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kernel functions

Let D be a domain in Cd, V be a normed linear space and
K : D×D → V be a function, which is holomorphic in the first
variable and anti-holomorphic in the second.

For two functions of the form K(·,wi)ζi, ζi in V ( i = 1, 2 ), define
their inner product by the reproducing property, that is,

⟨K(·,w1)ζ1,K(·,w2)ζ2⟩ = ⟨K(w2,w1)ζ1, ζ2⟩.
This extends to an inner product on the linear span of the vectors

H0 =
{∑

K(·,w)ζi|ζ1, . . . , ζn ∈ V;w1, . . . ,wn ∈ D and n ∈ N
}

if and only if K is positive definite in the sense that
n∑

j,k=1

⟨K(zj, zk)ζk, ζj⟩ =
n∑

k=1

⟨K(·, zk)ζk,
n∑

j=1

K(·, zj)ζj⟩

= ∥
n∑

k=1

⟨K(·, zk)ζk∥2 > 0.
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Gram matrix

The completion H of the linear space H0 is a Hilbert space with
respect to the inner product induced by K, or equivalently,

⟨f ,K(·,w)ζ⟩H = ⟨f (w), ζ⟩V ,w ∈ D, ζ ∈ V.

Let G : D×D → V be the Grammian G(z,w) =
((
⟨uj(w), uk(z)⟩

))
j,k

of a set of r(:= dim V) anti-holomorphic functions uℓ : D → H,
1 ≤ ℓ ≤ r, taking values in some Hilbert space H. We have

n∑
p,q=1

⟨G(zp, zq)
♯ζq, ζp⟩V =

r∑
j,k=1

n∑
pq=1

G(zp, zq)j,kζq(j)ζp(k)

=
r∑

j,k=1

( n∑
pq=1

⟨uj(zq), uk(zp)⟩ζq(j)ζp(k)
)

= ∥
∑

jk

ζq(j)uq(zq)∥2 > 0.

We therefore conclude that G(z,w)♯ defines a positive definite kernel
on D.
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orthonormal basis

Let {eℓ : D
hol−→ V, ℓ ∈ N} be an orthonormal basis in the Hilbert

space H. Given ζ ∈ V, let ζ♯ be the function η → ⟨η, ζ⟩V . Thus ζ♯

defines an element in V∗. Assume that f → f (w),w ∈ D is uniformly
locally bounded. Then the sum

∑
ℓ eℓ(z)eℓ(w)♯, is convergent on

compact subsets of D . It also has the reproducing property:⟨
f (·),

∑
ℓ

eℓ(·)eℓ(w)♯ζ
⟩
=

⟨
f (·),

∑
ℓ

eℓ(·)⟨ζ, eℓ(w)⟩
⟩

=
∑
ℓ

⟨eℓ(w), ζ⟩ ⟨f (·), eℓ(·)⟩

= ⟨f (w), ζ⟩, ζ ∈ V.

Since K is uniquely determined by the reproducing property, we have

K(z,w) =
∑
ℓ

eℓ(z)eℓ(w)♯.
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example

For ζ ∈ V, let ζ† be the linear map ξ → ⟨ξ, ζ⟩V . For any domain D

in V, the function K : D×D → Hom(V,V) defined by the formula
K(z,w) = zw♯ is positive definite, whereas K(z,w)♯ is not!
For the Bergman space A2(Dm), of the polydisc Dm , the orthonormal

basis is {
√∏m

i=1(ni + 1)zI : I = (i1, . . . , im)}. Clearly, we have

BDm(z,w) =
∞∑

|I|=0

( m∏
i=1

(ni + 1)
)
zIw̄I =

m∏
i=1

(1 − ziw̄i)
−2.

