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The semicrossed product C0(X)×σ Z+

It was introduced by Arveson (1967), Arveson

and Josephson (1969) and formalized by Pe-

ters (1984).

• X ⊆ C is locally compact Hausdorff space.

• C0(X) are the continuous functions on X

vanishing at infinity.

• σ : X → X a proper continuous map



Given x ∈ X and f ∈ C0(X), we define

πx(f) =


f(x) 0 0 . . . . . .

0 f(σ(x)) 0 . . . . . .

0 0 f(σ(2)(x)) . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .



Sx =


0 0 0 . . . . . .
1 0 0 . . . . . .
0 1 0 . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .



Formally for each x ∈ X, f ∈ C0(X) define

πx(f)ξ = (f(x)ξ0, (f◦σ)(x)ξ1, (f◦σ(2))(x)ξ2, . . . ).

and Sx is the forward shift

Sξ = (0, ξ0, ξ1, ξ2, . . . ).



DEFINITION. The semicrossed product

C0(X)×σ Z+ is defined as the norm closed op-

erator algebra acting on ⊕x∈XHx and gener-

ated by the operators

π(f) ≡ ⊕x∈Xπx(f), f ∈ C0(X), and

Sπ(f), f ∈ C0(X),

where

S ≡ ⊕x∈XSx

.



Note the covariance relation

π(f)S = Sπ(f ◦ σ), f ∈ C0(X)



The classification problem for semicrossed

products.

Classify the semicrossed products C0(X)×σZ+

as algebras.

A sufficient condition: Assume that σ1 and σ2

are topologicaly conjugate, i.e., there exists a

homeomorphism

γ : X1 → X2

so that

γ ◦ σ1 = σ2 ◦ γ.

Then the semicrossed products C0(X1)×σ1 Z+

and C0(X2)×σ2 Z+ are isomorphic as algebras.



Necessity:

• Arveson and Josephson (1969). Xi com-

pact, σi no fixed points, plus some extra

conditions

• Peters (1985). Xi compact, σi no fixed

points.

• Hadwin and Hoover (1988). Xi compact,

the set

{x ∈ Xi | σ1(x) 6= x, σ
(2)
1 (x) = σ1(x)}

has empty interior.

• Power (1992). Xi locally compact, σi home-

omorphisms



THEOREM 1. (Davidson and Katsoulis, 2008)

Let Xi be a locally compact Hausdorff space

and let σi a proper continuous map on Xi,

for i = 1,2. Then the dynamical systems

(X1, σ1) and (X2, σ2) are conjugate if and only

if the semicrossed products C0(X1)×σ1Z+ and

C0(X2)×σ2 Z+ are isomorphic as algebras.



The tensor algebra T +
G

• G = (G0,G1, r, s) a countable directed graph

• G∞ the (finite) path space of G

The path space consists of all vertices

v ∈ G0

and finite paths

p = ekek−1 . . . e1

where the ei ∈ G1 are edges satisfying s(ei) =

r(ei−1), i = 1,2, . . . , k, k ∈ N.



Let {ξp}p∈G∞ denote the usual orthonormal ba-

sis of the Fock space HG ≡ l2(G∞), where ξp

is the characteristic function of {p}. The left

creation operator Lq, q ∈ G∞, is defined by

Lqξp =

{
ξqp if s(q) = r(p)
0 otherwise.

DEFINITION. The norm closed algebra gen-

erated by {Lp | p ∈ G∞}, denoted as T +
G , is

the tensor tensor algebra of the graph G. Its

weak closure, denoted as LG, is the free semi-

groupoid algebra of G.



THEOREM 2. (Katsoulis and Kribs, 2004)

Let G1, G2 be directed graphs with no sinks.

Then the tensor algebras T +
G1

and T +
G2

are iso-

morphic as algebras if and only if G1 are G2 are

isomorphic as graphs.



DEFINITION. Let G be a finite undirected graph

with no loop edges or multiple edges between

any two of its vertices. A vertex-deleted subgraph

of G is a subgraph formed by deleting exactly

one vertex from G and its incidence edges.

