The Bergman kernel and the Bergman metric

Gadadhar Misra

Indian Institute of Science
Bangalore

Recent Advances in Operator Theory and Operator Algebras Indian Statistical Institute, Bangalore

December 15, 2014

Let \mathcal{D} be a domain in \mathbb{C}^{d}, V be a normed linear space and $K: \mathcal{D} \times \mathcal{D} \rightarrow V$ be a function, which is holomorphic in the first variable and anti-holomorphic in the second.
For two functions of the form $K\left(\cdot, w_{i}\right) \zeta_{i}, \zeta_{i}$ in $V(i=1,2)$, define their inner product by the reproducing property, that is,

$$
\left\langle K\left(\cdot, w_{1}\right) \zeta_{1}, K\left(\cdot, w_{2}\right) \zeta_{2}\right\rangle=\left\langle K\left(w_{2}, w_{1}\right) \zeta_{1}, \zeta_{2}\right\rangle .
$$

This extends to an inner product on the linear span of the vectors

$$
\mathcal{H}_{0}=\left\{\sum K(\cdot, w) \zeta_{i} \mid \zeta_{1}, \ldots, \zeta_{n} \in V ; w_{1}, \ldots, w_{n} \in \mathcal{D} \text { and } n \in \mathbb{N}\right\}
$$

if and only if K is positive definite in the sense that

$$
\begin{aligned}
\sum_{j, k=1}^{n}\left\langle K\left(z_{j}, z_{k}\right) \zeta_{k}, \zeta_{j}\right\rangle & =\sum_{k=1}^{n}\left\langle K\left(\cdot, z_{k}\right) \zeta_{k}, \sum_{j=1}^{n} K\left(\cdot, z_{j}\right) \zeta_{j}\right\rangle \\
& =\| \sum_{k=1}^{n}\left\langle K\left(\cdot, z_{k}\right) \zeta_{k} \|^{2}>0 .\right.
\end{aligned}
$$

Gram matrix

The completion \mathcal{H} of the linear space \mathcal{H}_{0} is a Hilbert space with respect to the inner product induced by K, or equivalently,

$$
\langle f, K(\cdot, w) \zeta\rangle_{\mathcal{H}}=\langle f(w), \zeta\rangle_{V}, w \in \mathcal{D}, \zeta \in V
$$

Let $G: \mathcal{D} \times \mathcal{D} \rightarrow V$ be the Grammian $G(z, w)=\left(\left(\left\langle u_{j}(w), u_{k}(z)\right\rangle\right)\right)_{j, k}$ of a set of $r(:=\operatorname{dim} V)$ anti-holomorphic functions $u_{\ell}: \mathcal{D} \rightarrow \mathcal{H}$, $1 \leq \ell \leq r$, taking values in some Hilbert space \mathcal{H}. We have

$$
\begin{aligned}
\sum_{p, q=1}^{n}\left\langle G\left(z_{p}, z_{q}\right)^{\sharp} \zeta_{q}, \zeta_{p}\right\rangle_{V} & =\sum_{j, k=1}^{r} \sum_{p q=1}^{n} G\left(z_{p}, z_{q}\right)_{j, k} \zeta_{q}(j) \overline{\zeta_{p}(k)} \\
& =\sum_{j, k=1}^{r}\left(\sum_{p q=1}^{n}\left\langle u_{j}\left(z_{q}\right), u_{k}\left(z_{p}\right)\right\rangle \zeta_{q}(j) \overline{\zeta_{p}(k)}\right) \\
& =\left\|\sum_{j k} \zeta_{q}(j) u_{q}\left(z_{q}\right)\right\|^{2}>0
\end{aligned}
$$

We therefore conclude that $G(z, w)^{\#}$ defines a positive definite kernel on \mathcal{D}.

