition operators in L² spaces.

イロト 不得 とくほ とくほとう

Theorem (Jabłoński, Jung & JS – J. Funct. Anal. 2012)

There exists an injective composition operator C in an L^2 -space over a σ -finite measure space such that:

- for μ-a.e. x ∈ X, {h_n(x)}_{n=0}[∞] is a Stieltjes moment sequence,
- C is not hyponormal, thus it is not subnormal,
- C is paranormal,
- $\mathcal{D}^{\infty}(C)$ is a core for C^n for every $n \ge 0$.
- The above can be derived from the previous counterexample (the weighted shift S_λ on T_{∞,∞}) by using the fact that weighted shifts on **rootless** directed trees with nonzero weights are unitary equivalent to some composition operators in L² spaces.

ヘロア 人間 アメヨア 人口 ア

Theorem (Jabłoński, Jung & JS – J. Funct. Anal. 2012)

There exists an injective composition operator C in an L^2 -space over a σ -finite measure space such that:

- for μ-a.e. x ∈ X, {h_n(x)}_{n=0}[∞] is a Stieltjes moment sequence,
- C is not hyponormal, thus it is not subnormal,
- C is paranormal,
- $\mathfrak{D}^{\infty}(C)$ is a core for C^n for every $n \ge 0$.
- The above can be derived from the previous counterexample (the weighted shift S_λ on T_{∞,∞}) by using the fact that weighted shifts on **rootless** directed trees with nonzero weights are unitary equivalent to some composition operators in L² spaces.

・ロト ・ 理 ト ・ ヨ ト ・

There exists an injective composition operator C in an L^2 -space over a σ -finite measure space such that:

- for μ-a.e. x ∈ X, {h_n(x)}_{n=0}[∞] is a Stieltjes moment sequence,
- C is not hyponormal, thus it is not subnormal,
- C is paranormal,
- $\mathfrak{D}^{\infty}(C)$ is a core for C^n for every $n \ge 0$.
- The above can be derived from the previous counterexample (the weighted shift S_λ on *T*_{∞,∞}) by using the fact that weighted shifts on **rootless** directed trees with nonzero weights are unitary equivalent to some composition operators in L² spaces.

イロン 不良 とくほう 不良 とうほ

A problem

• Find a criterion for subnormality of unbounded composition operators in *L*² spaces.

- It should cover the case of bounded composition operators.
- No restrictions on domains of powers of operators in question.
- The main difficulty: the known criteria for subnormality of general Hilbert space operators do not help us to solve the problem.

ヘロト ヘワト ヘビト ヘビト

- Find a criterion for subnormality of unbounded composition operators in *L*² spaces.
- It should cover the case of bounded composition operators.
- No restrictions on domains of powers of operators in question.
- The main difficulty: the known criteria for subnormality of general Hilbert space operators do not help us to solve the problem.

ヘロト ヘワト ヘビト ヘビト

- Find a criterion for subnormality of unbounded composition operators in *L*² spaces.
- It should cover the case of bounded composition operators.
- No restrictions on domains of powers of operators in question.
- The main difficulty: the known criteria for subnormality of general Hilbert space operators do not help us to solve the problem.

ヘロア 人間 アメヨア 人口 ア

- Find a criterion for subnormality of unbounded composition operators in *L*² spaces.
- It should cover the case of bounded composition operators.
- No restrictions on domains of powers of operators in question.
- The main difficulty: the known criteria for subnormality of general Hilbert space operators do not help us to solve the problem.

ヘロト 人間 ト ヘヨト ヘヨト

The conditional expectation

- We assume that the transformation ϕ is nonsingular and C_{ϕ} is densely defined.
- If *f*: X → ℝ₊ is an A-measure function, then there exists a unique (up to sets of μ-measure zero) φ⁻¹(A)-measurable function E(*f*): X → ℝ₊ such that

$$\int_{\phi^{-1}(\varDelta)} f \, \mathrm{d}\, \mu = \int_{\phi^{-1}(\varDelta)} \mathsf{E}(f) \, \mathrm{d}\, \mu, \quad \varDelta \in \mathcal{A}.$$

 E(f) is called the conditional expectation of f with respect to the σ-algebra φ⁻¹(A).

ヘロン ヘアン ヘビン ヘビン

The conditional expectation

- We assume that the transformation ϕ is nonsingular and C_{ϕ} is densely defined.
- If f: X → ℝ₊ is an A-measure function, then there exists a unique (up to sets of μ-measure zero) φ⁻¹(A)-measurable function E(f): X → ℝ₊ such that

$$\int_{\phi^{-1}(\varDelta)} f \, \mathrm{d}\, \mu = \int_{\phi^{-1}(\varDelta)} \mathsf{E}(f) \, \mathrm{d}\, \mu, \quad \varDelta \in \mathcal{A}.$$

 E(f) is called the conditional expectation of f with respect to the σ-algebra φ⁻¹(A).

The conditional expectation

- We assume that the transformation ϕ is nonsingular and C_{ϕ} is densely defined.
- If f: X → ℝ₊ is an A-measure function, then there exists a unique (up to sets of μ-measure zero) φ⁻¹(A)-measurable function E(f): X → ℝ₊ such that

$$\int_{\phi^{-1}(\varDelta)} f \, \mathrm{d}\, \mu = \int_{\phi^{-1}(\varDelta)} \mathsf{E}(f) \, \mathrm{d}\, \mu, \quad \varDelta \in \mathcal{A}.$$

 E(f) is called the conditional expectation of f with respect to the σ-algebra φ⁻¹(A).

The consistency condition

- P: X × 𝔅(ℝ₊) → [0, 1] is said to be an A-measurable family of probability measures if the set-function P(x, ·) is a probability measure for every x ∈ X and the function P(·, σ) is A-measurable for every σ ∈ 𝔅(ℝ₊).
- We say that an A-measurable family of probability measures P: X × 𝔅(ℝ₊) → [0, 1] satisfies the consistency condition if

$$\mathsf{E}(P(\cdot,\sigma))(x) = \frac{\int_{\sigma} t \, P(\phi(x), \mathsf{d}\, t)}{\mathsf{h}_{\phi}(\phi(x))} \text{ for } \mu\text{-a.e. } x \in X, \quad \sigma \in \mathfrak{B}(\mathbb{R}_+),$$

where
$$h_{\phi} = \frac{d \mu \circ \phi^{-1}}{d \mu}$$
.

