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Let A ⊂ B be an inclusion of unital C*-algebras.
In this talk we present some conditions under which properties of
B pass to A or the converse.

Our typical examples for inclusion of unital C*-algebras are AΓ ⊂ A
and A ⊂ Aoαr Γ for a discrete group Γ.

In this talk we mostly consider the strongly self-absorbing property,
and the Jiang-Su Z absorption. Namely,

Under the assumption that B ⊗Z ∼= B, when A⊗Z ∼= A ?
Here Jiag-Su algebra Z is a simple unital projectionless C*-algebra
with a unique trqcial state constructed by the inductive limite of
dimension drop algebras I (k, k + 1), where
I (k, k + 1) = {f ∈ C [0, 1]⊗Mk(C)⊗Mk+1(C) | f (0) ∈
Mk(C)⊗ Ik+1, f (1) ∈ Ik ⊗Mk+1(C)}.
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The structure of simple C*-algebras

Definition

1 Two projections p and q in a C*-algebra A are said to be
Murray-von Neumann equivalent if p = v∗v and q = vv∗

for some v in A. (Write p ∼ q), and p is subequivalent to q,
written p ¹ q, if p is equivalent to a subprojection of q.

2 A projection is a C*-algebra A to be infinite if it is equivalent
to a proper subprojection of itself, and it is called to be finite
otherwise.

3 A simple C*-algebra A is called stably infinite if its
stabilization A⊗K contains an infinite projection, and it is
called stably finite others.

4 A simple C*-algebra A is said to be purely infinite if every
non-zero hereditary subalgebra of A contains an infinite
projection.

Hiroyuki Osaka The Jiang-Su absorption for C*-algebras (Joint work with Tamotsu Teruya)



. . . . . .

Definition (Nuclear C*-algebras)

A C*-algebra A is daid to be nuclear if the canonical surjection
A⊗max B → A⊗min B is injective (thatis, an isomorphism) for
every C*-algebra B.

Theorem (Lance: ’73, Connes: ’78, Choi-Effros: ’77, 78)

Let A be a C*-algebra. TFAE:

1 A is nuclear.

2 The identity map from A to A can be approximated pointwise
in norm by sompletely positive finite-rank contractions.

3 A∗∗ is an injective von Neumann algebra.

All commutative C*-algebras and finite dimensional
C*-algebras are nuclear.

The nuclearity is stable under the stability isomorphism,
inductive limits, C*-extensions, crossed products by amanable
groups, C*-tensor products.
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Theorem (Kirchberg)

Let A and B be simple non-type I C*-algebras. If A or B is stably
infinite, then A⊗min B is purely infinite.
If A and B are both stably finite and exact (i.e. A⊗min is exact),
then A⊗min B is stably finite.

Theorem (Rørdam: 2003)

There is a simple, separable, nuclear C*-algebra that is stably
infinite but not purely infinite, and there is a simple, separable,
nuclear, unital, finite C*-algebra that is not stably finite.
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Dimension for C*-algebras

In the commutative case since a C*-algebra A is isomorphic to
C0(X ) for sme locally compact Hausdorff space X we can define
the dimension of A (writtendimA) to be the classical dimension of
the space X (i.e. dimX ).
In the case of non-commutative case Rieffel and Brown-Pedersen
introduced topological stable rank (written tsr(A)) and real rank
(written RR(A)) as follows:

Definition (Rieffel: ’83, Brown-Pedersen: ’91)

If the set of invertible elements in a C*-algebra A (or in the
unitization of A, if A is non-unital) is dense in A, then A is said to
be of topological stable rank 1, that is, tsr(A) = 1.
If the set of self-adjoint element invertible elements in the set of
self-adjoint elements in A, then A is said to be of real rank zero,
that is, RR(A) = 0.
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When X is a compact Hausdorff space X , tsr(C0(X )) = 1 if and
only if dimX ≤ 1, and RR(C0(X )) = dimX .

Proposition (Cuntz: ’81, Zhang: ’90)

The following three conditions are equivalent:

1 A is purely infinite,

2 for all non-zero positive elements a, b ∈ A there exists x ∈ A
such that b = x∗ax ,

3 RR(A) = 0 and all non-zero projections in A is infinite.

Winter-Zacharias (2010) introduced another non-commutative
dimension, that is, nuclear dimension, which is weeker one than
decomposition rank by Winter- Kirchberg (2004).
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Nuclear dimension

Definition (Kirchberg-Winter: 2004)

Let A be a separable C*-algebra.