Let $\left\{e_{\ell}: \mathcal{D} \xrightarrow{\text { hol }} V, \ell \in \mathbb{N}\right\}$ be an orthonormal basis in the Hilbert space \mathcal{X} Given $\zeta \in V$, let ζ^{\sharp} be the function $\eta \rightarrow\langle\eta, \zeta\rangle_{V}$. Thus ζ^{\sharp} defines an element in V^{*}. Assume that $f \rightarrow f(w), w \in \mathcal{D}$ is uniformly locally bounded. Then the sum $\sum_{\ell} e_{\ell}(z) e_{\ell}(w)^{\sharp}$, is convergent on compact subsets of \mathcal{D}. It also has the reproducing property:

$$
\begin{aligned}
\left\langle f(\cdot), \sum_{\ell} e_{\ell}(\cdot) e_{\ell}(w)^{\sharp} \zeta\right\rangle & =\left\langle f(\cdot), \sum_{\ell} e_{\ell}(\cdot)\left\langle\zeta, e_{\ell}(w)\right\rangle\right\rangle \\
& =\sum_{\ell}\left\langle e_{\ell}(w), \zeta\right\rangle\left\langle f(\cdot), e_{\ell}(\cdot)\right\rangle \\
& =\langle f(w), \zeta\rangle, \zeta \in V .
\end{aligned}
$$

Since K is uniquely determined by the reproducing property, we have

$$
K(z, w)=\sum_{\ell} e_{\ell}(z) e_{\ell}(w)^{\sharp} .
$$

For $\quad \in V$, let ζ^{\dagger} be the linear map $\xi \rightarrow\langle\xi, \zeta\rangle_{V}$. For any domain \mathcal{D} in V, the function $K: \mathcal{D} \times \mathcal{D} \rightarrow \operatorname{Hom}(V, V)$ defined by the formula $K(z, w)=z w^{\sharp}$ is positive definite, whereas $K(z, w)^{\sharp}$ is not!

Similarly, for the Bergman space of the ball $\mathbb{A}^{2}\left(\mathbb{B}^{m}\right)$, the orthonormal basis is $\left\{_{1} /\left(^{-m-1}\right)\left({ }^{I I}\right) z^{I}: I=\left(i_{1} \ldots . i_{m}\right)\right\}$. Again, it follows that

For $\quad \in V$, let ζ^{\dagger} be the linear map $\xi \rightarrow\langle\xi, \zeta\rangle_{V}$. For any domain \mathcal{D} in V, the function $K: \mathcal{D} \times \mathcal{D} \rightarrow \operatorname{Hom}(V, V)$ defined by the formula $K(z, w)=z w^{\sharp}$ is positive definite, whereas $K(z, w)^{\sharp}$ is not!
For the Bergman space $\mathbb{A}^{2}\left(\mathbb{D}^{m}\right)$, of the polydisc \mathbb{D}^{m}, the orthonormal basis is $\left\{\sqrt{\prod_{i=1}^{m}\left(n_{i}+1\right)} z^{I}: I=\left(i_{1}, \ldots, i_{m}\right)\right\}$. Clearly, we have

$$
B_{\mathbb{D}^{m}}(z, w)=\sum_{|I|=0}^{\infty}\left(\prod_{i=1}^{m}\left(n_{i}+1\right)\right) z^{I} \bar{w}^{I}=\prod_{i=1}^{m}\left(1-z_{i} \bar{w}_{i}\right)^{-2} .
$$

Similarly, for the Bergman space of the ball
brasio is $\{\sqrt{(-m-1)(|I|)}-I \cdot I-(i \ldots ; 1)$ Again, it follows that