The consistency condition

- P: X × 𝔅(ℝ₊) → [0, 1] is said to be an A-measurable family of probability measures if the set-function P(x, ·) is a probability measure for every x ∈ X and the function P(·, σ) is A-measurable for every σ ∈ 𝔅(ℝ₊).
- We say that an A-measurable family of probability measures P: X × 𝔅(ℝ₊) → [0, 1] satisfies the consistency condition if

$$\mathsf{E}(P(\cdot,\sigma))(x) = \frac{\int_{\sigma} t \, P(\phi(x), \mathsf{d}\, t)}{\mathsf{h}_{\phi}(\phi(x))} \text{ for } \mu\text{-a.e. } x \in X, \quad \sigma \in \mathfrak{B}(\mathbb{R}_+),$$

where
$$h_{\phi} = \frac{d \mu \circ \phi^{-1}}{d \mu}$$
.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

A criterion for subnormality

If C_φ is subnormal, then C_φ is densely defined and injective.

Theorem (Budzyński, Jabłoński, Jung & JS 2013)

Let (X, A, μ) be a σ -finite measure space and ϕ be a nonsingular transformation of X such that C_{ϕ} is densely defined and injective.

Suppose there exists an A-measurable family $P: X \times \mathfrak{B}(\mathbb{R}_+) \to [0, 1]$ of probability measures that satisfies the consistency condition.

Then C_{ϕ} is subnormal.

ヘロト ヘワト ヘビト ヘビト

If C_φ is subnormal, then C_φ is densely defined and injective.

Theorem (Budzyński, Jabłoński, Jung & JS 2013)

Let (X, A, μ) be a σ -finite measure space and ϕ be a nonsingular transformation of X such that C_{ϕ} is densely defined and injective.

Suppose there exists an A-measurable family $P: X \times \mathfrak{B}(\mathbb{R}_+) \to [0, 1]$ of probability measures that satisfies the consistency condition.

Then C_{ϕ} is subnormal.

ヘロア 人間 アメヨア 人口 ア

Generating moment sequences

• Find the relationship between the consistency condition and moments.

Theorem (Budzyński, Jabłoński, Jung & JS 2013)

 (X, A, μ) is a σ -finite measure space and ϕ is a nonsingular transformation of X such that C_{ϕ} is densely defined and injective.

If $P: X \times \mathfrak{B}(\mathbb{R}_+) \to [0, 1]$ is an \mathcal{A} -measurable family of probability measures that satisfies the consistency condition, then

$$h_{\phi^n}(x) = \int_0^\infty t^n P(x, dt)$$
 for μ -a.e. $x \in X$, $n = 0, 1, 2, \dots$

Recall that $h_{\phi^n} = \frac{d \mu \circ (\phi^n)^{-1}}{d \mu}$.

イロト 不得 とくほ とくほとう

Generating moment sequences

• Find the relationship between the consistency condition and moments.

Theorem (Budzyński, Jabłoński, Jung & JS 2013)

 (X, A, μ) is a σ -finite measure space and ϕ is a nonsingular transformation of X such that C_{ϕ} is densely defined and injective.

If $P: X \times \mathfrak{B}(\mathbb{R}_+) \to [0, 1]$ is an \mathcal{A} -measurable family of probability measures that satisfies the consistency condition, then

$$h_{\phi^n}(x) = \int_0^\infty t^n \mathcal{P}(x, dt)$$
 for μ -a.e. $x \in X$, $n = 0, 1, 2, \dots$

Recall that
$$h_{\phi^n} = \frac{d \mu \circ (\phi^n)^{-1}}{d \mu}$$
.

イロト イポト イヨト イヨト

• Let X be a nonempty set and $\phi: X \to X$ be a mapping. Set

$$E_{\phi} = \{ (x, y) \in X \times X \colon x = \phi(y) \}.$$

Then (X, E_{ϕ}) is a directed graph.

- Note that for every y ∈ X, φ(y) is the parent of y. Hence, φ⁻¹({x}) can be thought of as the set of all children of x.
- Connected directed graphs (X, E_φ) whose vertices, all but one, have valency one can be described explicitly.

ヘロト ヘアト ヘビト ヘビト

• Let X be a nonempty set and $\phi: X \to X$ be a mapping. Set

$$E_{\phi} = \{ (x, y) \in X \times X \colon x = \phi(y) \}.$$

Then (X, E_{ϕ}) is a directed graph.

- Note that for every y ∈ X, φ(y) is the parent of y. Hence, φ⁻¹({x}) can be thought of as the set of all children of x.
- Connected directed graphs (X, E_φ) whose vertices, all but one, have valency one can be described explicitly.

• Let X be a nonempty set and $\phi: X \to X$ be a mapping. Set

$$E_{\phi} = \{ (x, y) \in X \times X \colon x = \phi(y) \}.$$

Then (X, E_{ϕ}) is a directed graph.

- Note that for every y ∈ X, φ(y) is the parent of y. Hence, φ⁻¹({x}) can be thought of as the set of all children of x.
- Connected directed graphs (X, E_φ) whose vertices, all but one, have valency one can be described explicitly.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let (X, E_{ϕ}) be as above and let $\eta \in \{1, 2, 3, ...\} \cup \{\infty\}$. Then the following two conditions are equivalent:

(i) the directed graph (X, E_φ) is connected and there exists ω ∈ X such that card(φ⁻¹({ω})) = η + 1 and card(φ⁻¹({x})) = 1 for every x ∈ X \ {ω},

(ii) (X, E_{ϕ}) takes one of the following two forms:

イロト イポト イヨト イヨト 三日

Let (X, E_{ϕ}) be as above and let $\eta \in \{1, 2, 3, ...\} \cup \{\infty\}$. Then the following two conditions are equivalent:

(i) the directed graph (X, E_φ) is connected and there exists ω ∈ X such that card(φ⁻¹({ω})) = η + 1 and card(φ⁻¹({x})) = 1 for every x ∈ X \ {ω},

(ii) (X, E_{ϕ}) takes one of the following two forms:

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let (X, E_{ϕ}) be as above and let $\eta \in \{1, 2, 3, ...\} \cup \{\infty\}$. Then the following two conditions are equivalent:

(i) the directed graph (X, E_φ) is connected and there exists ω ∈ X such that card(φ⁻¹({ω})) = η + 1 and card(φ⁻¹({x})) = 1 for every x ∈ X \ {ω},

(ii) (X, E_{ϕ}) takes one of the following two forms:

イロト イポト イヨト イヨト 三日

(X, E_{ϕ}) with one branching vertex

(ii-a) there exist $\kappa \in \{0, 1, 2, ...\}$ and two disjoint systems $\{x_i\}_{i=0}^{\kappa}$ and $\{x_{i,j}\}_{i=1}^{\eta} \sum_{j=1}^{\infty}$ of distinct points of X such that

$$X = \{x_0, \dots, x_{\kappa}\} \cup \{x_{i,j} \colon i \in J_{\eta}, j \ge 1\},$$

$$\phi(x) = \begin{cases} x_{i,j-1} & \text{if } x = x_{i,j} \text{ with } i \in J_{\eta} \text{ and } j \ge 2, \\ x_{\kappa} & \text{if } x = x_{i,1} \text{ with } i \in J_{\eta} \text{ or } x = x_0, \\ x_{i-1} & \text{if } x = x_i \text{ with } i \in J_{\kappa}, \end{cases}$$

