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kernel functions

be a domainin C?, V be a normed linear space and
D — V be a function, which is holomorphic in the first
anti-holomorphic in the second.

For two functions of the form K(-,w;)(;, ¢; in V (i = 1,2), define
their inner product by the reproducing property, that is,

(K(,wi)C, K- w2)Ga) = (K (w2, w1)Gis G2)-

This extends to an inner product on the linear span of the vectors

{ZK C,|(17..‘,(,,€V;wl,...,wneﬂandneN}

if and only if K is positive definite in the sense that

D (K@a)§) = D (K26 Y K(,7)§)
APl = =i

||Z L 26)Gell® > 0.

H



Gram matrix

ompletion I of the linear space J{, is a Hilbert space with
o the inner product induced by K, or equivalently,

f,K(-,w))ac = (fW), )y, w € D, € V.
Let G: D x D — V be the Grammian G(z,w) = ((u;(w), u(z)))

of a set of r(:= dim V) anti-holomorphic functions u; : D — K,
1 < ¢ <r, taking values in some Hilbert space J{. We have

res
Ik

n

Z <G(vazq)quan>V = Z Z G(2p,24)jkCq (1) Gp (K)
Pq=1 Jk=1pq=1

ST wi(zg), ()6 (NG ) )

Jk=1"pg=1

13260z > 0.

jk

We therefore conclude that Gz, w)ﬁ defines a positive definite kernel m
on D. o



orthonormal basis

RN V. ¢ € N} be an orthonormal basis in the Hilbert

Given ¢ € V, let ¢* be the function 7 — (1,¢)y. Thus ¢*
lement in V*. Assume that f — f(w),w € D is uniformly
locally bounded. Then the sum >, e/(z)e,(w)*, is convergent on
compact subsets of D . It also has the reproducing property:

Zez Jee(w <f()z ((){C ee(w)) )

fzee ), ee())
=<j”(w7 ¢), CeV.

Since K is uniquely determined by the reproducing property, we have

w) = er2)er(w)*
0
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example

€V, let (' be the linear map ¢ — (£,¢)y. For any domain D
function K : D x D — Hom(V,V) defined by the formula
w' is positive definite, whereas K(z,w)? is not!
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€V, let (' be the linear map ¢ — (£,¢)y. For any domain D
function K : D x D — Hom(V,V) defined by the formula
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in
K(z,w
For the Bergman space A*(ID™), of the polydisc D" , the orthonormal

basisis {y/[[—,(ni+ 1)Z' : I = (i1,...,in)}. Clearly, we have

oo

Bpn(z,w) = Z H H(l — i)~

=0 i=1 i=1



example

€V, let (' be the linear map ¢ — (£,¢)y. For any domain D
in function K : D x D — Hom(V,V) defined by the formula
K(z,w) =Pzw’ is positive definite, whereas K(z,w)" is not!

For the Bergman space A*(ID™), of the polydisc D" , the orthonormal

basisis {y/[[—,(ni+ 1)Z' : I = (i1,...,in)}. Clearly, we have

m

BID)'" ,w Z H l’ll Z W = H(l —z,-w,-)_z

=0 i=1 i=1

Similarly, for the Bergman space of the ball A”(B"), the orthonormal

basis is { (_"'}‘_l) ("' -1 = (ir,...,in)}. Again, it follows that

oo

Bonta) = > (77 (X (T)ew == Gyt

[7]=0 |1]=¢



new from old

L be a second finite dimensional inner product space and

s ol(D, W) be a linear map for which the evaluation at

7€ D, ely, f — (Tf)(z), f € 3, is continuous. Transplant the
inner product from H/ker T to the linear space 7. In consequence,
T K(z, w)T?W) : W — W is the reproducing kernel of TH :

TK (2, w)¢ = (T()KuC) (2) = 32,(C, ee(w))(Tee) (2).-
Linearity in ¢ implies that TK(z,w) isin Hom(V,73(). We have
T K(z,w) = 3og(Tee(2))ec(w)*

z
%

and
K(@w)T* i= (ToK(w, )} = Ty ex(2) (Tee(w))*
(For fixed w, {Teo(w)*C}isin ¢* forall (. ) Applying T to this we

have
TK(z,w)T* = > (Teq) (z) (Tee(w)?).
4
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the inclusion map

Supp C Hol(D, V) is a Hilbert space possessing a reproducing
kernel K and T : H — Hol(D, W) is a linear map such that
f—(Tf)(z), f € H, is continuous. Let H' C Hol(D, W) be another
Hilbert space with reproducing kernel K’ : D x D — Hom(W, W).

