Talk 1: Definitions and Examples

Elias Katsoulis



The semicrossed product Cp(X) x, ZT

It was introduced by Arveson (1967), Arveson
and Josephson (1969) and formalized by Pe-
ters (1984).

e X C C is locally compact Hausdorff space.

e Cp(X) are the continuous functions on X
vanishing at infinity.

e 0. X — X a proper continuous map



Given z € X and f € Co(X), we define

(f(z) O 0 U
0 flo(x)) 0
m(f)=| O 0 (o2 (2)) ...

(O 0 O )

1 0 O
S;)=|0 1 0
\ o

Formally for each z € X, f € Co(X) define

o (£)€ = (f(2)€0, (foo) (@), (foo D) (2)és, .. .).
and S, is the forward shift

S¢ =1(0,80,&1,&2,.--).



DEFINITION. The semicrossed product
Co(X) x5 Z7T is defined as the norm closed op-

erator algebra acting on @,cxH, and gener-
ated by the operators

w(f) = ©rexmz(f), f€Co(X), and
St(f), f¢&Co(X),

where

S = @xEXSCU



Note the covariance relation

m(f)S = Sn(foo), [feCo(X)



T he classification problem for semicrossed
products.

Classify the semicrossed products Cp(X) X o2t
as algebras.

A sufficient condition: Assume that o1 and oo
are topologicaly conjugate, i.e., there exists a
homeomorphism
Y . Xl — XQ
so that
YOO = 0207,

Then the semicrossed products Co(X71) Xoq ZT
and Cp(X2) Xoy 77 are isomorphic as algebras.



Necessity:

e Arveson and Josephson (1969). X, com-
pact, o; no fixed points, plus some extra
conditions

e Peters (1985). X, compact, o; no fixed
points.

e Hadwin and Hoover (1988). X; compact,
the set

{z € X; | 01(x) # z,057(2) = o1(2))

has empty interior.

e Power (1992). X, locally compact, o; home-
omorphisms



THEOREM 1. (Davidson and Katsoulis, 2008)
Let X, be a locally compact Hausdorff space
and let o; a proper continuous map on X;,
for ¢+ = 1,2. Then the dynamical systems
(X1,01) and (X»,05) are conjugate if and only
if the semicrossed products Cq(X1) x4, ZT and
Co(X2) Xos 771 are isomorphic as algebras.



The tensor algebra 7'gJr

o § = (go,gl,r, s) a countable directed graph

e Goo the (finite) path space of G

The path space consists of all vertices

v e Go
and finite paths

P—€LEr_1...€1

where the ¢; € Gl are edges satisfying s(e;) =
r(e;_1), 1=1,2,...,k, ke N.



Let {¢{p}peg,, denote the usual orthonormal ba-
sis of the Fock space Hg = 1°(Go), Where &,
is the characteristic function of {p}. The left
creation operator Lg, q € G0, IS defined by

_ ) &p ifs(q) =r(p)
ngp_{ g)p otherwise.

DEFINITION. The norm closed algebra gen-
erated by {L, | p € G}, denoted as Tg"', is
the tensor tensor algebra of the graph G. Its
weak closure, denoted as Lg, is the free semi-
groupoid algebra of G.



THEOREM 2. (Katsoulis and Kribs, 2004)
Let G1, Go be directed graphs with no sinks.
Then the tensor algebras 7;3'1' and 7;3'2' are iso-

morphic as algebras if and only if G; are G> are
iIsomorphic as graphs.



DEFINITION. Let G be a finite undirected graph
with no loop edges or multiple edges between
any two of its vertices. A vertex-deleted subgraph
of G is a subgraph formed by deleting exactly
one vertex from G and its incidence edges.

DEFINITION For a graph g, the deck of G,
denoted as D(G), is the multiset of all vertex-
deleted subgraphs of G. Each graph in D(G) is
called a card. Two graphs that have the same
deck are said to be hypomorphic or reconstruc-
tions of each other. With these definitions at
hand, the famous

CONJECTURE (Kelly and Ulam) Any two hy-
pomorphic graphs on at least three vertices
have to be isomorphic.



A finite directed graph G will belong to the sub-
class &g of all directed graphs if G comes from
a finite undirected graph by replacing each edge
with two directed edges with opposite direc-
tions. The concepts of a card, a deck and
hypomorphism transfer to graphs in & and the
Reconstruction Conjecture can be stated as

Reconstruction Conjecture (Kelly and Ulam).
Any two hypomorphic graphs in g on at least
three vertices are necessarily isomorphic.



DEFINITION. If g € &, then a vertex-deleted
subalgebra of 7'g+ is formed by deleting from
g exactly one vertex and its incidence edges
and then taking the subalgebra of 7'g+ formed
by the partial isometries and projections corre-
sponding to the remaining edges and vertices
respectively.