(ii-b) there exist two disjoint systems {x_i}[∞]_{i=0} and {x_{i,j}}^{η+1∞}_{i=1} of distinct points of X such that

$$X = \{x_i : i \ge 0\} \cup \{x_{i,j} : i \in J_{\eta+1}, j \ge 1\},\$$

$$\phi(x) = \begin{cases} x_{i,j-1} & \text{if } x = x_{i,j} \text{ with } i \in J_{\eta+1} \text{ and } j \ge 2\\ x_0 & \text{if } x = x_{i,1} \text{ with } i \in J_{\eta+1},\ x_{i+1} & \text{if } x = x_i \text{ with } i \ge 0. \end{cases}$$

(X, E_{ϕ}) with one branching vertex

(ii-a) there exist $\kappa \in \{0, 1, 2, ...\}$ and two disjoint systems $\{x_i\}_{i=0}^{\kappa}$ and $\{x_{i,j}\}_{i=1}^{\eta} \sum_{j=1}^{\infty}$ of distinct points of X such that

$$X = \{x_0, \dots, x_{\kappa}\} \cup \{x_{i,j} \colon i \in J_{\eta}, j \ge 1\},$$

$$\phi(x) = \begin{cases} x_{i,j-1} & \text{if } x = x_{i,j} \text{ with } i \in J_{\eta} \text{ and } j \ge 2, \\ x_{\kappa} & \text{if } x = x_{i,1} \text{ with } i \in J_{\eta} \text{ or } x = x_0, \\ x_{i-1} & \text{if } x = x_i \text{ with } i \in J_{\kappa}, \end{cases}$$

(ii-b) there exist two disjoint systems {x_i}[∞]_{i=0} and {x_{i,j}}^{η+1∞}_{i=1 j=1} of distinct points of X such that

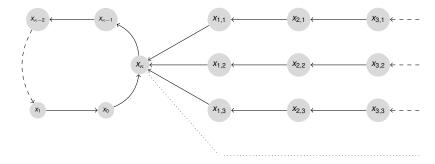
$$X = \{x_i : i \ge 0\} \cup \{x_{i,j} : i \in J_{\eta+1}, j \ge 1\},\$$

$$\phi(x) = \begin{cases} x_{i,j-1} & \text{if } x = x_{i,j} \text{ with } i \in J_{\eta+1} \text{ and } j \ge 2,\$$

$$x_0 & \text{if } x = x_{i,1} \text{ with } i \in J_{\eta+1},\$$

$$x_{i+1} & \text{if } x = x_i \text{ with } i \ge 0.\end{cases}$$

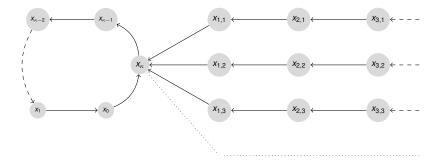
The case (ii-a)



- $\eta \in \{1, 2, 3, ...\} \cup \{\infty\}, \kappa \in \{0, 1, 2, ...\}.$ *X* and ϕ defined in (ii-a) will be denoted by $X_{\eta,\kappa}$ and $\phi_{\eta,\kappa}$, respectively.
- The directed graph (X_{η,κ}, E_{φη,κ}) is not a directed tree because it has a circuit.

イロン イロン イヨン イヨン

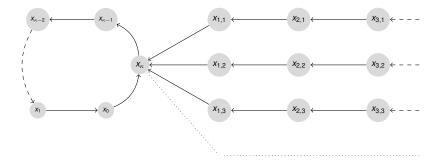
The case (ii-a)



- $\eta \in \{1, 2, 3, ...\} \cup \{\infty\}, \kappa \in \{0, 1, 2, ...\}.$ X and ϕ defined in (ii-a) will be denoted by $X_{\eta,\kappa}$ and $\phi_{\eta,\kappa}$, respectively.
- The directed graph (X_{η,κ}, E_{φη,κ}) is not a directed tree because it has a circuit.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

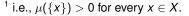
The case (ii-a)



- $\eta \in \{1, 2, 3, ...\} \cup \{\infty\}, \kappa \in \{0, 1, 2, ...\}.$ X and ϕ defined in (ii-a) will be denoted by $X_{\eta,\kappa}$ and $\phi_{\eta,\kappa}$, respectively.
- The directed graph (X_{η,κ}, E_{φη,κ}) is not a directed tree because it has a circuit.

・ 回 ト ・ ヨ ト ・ ヨ ト

- Comment. The class of composition operators C_φ in L²(X, μ) with a symbol φ as in (ii-b), where μ is a discrete measure¹ on X, coincides with the class of weighted shifts on the directed tree S_{η+1,∞} with positive weights.
- The latter class was studied earlier. So we can concentrate on composition operators C_{φη,κ} in L²(X_{η,κ}, μ) with the symbol φ_{η,κ}, where μ is a discrete measure on X_{η,κ}.



Jan Stochel Uniwersytet Jagielloński Kraków

< □ > < ঐ > < ই > < ই > ই ⇒ ? ে Subnormality of composition operators over directed graphs with

- Comment. The class of composition operators C_φ in L²(X, μ) with a symbol φ as in (ii-b), where μ is a discrete measure¹ on X, coincides with the class of weighted shifts on the directed tree S_{η+1,∞} with positive weights.
- The latter class was studied earlier. So we can concentrate on composition operators C_{φη,κ} in L²(X_{η,κ}, μ) with the symbol φ_{η,κ}, where μ is a discrete measure on X_{η,κ}.

¹ i.e., $\mu(\{x\}) > 0$ for every $x \in X$.

Jan Stochel Uniwersytet Jagielloński Kraków

Subnormality of composition operators over directed graphs with

There exists a discrete measure μ on $X_{2,0}$ such that

- C_{\u03c62.0} generates Stieltjes moment sequences,
- 2 $C_{\phi_{2,0}}$ is not hyponormal, thus it is not subnormal,
- $\bigcirc \ C_{\phi_{2,0}}$ is paranormal,
- $\mathcal{D}^{\infty}(C_{\phi_{2,0}})$ is a core for $C^n_{\phi_{2,0}}$ for every $n \ge 0$.
- The proof of the above theorem depends heavily on the theory of classical moment problems especially on deep results due to Berg-Valent [1994] and Berg-Durán [1995].