(1) A completely positive map ϕ : ⊕s
i=1 Mri → A has order zero,if

it preserves orthogonality, i.e., ϕ(e)ϕ(f ) = ϕ(f )ϕ(e) = 0 for
e, f ∈ ⊕s

i=1Mri with ef = fe = 0.

(2) A completely positive map ϕ : ⊕s
i=1 Mri → A is

n-decomposable, there is a decomposition
{1, . . . , s} =

∐n
j=0 Ij such that the restriction of ϕ to ⊕i∈Ij Mri

has ordere zero for each j ∈ {0, . . . , n}.
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Definition (Kirchberg-Winter: 2004)

(3) A has decomposition rank n, drA = n, if n is the least integer
such that the following holds : Given {a1, . . . , am} ⊂ A and
ε > 0, there is a completely positive approximation property
(F , ψ, ϕ) for a1, . . . , am within ε, i.e., F is a finite dimensional
F , and ψ : A → F and ϕ : F → A are completely positive
contruction (= c. p. c.) such that

1 ‖ϕψ(ai )− ai‖ < ε,
2 ϕ is n-decomposable.

If no such n exists, we write drA = ∞.
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Definition (Winter-Zacharias: 2010)

A has nuclear dimension n, dimnuc A = n, if n is the least integer
such that the following holds : Given {a1, . . . , am} ⊂ A and ε > 0,
there is a completely positive approximation property (F , ψ, ϕ) for
a1, . . . , am within ε, i.e., F is a finite dimensional F , and
ψ : A → F and ϕ : F → A are completely positive such that

1 ‖ϕψ(ai )− ai‖ < ε

2 ‖ψ‖ ≤ 1

3 ϕ is n-decomposable and each restriction ϕ|⊕i∈Ij
Mri

is c. p. c.

If no such n exists, we write dimnuc A = ∞.
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The followings are basic facts about finite decomposition and
nuclear dimension by [Kirchberg-Winter: 2004], [Winter: 2010],
[Winter-Zacharias: 2010]:

(1) If dimnuc(A) ≤ n < ∞, then A is nuclear.

(2) For any C*-algebras dimnuc A ≤ drA.

(3) dimnuc A = 0 if and only if drA = 0 if and only if A is an AF
algebra.

(4) Nuclear dimension and decomposition rank in general do not
coincide. Indeed, the Toeplitz algebra T has nuclear
dimension at most 2, but its decomposition rank is infinity.
Note that if drA ≤ n < ∞, A is quasidiagonal, that is , stably
finite. The Toeplitz algebra T has an isometry, and we know
that T is infinite.

(5) Let X be a locally compact Hausdorff space. Then

dimnuc C0(X ) = drC0(X ).

In particular, if X is second countable,

dimnuc C0(X ) = drC0(X ) = dimX .
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(6) For any n ∈ N dimnuc A = dimnuc(Mn(A)) = dimnuc(A⊗K)
and dr(A) = dr(Mn(A)) = dr(A⊗K).

(7) If B ⊂ A is full hereditary C*-algebra, then
dimnuc(B) = dimnuc(A) and dr(B) = dr(A).

(8) dimnuc(On) = 1 for n = 2, 3, . . . and dimnuc(O∞) ≤ 2.

Question

If a C*-algebra with dimnuc(A) < +∞ and A has a faithful trace,
dimnuc(A) = dr(A) ?
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Comparison Theory for C*-algebras

The comparison properties for a C*-algebra A are contained in the
ordered monoid V (A) (consisting of equivalent classes of
projections) and W (A) (consisting of equivalent classes of positive
elements) respectively, in the *-algebra M∞(A) = ∪∞n=1Mn(A).
Following Cuntz, comparison of positive elements a, b ∈ M∞(A) is
defined as follows: a ¹ b if there is a sequence {xn} in M∞(A)
such that x∗nbxn → a, and by a ∼ b iff a ¹ b and b ¹ a one defines
equivalence relations on the positive elements. The set V (A) and
W (A) become ordered abelian semigroups by defining addition to
be ”orthogonal addition”.
If A is generated as an ideal by its projections (in particular, simple
C*-algebras with non-trivial projection), K0(A) is the Grothendieck
group of V (A), and the positive cone, K0(A)+, is the image of
V (A) in K0(A).
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Definition

An ordered abelian positive semigroup (W (A), +,≤) is said to be
almost unperforated if

∀n, m ∈ N, ∀x , y ∈ W (A) such that nx ≤ my , n > m ⇒ x ≤ y

Let A be a simple C*-algebra.