For $\quad \in V$, let ζ^{\dagger} be the linear map $\xi \rightarrow\langle\xi, \zeta\rangle_{V}$. For any domain \mathcal{D} in V, the function $K: \mathcal{D} \times \mathcal{D} \rightarrow \operatorname{Hom}(V, V)$ defined by the formula $K(z, w)=z w^{\sharp}$ is positive definite, whereas $K(z, w)^{\sharp}$ is not!
For the Bergman space $\mathbb{A}^{2}\left(\mathbb{D}^{m}\right)$, of the polydisc \mathbb{D}^{m}, the orthonormal basis is $\left\{\sqrt{\prod_{i=1}^{m}\left(n_{i}+1\right)} z^{I}: I=\left(i_{1}, \ldots, i_{m}\right)\right\}$. Clearly, we have

$$
B_{\mathbb{D}^{m}}(z, w)=\sum_{|I|=0}^{\infty}\left(\prod_{i=1}^{m}\left(n_{i}+1\right)\right) z^{I} \bar{w}^{I}=\prod_{i=1}^{m}\left(1-z_{i} \bar{w}_{i}\right)^{-2} .
$$

Similarly, for the Bergman space of the ball $\mathbb{A}^{2}\left(\mathbb{B}^{m}\right)$, the orthonormal basis is $\left\{\sqrt{\binom{-m-1}{|I|}\binom{|I|}{I}} z^{I}: I=\left(i_{1}, \ldots, i_{m}\right)\right\}$. Again, it follows that

$$
B_{\mathbb{B}^{m}}(z, w)=\sum_{|I|=0}^{\infty}\binom{-m-1}{\ell}\left(\sum_{|I|=\ell}\binom{|I|}{I} z^{I} \bar{w}^{I}\right)=(1-\langle z, w\rangle)^{-m-1} .
$$

Let be a second finite dimensional inner product space and $T: \mathcal{H} \rightarrow \operatorname{Hol}(\mathcal{D}, W)$ be a linear map for which the evaluation at $z \in \mathcal{D}$, namely, $f \rightarrow(T f)(z), f \in \mathcal{H}$, is continuous. Transplant the inner product from $\mathcal{H} / \operatorname{ker} T$ to the linear space $T \mathcal{H}$. In consequence, $T_{(z)} K(z, w) T_{(w)}^{\sharp}: W \rightarrow W$ is the reproducing kernel of $T \mathcal{H}:$

$$
T K(z, w) \zeta:=\left(T_{(z)} K_{w} \zeta\right)(z)=\sum_{\ell}\left\langle\zeta, e_{\ell}(w)\right\rangle\left(T e_{\ell}\right)(z)
$$

Linearity in ζ implies that $T K(z, w)$ is in $\operatorname{Hom}(V, T \mathcal{H})$. We have

$$
T_{(z)} K(z, w)=\sum_{\ell}\left(T_{\ell}(z)\right) e_{\ell}(w)^{\sharp}
$$

and

$$
K(z, w) T^{\sharp}:=\left(T_{(w)} K(w, z)\right)^{\sharp}=\sum_{\ell} e_{\ell}(z)\left(T e_{\ell}(w)\right)^{\sharp}
$$

(For fixed $w,\left\{T e_{\ell}(w)^{\sharp} \zeta\right\}$ is in ℓ^{2} for all ζ.) Applying T to this we have

$$
T K(z, w) T^{\sharp}=\sum_{\ell}\left(T e_{\ell}\right)(z)\left(T e_{\ell}(w)^{\sharp}\right) .
$$

Suppose $\mathcal{T} \subseteq \operatorname{Hol}(\mathcal{D}, V)$ is a Hilbert space possessing a reproducing kernel K and $T: \mathscr{H} \rightarrow \operatorname{Hol}(\mathcal{D}, W)$ is a linear map such that $f \rightarrow(T f)(z), f \in \mathcal{H}$, is continuous. Let $\mathcal{H}^{\prime} \subseteq \operatorname{Hol}(\mathcal{D}, W)$ be another Hilbert space with reproducing kernel $K^{\prime}: \mathcal{D} \times \mathcal{D} \rightarrow \operatorname{Hom}(W, W)$.