ヘロア 人間 アメヨア 人口 ア

There exists a discrete measure μ on $X_{2,0}$ such that

- **1** $C_{\phi_{2,0}}$ generates Stieltjes moment sequences,
 - ² $C_{\phi_{2,0}}$ is not hyponormal, thus it is not subnormal,
- (3) $C_{\phi_{2,0}}$ is paranormal,
- $\mathcal{D}^{\infty}(C_{\phi_{2,0}})$ is a core for $C_{\phi_{2,0}}^n$ for every $n \ge 0$.
- The proof of the above theorem depends heavily on the theory of classical moment problems especially on deep results due to Berg-Valent [1994] and Berg-Durán [1995].

ヘロン ヘアン ヘビン ヘビン

There exists a discrete measure μ on $X_{2,0}$ such that

- $C_{\phi_{2,0}}$ generates Stieltjes moment sequences,
- 2 $C_{\phi_{2,0}}$ is not hyponormal, thus it is not subnormal,
 - 3) $C_{\phi_{2,0}}$ is paranormal,
- ($\mathbb{D}^{\infty}(C_{\phi_{2,0}})$ is a core for $C^n_{\phi_{2,0}}$ for every $n \ge 0$.
- The proof of the above theorem depends heavily on the theory of classical moment problems especially on deep results due to Berg-Valent [1994] and Berg-Durán [1995].

・ロト ・ 理 ト ・ ヨ ト ・

There exists a discrete measure μ on $X_{2,0}$ such that

- $C_{\phi_{2,0}}$ generates Stieltjes moment sequences,
- 2 $C_{\phi_{2,0}}$ is not hyponormal, thus it is not subnormal,
- 3 $C_{\phi_{2,0}}$ is paranormal,
- $\mathcal{D}^{\infty}(C_{\phi_{2,0}})$ is a core for $C_{\phi_{2,0}}^n$ for every $n \ge 0$.
- The proof of the above theorem depends heavily on the theory of classical moment problems especially on deep results due to Berg-Valent [1994] and Berg-Durán [1995].

・ロト ・ 理 ト ・ ヨ ト ・

There exists a discrete measure μ on $X_{2,0}$ such that

- $C_{\phi_{2,0}}$ generates Stieltjes moment sequences,
- 2 $C_{\phi_{2,0}}$ is not hyponormal, thus it is not subnormal,
- (a) $C_{\phi_{2,0}}$ is paranormal,
- $\mathcal{D}^{\infty}(C_{\phi_{2,0}})$ is a core for $C^n_{\phi_{2,0}}$ for every $n \ge 0$.
- The proof of the above theorem depends heavily on the theory of classical moment problems especially on deep results due to Berg-Valent [1994] and Berg-Durán [1995].

ヘロン ヘアン ヘビン ヘビン

There exists a discrete measure μ on $X_{2,0}$ such that

- $C_{\phi_{2,0}}$ generates Stieltjes moment sequences,
- 2 $C_{\phi_{2,0}}$ is not hyponormal, thus it is not subnormal,
- 3 $C_{\phi_{2,0}}$ is paranormal,
- $\mathcal{D}^{\infty}(\mathcal{C}_{\phi_{2,0}})$ is a core for $\mathcal{C}^{n}_{\phi_{2,0}}$ for every $n \ge 0$.
- The proof of the above theorem depends heavily on the theory of classical moment problems especially on deep results due to Berg-Valent [1994] and Berg-Durán [1995].

ヘロン 人間 とくほ とくほ とう

- A Borel measure ν on ℝ is said to be H-determinate if the sequence of its moments {∫_ℝ tⁿ d ν(t)}_{n=0}[∞] is H-determinate.
- Following Berg-Durán [1995], we define the quantity ind_z(ρ) ∈ Z₊ ∪ {∞}, called the index of H-determinacy of an H-determinate measure ρ at a point z ∈ C, by

$$\operatorname{ind}_{z}(\rho) = \sup\left\{k \in \mathbb{Z}_{+} \colon |t - z|^{2k} \operatorname{d} \rho(t) \text{ is H-determinate}
ight\}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- A Borel measure ν on ℝ is said to be H-determinate if the sequence of its moments {∫_ℝ tⁿ d ν(t)}_{n=0}[∞] is H-determinate.
- Following Berg-Durán [1995], we define the quantity ind_z(ρ) ∈ Z₊ ∪ {∞}, called the index of H-determinacy of an H-determinate measure ρ at a point z ∈ C, by

$$\operatorname{ind}_{z}(\rho) = \sup \left\{ k \in \mathbb{Z}_{+} \colon |t - z|^{2k} \operatorname{d} \rho(t) \text{ is H-determinate} \right\}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem (Budzyński, Jabłoński, Jung & JS 2014)

 $\eta \in \mathbb{N}_2$. There exists a discrete measure μ on $X_{\eta,0}$ such that

- $C_{\phi_{n,0}}$ generates Stieltjes moment sequences,
- ② $C_{\phi_{\eta,0}}$ is not hyponormal,
- ◎ $\{h_{\phi_{\eta,0}^n}(x)\}_{n=0}^{\infty}$ is a Stieltjes moment sequence for every $x \in X_{\eta,0}$,
- (a) $\{h_{\phi_{\eta,0}^n}(x_0)\}_{n=0}^{\infty}$ is *H*-determinate with index of *H*-determinacy at 0 equal to 0,
- {h_{φⁿ_{η,0}}(x_{i,j})}[∞]_{n=0} is H-determinate with infinite index of H-determinacy for all 1 ≤ i ≤ η − 1 and j ≥ 1,
- If or every 1 ≤ j ≤ 2η − 4, {h_{φⁿ_{η,0}}(x_{η,j})}[∞]_{n=0} is H-determinate and its unique H-representing measure P(x_{η,j}, ·) satisfies

$$\eta - 2 - \lfloor j/2 \rfloor \leq \operatorname{ind}_0(P(x_{\eta,j}, \cdot)) \leq \eta - 2 - \lfloor j/2 \rfloor$$

Subnormality of composition operators over directed graphs with

- $\eta \in \mathbb{N}_2$. There exists a discrete measure μ on $X_{\eta,0}$ such that
- $C_{\phi_{n,0}}$ generates Stieltjes moment sequences,
 - 2 $C_{\phi_{\eta,0}}$ is not hyponormal,
- ◎ $\{h_{\phi_{\eta,0}^n}(x)\}_{n=0}^{\infty}$ is a Stieltjes moment sequence for every $x \in X_{\eta,0}$,
- (a) $\{h_{\phi_{\eta,0}^n}(x_0)\}_{n=0}^{\infty}$ is *H*-determinate with index of *H*-determinacy at 0 equal to 0,
- {h_{φⁿ_{η,0}}(*x*_{*i*,*j*})}[∞]_{*n*=0} is *H*-determinate with **infinite** index of *H*-determinacy for all 1 ≤ *i* ≤ η − 1 and *j* ≥ 1,
- If or every 1 ≤ j ≤ 2η − 4, {h_{φⁿ_{η,0}}(x_{η,j})}[∞]_{n=0} is H-determinate and its unique H-representing measure P(x_{η,j}, ·) satisfies

$$\eta - 2 - \lceil j/2 \rceil \leq \operatorname{ind}_0(P(x_{\eta,j}, \cdot)) \leq \eta - 2 - \lfloor j/2 \rfloor$$