Proof. Without loss of generality, may assume C = 1. If H;,i=1,2
are two Hilbert spaces with reproducing kernels K;, i = 1,2, then their
sum is the reproducing kernel of the Hilbert space

{glg =fi +f> for some f; € H; and f, € H,}
equipped with the norm |[g||* = inf{|Ii[|*> + [[2[*|¢ = fi +/2}.

ey



the inclusion map

Suppo C Hol(D, V) is a Hilbert space possessing a reproducing
kernel K and T : H — Hol(D, W) is a linear map such that

f = (Tf)(2), f € H, is continuous. Let H" C Hol(D, W) be another
Hilbert space with reproducing kernel K’ : D x D — Hom(W, W).

Lemma
If TK(z,w)T* < CK'(z,w), then the image of T is contained in J{’ and
as an operator from H to H’, it is bounded by C.

Proof. Without loss of generality, may assume C = 1. If H;,i=1,2
are two Hilbert spaces with reproducing kernels K;, i = 1,2, then their
sum is the reproducing kernel of the Hilbert space

{glg =fi +f> for some f; € H; and f, € H,}
equipped with the norm [|g||* = inf{|lfi[|* + [I[*|g = /i + fo}-

ey



the proof, continued

Apply this with J(, := T, K, := TKT*. Set J(, to be the Hilbert
space corresponding to the kernel function K, := K’ — K, which is
positive definite by assumption. For f in H, write f = f; +f,, where
fi=1Tf and f, = 0. Then we have

1T 150 < ITFl5e, = 17117 < F115¢-



quasi-invariance of B

Any bi-holomorphic map ¢ : D — D induces a unitary operator
U, : A*(D) — A*(D) defined by the formula

(Uaf)(2) 2) (fop)(2), f € AX(D), z€D.

This is an immediate consequence of the change of variable formula
for the volume measure on C”.



quasi-invariance of B

Any bi-holomorphic map ¢ : D — D induces a unitary operator
U, : A*(D) — A*(D) defined by the formula

(Uaf)(2) 2) (fop)(2), f € AX(D), z€D.

This is an immediate consequence of the change of variable formula
for the volume measure on C”.

Consequently, if {2,},>0 is any orthonormal basis for A2(D), then
{en}n>0, where e, = J(y,-)(e, 0 ¢) is an orthonormal basis for the
Bergman space A%(D).



quasi-invariance of B

ing the Bergman kernel By, of the domains D as the infinite
en(z)e,(w) using the orthonormal basis in A%(D) , we see

sum

that the Bergman Kernel B is quasi-invariant, thatis, If ¢ : D — D
is holomorphic then we have the transformation rule

J(p,2)Bg (¢(2), p(w))J (, w) = B (z,w),

where J(p,w) is the Jacobian determinant of the map ¢ at w .



quasi-invariance of B

ing the Bergman kernel By, of the domains D as the infinite
e,(z)e,(w) using the orthonormal basis in A?(D) , we see

sum

that the Bergman Kernel B is quasi-invariant, thatis, If ¢ : D — D
is holomorphic then we have the transformation rule

J(0,2)B5 (p(2), p(w))J (¢, w) = B (z,w),

where J(p,w) is the Jacobian determinant of the map ¢ at w .

If D admits a transitive group of bi-holomorphic automorphisms, then
this transformation rule gives an effective way of computing the
Bergman kernel. Thus

Bp(z,2) = V(¢ 2)[’Bn(0,0), z € D,

where ¢, is the automorphism of D with the property ¢,(z) = 0.



the multiplier

Consider the special case, where ¢ : D — D is an automorphism.
Clearly, in this case, U, is unitary on A*(D) forall ¢ € Aut(D).
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the multiplier

Consider the special case, where ¢ : D — D is an automorphism.
Clearly, in this case, U, is unitary on A*(D) forall ¢ € Aut(D).

The map J : Aut(D) x D — C satisfies the cocycle property, namely

J(Yp,z) = J(p, ¥(2))I (¥, 2), ¢, % € Aut(D), z € D.

This makes the map ¢ — U, a homomorphism.

Thus we have a unitary representation of the Lie group Aut(D) on
A%(D).
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tion of the function B(w,w)*, w € D, X\ > 0.
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it the quasi-invariance of the Bergman kernel to construct unitary
ations of the automorphism group Aut(D). Let B*(z,w) be
tion of the function B(w,w)*, w € D, X\ > 0.