DEFINITION For a graph G, the deck of G,

denoted as D(G), is the multiset of all vertex-

deleted subgraphs of G. Each graph in D(G) is

called a card. Two graphs that have the same

deck are said to be hypomorphic or reconstruc-

tions of each other. With these definitions at

hand, the famous

CONJECTURE (Kelly and Ulam) Any two hy-

pomorphic graphs on at least three vertices

have to be isomorphic.



A finite directed graph G will belong to the sub-

class G0 of all directed graphs if G comes from

a finite undirected graph by replacing each edge

with two directed edges with opposite direc-

tions. The concepts of a card, a deck and

hypomorphism transfer to graphs in G and the

Reconstruction Conjecture can be stated as

Reconstruction Conjecture (Kelly and Ulam).

Any two hypomorphic graphs in G0 on at least

three vertices are necessarily isomorphic.



DEFINITION. If G ∈ G, then a vertex-deleted

subalgebra of T +
G is formed by deleting from

G exactly one vertex and its incidence edges

and then taking the subalgebra of T +
G formed

by the partial isometries and projections corre-

sponding to the remaining edges and vertices

respectively.

DEFINITION For a tensor algebra T +
G , the

deck of T +
G , denoted as D(T +

G ), is the mul-

tiset of all vertex-deleted subalgebras of T +
G .

Each graph in D(T +
G ) is called a card. Two

tensor algebras that have the same deck are

said to be hypomorphic or reconstructions of

each other.



In an ongoing collaboration with Gunther Cor-

nelissen at Utreht we have the following

THEOREM 3. If G1,G2 ∈ G0, then the graphs

G1 and G2 are hypomorphic if and only T +
G1

and

T +
G2

are hypomorphic as operator algebras.

Therefore the reconstruction conjecture admits

the following equivalent form

COROLLARY 4. The reconstruction conjec-

ture in graph theory is equivalent to the as-

sertion that hypomorphic tensor algebras of

graphs in G0 are necessarily isomorphic as al-

gebras.



The formal definition of the semicrossed

product C0(X)×σ Z+

(A, σ) a C*-dynamical system, i.e.,

• A is a C*-algebra

• σ : A → A non-degenerate ∗-endomorphism.

DEFINITION. An isometric covariant

representation (π, V ) of the C∗-dynamical sys-

tem (A, σ) consists of a ∗-representation π of A
on a Hilbert space H and an isometry V ∈ B(H)

so that

π(A)V = V π(σ(A)), ∀A ∈ A.

Similar definitions for unitary or contractive co-

variant representations.



DEFINITION Let (A, σ) be a C∗-dynamical sys-

tem. The algebra A ×σ Z+ is the universal

operator algebra associated with ”all” covari-

ant representations of (A, σ), i.e., the universal

algebra generated by a copy of A and an isom-

etry V satisfying the covariant relations.

Note that each covariant representation (π, V )

provides a contractive representation π × V of

A×σ Z+.

Similar definition for the universal operator al-

gebra A ×unσ Z+ (resp. A ×conσ Z+) associated

with ”all” unitary (resp. contractive) covariant

representations.



THEOREM 5. (Peters 1985) The representa-

tion ⊕x∈X πx×Sx of C0(X)×σ Z+ is isometric.

THEOREM 6. (Peters) The algebras A ×unσ
Z+, A ×σ Z+ (and A ×unσ Z+ in the injective

case) are isometrically isomorphic.

Note that the last Theorem is not valid for

C∗-algebraic crossed products.



The formal definition of the

tensor algebra T +
G

G = (G0,G1, r, s), a countable directed graph

DEFINITION. A family of partial isometries

{Le}e∈G(1) and projections {Lp}p∈G(0) is said to

obey the Cuntz-Krieger-Toeplitz relations as-

sociated with G if and only if they satisfy

(†)



(1) LpLp = 0 ∀ p, q ∈ G(0), p 6= q

(2) L∗eLf = 0 ∀ e, f ∈ G(1), e 6= f

(3) L∗eLe = Ls(e) ∀ e ∈ G(1)

(4) LeL∗e ≤ Lr(e) ∀ e ∈ G(1)

(5)
∑
r(e)=p LeL

∗
e ≤ Lp ∀ p ∈ G(0)



DEFINITION. The tensor algebra T +
G of a graph

G is the universal operator algebra for all fami-

lies of partial isometries {Le}e∈G(1) and projec-

tions {Lp}p∈G(0) which obey the Cuntz-Krieger-

Toeplitz relations associated with G.