- $\eta \in \mathbb{N}_2$. There exists a discrete measure μ on $X_{\eta,0}$ such that
- $C_{\phi_{n,0}}$ generates Stieltjes moment sequences,
- 2 $C_{\phi_{\eta,0}}$ is not hyponormal,
- ③ { $h_{\phi_{\eta,0}^n}(x)$ }[∞]_{n=0} is a Stieltjes moment sequence for every $x \in X_{\eta,0}$,
- (a) $\{h_{\phi_{\eta,0}^n}(x_0)\}_{n=0}^{\infty}$ is *H*-determinate with index of *H*-determinacy at 0 equal to 0,
- {h_{φⁿ_{η,0}}(*x*_{*i*,*j*})}[∞]_{*n*=0} is *H*-determinate with **infinite** index of *H*-determinacy for all 1 ≤ *i* ≤ η − 1 and *j* ≥ 1,
- for every 1 ≤ *j* ≤ 2 η − 4, {h_{$\phi_{\eta,0}^n$}(*x*_{η,j})}[∞]_{*n*=0} is *H*-determinate and its unique *H*-representing measure *P*(*x*_{η,j}, ·) satisfies

$$\eta - 2 - \lceil j/2 \rceil \leqslant \operatorname{ind}_0(P(x_{\eta,j}, \cdot)) \leqslant \eta - 2 - \lfloor j/2 \rfloor$$

- $\eta \in \mathbb{N}_2$. There exists a discrete measure μ on $X_{\eta,0}$ such that
- $C_{\phi_{n,0}}$ generates Stieltjes moment sequences,
- 2 $C_{\phi_{\eta,0}}$ is not hyponormal,
- $\{h_{\phi_{\eta,0}^n}(x)\}_{n=0}^{\infty}$ is a Stieltjes moment sequence for every $x \in X_{\eta,0}$,
- (a) $\{h_{\phi_{\eta,0}^n}(x_0)\}_{n=0}^{\infty}$ is *H*-determinate with index of *H*-determinacy at 0 equal to 0,
- {h_{φⁿ_{η,0}}(*x*_{*i*,*j*})}[∞]_{*n*=0} is *H*-determinate with **infinite** index of *H*-determinacy for all 1 ≤ *i* ≤ η − 1 and *j* ≥ 1,
- If or every 1 ≤ j ≤ 2η − 4, {h_{φⁿ_{η,0}}(x_{η,j})}[∞]_{n=0} is H-determinate and its unique H-representing measure P(x_{η,j}, ·) satisfies

$$\eta - 2 - \lceil j/2 \rceil \leqslant \operatorname{ind}_0(P(x_{\eta,j}, \cdot)) \leqslant \eta - 2 - \lfloor j/2 \rfloor$$

- $\eta \in \mathbb{N}_2$. There exists a discrete measure μ on $X_{\eta,0}$ such that
- $C_{\phi_{n,0}}$ generates Stieltjes moment sequences,
- 2 $C_{\phi_{\eta,0}}$ is not hyponormal,
- $\{h_{\phi_{\eta,0}^n}(x)\}_{n=0}^{\infty}$ is a Stieltjes moment sequence for every $x \in X_{\eta,0}$,
- $\{h_{\phi_{\eta,0}^n}(x_0)\}_{n=0}^{\infty}$ is *H*-determinate with index of *H*-determinacy at 0 equal to 0,
- {h_{φⁿ_{η,0}}(x_{i,j})}[∞]_{n=0} is H-determinate with infinite index of H-determinacy for all 1 ≤ i ≤ η − 1 and j ≥ 1,
- for every 1 ≤ *j* ≤ 2η − 4, {h_{φⁿ_{η,0}}(*x*_{η,*j*})}[∞]_{*n*=0} is *H*-determinate and its unique *H*-representing measure $P(x_{η,j}, \cdot)$ satisfies

$$\eta - 2 - \lceil j/2 \rceil \leq \operatorname{ind}_0(P(x_{\eta,j}, \cdot)) \leq \eta - 2 - \lfloor j/2 \rfloor$$

- $\eta \in \mathbb{N}_2$. There exists a discrete measure μ on $X_{\eta,0}$ such that
- $C_{\phi_{n,0}}$ generates Stieltjes moment sequences,
- 2 $C_{\phi_{\eta,0}}$ is not hyponormal,
- $\{h_{\phi_{\eta,0}^n}(x)\}_{n=0}^{\infty}$ is a Stieltjes moment sequence for every $x \in X_{\eta,0}$,
- $\{h_{\phi_{\eta,0}^n}(x_0)\}_{n=0}^{\infty}$ is *H*-determinate with index of *H*-determinacy at 0 equal to 0,
- $\{h_{\phi_{\eta,0}^n}(x_{i,j})\}_{n=0}^{\infty}$ is H-determinate with infinite index of H-determinacy for all $1 \le i \le \eta 1$ and $j \ge 1$,
- for every 1 ≤ j ≤ 2η − 4, {h_{φⁿ_{η,0}}(x_{η,j})}[∞]_{n=0} is H-determinate and its unique H-representing measure P(x_{η,j}, ·) satisfies

$$\eta - 2 - \lceil j/2 \rceil \leqslant \operatorname{ind}_0(P(x_{\eta,j}, \cdot)) \leqslant \eta - 2 - \lfloor j/2 \rfloor$$

- $\eta \in \mathbb{N}_2$. There exists a discrete measure μ on $X_{\eta,0}$ such that
- $C_{\phi_{n,0}}$ generates Stieltjes moment sequences,
- 2 $C_{\phi_{\eta,0}}$ is not hyponormal,
- $\{h_{\phi_{\eta,0}^n}(x)\}_{n=0}^{\infty}$ is a Stieltjes moment sequence for every $x \in X_{\eta,0}$,
- $\{h_{\phi_{\eta,0}^n}(x_0)\}_{n=0}^{\infty}$ is *H*-determinate with index of *H*-determinacy at 0 equal to 0,
- $\{h_{\phi_{\eta,0}^n}(x_{i,j})\}_{n=0}^{\infty}$ is H-determinate with infinite index of H-determinacy for all $1 \leq i \leq \eta 1$ and $j \geq 1$,
- for every $1 \leq j \leq 2\eta 4$, $\{h_{\phi_{\eta,0}^n}(x_{\eta,j})\}_{n=0}^{\infty}$ is *H*-determinate and its unique *H*-representing measure $P(x_{\eta,j}, \cdot)$ satisfies

$$\eta - 2 - \lceil j/2 \rceil \leq \operatorname{ind}_0(P(x_{\eta,j}, \cdot)) \leq \eta - 2 - \lfloor j/2 \rfloor.$$

 Fix a ∈ (1,∞). Then using Euler's pentagonal-number theorem, we show that there exists q ∈ (0,1/a) such that

$$(q/a;q)_{\infty}+(aq;q)_{\infty}>1, \qquad (1)$$

• where $(z; q)_n$ is the *q*-Pochhammer symbol defined for $z \in \mathbb{C}$ and $n \in \{0, 1, 2, ...\} \cup \{\infty\}$ by

$$(z;q)_n = \prod_{j=1}^n (1-zq^{j-1})$$
 $(z;q)_0 = 1$ for all $z \in \mathbb{C}$.