Proof. Without loss of generality, may assume $C=1$. If $\mathcal{H}_{i}, i=1,2$ are two Hilbert spaces with reproducing kernels $K_{i}, i=1,2$, then their sum is the reproducing kernel of the Hilbert space

$$
\left\{g \mid g=f_{1}+f_{2} \text { for some } f_{1} \in \mathcal{H}_{1} \text { and } f_{2} \in \mathcal{H}_{2}\right\}
$$

equipped with the norm $\|g\|^{2}=\inf \left\{\left\|f_{1}\right\|^{2}+\left\|f_{2}\right\|^{2} \mid g=f_{1}+f_{2}\right\}$.

Suppose $\mathcal{T} \subseteq \operatorname{Hol}(\mathcal{D}, V)$ is a Hilbert space possessing a reproducing kernel K and $T: \mathcal{H} \rightarrow \operatorname{Hol}(\mathcal{D}, W)$ is a linear map such that $f \rightarrow(T f)(z), f \in \mathcal{H}$, is continuous. Let $\mathcal{H}^{\prime} \subseteq \operatorname{Hol}(\mathcal{D}, W)$ be another Hilbert space with reproducing kernel $K^{\prime}: \mathcal{D} \times \mathcal{D} \rightarrow \operatorname{Hom}(W, W)$.
Lemma
If $T K(z, w) T^{\sharp} \prec C K^{\prime}(z, w)$, then the image of T is contained in \mathcal{H}^{\prime} and as an operator from \mathcal{H} to \mathcal{H}^{\prime}, it is bounded by C.

Proof. Without loss of generality, may assume $C=1$. If $\mathcal{H}_{i}, i=1,2$ are two Hilbert spaces with reproducing kernels $K_{i}, i=1,2$, then their sum is the reproducing kernel of the Hilbert space

$$
\left\{g \mid g=f_{1}+f_{2} \text { for some } f_{1} \in \mathcal{H}_{1} \text { and } f_{2} \in \mathcal{H}_{2}\right\}
$$

equipped with the norm $\|g\|^{2}=\inf \left\{\left\|f_{1}\right\|^{2}+\left\|f_{2}\right\|^{2} \mid g=f_{1}+f_{2}\right\}$.

Apply this with $\mathcal{H}_{1}:=T \mathcal{H}, \quad K_{1}:=T K T^{\sharp}$. Set \mathcal{H}_{2} to be the Hilbert space corresponding to the kernel function $K_{2}:=K^{\prime}-K_{1}$, which is positive definite by assumption. For f in \mathcal{H}, write $f=f_{1}+f_{2}$, where $f_{1}=T f$ and $f_{2}=0$. Then we have

$$
\|T f\|_{\mathscr{H}^{\prime}}^{2} \leq\|T f\|_{\mathscr{H}_{1}}^{2}=\|T f\|_{T \mathscr{H}}^{2} \leq\|f\|_{\mathscr{H}}^{2} .
$$

quasi-invariance of B

Any bi-holomorphic map $\varphi: \mathcal{D} \rightarrow \tilde{D}$ induces a unitary operator $U_{\varphi}: \mathbb{A}^{2}(\tilde{\mathcal{D}}) \rightarrow \mathbb{A}^{2}(\mathcal{D})$ defined by the formula

$$
\left(U_{\varphi} f\right)(z)=\left(J(\varphi, z)(f \circ \varphi)(z), f \in \mathbb{A}^{2}(\tilde{\mathcal{D}}), z \in \mathcal{D} .\right.
$$

This is an immediate consequence of the change of variable formula for the volume measure on \mathbb{C}^{n}.

Bergman space

Any bi-holomorphic map $\varphi: \mathcal{D} \rightarrow \tilde{\mathcal{D}}$ induces a unitary operator $U_{\varphi}: \mathbb{A}^{2}(\tilde{D}) \rightarrow \mathbb{A}^{2}(\mathcal{D})$ defined by the formula

$$
\left(U_{\varphi} f\right)(z)=\left(J(\varphi, z)(f \circ \varphi)(z), f \in \mathbb{A}^{2}(\tilde{\mathcal{D}}), z \in \mathcal{D} .\right.
$$

This is an immediate consequence of the change of variable formula for the volume measure on \mathbb{C}^{n}.
Consequently, if $\left\{\tilde{e}_{n}\right\}_{n>0}$ is any orthonormal basis for $\mathbb{A}^{2}(\tilde{D})$, then $\left\{e_{n}\right\}_{n \geq 0}$, where $\tilde{e}_{n}=\bar{J}(\varphi, \cdot)\left(\tilde{e}_{n} \circ \varphi\right)$ is an orthonormal basis for the Bergman space $\mathbb{A}^{2}(\tilde{\mathcal{D}})$.