DEFINITION For a tensor algebra 75", the
deck of 75", denoted as D(7'g+), is the mul-
tiset of all vertex-deleted subalgebras of 7;3".

Each graph in D(7'g+) is called a card. Two
tensor algebras that have the same deck are
said to be hypomorphic or reconstructions of
each other.




In an ongoing collaboration with Gunther Cor-
nelissen at Utreht we have the following

THEOREM 3. If G1,G> € &g, then the graphs
g1 and G, are hypomorphic if and only 7'9"1' and

7'52' are hypomorphic as operator algebras.

Therefore the reconstruction conjecture admits
the following equivalent form

COROLLARY 4. The reconstruction conjec-
ture in graph theory is equivalent to the as-
sertion that hypomorphic tensor algebras of
graphs in &g are necessarily isomorphic as al-
gebras.



The formal definition of the semicrossed
product Cy(X) xo Z7T

(A,o0) a C*-dynamical system, i.e.,

e A is a C*-algebra

o 0. A— Anon-degenerate x-endomorphism.

DEFINITION. An iIsometric covariant
representation (m, V) of the C*-dynamical sys-
tem (A, o) consists of a x-representation = of A
on a Hilbert space H and an isometry V € B(H)
SO that

m(A)V =Vn(c(A)), VAcecA.

Similar definitions for unitary or contractive co-
variant representations.



DEFINITION Let (A, o) be a C*-dynamical sys-
tem. The algebra A x, Z7T is the universal
operator algebra associated with " all” covari-
ant representations of (A, o), i.e., the universal
algebra generated by a copy of A and an isom-
etry V satisfying the covariant relations.

Note that each covariant representation (m, V)
provides a contractive representation w x V of
A Xy ZT.

Similar definition for the universal operator al-
gebra A x¥" Z7T (resp. A xS 7Z7T) associated
with " all” unitary (resp. contractive) covariant
representations.



THEOREM 5. (Peters 1985) The representa-
tion @ e x mx X Sy of Co(X) xo ZT is isometric.

THEOREM 6. (Peters) The algebras A xU"
ZT, A xoZT (and A x¥ ZT in the injective
case) are isometrically isomorphic.

Note that the last Theorem is not valid for
C'x-algebraic crossed products.



T he formal definition of the
tensor algebra 7'g+

g = (QO,Ql,r, s), a countable directed graph

DEFINITION. A family of partial isometries
1Le} g1y and projections {Lp}, (o) is said to
obey the Cuntz-Krieger-Toeplitz relations as-
sociated with ¢ if and only if they satisfy

(1) LpLp=0 Vp,q €GO, p#£gq
(2) LiL;=0 Ve, f e GV e f
()3 (3) LiLe= Ly vee gt
(4) LeLk < Ly Ve c g1
| (8) Sr(ey=p LeLi < Lp YpeGl®




DEFINITION. The tensor algebra 75~ of a graph
g is the universal operator algebra for all fami-
lies of partial isometries {Le} (1) and projec-
tions {Lp}peg(@ which obey the Cuntz-Krieger-
Toeplitz relations associated with §G.

THEOREM 7 (Fowler, Muhly and Reaburn,
2001). The representation of 7'g+ on the Fock
space Hq is isometric.



A is a C*-algebra.

An inner-product right A-module is a linear
space X which is a right A-module together

with a map
()= () X xX—>A
such that

& y+n) =Xz, y) + (x,1)
(€,ma) =(&,m)a
(n,&) = < >

§) >

(€. f (€,€) =0 then £ = 0.

For £ € X we write ||&]|x = [[(§,€)]|4 and one
can deduce that ||:||y is actually a norm. X
equipped with that norm will be called Hilbert
A-module if it is complete and will be denoted

as XA-



For a Hilbert A-module X we define the set
L(X) of the adjointable maps that consists of
all maps s : X — X for which there is a map
s* . X — X such that

(s&,m) = (£,8™n), (&, n e X).

DEFINITION. A C*-correspondence (X, A, )
consists of a Hilbert A-module (X,A) and a
left action

0:A— L(X).

If ¢ is injective then the C*-correspondence
(X, A, ) is said to be injective.



A (Toeplitz) representation (w,t) of X into a
C*-algebra B, is a pair of a *-homomorphism
. A — B and a linear map t.: X — B, such
that

1. m(a)t(§) = t(px(a)(£)),

2. t(&)*t(n) = (&, 1) y),

fora € A and &,7 € X. An easy application of
the C*-identity shows that t(¢)n(a) = t(&a) is
also valid. A representation (m,t) is said to be
injective iff = is injective; in that case t is an
iIsometry.