If $n = \infty$, then we assume that |zq| < 1.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

 Fix a ∈ (1,∞). Then using Euler's pentagonal-number theorem, we show that there exists q ∈ (0,1/a) such that

$$(q/a;q)_{\infty}+(aq;q)_{\infty}>1, \qquad (1)$$

• where $(z; q)_n$ is the *q*-Pochhammer symbol defined for $z \in \mathbb{C}$ and $n \in \{0, 1, 2, ...\} \cup \{\infty\}$ by

$$(z;q)_n=\prod_{j=1}^n(1-zq^{j-1})$$
 $(z;q)_0=1 ext{ for all } z\in\mathbb{C}$.

If $n = \infty$, then we assume that |zq| < 1.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

• Define the Borel measures $\widetilde{\alpha}$ and $\widetilde{\beta}$ on \mathbb{R} by

$$\widetilde{\alpha} = \sum_{n=0}^{\infty} (aq;q)_{\infty} \frac{a^n q^{n^2}}{(aq;q)_n (q;q)_n} \delta_{q^{-n}-1},$$

$$\widetilde{\beta} = \sum_{n=0}^{\infty} (q/a;q)_{\infty} \frac{a^{-n} q^{n^2}}{(q/a;q)_n (q;q)_n} \delta_{aq^{-n}-1},$$

where δ_t is the Dirac measure at the point $t \in \mathbb{R}$.

• The measures $\tilde{\alpha}$ and β orthogonalize the Al-Salam-Carlitz q-polynomials.

ヘロト ヘワト ヘビト ヘビト

• Define the Borel measures $\widetilde{\alpha}$ and $\widetilde{\beta}$ on \mathbb{R} by

$$\widetilde{\alpha} = \sum_{n=0}^{\infty} (aq;q)_{\infty} \frac{a^n q^{n^2}}{(aq;q)_n (q;q)_n} \delta_{q^{-n}-1},$$

$$\widetilde{\beta} = \sum_{n=0}^{\infty} (q/a;q)_{\infty} \frac{a^{-n} q^{n^2}}{(q/a;q)_n (q;q)_n} \delta_{aq^{-n}-1},$$

where δ_t is the Dirac measure at the point $t \in \mathbb{R}$.

• The measures $\tilde{\alpha}$ and $\tilde{\beta}$ orthogonalize the Al-Salam-Carlitz q-polynomials.

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- The measures α̃ and β̃ are probability measures due to a result of Ismail [1985].
- It was proved by Berg and Valent [1994] that α̃ and β̃ are
 N-extremal measures of the same Stieltjes moment sequence, say γ.
- In fact, one can show that $\tilde{\alpha}$ is the Krein measure of γ , and $\tilde{\beta}$ is the Friedrichs measure of γ .
- Set α = rα and β = rβ with r = (1 − α({0}))⁻¹. Then α and β are N-extremal measures of r · γ such that 0 = inf supp(α) < inf supp(β) and α(ℝ₊) = 1 + α({0}) > 1.
- Now, combining the definitions of $\widetilde{\alpha}$ and $\widetilde{\beta}$ with (1), we get

$$\beta\left(\left\{\inf \operatorname{supp}(\beta)\right\}\right) = \frac{(q/a;q)_{\infty}}{1 - (aq;q)_{\infty}} > 1.$$
(2)

ヘロア 人間 アメヨア 人口 ア

- The measures α̃ and β̃ are probability measures due to a result of Ismail [1985].
- It was proved by Berg and Valent [1994] that α̃ and β̃ are
 N-extremal measures of the same Stieltjes moment sequence, say γ.
- In fact, one can show that $\tilde{\alpha}$ is the Krein measure of γ , and $\tilde{\beta}$ is the Friedrichs measure of γ .
- Set α = rα and β = rβ with r = (1 − α({0}))⁻¹. Then α and β are N-extremal measures of r · γ such that 0 = inf supp(α) < inf supp(β) and α(ℝ₊) = 1 + α({0}) > 1.
- Now, combining the definitions of $\widetilde{\alpha}$ and $\widetilde{\beta}$ with (1), we get

$$\beta\left(\left\{\inf \operatorname{supp}(\beta)\right\}\right) = \frac{(q/a;q)_{\infty}}{1 - (aq;q)_{\infty}} > 1.$$
(2)

・ロト ・ 理 ト ・ ヨ ト ・

- The measures α̃ and β̃ are probability measures due to a result of Ismail [1985].
- It was proved by Berg and Valent [1994] that α̃ and β̃ are
 N-extremal measures of the same Stieltjes moment sequence, say γ.
- In fact, one can show that $\tilde{\alpha}$ is the Krein measure of γ , and $\tilde{\beta}$ is the Friedrichs measure of γ .
- Set α = rα and β = rβ with r = (1 − α({0}))⁻¹. Then α and β are N-extremal measures of r · γ such that 0 = inf supp(α) < inf supp(β) and α(ℝ₊) = 1 + α({0}) > 1.
- Now, combining the definitions of $\widetilde{\alpha}$ and $\widetilde{\beta}$ with (1), we get

$$\beta\left(\left\{\inf \operatorname{supp}(\beta)\right\}\right) = \frac{(q/a;q)_{\infty}}{1 - (aq;q)_{\infty}} > 1.$$
(2)

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

- The measures α̃ and β̃ are probability measures due to a result of Ismail [1985].
- It was proved by Berg and Valent [1994] that α̃ and β̃ are
 N-extremal measures of the same Stieltjes moment sequence, say γ.
- In fact, one can show that $\tilde{\alpha}$ is the Krein measure of γ , and $\tilde{\beta}$ is the Friedrichs measure of γ .
- Set α = rα and β = rβ with r = (1 α({0}))⁻¹. Then α and β are N-extremal measures of r · γ such that 0 = inf supp(α) < inf supp(β) and α(ℝ₊) = 1 + α({0}) > 1.
- Now, combining the definitions of $\widetilde{\alpha}$ and $\widetilde{\beta}$ with (1), we get

$$\beta\left(\left\{\inf \operatorname{supp}(\beta)\right\}\right) = \frac{(q/a; q)_{\infty}}{1 - (aq; q)_{\infty}} > 1.$$
(2)