Expressing the Bergman kernel $B_{\mathcal{D}}$ of the domains \mathcal{D} as the infinite sum $\sum_{n=0}^{\infty} e_{n}(z) \overline{e_{n}(w)}$ using the orthonormal basis in $\mathbb{A}^{2}(\mathcal{D})$, we see that the Bergman Kernel B is quasi-invariant, that is, If $\varphi: \mathcal{D} \rightarrow \widetilde{D}$ is holomorphic then we have the transformation rule

$$
J(\varphi, z) B_{\tilde{D}}(\varphi(z), \varphi(w)) \overline{J(\varphi, w)}=B_{\mathcal{D}}(z, w)
$$

where $J(\varphi, w)$ is the Jacobian determinant of the map φ at w.
this transformation rule gives an effective way of computing the
Bergman kernel. Thus

Expressing the Bergman kernel $B_{\mathcal{D}}$ of the domains \mathcal{D} as the infinite sum $\sum_{n=0}^{\infty} e_{n}(z) \overline{e_{n}(w)}$ using the orthonormal basis in $\mathbb{A}^{2}(\mathcal{D})$, we see that the Bergman Kernel B is quasi-invariant, that is, If $\varphi: \mathcal{D} \rightarrow \widetilde{D}$ is holomorphic then we have the transformation rule

$$
J(\varphi, z) B_{\tilde{D}}(\varphi(z), \varphi(w)) \overline{J(\varphi, w)}=B_{\mathcal{D}}(z, w)
$$

where $J(\varphi, w)$ is the Jacobian determinant of the map φ at w.
If \mathcal{D} admits a transitive group of bi-holomorphic automorphisms, then this transformation rule gives an effective way of computing the Bergman kernel. Thus

$$
B_{\mathcal{D}}(z, z)=\left|J\left(\varphi_{z}, z\right)\right|^{2} B_{\mathcal{D}}(0,0), z \in \mathcal{D},
$$

where φ_{z} is the automorphism of \mathcal{D} with the property $\varphi_{z}(z)=0$.

the multiplier

Consider the special case, where $\varphi: \mathcal{D} \rightarrow \mathcal{D}$ is an automorphism. Clearly, in this case, U_{φ} is unitary on $\mathbb{A}^{2}(\mathcal{D})$ for all $\varphi \in \operatorname{Aut}(\mathcal{D})$.

This makes the map $\varphi \rightarrow U_{\varphi}$ a homomorphism.
Thus we have a unitary representation of the Lie group Aut(D) on

Consider the special case, where $\varphi: \mathcal{D} \rightarrow \mathcal{D}$ is an automorphism. Clearly, in this case, U_{φ} is unitary on $\mathbb{A}^{2}(\mathcal{D})$ for all $\varphi \in \operatorname{Aut}(\mathcal{D})$. The map $J: \operatorname{Aut}(\mathcal{D}) \times \mathcal{D} \rightarrow \mathbb{C}$ satisfies the cocycle property, namely

$$
J(\psi \varphi, z)=J(\varphi, \psi(z)) J(\psi, z), \varphi, \psi \in \operatorname{Aut}(\mathcal{D}), z \in \mathcal{D} .
$$

This makes the map $\varphi \rightarrow U_{\varphi}$ a homomorphism.