Similarly, for the Bergman space of the ball A2(Bm), the orthonormal

basis is {
√(−m−1

|I|
)(|I|

I

)
zI : I = (i1, . . . , im)}. Again, it follows that

BBm(z,w) =
∞∑

|I|=0

(
−m − 1

ℓ

)( ∑
|I|=ℓ

(
|I|
I

)
zIw̄I) = (1 − ⟨z,w⟩)−m−1.
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new from old

Let W be a second finite dimensional inner product space and
T : H → Hol(D,W) be a linear map for which the evaluation at
z ∈ D, namely, f → (Tf )(z), f ∈ H, is continuous. Transplant the
inner product from H/ ker T to the linear space TH. In consequence,
T(z)K(z,w)T♯

(w) : W → W is the reproducing kernel of TH :

TK(z,w)ζ :=
(
T(z)Kwζ

)
(z) =

∑
ℓ⟨ζ, eℓ(w)⟩(Teℓ)(z).

Linearity in ζ implies that TK(z,w) is in Hom(V, TH). We have
T(z)K(z,w) =

∑
ℓ(Teℓ(z))eℓ(w)♯

and
K(z,w)T♯ :=

(
T(w)K(w, z)

)♯
=

∑
ℓ eℓ(z)(Teℓ(w))♯

(For fixed w, {Teℓ(w)♯ζ} is in ℓ2 for all ζ. ) Applying T to this we
have

TK(z,w)T♯ =
∑
ℓ

(Teℓ)(z)
(
Teℓ(w)♯

)
.
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the inclusion map

Suppose H ⊆ Hol(D,V) is a Hilbert space possessing a reproducing
kernel K and T : H → Hol(D,W) is a linear map such that
f → (Tf )(z), f ∈ H, is continuous. Let H′ ⊆ Hol(D,W) be another
Hilbert space with reproducing kernel K′ : D×D → Hom(W,W).

Lemma
If TK(z,w)T♯ ≺ CK′(z,w), then the image of T is contained in H′ and
as an operator from H to H′, it is bounded by C.

Proof. Without loss of generality, may assume C = 1. If Hi, i = 1, 2
are two Hilbert spaces with reproducing kernels Ki, i = 1, 2, then their
sum is the reproducing kernel of the Hilbert space

{g|g = f1 + f2 for some f1 ∈ H1 and f2 ∈ H2}
equipped with the norm ∥g∥2 = inf{∥f1∥2 + ∥f2∥2|g = f1 + f2}.
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the proof, continued

Apply this with H1 := TH, K1 := TKT♯. Set H2 to be the Hilbert
space corresponding to the kernel function K2 := K′ − K1, which is
positive definite by assumption. For f in H, write f = f1 + f2, where
f1 = Tf and f2 = 0. Then we have

∥Tf∥2
H′ ≤ ∥Tf∥2

H1
= ∥Tf∥2

TH ≤ ∥f∥2
H.
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quasi-invariance of B

Any bi-holomorphic map φ : D → D̃ induces a unitary operator
Uφ : A2(D̃) → A2(D) defined by the formula

(Uφf )(z) = (J(φ, z)
(
f ◦ φ

)
(z), f ∈ A2(D̃), z ∈ D.

This is an immediate consequence of the change of variable formula
for the volume measure on Cn.

Consequently, if {ẽn}n≥0 is any orthonormal basis for A2(D̃), then
{en}n≥0 , where ẽn = J(φ, ·)(ẽn ◦ φ) is an orthonormal basis for the
Bergman space A2(D̃).
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quasi-invariance of B

Expressing the Bergman kernel BD of the domains D as the infinite
sum

∑∞
n=0 en(z)en(w) using the orthonormal basis in A2(D) , we see

that the Bergman Kernel B is quasi-invariant, that is, If φ : D → D̃

is holomorphic then we have the transformation rule

J(φ, z)BD̃(φ(z), φ(w))J(φ,w) = BD(z,w),

where J(φ,w) is the Jacobian determinant of the map φ at w .
If D admits a transitive group of bi-holomorphic automorphisms, then
this transformation rule gives an effective way of computing the
Bergman kernel. Thus

BD(z, z) = |J(φz, z)|2BD(0, 0), z ∈ D,

where φz is the automorphism of D with the property φz(z) = 0 .
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the multiplier

Consider the special case, where φ : D → D is an automorphism.
Clearly, in this case, Uφ is unitary on A2(D) for all φ ∈ Aut(D).