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

- The measures α̃ and β̃ are probability measures due to a result of Ismail [1985].
- It was proved by Berg and Valent [1994] that α̃ and β̃ are
 N-extremal measures of the same Stieltjes moment sequence, say γ.
- In fact, one can show that $\tilde{\alpha}$ is the Krein measure of γ , and $\tilde{\beta}$ is the Friedrichs measure of γ .
- Set α = rα and β = rβ with r = (1 α({0}))⁻¹. Then α and β are N-extremal measures of r · γ such that 0 = inf supp(α) < inf supp(β) and α(ℝ₊) = 1 + α({0}) > 1.
- Now, combining the definitions of $\widetilde{\alpha}$ and $\widetilde{\beta}$ with (1), we get

$$\beta\left(\left\{\inf \operatorname{supp}(\beta)\right\}\right) = \frac{(q/a;q)_{\infty}}{1 - (aq;q)_{\infty}} > 1.$$
(2)

イロン 不良 とくほう 不良 とうほ

• Let $\{\theta_i\}_{i=1}^{\infty}$ be a strictly increasing sequence such that $\operatorname{supp}(\beta) = \{\theta_1, \theta_2, \ldots\}$. By (2), we have $\beta(\{\theta_1\}) > 1$. Hence $\beta(\{\theta_1, \ldots, \theta_{\eta-1}\}) > 1$.

• One can show that there exists $\varepsilon > 0$ such that

$$\sum_{i=1}^{\eta-1} \frac{\theta_i^{(\varepsilon)}-1}{\theta_i^{(\varepsilon)}} \,\beta^{(\varepsilon)}\big(\{\theta_i^{(\varepsilon)}\}\big) > \frac{\int_0^\infty (t-1) \,\mathrm{d}\,\beta^{(\varepsilon)}(t)}{1+\int_0^\infty (t-1) \,\mathrm{d}\,\beta^{(\varepsilon)}(t)},$$

where

$$\theta_i^{(\varepsilon)} = \psi_{\varepsilon}(\theta_i) \quad \text{and} \quad \beta^{(\varepsilon)}(\sigma) = \beta(\psi_{\varepsilon}^{-1}(\sigma)) \text{ for } \sigma \in \mathfrak{B}(\mathbb{R}),$$

and $\psi_{\varepsilon} \colon \mathbb{R} \to \mathbb{R}$ is a homeomorphism given by

$$\psi_{\varepsilon}(t) = \varepsilon^{-1}t + 1$$
 for $t \in \mathbb{R}$.

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

- Let $\{\theta_i\}_{i=1}^{\infty}$ be a strictly increasing sequence such that $\operatorname{supp}(\beta) = \{\theta_1, \theta_2, \ldots\}$. By (2), we have $\beta(\{\theta_1\}) > 1$. Hence $\beta(\{\theta_1, \ldots, \theta_{\eta-1}\}) > 1$.
- One can show that there exists $\varepsilon > 0$ such that

$$\sum_{i=1}^{\eta-1} \frac{\theta_i^{(\varepsilon)} - 1}{\theta_i^{(\varepsilon)}} \beta^{(\varepsilon)} \big(\{\theta_i^{(\varepsilon)}\} \big) > \frac{\int_0^\infty (t-1) \,\mathrm{d} \,\beta^{(\varepsilon)}(t)}{1 + \int_0^\infty (t-1) \,\mathrm{d} \,\beta^{(\varepsilon)}(t)},$$

where

 $\theta_i^{(\varepsilon)} = \psi_{\varepsilon}(\theta_i) \quad \text{and} \quad \beta^{(\varepsilon)}(\sigma) = \beta(\psi_{\varepsilon}^{-1}(\sigma)) \text{ for } \sigma \in \mathfrak{B}(\mathbb{R}),$

and $\psi_{\varepsilon} \colon \mathbb{R} \to \mathbb{R}$ is a homeomorphism given by

$$\psi_{\varepsilon}(t) = \varepsilon^{-1}t + 1$$
 for $t \in \mathbb{R}$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Sketch of the proof (IV)

- Let $\{\theta_i\}_{i=1}^{\infty}$ be a strictly increasing sequence such that $\operatorname{supp}(\beta) = \{\theta_1, \theta_2, \ldots\}$. By (2), we have $\beta(\{\theta_1\}) > 1$. Hence $\beta(\{\theta_1, \ldots, \theta_{\eta-1}\}) > 1$.
- One can show that there exists $\varepsilon > 0$ such that

$$\sum_{i=1}^{\eta-1} \frac{\theta_i^{(\varepsilon)} - 1}{\theta_i^{(\varepsilon)}} \ \beta^{(\varepsilon)} \big(\{\theta_i^{(\varepsilon)}\} \big) > \frac{\int_0^\infty (t-1) \, \mathrm{d} \, \beta^{(\varepsilon)}(t)}{1 + \int_0^\infty (t-1) \, \mathrm{d} \, \beta^{(\varepsilon)}(t)},$$

where

٠

$$heta_i^{(arepsilon)}=\psi_arepsilon(heta_i) \quad ext{ and } \quad eta^{(arepsilon)}(\sigma)=eta(\psi_arepsilon^{-1}(\sigma)) ext{ for } \sigma\in\mathfrak{B}(\mathbb{R}),$$

and $\psi_{\varepsilon} \colon \mathbb{R} \to \mathbb{R}$ is a homeomorphism given by

$$\psi_{\varepsilon}(t) = \varepsilon^{-1}t + 1$$
 for $t \in \mathbb{R}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Sketch of the proof (V)

• Set
$$\nu = \alpha^{(\varepsilon)}$$
 and $\tau = \beta^{(\varepsilon)}$.

Then we verify that

(14) (24)(3.)• Let $\{\Delta_i\}_{i=1}^{\eta}$ be a partition of supp (τ) given by

ヘロア ヘビア ヘビア・

Sketch of the proof (V)

• Set
$$\nu = \alpha^{(\varepsilon)}$$
 and $\tau = \beta^{(\varepsilon)}$.