DEFINITION. The tensor algebra Ty of a C*-
correspondence (X, A, ¢) is the norm-closed al-
gebra generated by all elements of the form
Too(a),tec(€), a € A, £ € X, where (moo, too) de-
notes the universal Toeplitz representation of
(X, A, 0).
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Talk 2: C*-correspondences
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A is a C*-algebra.

An inner-product right A-module is a linear
space X which is a right A-module together

with a map
()= () X xX—>A
such that

& y+n) =Xz, y) + (x,1)
(€,ma) =(&,m)a
(n,&) = < >

§) >

(€. f (€,€) =0 then £ = 0.

For £ € X we write ||€]|% = ||(£,€)]|4 and one
can deduce that ||:||y is actually a norm. X
equipped with that norm will be called Hilbert
A-module if it is complete and will be denoted

as XA-



For a Hilbert A-module X we define the set
L(X) of the adjointable maps that consists of
all maps s : X — X for which there is a map
s* . X — X such that

(s&,m) = (£, ™), (&, n e X).

The compact operators K(X) C L(X) is the
closed subalgebra of L(X) generated by the
"rank one” operators

95,77(2) = € <777 Z> ) 57772 € X



DEFINITION. A C*-correspondence (X, A, )
consists of a Hilbert A-module (X,A) and a

left action
0. A— L(X).

If ¢ is injective then the C*-correspondence
(X, A, ) is said to be injective.



Representations of C*-correspondences

A (Toeplitz) representation (w,t) of X into a
C*-algebra B, is a pair of a *-homomorphism
w. A — B and a linear map t: X — B, such
that

1. w(a)t(€) = tlex(a)(§)),

2. t(&)*t(n) = 7({&,n) y),

fora e A and &,n € X. An easy application of
the C*-identity shows that

3. t(&m(a) = t(£a)

is also valid. A representation (m,t) is said to
be injective iff 7 is injective; in that case t is
an isometry.



DEFINITION. The Toeplitz-Cuntz-Pimsner C*-
algebra Tx of a C*-correspondence (X, A, )
is the C*-algebra generated by all elements of
the form 7moo(a),tx(&), a € A, £ € X, where
(oo, too) denotes the universal Toeplitz repre-
sentation of (X, A, p).

DEFINITION. The tensor algebra T; is the
norm-closed subalgebra of Tx generated by all
elements of the form moo(a),tcc(§), a € A, £ €
X, where (7o, too) denotes the universal Toeplitz
representation of (X, A, ¢).



THEOREM 1. Let (m,t) be a representation
of a C*-correspondence (X, A,v). Then there
exists a map

Y K(X) — C¥(m, )
so that ¥ (0¢ ) = t(&)t(n)*, for all £,;n € X.

DEFINITION. A representation (m,t) of a C*-
correspondence (X, A,p) is said to be a
covariant representation iff

m(a) = YP(p(a)), for all a € Jy,
where Jy = o~ 1 (K (X)) N (ker p)=+.




DEFINITION. The Cuntz-Pimsner C*-algebra
Oyx of a C*-correspondence (X, A, p) is the C*-
algebra generated by all elements of the form
Too(a),to(€), a € A, £ € X, where (oo, tco)
denotes the universal covariant representation
of (X, A, ).



In order to show that Toeplitz representations
do exist, we introduce the interior tensor prod-
uct of C*-correspondences.

The interior or stabilized tensor product, de-
noted by X ® X or simply by X®2 is the quo-
tient of the vector space tensor product X®a|g
X by the subspace generated by the elements
of the form

a@n—E§@p(a)n, &neX,acA
It becomes a pre-Hilbert B-module when equipped
with

((®@n)a:=&® (na),
(€1 ®1M1,62 @ n2) 1 = (Y1, ({£1,€2))n2)

For s € L(X) we define s®idy € L(X ® X) as
the mapping

EQy—s(8) ®y.
Hence X ® Y becomes a C*-correspondence by
defining ¢ xgx(a) ;= px(a) ®idx.



The Fock space Fx over the correspondence
X is the interior direct sum of the X®" with the
structure of a direct sum of C*-correspondences
over A,

Fx=A®XdX%a®....

Given £ € X, the (left) creation operator too (&) €
L(Fx) is defined as

too(£)(a,C1,¢2,-..) = (0,£a,£ ® (1, ® (2, - - . ).

For any a € A, we define

Too(a) = La ® ¢(a) & (&p=1¢(a) ®idn)

It is easy to verify that (7eo,te0) IS @ represen-
tation of X which is called the Fock represen-
tation of X.



The gauge-invariance unigueness T heorems

DEFINITION. A representation (m,t) of X is
said to admit a gauge action if for each z € T
there exists a x-homomorphism

By C*(m,t) — C*(m,t)

such that 3.(w(a)) = w(a) and B:(t(¢)) = zt(£),
forallae A and £ € X.