A is purely infinite if and only if W (A) has only one non-zero
element.

W (A) is unperforated, then A is either purely infinite or stably
finite.

It is know that V (A) and W (A) are almost unperforated for many
C*-algebras:

All purely infinite simple C*-algebras

All C*-algebras of the form A⊗Z, that is, which absorb Z
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Definition

Let A be a C*-algebra.

1 A is said to have the comparison of projections if for any
projections p, q ∈ M∞(A) p ¹ q if τ(p) < τ(q) for all traces
τ on A.

2 A is said to have the strict compariosn if for any positive
elements a, b ∈ M∞ a ¹ b if
limn→∞ τ(a1/n) < limn→∞ τ(b1/n) for all tracial states τ on A.

Theorem (Rørdam: 2004)

Let A be a Z-absorbing C*-algebra. Then W (A) has the strict
comparison.
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Elliott’s classification conjectures

1960: Glimm: UHF algebras by supernatural numbers.
1976: Elliott: AF algebras by K0 groups.
late 1980s Elliott: AT algebras A of real rank zero by K∗(A)
(simple case by (K0(A), K0(A)+, [1]0, K1(A))
1990s: many people contributed (Elliott-Gong, Thomsen,
Dadarlat-Elliott-Gong, Elliott-Gong-Li, Lin. Kirchberg, Phillips,..)

Conjecture (Elliott: stably finite case)

Let A and B be separable, simple unital nuclear, stably finite
C*-algebras. Then

A ∼= B ⇔ (K0(A), K0(A)+, [1A]0, K1(A),T (A), rA : T (A) → S(K0(A)))
∼= (K0(B), K0(B)+, [1B ]0, K1(B), T (B), rB : T (B) → S(K0(B)))
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Theorem (Kirchberg-Phillips: 1994, 2000)

Let A and B be separable, nuclear, simple, purely infinite,
K-amenable, unital C*-algebras. Then

A ∼= B ⇔ (K0(A), [1A]0, K1(A)) ∼= (K0(B), [1B ]0, K1(B))

A C*-algebra A is K-amenable if it is KK-equivalent to an abelian
C*-algebra.

The following result says that K-data is not enough for
classification.

Example (Rørdam: 2005)

There are simple, separable, nuclear, stably infinite unital
C*-algebras A and B such that

(K0(A), [1A]0, K1(A)) ∼= (K0(B), [1B ]0, K1(B)) and A 6∼= B
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Example (Toms: 2005)

There is a simple, unital, nuclear, separable, infinite dimensional,
stably finite C*-algebra A such that Ell(A) is isomorphic to
Ell(A⊗Z) , while A and A⊗Z are not isomorphic.

Theorem (Lin-Niu: 2008)

Let A and B be unital separable, simple Z-stable C*-algebras with
unique tracial states which are inductive limites of type I
C*-algebras. Suppose that
(K0(A),K0(A)+, [1A]0, K1(A)) ∼= (K0(B), K0(B)+, [1B ]0, K1(B)).
Then A ∼= B.

Very recently, Sato rported that for simple, separable, unital,
nuclear, QD, C*-algebras A,B with unique tracial states satifying
the strict comparson and the UCT, then A ∼= B if and only if
(K0(A),K0(A)+, [1A]0, K1(A)) ∼= (K0(B), K0(B)+, [1B ]0, K1(B)).
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Toms-Winter conjecture

Conjecture (Toms-Winter conjecture 2010)

Let A be a simple, unital, separable, infinite-dimensional, nuclear
C*-algebra. TAFA:

1 A has the strictly comparison property.

2 A⊗Z ∼= A.

3 The nuclear dimension of A is finite.

It is known that (2) → (1), cf. [Rørdam:2004], and (3) → (2), cf.
[Winter:2011].