Then we verify that

 $\nu \text{ and } \tau \text{ are N-extremal measures of}$ the same Stieltjes moment sequence $1 = \inf \operatorname{supp}(\nu) < \inf \operatorname{supp}(\tau), \qquad (2\clubsuit)$ $\nu(\mathbb{R}) = 1 + \nu(\{1\}). \qquad (3\clubsuit)$ $\text{Let } \{\Delta_i\}_{i=1}^{\eta} \text{ be a partition of } \operatorname{supp}(\tau) \text{ given by}$

$$\Delta_{i} = \begin{cases} \left\{ \theta_{i}^{(\varepsilon)} \right\} & \text{if } 1 \leqslant i \leqslant \eta - 1 \\ \left\{ \theta_{\eta}^{(\varepsilon)}, \theta_{\eta+1}^{(\varepsilon)}, \dots \right\} & \text{if } i = \eta. \end{cases}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Sketch of the proof (V)

• Set
$$\nu = \alpha^{(\varepsilon)}$$
 and $\tau = \beta^{(\varepsilon)}$.

Then we verify that

 ν and τ are N-extremal measures of the same Stieltjes moment sequence , (14)

$$1 = \inf \operatorname{supp}(\nu) < \inf \operatorname{supp}(\tau), \qquad (2\clubsuit)$$

$$\nu(\mathbb{R}) = 1 + \nu(\{1\}).$$
 (34)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

• Let $\{\Delta_i\}_{i=1}^{\eta}$ be a partition of supp (τ) given by

$$\Delta_{i} = \begin{cases} \left\{ \theta_{i}^{(\varepsilon)} \right\} & \text{if } 1 \leqslant i \leqslant \eta - 1, \\ \left\{ \theta_{\eta}^{(\varepsilon)}, \theta_{\eta+1}^{(\varepsilon)}, \dots \right\} & \text{if } i = \eta. \end{cases}$$

• Define Borel probability measures $\{P(x_{i,1}, \cdot)\}_{i=1}^{\eta}$ on \mathbb{R} by

$${\it P}({\it x}_{i,1},\sigma)={\it c}_i\int_{{\it \Delta}_i\cap\sigma}(t-1)\,{
m d}\, au(t),\quad \sigma\in\mathfrak{B}(\mathbb{R}),$$

where

$$c_i = \frac{1}{\int_{\Delta_i} (t-1) \,\mathrm{d}\,\tau(t)}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ ○ ○ ○

Sketch of the proof (VII)

• Take any $\mu(x_0) \in (0, \infty)$ and define a sequence $\{\mu(x_{i,1})\}_{i=1}^{\eta}$ of positive real numbers by

$$\mu(\mathbf{x}_{i,1}) = \frac{1}{c_i} \,\mu(\mathbf{x}_0), \quad 1 \leqslant i \leqslant \eta. \tag{3}$$

$$\mu(x_{i,j}) = \mu(x_{i,1}) \int_0^\infty t^{j-1} P(x_{i,1}, \operatorname{d} t),$$
$$P(x_{i,j}, \sigma) = \frac{\mu(x_{i,1})}{\mu(x_{i,j})} \int_\sigma t^{j-1} P(x_{i,1}, \operatorname{d} t), \quad \sigma \in \mathfrak{B}(\mathbb{R}).$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Sketch of the proof (VII)

• Take any $\mu(x_0) \in (0, \infty)$ and define a sequence $\{\mu(x_{i,1})\}_{i=1}^{\eta}$ of positive real numbers by

$$\mu(\mathbf{x}_{i,1}) = \frac{1}{c_i} \,\mu(\mathbf{x}_0), \quad 1 \leqslant i \leqslant \eta. \tag{3}$$

$$\mu(\mathbf{x}_{i,j}) = \mu(\mathbf{x}_{i,1}) \int_0^\infty t^{j-1} \mathcal{P}(\mathbf{x}_{i,1}, \operatorname{d} t),$$

$$\mathcal{P}(\mathbf{x}_{i,j}, \sigma) = \frac{\mu(\mathbf{x}_{i,1})}{\mu(\mathbf{x}_{i,j})} \int_\sigma t^{j-1} \mathcal{P}(\mathbf{x}_{i,1}, \operatorname{d} t), \quad \sigma \in \mathfrak{B}(\mathbb{R}).$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

• Let $P(x_0, \cdot)$ be a Borel measure on \mathbb{R} given by

$$P(x_0,\sigma) = \nu(\sigma) - \nu(\{1\})\delta_1(\sigma), \quad \sigma \in \mathfrak{B}(\mathbb{R}).$$

By the third property (3.4) of the measure ν , $P(x_0, \cdot)$ is a probability measure.

- Finally, let μ be a (unique) discrete measure on X_{η,0} such that μ({x}) = μ(x) for every x ∈ X.
- Then the corresponding composition operator C_{φη,0} in L²(μ) has the required properties. Since the rest of the proof is quite long, I stop at this point.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

• Let $P(x_0, \cdot)$ be a Borel measure on \mathbb{R} given by

$$P(x_0,\sigma) = \nu(\sigma) - \nu(\{1\})\delta_1(\sigma), \quad \sigma \in \mathfrak{B}(\mathbb{R}).$$

By the third property (3.4) of the measure ν , $P(x_0, \cdot)$ is a probability measure.

- Finally, let μ be a (unique) discrete measure on X_{η,0} such that μ({x}) = μ(x) for every x ∈ X.
- Then the corresponding composition operator C_{φ_{η,0}} in L²(μ) has the required properties. Since the rest of the proof is quite long, I stop at this point.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

• Let $P(x_0, \cdot)$ be a Borel measure on \mathbb{R} given by

$$P(x_0,\sigma) = \nu(\sigma) - \nu(\{1\})\delta_1(\sigma), \quad \sigma \in \mathfrak{B}(\mathbb{R}).$$

By the third property (34) of the measure ν , $P(x_0, \cdot)$ is a probability measure.

- Finally, let μ be a (unique) discrete measure on X_{η,0} such that μ({x}) = μ(x) for every x ∈ X.
- Then the corresponding composition operator C_{φ_{η,0}} in L²(μ) has the required properties. Since the rest of the proof is quite long, I stop at this point.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Talk is based on the following papers:

[1] Z. J. Jabłoński, I. B. Jung, J. Stochel, Weighted shifts on directed trees, *Mem. Amer. Math. Soc.* **216** (2012), no. 1017, viii+107pp.

[2] Z. J. Jabłoński, I. B. Jung, J. Stochel, A non-hyponormal operator generating Stieltjes moment sequences, *Journal of Functional Analysis* **262** (2012), 3946-3980.

[3] P. Budzyński, Z. J. Jabłoński, I. B. Jung, J. Stochel, Unbounded subnormal composition operators in L^2 -spaces (arXiv:1303.6486), submitted.

[4] P. Budzyński, Z. J. Jabłoński, I. B. Jung, J. Stochel, Subnormality of composition operators in L^2 spaces over directed graphs with one circuit, work in progress almost completed.

ヘロン 人間 とくほ とくほ とう

э.

Thank you!

Jan Stochel Uniwersytet Jagielloński Kraków Subnormality of composition operators over directed graphs with

・ 同 ト ・ ヨ ト ・ ヨ ト