THEOREM 2. (Katsura 2004). Let (X, A, p)
be a C*-correspondence and (m,t) a covariant
representation that admits a gauge action and
is faithful on A. Then the integrated represen-
tation © x t is faithful on Ox.



THEOREM 3. (Katsura 2004) Let (X, A, p)
be a C*-correspondence and (m,t) a represen-
tation that admits a gauge action and satisfies

I'(m,it)={a € A|n(a) €Y (K(X))} =0

Then the integrated representation wxt is faith-
ful on Tx.



Talk 3: Adding tails to a C*-correspondence

Elias Katsoulis



Loosely speaking, we say that an injective C*-
correspondence (Y, B,v) arises from (X, A, p)
by adding a tail iff

e X CY and A C B, with

P(a)§ =p(a)s, acAfeX

e a covariant representation of (Y, B,v) re-
stricts to a covariant representation of (X, A, )

e Ox is a full corner of Oy

The origins are in the theory of graph C*-
algebras



Let ¢ be a connected, directed graph with a
distinguished sink pg € G° and no sources. We
assume that G is contractible at pg. So there
exists a unique infinite path wg = ejegesz...
ending at pg, i.e. r(wg) = pg. Let pn = s(en),
n > 1.



Let (Ap)pego be a family of C*-algebras param-
eterized by the vertices of G so that Ay, = A.
For each e € G1, we now consider a full, right
Hilbert Ay - module Xe and a x-homomorphism

Pe . A’r(e) — ,C(Xe)

satisfying the following requirements.

o If e = e1, e IS injective and maps onto
K(Xe).

L ,C(X@l) g SOel(A) and

Jx C Kerpe; C (kerpx)™. (1)

e The maps px and ge, satisfy the linking
condition

Py (K(Xey)) C xH(K(X)) (2)



Let
TO — CO( (Ap>peg9)a

where G2 = G\ {po}.

Let 77 be the completion of Coo((Xe)eggl) with
respect to the inner product

<ua v) (p) = Z <Ue, Ve), PE 99

s(e)=p

Equip now 717 with a right Ty - action, so that

(ux)e = UeTg(e), €€ gl,a: e 1p.

The pair (Tp,T7) is the tail for (X, A, ¢).



To the C*-correspondence (X, A,p) and the
data

T = <Q, (Xe)eegl’ (Ap)pegoa (@e)eegl)
we Now associate
Ar =A@ Ty
Xr=XT,
and we view X, as a Ar-Hilbert module.

(3)

We define a left Ar-action ¢ : Ar — L(X+) on
X+ by setting

907'(&7 Zr )(gau) — (SOX(CL)ga U)a
where

[ ea(@(uey), ife=e
c pe(Ty(e))ue; Otherwise

forace A, e X, x €Ty and u e T7.



THEOREM 1. (Kakariadis and Katsoulis, 2012).
Let (X, A, p) be a non-injective C*- correspon-
dence and let X be the graph C*-correspondence
over A, defined above. Then X- is an injective
C*-correspondence and the Cuntz-Pimsner al-
gebra Ox is a full corner of Ox .

Furthermore, if (m,t) is a covariant representa-
tion of X+ , then its restriction on X produces
a covariant representation of (X, A, ) .



The Muhly-Tomforde tail

Given a (non-injective) correspondence (X, A, ox),
Muhly and Tomforde construct the tail that re-
sults from the previous construction, with re-
spect to data

T — <g7 (Xe)eeg(1)7 (Ap)peg(o)7 (¢B)€EQ(1)>

defined as follows.

The graph G is illustrated in the figure below.

oP0 - — Pl — P2

e1 e €3 obP3 ()

Ap = Xe = kerpy, for all p € ' and e € g1,
Finally,

ve(a)ue = aue, €€ Q(l),ue € Xe,a € Ar(e)



Our tail for (A, A, o)

Given a (non-injective) correspondence (X, A, ox),
we construct the tail that results from the pre-
vious construction, with respect to data

T — (g) (Xe)eeg(l)7 (Ap)peg(o)’ (¢€)€EQ(1)>

defined as follows.
Let 6: A— M(kerpy).

The graph G is once again

oP0 - — Pl — P2

e1 e €3 obP3 ()

but Ap = Xe = 6(A), for all p € 69 and e ¢
G(1) . Finally,

pe(ayue = 0(a)ue, e€ G uc € Xe,a € 4,



A first application of adding tails.

THEOREM 2. Let (A,«a) a C*-dynamical sys-
tem and X, the pertinent correspondence. Then
the Cuntz-Pimsner C*-algebra Oy is strongly
Morita equivalent to a crossed product C*-
algebra.

A more interesting application for the corre-
spondence coming from a multivariable
C*-dynamical system (A,«a1,a9,...,an)



Another application.