Consider the special case, where $\varphi: \mathcal{D} \rightarrow \mathcal{D}$ is an automorphism. Clearly, in this case, U_{φ} is unitary on $\mathbb{A}^{2}(\mathcal{D})$ for all $\varphi \in \operatorname{Aut}(\mathcal{D})$. The map $J: \operatorname{Aut}(\mathcal{D}) \times \mathcal{D} \rightarrow \mathbb{C}$ satisfies the cocycle property, namely

$$
J(\psi \varphi, z)=J(\varphi, \psi(z)) J(\psi, z), \varphi, \psi \in \operatorname{Aut}(\mathcal{D}), z \in \mathcal{D} .
$$

This makes the map $\varphi \rightarrow U_{\varphi}$ a homomorphism.
Thus we have a unitary representation of the Lie group $\operatorname{Aut}(\mathcal{D})$ on $\mathbb{A}^{2}(\mathcal{D})$.

Exploit the quasi-invariance of the Bergman kernel to construct unitary representations of the automorphism group $\operatorname{Aut}(\mathcal{D})$. Let $B^{\lambda}(z, w)$ be the polarization of the function $B(w, w)^{\lambda}, w \in \mathcal{D}, \lambda>0$.
by the formula

Exploit the quasi-invariance of the Bergman kernel to construct unitary representations of the automorphism group $\operatorname{Aut}(\mathcal{D})$. Let $B^{\lambda}(z, w)$ be the polarization of the function $B(w, w)^{\lambda}, w \in \mathcal{D}, \lambda>0$.
Now, as before,

$$
J_{\varphi}(z)^{\lambda} B^{\lambda}(\varphi(z), \varphi(w)){\overline{J_{\varphi}(w)}}^{\lambda}=B^{\lambda}(z, w), \varphi \in \operatorname{Aut}(\mathcal{D}), z, w \in \mathcal{D} .
$$

Exploit the quasi-invariance of the Bergman kernel to construct unitary representations of the automorphism group $\operatorname{Aut}(\mathcal{D})$. Let $B^{\lambda}(z, w)$ be the polarization of the function $B(w, w)^{\lambda}, w \in \mathcal{D}, \lambda>0$.
Now, as before,

$$
J_{\varphi}(z)^{\lambda} B^{\lambda}(\varphi(z), \varphi(w)){\overline{J_{\varphi}(w)}}^{\lambda}=B^{\lambda}(z, w), \varphi \in \operatorname{Aut}(\mathcal{D}), z, w \in \mathcal{D} .
$$

Let $\mathcal{O}(\mathcal{D})$ be the ring of holomorphic functions on \mathcal{D}. Define

$$
U^{(\lambda)}: \operatorname{Aut}(\mathcal{D}) \rightarrow \operatorname{End}(\mathcal{O}(\mathcal{D}))
$$

by the formula

$$
\left(U_{\varphi}^{(\lambda)} f\right)(z)=\left(J_{\varphi^{-1}}(z)\right)^{\lambda}\left(f \circ \varphi^{-1}\right)(z)
$$

and note that $\varphi \mapsto U_{\varphi}$ is a homomorphism.

Exploit the quasi-invariance of the Bergman kernel to construct unitary representations of the automorphism group $\operatorname{Aut}(\mathcal{D})$. Let $B^{\lambda}(z, w)$ be the polarization of the function $B(w, w)^{\lambda}, w \in \mathcal{D}, \lambda>0$.
Now, as before,

$$
J_{\varphi}(z)^{\lambda} B^{\lambda}(\varphi(z), \varphi(w)){\overline{J_{\varphi}(w)}}^{\lambda}=B^{\lambda}(z, w), \varphi \in \operatorname{Aut}(\mathcal{D}), z, w \in \mathcal{D} .
$$

Let $\mathcal{O}(\mathcal{D})$ be the ring of holomorphic functions on \mathcal{D}. Define

$$
U^{(\lambda)}: \operatorname{Aut}(\mathcal{D}) \rightarrow \operatorname{End}(\mathcal{O}(\mathcal{D}))
$$

by the formula

$$
\left(U_{\varphi}^{(\lambda)} f\right)(z)=\left(J_{\varphi^{-1}}(z)\right)^{\lambda}\left(f \circ \varphi^{-1}\right)(z)
$$

and note that $\varphi \mapsto U_{\varphi}$ is a homomorphism.
When is it unitarizable?