Theorem (Sato-White-Winter: 2014)

Let A be a simple, unital, separable, infinite-dimensional, nuclear
C*-algebra with a unique tracial state. If A has the strict
cmparison, then dimnuc(A) ≤ 3. Hence, Toms-Winter conjecture is
affirmative.
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Strongly self-absorbing

Definition (Toms-Winter: 2005)

A C*-algebra D is called strongly self-absorbing if D 6∼= C and there
is an isomorphism φ : D → D ⊗D satisfying φ and the map
idD ⊗ ID are approximately unitarily equivalent, that is ,

there is a
sequence (vn)n∈N of unitaries in D ⊗D satisfying
‖v∗nφ(d)vn − d ⊗ 1D‖ → 0 (n →∞) ∀d ∈ D.

Definition (Hirshberg-Winter 2007)

For a strongly self-absorbing C*-algebra D we say that a C*-algebra
A is D-absorbing if the tensor product A⊗D is isomorphic to A.
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Remark

Known examples of strongly self-absorbing C*-algebras are
UHF-algebras of infinite type, the Jiang-Su algebra Z, the Cuntz
algebras O2 and O∞, and tensor products of O∞ by UHF algebras
of infinite type. Note that they belong to the class of inductive
limits of weakly semiprojective C*-algebras.

Theorem (Toms-Winter: 2008 and Winter: 2009)

A unital C*-algebra D is isomorphic to Z if and only if D is
strongly self-absorbing and D is KK -equivalent to C.
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Rokhlin property

For a C*-algebra A we set

C0(A) = {(an) ∈ `∞(N, A) : lim
n→∞ ‖an‖ = 0|},

A∞ = `∞(N,A)/C0(A).

Definition (Izumi: 2004)

Let α be an action of a finite group G on a unital C ∗-algebra A. α
is said to have the Rokhlin property if there exists a partition of
unity {eg}g∈G ⊂ A′ ∩ A∞ consisting of projections satisfying
(αg )∞(eh) = egh for g , h ∈ G . We call {eg}g∈G Rokhlin
projections.
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C*-index theory

Definition (Watatani: ’90)

Let P ⊂ A be an inclusion of unital C*-algebras with a conditional
expectation E from A onto P.

1 A quasi-basis for E is a finite set {(ui , vi )}n
i=1 ⊂ A× A such

that for every a ∈ A,

a =
n∑

i=1

uiE (via) =
n∑

i=1

E (aui ) vi .

2 When {(ui , vi )}n
i=1 is a quasi-basis for E , we define IndexE by

IndexE =
n∑

i=1

uivi .

When there is no quasi-basis, we write IndexE = ∞. IndexE
is called the Watatani index of E .
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Definition (Kodaka-Osaka-Teruya: 2008)

A conditional expectation E of a unital C ∗-algebra A with a finite
index is said to have the Rokhlin property if there exists a
projection e ∈ A′ ∩ A∞ satisfying

E∞(e) = (IndexE )−1 · 1

and a map A 3 x 7→ xe is injective. We call e a Rokhlin projection.
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Proposition (Kodaka-Osaka-Teruya: 2008)

Let α be an action of a finite group G on a unital C ∗-algebra A
and E the canonical conditional expectation from A onto the fixed
point algebra P = Aα defined by

E (x) =
1

#G

∑

g∈G

αg (x) for x ∈ A,

where #G is the order of G . Then α has the Rohklin property if
and only if there is a projection e ∈ A′ ∩ A∞ such that
E∞(e) = 1

#G · 1, where E∞ is the conditional expectation from
A∞ onto P∞ induced by E .
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Main result(Rokhlin:unital case)

Theorem (Osaka-Teruya: 2010)

Let P ⊂ A be an inclusion of unital C*-algebras and E : A → P be
a faithful conditional expectation of index finite. Suppose that E
has the Rokhlin property and D is a separable unital self-absorbing
C*-algebra.

1 If A is D-absorbing, then P is D-absorbing.

2 If A is an inductive limit of weakly semiprojective C*-algebras
and is strongly self-absorbing, then P is strongly
self-absorbing.

3 If A is a UHF-algebra of infinite type, O2, O∞, and
O∞ ⊗ UHF -algebra of infinite type, then P ∼= A and
C ∗〈A, eP〉 is stably isomorphic to A.
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Corollary (Hirshberg-Winter: 2007)

Let A be a separable, unital, simple C*-algebra and α be an action
of a finite group G on A. Suppose that α has the Rokhlin property.
If A is D-absorbing, then the crossed product algebra Aoα G is
D-absorbing.
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Theorem (Toms-Winter: 2007)

Let A and D be sparable C*-algebras and suppose that D is unital
and strongly self-absorbing. Then there is an isomorphism
φ : A → A⊗ D iff there is a unital *-homomorphism
ρ : D → M(A)∞ ∩ A′.