PROPOSITION 3 (Katsoulis and Kribs, 2006).
If (X, A, ) is an injective correspondence, then

alg (oo, too) /K (Fx) ~ alg(Too, too)

COROLLARY 4. If (X,A,p) is an injective
correspondence, then 7}?’ embedds isometri-
cally and canonically in Ox.



By using tails

THEOREM 5 (Katsoulis and Kribs 2006). If
(X,A,p) is any C*-correspondence, then 7}}"
embedds isometrically and canonically in Ox.



Kakariadis and Katsoulis, Contributions to C*-
correspondences..., Trans. Amer Math Soc.
364 (2012) 6605—6630.

Katsoulis and Kribs, Tensor algebras of C*-
correspondences and their C*-envelopes, JFA
234 (2006) 226—233.

Muhly and Tomforde, Adding tails to
C*-correspondences, Documenta Mathematica
9 (2004) 79-106



Talk 4: The C*-envelope of an operator
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e all operator spaces S satisfy 1 € S C C*(S).

e all completely contractive maps between
operator spaces preserve the unit.

THEOREM 1. (Arveson 1969). A (unital)
completely contractive map ¢ : S — B(#H) ad-
mits a completely contractive (unital) exten-
sion

@ : C*(S) — B(H).

DEFINITION. A completely contractive (cc)
map ¢ : § — B(H) is said to have the
unique extension property iff any completely con-
tractive extension

@ : C*(S) — B(H)

IS multiplicative.



DEFINITION. If ¢, : S — B(H;), i = 1,2, are
cC maps then ¢5 is said to be a dilation of ¢4
(denoted as po > ¢q) if Ho D Hq1 and

cy, (p2(8)) = Py 92(s) |3,= ¢1(s), Vse€S.

DEFINITION. A completely contractive (cc)
map ¢ : S — B(H) is said to be maximal if it
has no non-trivial dilations: ¢’ > ¢ = ¢ =
@ G for some cc map .




THEOREM 2. (Muhly and Solel 1998). A cc
map ¢ : § — B(H) is maximal iff it has the
unique extension property.



THEOREM 3.(Dritschel and McCullough 2005).
Every cc map ¢ : S — B(H) can be dilated to
a maximal cc map ¢’ : S — B(#H)



PROPOSITION 4. (Arveson 1969). Let S, T
be operator spaces and

a:S —T
be a completely isometric (unital) map. If
o :T — B(H)
IS maximal then
poa:S — B(H)

iIs also maximal.

COROLLARY 5. If A,B are unital operator
algebras and

a: A—B

IS a complete isometry, then o is multiplicative.



THEOREM 6.(Hamana 1979). Let ¢ : S —
B(#H) be a completely isometric maximal map.

If 7 C C*(S) is an ideal so that the quotient
map

qg: C(S) — C*(S)/j
is faithful on &, then
J C kerp

where ¢ is the unique cc extension of ¢ to
C*(S). (Theideal ker ¢ is said to be the Shilov ideal

of § C C*(S).)



THEOREM 7. (Hamana, 1979). Let S be a
unital operator space. Then there exists a C*-
algebra C§,,(S) (= the C*-envelope of §) and
a complete unital isometry

0: S — Ciny(S)

so that for any other completely isometric uni-
tal embedding

p: S — €= C(0(S5))

we have x:homomorphism 7: C — C&n(S) so
that mop =0.



The C*-envelope of an arbitrary
operator algebra

If A C B(H) is a non-degenerately acting oper-
ator algebra with Iy ¢ A, then A; will denote
its unitization.

THEOREM 8. (Meyer, 2001). Let ¢: A —
B be a completely contractive homomorphism
between operator algebras. Then its unitiza-
tion ¢q1: A1 — By is also completely contrac-
tive.

This allows us to consider the category of op-
erator algebras with morphisms the completely
contractive homomorphisms.

In that category

COROLLARY 9. Every cc homomorphism ¢ :
A — B(H) of an operator algebra A can be
dilated to a maximal cc homomorphism. ¢’ :

S — B(H")



The C*-envelope of a (non degenerately act-
ing) operator algebra A is the C*-algebra gen-
erated by A inside C%n,(A1).



THEOREM 10. (Katsoulis and Kribs, 2006).
If (X,A,p)is a C*-correspondence, then

Cva(T)—('_) ~ Ox



THEOREM 11. (Davidson and Katsoulis) Let
A, B € B(H) contractions satisfying

AB = Bp(A)

for some finte Blashke product ( e.g., AB =
BA?). Then there exist unitary operators V, W €
B(K), with K D H, so that

(i) VW =Wep(V), and

(ii) PHWmVn |7—[: AMB™ m,n € Z.