Now, as before,

12BN (0(2), o (W) T (w) = BNz, w), ¢ € Aut(D), z,w € D.

Let O(D) be the ring of holomorphic functions on D. Define
UM : Aut(D) — End(O(D))
by the formula
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more representations

it the quasi-invariance of the Bergman kernel to construct unitary
ations of the automorphism group Aut(D). Let B*(z,w) be
tion of the function B(w,w)*, w € D, X\ > 0.

Now, as before,

12BN (0(2), o (W) T (w) = BNz, w), ¢ € Aut(D), z,w € D.

Let O(D) be the ring of holomorphic functions on D. Define
UM : Aut(D) — End(O(D))
by the formula

UV E) = (1) (F oo™ )(2)

and note that ¢ — U, is a homomorphism.
When is it unitarizable?



new kernels?

be a complex valued positive definite kernel on D. For w in
intheset {1,...,d}, let ¢, : Q — J( bethe

antiho rphic function:
() = Kul) © o K() — 2o Kin(1) © Ku()
ep(w) := o, By w().
Setting G(z,w),,4 = (ep(W),e4(z)), we have
1 § 0? 0 d
=K —K —K K .
38 W’ = K(ow) 5o Kiew) = 5Kz w) 5Kz )

The curvature K of the metric K is given by the (1,1) - form
> v o, a* log K (w, w)dw, A dw,. Set

2

Kk(z,w) == ((ﬁzqav_v,, log K (z, w)))qp.

We note that K(z, w)*X(z,w) = 1G(z,w)*. Hence K(z,w)’K(z,w) m
defines a positive definite kernel on D taking values in Hom(V,V). ===



transformation rule

D — D be a holomorphic map. Applying the change of
mula twice to the function log K (¢(z), p(w)), we have

o? ] 9? ¢
(G, 0eK(@: 20, = (o) (G 5o K6 @ 000 ) (52 ),

Now, we set K(w,w) = Bp(w,w), the Bergman kernel of D, which
transforms according to the rule:

detcDyp(w)Bo (p(w), o(w))detcDp(w) = Bp (w,w),

Thus Kz, o(p,0) (W, w) equals Kp, (w,w). Hence we conclude that
K := Kp,, isinvariant under the automorphisms ¢ of D in the sense
that

Dyp(w)*K(ip(w), p(w))Dip(w) = K(w,w), w € D.

o



rewrite the transformation rule

s
&
=
=
|

where mo(p,z) = Do (z)*
have

Dy(2)!” K (z, w)De(2)
Dip(2) ' K(z, w) (Do (w)* )
mO(‘Pv Z):K(Z’ W)mO(SO7 W)*)

~' and multiplying both sides by K2, we

K(9(2), o(w))*K(0(2), p(w)) = ma (0, 2)K (2, w)* K (z, w)ma (0, w)*,

where m;(p,z) = (detc Dp(w)*Dp(2)*)

we now have that

1. .
is a multiplier. Of course,



rewrite the transformation rule

Dy(2)!” K (z, w)De(2)
Do) K (z,w) (Dp(w) )
mo(p,2)K(z, w)mo(p, w)",

s
&
=
=
|

where mg(p,z) = an(z)ﬁ_1 and multiplying both sides by K”, we
have

K(9(2), o(w))*K(0(2), p(w)) = ma (0, 2)K (2, w)* K (z, w)ma (0, w)*,

where my(¢,z) = (detc D<p(w)2Dgp(z)ﬁ)_1 is a multiplier. Of course,
we now have that
(i) K*(z,w)X(z,w), A > 0, is a positive definite kernel and

o



rewrite the transformation rule

(p(2),oW)) = Dyp()* ' K(z,w)Dp(z)
D)™ Kz, w) (Dp(w) )
mo(p, 2) XK (z, w)mo(p, w)*,

where mg(p,z) = an(z)ﬁ_1 and multiplying both sides by K”, we
have

K(9(2), o(w))*K(0(2), p(w)) = ma (0, 2)K (2, w)* K (z, w)ma (0, w)*,

where my(¢,z) = (detc D<p(w)2Dgp(z)ﬁ)_1 is a multiplier. Of course,
we now have that
(i) K*(z,w)X(z,w), A > 0, is a positive definite kernel and
(ii) it transforms according with mx (p,z) = (detc Dp(2)>*Dp(2)!) ™" in
place of my (¢, z).



Thank you!