THEOREM 7 (Fowler, Muhly and Reaburn,

2001). The representation of T +
G on the Fock

space HG is isometric.



A is a C∗-algebra.

An inner-product right A-module is a linear

space X which is a right A-module together

with a map

(·, ·) 7→ 〈·, ·〉 : X ×X → A

such that

〈ξ, λy + η〉 = λ 〈x, y〉+ 〈x, η〉
〈ξ, ηa〉 = 〈ξ, η〉 a
〈η, ξ〉 = 〈ξ, η〉∗

〈ξ, ξ〉 ≥ 0; if 〈ξ, ξ〉 = 0 then ξ = 0.

For ξ ∈ X we write ‖ξ‖X := ‖〈ξ, ξ〉‖A and one

can deduce that ‖·‖X is actually a norm. X

equipped with that norm will be called Hilbert

A-module if it is complete and will be denoted

as XA.



For a Hilbert A-module X we define the set

L(X) of the adjointable maps that consists of

all maps s : X → X for which there is a map

s∗ : X → X such that

〈sξ, η〉 = 〈ξ, s∗η〉 , (ξ, η ∈ X).

DEFINITION. A C∗-correspondence (X,A,ϕ)

consists of a Hilbert A-module (X,A) and a

left action

ϕ : A −→ L(X).

If ϕ is injective then the C∗-correspondence

(X,A,ϕ) is said to be injective.



A (Toeplitz) representation (π, t) of X into a

C∗-algebra B, is a pair of a ∗-homomorphism

π : A → B and a linear map t : X → B, such

that

1. π(a)t(ξ) = t(ϕX(a)(ξ)),

2. t(ξ)∗t(η) = π(〈ξ, η〉X),

for a ∈ A and ξ, η ∈ X. An easy application of

the C∗-identity shows that t(ξ)π(a) = t(ξa) is

also valid. A representation (π, t) is said to be

injective iff π is injective; in that case t is an

isometry.



DEFINITION. The tensor algebra T +
X of a C∗-

correspondence (X,A,ϕ) is the norm-closed al-

gebra generated by all elements of the form

π∞(a), t∞(ξ), a ∈ A, ξ ∈ X, where (π∞, t∞) de-

notes the universal Toeplitz representation of

(X,A,ϕ).
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A is a C∗-algebra.

An inner-product right A-module is a linear

space X which is a right A-module together

with a map

(·, ·) 7→ 〈·, ·〉 : X ×X → A

such that

〈ξ, λy + η〉 = λ 〈x, y〉+ 〈x, η〉
〈ξ, ηa〉 = 〈ξ, η〉 a
〈η, ξ〉 = 〈ξ, η〉∗

〈ξ, ξ〉 ≥ 0; if 〈ξ, ξ〉 = 0 then ξ = 0.

For ξ ∈ X we write ‖ξ‖2X := ‖〈ξ, ξ〉‖A and one

can deduce that ‖·‖X is actually a norm. X

equipped with that norm will be called Hilbert

A-module if it is complete and will be denoted

as XA.



For a Hilbert A-module X we define the set

L(X) of the adjointable maps that consists of

all maps s : X → X for which there is a map

s∗ : X → X such that

〈sξ, η〉 = 〈ξ, s∗η〉 , (ξ, η ∈ X).

The compact operators K(X) ⊆ L(X) is the

closed subalgebra of L(X) generated by the

”rank one” operators

θξ,η(z) := ξ 〈η, z〉 , ξ, ηz ∈ X



DEFINITION. A C∗-correspondence (X,A,ϕ)

consists of a Hilbert A-module (X,A) and a

left action

ϕ : A −→ L(X).

If ϕ is injective then the C∗-correspondence

(X,A,ϕ) is said to be injective.



Representations of C∗-correspondences

A (Toeplitz) representation (π, t) of X into a
C∗-algebra B, is a pair of a ∗-homomorphism
π : A → B and a linear map t : X → B, such
that

1. π(a)t(ξ) = t(ϕX(a)(ξ)),

2. t(ξ)∗t(η) = π(〈ξ, η〉X),

for a ∈ A and ξ, η ∈ X. An easy application of
the C∗-identity shows that

3. t(ξ)π(a) = t(ξa)

is also valid. A representation (π, t) is said to
be injective iff π is injective; in that case t is
an isometry.