Talk 5: Dynamics and classification of
operator algebras

Elias Katsoulis



Gunther Cornelissen, Matilde Marcolli, Quan-
tum Statistical. Mechanics, L-series and An-
abelian Geometry, arXiv:1009.0736.

A complex number a is called algebraic if there
exists a nonzero polynomial p(X) € Q[X] such
that p(a) = 0. The polynomial is unique if we
require that it be irreducible and monic. We
say that a is an algebraic integer if the unique
irreducible, monic polynomial which it satisfies
has integer coefficients. We know that the set
Q of all algebraic numbers is a field, and the
algebraic integers form a ring. For an algebraic
number a, the set K of all f(a), with f(X) €
Q[X] is a field, called an algebraic number field.
If all the roots of the polynomial p(X) are in
K, then K is called Galois over Q.

QUESTION. Which invariants of a number field
characterize it up to isomorphism?



The absolute Galois group of a number field
K is the group G = Gal(Q/K) consisting of
all automorphisms o of Q such that o(a) = a
for all a € K. Let f(X) € K[X] be irreducible,
and let Zf be the set of its roots. The group
of permutations of Z¢ is a finite group, which
IS given the discrete topology. Then G acts
on Zf. We put a topology on G, so that the
homomorphism of GGy to the group of permu-
tations of Z¢ is continuous for every such f(X).
Then Gy is a topological group; it is compact
and totally disconnected.

THEOREM. [Uchida, 1976] Number fields E
and F' are isomorphic as fields if and only if Gg
and G are isomorphic as topological groups.

The absolute Galois group is not well under-
stood at all (it is considered an anabelian ob-
ject). What we do understand well are abelian



Galois groups. For a number field K we de-
note by K2P the maximal abelian extension of
K. This is the maximal extension which is Ga-
lois (i.e., any irreducible polynomial which has
a root in K2P has all its roots in it), and such
that the Galois group of K3b over K is abelian.
For example, the theorem of Kronecker and
Weber says that Qab is the field generated by
all the numbers exp(2X%), i.e., by all roots of
unity. Unfortunately,

EXAMPLE. The abelianized Galois groups of
Q(v/—2) and Q(+/—3) are isomorphic.



THEOREM. [Cornelissen and Marcolli, to ap-
pear] Let £ and F' be number fields. Then, E
and F' are isomorphic if and only if there exists
an isomorphism of topological groups

P GaEb — G%b

such that for every character x of G%b we have
Lpy = LE 4oy, Where L, denotes the L-function
associated with o .

Cornelissen and Marcolli make essential use of
the work of Davidson and Katsoulis on mul-
tivariable dynamics. At the epicenter of this
interaction between number theory and non-
selfadjoint operator algebras lies the concept
of piecewise conjugacy and the fact that piece-
Wwise conjugacy is an invariant for isomorphisms
between certain operator algebras associated
with multivariable dynamical systems.



(X,o0) a topological dynamical system, i.e.,

e X locally compact Hausdorff space

e 0. X — X proper continuous map.

Similarly

(A,a) a C*-dynamical system, i.e.,

e A is a C*-algebra

e 0. A— Anon-degenerate x-endomorphism.



Multivariably...

(X, o) is a multivariable dynamical system:

X locally compact Hausdorff

o= (01,0o,...,0n), Whereog; : X —- X, 1 <<
n, are continuous (proper) maps.

and a similar definition for a multivariable C*-
dynamical system (A, o).



We want an operator algebra A that encodes
(X,0):

A contains Co(X) and Sq,...,Sy satisfying co-
variance relations:

fS; = Si(fooy)
for 1 <i<mnand f € Cpy(X)

IF{{' is the free semigroup on n letters.
For w € IFﬂ{ say w = 1p...11, Write Sy =
Si Si

PR 1

The covariance algebra is

Ag = { Z Swiw : fw € Co(X)}
finite
This is an algebra since:

(Sv)(fSwg) = Svw(f oow)g

where oy = oy, 0---00j;.



We need a norm condition in order to complete
Ap.
Given the choices:

(1) Contractive: ||S;|| <1 forl1<i<n

(2) Row Contractive: H [Sl So ... Sn} H < 1.

we get:

Completing Ag using (1) yields the semicrossed
product Cp(X) X .

Completing Ag using (2) yields the tensor al-
gebra T4 (X, 0).



Piecewise conjugate multisystems

Two multivariable dynamical systems (X, o) and
(Y, 7) are said to be conjugate if there exists
a homeomorphism ~ of X onto Y and a per-
mutation a € Sy so that 7, = yo,;yy+ for
1 <1< n.