Let K be a complex valued positive definite kernel on \mathcal{D}. For w in \mathcal{D}, and p in the set $\{1, \ldots, d\}$, let $e_{p}: \Omega \rightarrow \mathscr{H}$ be the antiholomorphic function:

$$
e_{p}(w):=K_{w}(\cdot) \otimes \frac{\partial}{\partial \bar{w}_{p}} K_{w}(\cdot)-\frac{\partial}{\partial \bar{w}_{p}} K_{w}(\cdot) \otimes K_{w}(\cdot) .
$$

Setting $G(z, w)_{p, q}=\left\langle e_{p}(w), e_{q}(z)\right\rangle$, we have

$$
\left.\frac{1}{2} G(z, w)_{p, q}{ }^{\sharp}=K(z, w) \frac{\partial^{2}}{\partial z_{q} \partial \bar{w}_{p}} K(z, w)-\frac{\partial}{\partial \bar{w}_{p}} K(z, w) \frac{\partial}{\partial z_{q}} K(z, w)\right) .
$$

The curvature K of the metric K is given by the $(1,1)$ - form $\sum \frac{\partial^{2}}{\partial w_{q} \partial \bar{w}_{p}} \log K(w, w) d w_{q} \wedge d \bar{w}_{p}$. Set

$$
\mathcal{K}_{K}(z, w):=\left(\left(\frac{\partial^{2}}{\partial z_{q} \partial \bar{w}_{p}} \log K(z, w)\right){ }_{q p} .\right.
$$

We note that $K(z, w)^{2} \mathcal{K}(z, w)=\frac{1}{2} G(z, w)^{\sharp}$. Hence $K(z, w)^{2} \mathcal{K}(z, w)$ defines a positive definite kernel on \mathcal{D} taking values in $\operatorname{Hom}(V, V)$.

Let $\varphi \mathcal{D} \rightarrow \mathcal{D}$ be a holomorphic map. Applying the change of variable formula twice to the function $\log K(\varphi(z), \varphi(w))$, we have

$$
\left(\left(\frac{\partial^{2}}{\partial z_{i} \partial \bar{w}_{j}} \log K(\varphi(z), \varphi(w))\right)_{i j}=\left(\left(\frac{\partial \varphi_{\ell}}{\partial z_{i}}\right)_{i \ell}\left(\left(\frac{\partial^{2}}{\partial z_{\ell} \partial \bar{w}_{k}} \log K\right)(\varphi(z), \varphi(w))\right)_{\ell k}\left(\frac{\partial \bar{\varphi}_{k}}{\partial \bar{z}_{j}}\right)_{k j} .\right.\right.
$$

Now, we set $K(w, w)=B_{\mathcal{D}}(w, w)$, the Bergman kernel of \mathcal{D}, which transforms according to the rule:

$$
\operatorname{det}_{\mathbb{C}} D \varphi(w) B_{\mathcal{D}}(\varphi(w), \varphi(w)) \overline{\operatorname{det}_{\mathbb{C}} D \varphi(w)}=B_{\mathcal{D}}(w, w),
$$

Thus $\mathcal{K}_{B_{\mathfrak{D}} \circ(\varphi, \varphi)}(w, w)$ equals $\mathcal{K}_{B_{\mathfrak{D}}}(w, w)$. Hence we conclude that $\mathcal{K}:=\mathcal{K}_{B_{\mathcal{D}}}$ is invariant under the automorphisms φ of \mathcal{D} in the sense that

$$
D \varphi(w)^{\sharp} \mathcal{K}(\varphi(w), \varphi(w)) \overline{D \varphi(w)}=\mathcal{K}(w, w), w \in \mathcal{D} .
$$