DEFINITION. The Toeplitz-Cuntz-Pimsner C∗-
algebra TX of a C∗-correspondence (X,A,ϕ)

is the C∗-algebra generated by all elements of

the form π∞(a), t∞(ξ), a ∈ A, ξ ∈ X , where

(π∞, t∞) denotes the universal Toeplitz repre-

sentation of (X,A,ϕ).

DEFINITION. The tensor algebra T +
X is the

norm-closed subalgebra of TX generated by all

elements of the form π∞(a), t∞(ξ), a ∈ A, ξ ∈
X , where (π∞, t∞) denotes the universal Toeplitz

representation of (X,A,ϕ).



THEOREM 1. Let (π, t) be a representation

of a C∗-correspondence (X,A,ϕ). Then there

exists a map

ψt : K(X) −→ C∗(π, t)

so that ψt(θξ,η) = t(ξ)t(η)∗, for all ξ, η ∈ X.

DEFINITION. A representation (π, t) of a C∗-
correspondence (X,A,ϕ) is said to be a

covariant representation iff

π(a) = ψt(ϕ(a)), for all a ∈ JX ,

where JX = ϕ−1(K(X)) ∩ (kerϕ)⊥.



DEFINITION. The Cuntz-Pimsner C∗-algebra

OX of a C∗-correspondence (X,A,ϕ) is the C∗-
algebra generated by all elements of the form

π∞(a), t∞(ξ), a ∈ A, ξ ∈ X, where (π∞, t∞)

denotes the universal covariant representation

of (X,A,ϕ).



In order to show that Toeplitz representations
do exist, we introduce the interior tensor prod-
uct of C∗-correspondences.

The interior or stabilized tensor product, de-
noted by X ⊗X or simply by X⊗2, is the quo-
tient of the vector space tensor product X⊗alg
X by the subspace generated by the elements
of the form

ξa⊗ η − ξ ⊗ ϕ(a)η, ξ, η ∈ X, a ∈ A.
It becomes a pre-Hilbert B-module when equipped
with

(ξ ⊗ η)a : = ξ ⊗ (ηa),

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉 : = 〈y1, ϕ(〈ξ1, ξ2〉)η2〉

For s ∈ L(X) we define s⊗ idX ∈ L(X ⊗X) as
the mapping

ξ ⊗ y 7→ s(ξ)⊗ y.
Hence X⊗Y becomes a C∗-correspondence by
defining ϕX⊗X(a) := ϕX(a)⊗ idX.



The Fock space FX over the correspondence

X is the interior direct sum of the X⊗n with the

structure of a direct sum of C∗-correspondences

over A,

FX = A⊕X ⊕X⊗2 ⊕ . . . .

Given ξ ∈ X, the (left) creation operator t∞(ξ) ∈
L(FX) is defined as

t∞(ξ)(a, ζ1, ζ2, . . . ) = (0, ξa, ξ ⊗ ζ1, ξ ⊗ ζ2, . . . ).

For any a ∈ A, we define

π∞(a) = La ⊕ ϕ(a)⊕ (⊕∞n=1ϕ(a)⊗ idn)

.

It is easy to verify that (π∞, t∞) is a represen-

tation of X which is called the Fock represen-

tation of X.



The gauge-invariance uniqueness Theorems

DEFINITION. A representation (π, t) of X is

said to admit a gauge action if for each z ∈ T
there exists a ∗-homomorphism

βz : C∗(π, t)→ C∗(π, t)

such that βz(π(a)) = π(a) and βz(t(ξ)) = zt(ξ),

for all a ∈ A and ξ ∈ X.

THEOREM 2. (Katsura 2004). Let (X,A,ϕ)

be a C∗-correspondence and (π, t) a covariant

representation that admits a gauge action and

is faithful on A. Then the integrated represen-

tation π × t is faithful on OX.