(i

DEFINITION. We say that two multivariable
dynamical systems (X,o0) and (Y, 1) are piece-
wise conjugate if there is a homeomorphism ~
of X onto Y and an open cover {Uy : a € Sy}
of X so that for each a € Sy,

-1
VTV e = Ta(i) e

The difference in the two concepts of conju-
gacy lies on the fact that the permutations
depend on the particular open set. As we shall
see, a single permutation generally will not suf-
fice.



PROPOSITION. Let (X,0) and (Y, 1) be piece-
wise conjugate multivariable dynamical systems.
Assume that X is connected and that

E:={zr e X :oi(x)=0;(x),for some i# j}

has empty interior. Then (X,o0) and (Y, 7) are
conjugate.

For n = 2, we can be more definitive.

PROPOSITION. Let X be connected and let
o = (01,05); and let E as above. Then piece-
Wwise conjugacy coincides with conjugacy if and
only if X\F is connected.




The multivariable classification problem.

THEOREM. Let (X, o) and (Y, 7) be two mul-
tivariable dynamical systems. If 74 (X,0) and
T4 (Y, 1) or Co(X) %o B and Co(Y) %+ F¥ are
iIsomorphic as algebras, then the dynamical sys-
tems (X, o) and (Y, 7) are piecewise conjugate.



For the tensor algebras, sufficiency holds in the
following cases:

(i) X has covering dimension 0 or 1

(ii) o consists of no more than 3 maps. (n <
3.)



For instance:

THEOREM. Suppose that X is a compact sub-
set of R. Then for two multivariable dynami-
cal systems (X,0) and (Y, 1), the following are
equivalent:

1. (X,0) and (Y, 1) are piecewise topologically
conjugate.

2. T4 (X,0) and TL(Y,7) are isomorphic.

3. T4 (X,0) and T4 (Y, 1) are completely iso-
metrically isomorphic.



The analysis of the n = 3 case is the most
demanding and required non-trivial topologi-
cal information about the Lie group SU(3).
The conjectured converse reduces to a ques-
tion about the unitary group U(n).



CONJECTURE. Let I, be the n!-simplex with
vertices indexed by S,. Then there should be a
continuous function u of My, into U(n) so that:

1. each vertex is taken to the corresponding
permutation matrix,

2. for every pair of partitions (A, B) of the
form

{1,...,n} = A1U...UAy, = B1U...UBp,
where |As| = |Bs|, 1 <s<m, let

P(A,B) ={ae Sy :a(As) = Bs,1 <s<m}.

It © = ) ,epa,B)Taa, then the non-zero
matrix coefficients of u;;(z) are supported
on Ui, Bs x As. We call this the block
decomposition condition.

We have established this conjecture for n = 2
and 3 and Chris Ramsey the cases n = 4,5.



With Ken Davidson we considered only classi-
cal dynamical systems (dynamical systems over
commutative C*-algebras) and our notion of
piecewise conjugacy applies exclusively to such
systems. Motivated by the interaction between
number theory and non-selfadjoint operator al-
gebras, one wonders whether a useful analogue
of piecewise conjugacy can be developed for
multivariable systems over arbitrary C*-algebras.
The goal here is to obtain a natural notion of
piecewise conjugacy that generalizes that of
Davidson and Katsoulis from the commutative
case while remaining an invariant for isomor-
phisms between non-selfadjoint operator alge-
bras associated with such systems.



DEFINITION. Let A be a unital C*-algebra
and let P(A) be its pure state space equipped
with the w*-topology. The Fell spectrum A of
A is the space of unitary equivalence classes
of non-zero irreducible representations of A.
(The usual unitary equivalence of representa-
tions will be denoted as ~.) The GNS con-
struction provides a surjection P(A) — A and
A is given the quotient topology.

Let A be a unital C*-algebra A and
a = (a1,an,...,an) be a multivariable system
consisting of unital x-epimorphisms. Any such
system (A, «) induces a multivariable dynami-
cal system (A, &) over its Fell spectrum A.

DEFINITION. Two multivariable systems (A, «)
and (B, ¢&) are said to be piecewise conjugate
on their Fell spectra if the induced systems
(A,a&) and (B,¢€) are piecewise conjugate, in
the sense of the definition above.



We have the following result with Kakariadis.

THEOREM. Let (A, @) and (B, €) be multivari-
able dynamical systems consisting of
x-epimorphisms. Assume that either 7} (A, «)
and T4.(B,€) or A xaIE‘,,Ta and B xgFyn, are iso-
metrically isomorphic. Then the multivariable
systems (A,a) and (B, €) are piecewise conju-
gate over their Fell spectra.



PROBLEM. Is there an analogous result for
the Jacobson spectrum?



In particular this implies that when the asso-
Ciated operator algebras are isomorphic then
both (A,«) and (B, &) have the same number
of x-epimorphisms. (We call this property in-
variance of the dimension). In the commu-
tative case, the invariance of the dimension
holds for systems consisting of arbitrary endo-
morphisms. Is it true here?