Lemma

Let P ⊂ A be an inclusion of unital C*-algebras and E be a
conditional expectation from A onto P with a finite index. If E has
the Rokhlin property with a Rokhlin projection e ∈ A∞, then there
is a unital linear map β : A∞ → P∞ such that for any x ∈ A∞

there exists the unique element y of P∞ such that
xe = ye = β(x)e and β(A′ ∩ A∞) ⊂ P ′ ∩ P∞. In particular, β|A is
a unital injective ∗-homomorphism and β(x) = x for all x ∈ P .
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Example (Osaka-Teruya:2010)

There exists a symmetry β with the tracial Rokhlin property on the
universal UHF-algebra U∞ such that U∞ oβ Z/2Z is not strongly
self-absorbing.

Example (Phillips: 2010)

There exists a strongly self-absorbing UHF-algebra D
(= ⊗n∈NM2r(n)+1, r(n) = 1

2(3n − 1)), a D-absorbing separable
infinite dimensional simple C*-algebra C , and an action
γ : Z2 → Aut(C ) with the tracial Rokhlin property, such that
C oγ Z2 is not D-absorbing.
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Main result (Tracial Rokhlin:unital case)

Definition (Phillips: 2003)

Let α be the action of a finite group G on an infinite dimensional
finite simple separable unital C*-algebra A. An α is said to have
the tracial Rokhlin property if for every finite set F ⊂ A, every
ε > 0, and every nonzero positive x ∈ A, there are mutually
orthogonal projections eg ∈ A for g ∈ G such that:

1 ‖αg (eh)− egh‖ < ε for all g , h ∈ G .

2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .

3 With e =
∑

g∈G eg , the projection 1− e is Murray-von
Neumann equivalent to a projection in the hereditary
subalgebra of A generated by x .

The flip action on the irrational rotation algebra Aθ has the tracial
Rokhlin property.
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Definition

Let P ⊂ A be an inclusion of unital C*-algebras and E : A → P be
a conditional expectation of index finite. A conditional expectation
E is said to have the tracial Rokhlin property if for any nonzero
positive z ∈ A∞ there exists a projection e ∈ A′ ∩ A∞ satisfying

(IndexE )E∞(e) = g

is a projection and 1− g is Murray-von Neumann equivalent to a
projection in the hereditary subalgebra of A∞ generated by z , and
a map A 3 x 7→ xe is injective. We call e a Rokhlin projection.
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Lemma

Let P ⊂ A be an inclusion of unital C*-algebras and E : A → P be
a conditional expectation of index finite type. Suppose that E has
the tracial Rokhlin property, then A has the Property (SP) or E
has the Rokhlin property.

Proposition

Let G be a finite group, α an action of G on an infinite
dimensional finite simple separable unital C*-algebra A, and E the
canonical conditional expectation from A onto the fixed point
algebra P = Aα defined by

E (x) =
1

|G |
∑

g∈G

αg (x) for x ∈ A,

where |G | is the order of G . Then α has the tracial Rokhlin
property if and only if E has the tracial Rokhlin property.

Hiroyuki Osaka The Jiang-Su absorption for C*-algebras (Joint work with Tamotsu Teruya)



. . . . . .

Lemma

Let P ⊂ A be an inclusion of unital C*-algebras and E : A → P be
a conditional expectation of index finite type. Suppose that E has
the tracial Rokhlin property, then A has the Property (SP) or E
has the Rokhlin property.

Proposition

Let G be a finite group, α an action of G on an infinite
dimensional finite simple separable unital C*-algebra A, and E the
canonical conditional expectation from A onto the fixed point
algebra P = Aα defined by

E (x) =
1

|G |
∑

g∈G

αg (x) for x ∈ A,

where |G | is the order of G . Then α has the tracial Rokhlin
property if and only if E has the tracial Rokhlin property.

Hiroyuki Osaka The Jiang-Su absorption for C*-algebras (Joint work with Tamotsu Teruya)



. . . . . .