THEOREM 3. (Katsura 2004) Let (X,A,ϕ)

be a C∗-correspondence and (π, t) a represen-

tation that admits a gauge action and satisfies

I ′(π, t) ≡ {a ∈ A | π(a) ∈ ψt(K(X))} = 0

Then the integrated representation π×t is faith-

ful on TX.
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Loosely speaking, we say that an injective C∗-
correspondence (Y,B, ψ) arises from (X,A,ϕ)

by adding a tail iff

• X ⊆ Y and A ⊆ B, with

ψ(a)ξ = ϕ(a)ξ, a ∈ A, ξ ∈ X

• a covariant representation of (Y,B, ψ) re-

stricts to a covariant representation of (X,A,ϕ)

• OX is a full corner of OY

The origins are in the theory of graph C∗-
algebras



Let G be a connected, directed graph with a

distinguished sink p0 ∈ G0 and no sources. We

assume that G is contractible at p0. So there

exists a unique infinite path w0 = e1e2e3 . . .

ending at p0, i.e. r(w0) = p0. Let pn ≡ s(en),

n ≥ 1.



Let (Ap)p∈G0 be a family of C∗-algebras param-

eterized by the vertices of G so that Ap0 = A.

For each e ∈ G1, we now consider a full, right

Hilbert As(e) - module Xe and a ∗-homomorphism

ϕe : Ar(e) −→ L(Xe)

satisfying the following requirements.

• If e 6= e1, ϕe is injective and maps onto

K(Xe).

• K(Xe1) ⊆ ϕe1(A) and

JX ⊆ kerϕe1 ⊆ (kerϕX)⊥ . (1)

• The maps ϕX and ϕe1 satisfy the linking

condition

ϕ−1
e1

(K(Xe1)) ⊆ ϕ−1
X (K(X)) (2)



Let

T0 = c0( (Ap)p∈G0
−

),

where G0
− ≡ G0\{p0}.

Let T1 be the completion of c00((Xe)e∈G1) with

respect to the inner product

〈u, v〉 (p) =
∑

s(e)=p

〈ue, ve〉 , p ∈ G0
−.

Equip now T1 with a right T0 - action, so that

(ux)e = uexs(e), e ∈ G1, x ∈ T0.

The pair (T0, T1) is the tail for (X,A,ϕ).



To the C∗-correspondence (X,A,ϕ) and the

data

τ ≡
(
G, (Xe)e∈G1, (Ap)p∈G0, (ϕe)e∈G1

)
,

we now associate

Aτ ≡ A⊕ T0

Xτ ≡ X ⊕ T1
(3)

and we view Xτ as a Aτ-Hilbert module.

We define a left Aτ-action ϕτ : Aτ → L(Xτ) on

Xτ by setting

ϕτ(a, x )(ξ, u) = (ϕX(a)ξ, v),

where

ve =

{
ϕe1(a)(ue1), if e = e1
ϕe(xr(e))ue, otherwise

for a ∈ A, ξ ∈ X, x ∈ T0 and u ∈ T1.



THEOREM 1. (Kakariadis and Katsoulis, 2012).

Let (X,A,ϕ) be a non-injective C*- correspon-

dence and let Xτ be the graph C∗-correspondence

over Aτ defined above. Then Xτ is an injective

C∗-correspondence and the Cuntz-Pimsner al-

gebra OX is a full corner of OXτ .

Furthermore, if (π, t) is a covariant representa-

tion of Xτ , then its restriction on X produces

a covariant representation of (X,A,ϕ) .



The Muhly-Tomforde tail

Given a (non-injective) correspondence (X,A,ϕX),
Muhly and Tomforde construct the tail that re-
sults from the previous construction, with re-
spect to data

τ =
(
G, (Xe)e∈G(1), (Ap)p∈G(0), (ϕe)e∈G(1)

)
defined as follows.

The graph G is illustrated in the figure below.

•p0 •p1e1
oo •p2e2

oo •p3e3
oo •oo . . .oo

Ap = Xe = kerϕX, for all p ∈ G(0)
− and e ∈ G(1).

Finally,

ϕe(a)ue = aue, e ∈ G(1), ue ∈ Xe, a ∈ Ar(e)



Our tail for (A,A, α)

Given a (non-injective) correspondence (X,A,ϕX),
we construct the tail that results from the pre-
vious construction, with respect to data

τ =
(
G, (Xe)e∈G(1), (Ap)p∈G(0), (ϕe)e∈G(1)

)
defined as follows.

Let θ : A→M(kerϕX).