Or equivalently,

$$
\begin{aligned}
\mathcal{K}(\varphi(z), \varphi(w)) & =D \varphi(z)^{\sharp-1} \mathcal{K}(z, w) \overline{D \varphi(z)}^{-1} \\
& =D \varphi(z)^{\sharp-1} \mathcal{K}(z, w)\left(D \varphi(w)^{\sharp-1}\right)^{*} \\
& =m_{0}(\varphi, z) \mathcal{K}(z, w) m_{0}(\varphi, w)^{*},
\end{aligned}
$$

where $m_{0}(\varphi, z)=D \varphi(z)^{\sharp-1}$ and multiplying both sides by K^{2}, we have

$$
K(\varphi(z), \varphi(w))^{2} \mathcal{K}(\varphi(z), \varphi(w))=m_{2}(\varphi, z) K(z, w)^{2} \mathcal{K}(z, w) m_{2}(\varphi, w)^{*}
$$

where $m_{2}(\varphi, z)=\left(\operatorname{det}_{\mathbb{C}} D \varphi(w)^{2} D \varphi(z)^{\sharp}\right)^{-1}$ is a multiplier. Of course, we now have that

Or equivalently,

$$
\begin{aligned}
\mathcal{K}(\varphi(z), \varphi(w)) & =D \varphi(z)^{\sharp-1} \mathcal{K}(z, w) \overline{D \varphi(z)}^{-1} \\
& =D \varphi(z)^{\sharp-1} \mathcal{K}(z, w)\left(D \varphi(w)^{\sharp-1}\right)^{*} \\
& =m_{0}(\varphi, z) \mathcal{K}(z, w) m_{0}(\varphi, w)^{*},
\end{aligned}
$$

where $m_{0}(\varphi, z)=D \varphi(z)^{\sharp-1}$ and multiplying both sides by K^{2}, we have

$$
K(\varphi(z), \varphi(w))^{2} \mathcal{K}(\varphi(z), \varphi(w))=m_{2}(\varphi, z) K(z, w)^{2} \mathcal{K}(z, w) m_{2}(\varphi, w)^{*}
$$

where $m_{2}(\varphi, z)=\left(\operatorname{det}_{\mathbb{C}} D \varphi(w)^{2} D \varphi(z)^{\sharp}\right)^{-1}$ is a multiplier. Of course, we now have that
(i) $K^{2+\lambda}(z, w) \mathcal{K}(z, w), \lambda>0$, is a positive definite kernel and

Or equivalently,

$$
\begin{aligned}
\mathcal{K}(\varphi(z), \varphi(w)) & =D \varphi(z)^{\sharp-1} \mathcal{K}(z, w) \overline{D \varphi(z)}^{-1} \\
& =D \varphi(z)^{\sharp-1} \mathcal{K}(z, w)\left(D \varphi(w)^{\sharp-1}\right)^{*} \\
& =m_{0}(\varphi, z) \mathcal{K}(z, w) m_{0}(\varphi, w)^{*},
\end{aligned}
$$

where $m_{0}(\varphi, z)=D \varphi(z)^{\sharp-1}$ and multiplying both sides by K^{2}, we have

$$
K(\varphi(z), \varphi(w))^{2} \mathcal{K}(\varphi(z), \varphi(w))=m_{2}(\varphi, z) K(z, w)^{2} \mathcal{K}(z, w) m_{2}(\varphi, w)^{*}
$$

where $m_{2}(\varphi, z)=\left(\operatorname{det}_{\mathbb{C}} D \varphi(w)^{2} D \varphi(z)^{\sharp}\right)^{-1}$ is a multiplier. Of course, we now have that
(i) $K^{2+\lambda}(z, w) \mathcal{K}(z, w), \lambda>0$, is a positive definite kernel and
(ii) it transforms according with $m_{\lambda}(\varphi, z)=\left(\operatorname{det}_{\mathbb{C}} D \varphi(z)^{2+\lambda} D \varphi(z)^{\dagger}\right)^{-1}$ in place of $m_{2}(\varphi, z)$.

Thank you!