THEOREM. There exist multivariable systems
(A,aq1,ap) and (B,éq,ép,e3) consisting of x-
monomorphisms for which T3 (A, a1,ap) and
T4+ (B, €1, €ep,€3) are isometrically isomorphic.



PROBLEM. [Invariance of dimension for semi-
crossed products] Let (A, «) and (B, €) be mul-
tivariable dynamical systems consisting of x-
endomorphisms. Prove or disprove: if A xalﬁ‘ﬂ,,'a
and B X3 ]Fnﬁ are isometrically isomorphic then

No — Ng.



THEOREM. Let (A,«) and (B, &) be two au-
tomorphic multivariable C*-dynamical systems
and assume that A is primitive. Then the fol-
lowing are equivalent:

1. A xalﬁ‘ﬁa and B ><5IF7}"€ are isometrically iso-
morphic.

2. TT(A, ) and TT(B,€) are isometrically iso-
morphic.

3. (A,«) and (B, ¢€) are outer conjugate.



DEFINITION. We say that two multivariable
C*-dynamical systems (A, «) and (B, €) are outer
conjugate if they have the same dimension and
there are x-isomorphism ~ : A — B, unitary op-
erators U; € B and m € Sy, so that

vty (b) = Ufe, (i (DU
for all b€ B and «.



Assume now that (A, «) and (B, &) are two mul-
tivariable dynamical systems such that
T+(A,a) and T1T(B,&) (or AxqF; and B x5
IF;i'g) are isometrically isomorphic via a mapping
a. Since « is isometric, it follows that a4 is a
x-monomorphism that maps A onto B (This is
the only point where we use that « is isomet-
ric.) We will be denoting a|4 by a as well.



Let S;, i =1,...,nq, (resp. T;, i1 =1,2,...,nz)
be the generators in T1T(A4,«) (resp. TT(B,¢))
and let b;; be the T;-Fourier coefficient of a(s;),
l.e.,

a(S;) = bo; + T1b1j + Tobo; + - - + Tpby; + Y,

where Y involves Fourier terms of order 2 or
higher.

Since a is a homomorphism,

a(a)a(S;) = alaS;) = a(S;jaj(a)) = a(S;)aa;(a),

for all a € A. Hence, é’za(a)bw = bijozozj(a),
a€ A, and so

&i(b)bi; = byjaca” 1 (b) = b;;a,(b),
for all b € B.



From the intertwining equation

€;(b)b;; = b;;a(b),b € B (*)

we obtain.

e Since A is primitive, b; ; is either zero or
invertible!

o If b,&'j #= 0 then ¢; ~ &j'

Therefore each equivalence class {€1,€é5,...,én}
iS equivalent to exactly one class {a1, ap, ..., am}.

Need to show that m = n. Bwoc let m < n.



Start with an " arbitrary” n-tuple (y1,v2,...,yn).



From the equation

Tiyr + Toyz + -+ + Toyn = lim o),

where xz. are non-commutative polynomials in
S1,S59,...,59n and remembering that

a(S;) = boj + T1b1; + Toboj + -+ + Tnby; +Y,

we obtain



y1 = limbyyag 4 biowg + - + bipal,

yo = limboyag 4 bopag + - -+ + bopzy,

yn = liMbp127 + bpoa? 4 -+ 4 bumal".

Perform Gaussian elimination to reduce this
system to

72 = limbooa? 4 bozay + - -+ + bopal,

73 = limbaozg + b3za? + -+ + byl

in = lim bpox? + by3ay 4 - - 4 bamal,



We continue this short of “Gaussian elimina-
tion” and we arrive at a system that contains
one column and at least two non-trivial rows
of the form

w1 = |i£ﬂ dlxgn
wo = |i£ﬂ de?en,

where the data (wi,w»o) is arbitrary. There-
fore dq1,d> are non-zero, hence invertible. By
letting w1 = 1 we obtain that limez]* = dl_l.
T herefore, if we let wr, = 0, then we get that
0 = dody !, which is a contradiction.



THEOREM. Let (A, «) and (B, €) be multivari-

able dynamical systems consisting of x-epimorphisms
The tensor algebras T3 (A, a) and T4.(B,€) are
isometrically isomorphic if and only if the cor-
respondences ((A,«) and (B,€) are unitarily
equivalent.

In light of the above result we ask

PROBLEM. Let (A, ) and (B, ¢€) be multivari-

able dynamical systems consisting of x--monomorphis
If the tensor algebras T3 (A, a) and T3 (B, €) are
isometrically isomorphic does it follow that the
correspondences ((A, «) and (B, &) are unitarily
equivalent.



Talk 6: Local maps and representation theory

Elias Katsoulis