The map J : Aut(D)×D → C satisfies the cocycle property, namely

J(ψφ, z) = J(φ,ψ(z))J(ψ, z), φ, ψ ∈ Aut(D), z ∈ D.

This makes the map φ→ Uφ a homomorphism.
Thus we have a unitary representation of the Lie group Aut(D) on
A2(D).
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more representations

Exploit the quasi-invariance of the Bergman kernel to construct unitary
representations of the automorphism group Aut(D). Let Bλ(z,w) be
the polarization of the function B(w,w)λ, w ∈ D, λ > 0.
Now, as before,

Jφ(z)λBλ(φ(z), φ(w))Jφ(w)
λ
= Bλ(z,w), φ ∈ Aut(D), z,w ∈ D.

Let O(D) be the ring of holomorphic functions on D. Define

U(λ) : Aut(D) → End(O(D))

by the formula

(U(λ)
φ f )(z) =

(
Jφ−1(z)

)λ
(f ◦ φ−1)(z)

and note that φ 7→ Uφ is a homomorphism.
When is it unitarizable?
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new kernels?

Let K be a complex valued positive definite kernel on D. For w in
D, and p in the set {1, . . . , d}, let ep : Ω → H be the
antiholomorphic function:

ep(w) := Kw(·)⊗
∂

∂w̄p
Kw(·)−

∂

∂w̄p
Kw(·)⊗ Kw(·).

Setting G(z,w)p,q = ⟨ep(w), eq(z)⟩, we have

1
2

G(z,w)p,q
♯
= K(z,w)

∂2

∂zq∂w̄p
K(z,w)− ∂

∂w̄p
K(z,w)

∂

∂zq
K(z,w)).

The curvature K of the metric K is given by the (1, 1) - form∑
∂2

∂wq∂w̄p
log K(w,w)dwq ∧ dw̄p. Set

KK(z,w) :=
(( ∂2

∂zq∂w̄p
log K(z,w)

))
qp.

We note that K(z,w)2K(z,w) = 1
2 G(z,w)♯. Hence K(z,w)2K(z,w)

defines a positive definite kernel on D taking values in Hom(V,V).
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transformation rule

Let φ : D → D be a holomorphic map. Applying the change of
variable formula twice to the function log K(φ(z), φ(w)), we have

(( ∂2

∂zi∂w̄j
log K(φ(z), φ(w))

))
ij =

((∂φℓ

∂zi

))
iℓ

((
(

∂2

∂zℓ∂w̄k
log K)(φ(z), φ(w))

))
ℓk

((∂φ̄k

∂ z̄j

))
kj.

Now, we set K(w,w) = BD(w,w), the Bergman kernel of D, which
transforms according to the rule:

detCDφ(w)BD(φ(w), φ(w))detCDφ(w) = BD(w,w),

Thus KBD◦(φ,φ)(w,w) equals KBD
(w,w). Hence we conclude that

K := KBD
is invariant under the automorphisms φ of D in the sense

that
Dφ(w)♯K(φ(w), φ(w))Dφ(w) = K(w,w), w ∈ D.
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rewrite the transformation rule

Or equivalently,

K(φ(z), φ(w)) = Dφ(z)♯
−1

K(z,w)Dφ(z)
−1

= Dφ(z)♯
−1

K(z,w)
(
Dφ(w)♯

−1)∗
= m0(φ, z)K(z,w)m0(φ,w)∗,

where m0(φ, z) = Dφ(z)♯
−1 and multiplying both sides by K2, we

have

K(φ(z), φ(w))2K(φ(z), φ(w)) = m2(φ, z)K(z,w)2K(z,w)m2(φ,w)∗,

where m2(φ, z) =
(

detC Dφ(w)2Dφ(z)♯
)−1

is a multiplier. Of course,
we now have that

(i) K2+λ(z,w)K(z,w) , λ > 0, is a positive definite kernel and
(ii) it transforms according with mλ(φ, z) =

(
detC Dφ(z)2+λDφ(z)†

)−1 in
place of m2(φ, z).
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Thank you!