Lemma

Let A ⊃ P be an inclusion of unital C*-algebras and E a
conditional expectation from A onto P with index finite type.
Suppose that A is simple. If E has the tracial Rokhlin property
with a Rokhlin projection e ∈ A∞ and a projection
g = (IndexE )E∞(e), then there is a unital linear map
β : A∞ → P∞g such that for any x ∈ A∞ there exists the unique
element y of P∞ such that xe = ye = β(x)e and
β(A′ ∩ A∞) ⊂ P ′ ∩ P∞g . In particular, β|A is a unital injective
*-homomorphism and β(x) = xg for all x ∈ P.
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Lemma

Let P ⊂ A be an inclusion of unital C*-algebras with index finite
type and E : A → P has the tracial Rokhlin property. Suppose that
projections p, q ∈ P∞ satisfy ep = pe and q ¹ ep in A∞, where e
is the Rokhlin projection for E . Then q ¹ p in P∞.

Corollary

Let P ⊂ A be an inclusion of unital C*-algebras and E a
conditional expectation from A onto P with index finite type.
Suppose that A is an infinite dimensional simple C*-algebra with
tracial topological rank zero (resp. less than or equal to one) and
E has the tracial Rokhlin property. Then P has tracial rank zero
(resp. less than or equal to one).
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Theorem

Let P ⊂ A be an inclusion of unital C*-algebra and E be a
conditional expectation from A onto P with index finite type.
Suppose that A is simple, separable, nuclear, Z-absorbing and E
has the tracial Rohklin property. P is Z-absorbing.

Corollary

Let A be an infinite dimensional simple separable unital C*-algebra
and let α : G → Aut(A) be an action of a finite group G with the
tracial Rokhlin property. Suppose that A is Z-absorbing. Then we
have

1 (Hirshberg- Orovitz:2013) The fixed point algebra Aα and the
crossed product Aoα G are Z-absorbing.

2 For any subgroup H of G the fixed point algebra AH is
Z-absorbing.
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Main result (Rokhlin: nonunital case)

Definition

Let P ⊂ A be an inclusion of separable C*-algebras and E : A → P
be a conditional expectation of index finite in the sense of Izumi. A
conditional expectation E is said to have the Rokhlin property if
there exists a projection e ∈ A′ ∩ A∞ satisfying

(IndexpE )E∞(e) = f

is a projection and fa = a (∀a ∈ A) and a map A 3 x 7→ xe is

injective, where IndexpE = sup{λ > 0:
1

λ
E − Id is positive}. We

call e a Rokhlin projection.
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Definition (cf. Santiago:2014)

Let α be the action of a finite group G on a unital an infinite
dimensional, separable, C*-algebra A. An α is said to have the
Rokhlin property if for every finite set F ⊂ A, every ε > 0, there
are mutually orthogonal projections eg ∈ A for g ∈ G such that:

1 ‖αg (eh)− egh‖ < ε for all g , h ∈ G .

2 ‖ega− aeg‖ < ε for all g ∈ G and all a ∈ F .

3 With e =
∑

g∈G eg , the projection ‖ea− a‖ < ε for all a in F .

As in the case of the Rokhlin property in the sense of Izumi we
have the following characterization.
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Proposition

Let α be an action of a finite group G on a unital C ∗-algebra A
and E the canonical conditional expectation from A onto the fixed
point algebra P = Aα defined by

E (x) =
1

|G |
∑

g∈G

αg (x), x ∈ A,

where |G | is the order of G . Then α has the Rohlin property if and
only if there is a projection e ∈ A′ ∩ A∞ and a projection f ∈ P∞

such that E∞(e) = 1
|G | · f and fa = a for any a ∈ A, where E∞ is

the conditional expectation from A∞ onto P∞ induced by E .
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Theorem

Let P ⊂ A be an inclusion of separable C*-algebras and E be a
conditional expectation from A onto P with IndexpE < ∞.
Suppose that D is a separable unital self-absorbing C*-algebra and
E has the Rokhlin property. Then if A is D-absorbing, P is
D-absorbing.

Corollary (cf. Santiago:2014)

Let A be a separable, simple C*-algebra and α be an action of a
finite group G on A. Suppose that α has the Rokhlin property in
the sense of Santiago. Then if A is D-absorbing, the crossed
product algebra Aoα G is D-absorbing.
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