The graph G is once again

•p0 •p1e1
oo •p2e2

oo •p3e3
oo •oo . . .oo

but Ap = Xe = θ(A), for all p ∈ G(0)
− and e ∈

G(1). Finally,

ϕe(a)ue = θ(a)ue, e ∈ G(1), ue ∈ Xe, a ∈ Ar(e)



A first application of adding tails.

THEOREM 2. Let (A,α) a C∗-dynamical sys-

tem and Xα the pertinent correspondence. Then

the Cuntz-Pimsner C∗-algebra OXα is strongly

Morita equivalent to a crossed product C∗-
algebra.

A more interesting application for the corre-

spondence coming from a multivariable

C∗-dynamical system (A,α1, α2, . . . , αn)



Another application.

PROPOSITION 3 (Katsoulis and Kribs, 2006).

If (X,A,ϕ) is an injective correspondence, then

alg(π∞, t∞)/K(FX) ' alg(π∞, t∞)

COROLLARY 4. If (X,A,ϕ) is an injective

correspondence, then T +
X embedds isometri-

cally and canonically in OX.



By using tails

THEOREM 5 (Katsoulis and Kribs 2006). If

(X,A,ϕ) is any C∗-correspondence, then T +
X

embedds isometrically and canonically in OX.
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• all operator spaces S satisfy 1 ∈ S ⊆ C∗(S).

• all completely contractive maps between
operator spaces preserve the unit.

THEOREM 1. (Arveson 1969). A (unital)
completely contractive map ϕ : S → B(H) ad-
mits a completely contractive (unital) exten-
sion

ϕ̃ : C∗(S) −→ B(H).

DEFINITION. A completely contractive (cc)
map ϕ : S → B(H) is said to have the
unique extension property iff any completely con-
tractive extension

ϕ̃ : C∗(S) −→ B(H)

is multiplicative.



DEFINITION. If ϕi : S → B(Hi), i = 1,2, are

cc maps then ϕ2 is said to be a dilation of ϕ1

(denoted as ϕ2 ≥ ϕ1) if H2 ⊇ H1 and

cH1
(ϕ2(s)) ≡ PH1

ϕ2(s) |H1
= ϕ1(s), ∀s ∈ S.

DEFINITION. A completely contractive (cc)

map ϕ : S → B(H) is said to be maximal if it

has no non-trivial dilations: ϕ′ ≥ ϕ =⇒ ϕ′ =

ϕ⊕ ψ for some cc map ψ.



THEOREM 2. (Muhly and Solel 1998). A cc

map ϕ : S → B(H) is maximal iff it has the

unique extension property.



THEOREM 3.(Dritschel and McCullough 2005).

Every cc map ϕ : S → B(H) can be dilated to

a maximal cc map ϕ′ : S → B(H′)



PROPOSITION 4. (Arveson 1969). Let S, T
be operator spaces and

α : S −→ T

be a completely isometric (unital) map. If

ϕ : T → B(H)

is maximal then

ϕ ◦ α : S → B(H)

is also maximal.

COROLLARY 5. If A,B are unital operator

algebras and

α : A −→ B

is a complete isometry, then α is multiplicative.



THEOREM 6.(Hamana 1979). Let ϕ : S →
B(H) be a completely isometric maximal map.

If J ⊆ C∗(S) is an ideal so that the quotient

map

q : C∗(S) −→ C∗(S)/J

is faithful on S, then

J ⊆ ker ϕ̃

where ϕ̃ is the unique cc extension of ϕ to

C∗(S). (The ideal ker ϕ̃ is said to be the Shilov ideal

of S ⊆ C∗(S).)



THEOREM 7. (Hamana, 1979). Let S be a

unital operator space. Then there exists a C∗-
algebra C∗env(S) (= the C∗-envelope of S) and

a complete unital isometry

θ : S −→ C∗env(S)

so that for any other completely isometric uni-

tal embedding

ϕ : S −→ C = C∗(ϕ(S))

we have ∗:homomorphism π : C → C∗env(S) so

that π ◦ ϕ = θ.



The C∗-envelope of an arbitrary
operator algebra

If A ⊆ B(H) is a non-degenerately acting oper-
ator algebra with IH /∈ A, then A1 will denote
its unitization.

THEOREM 8. (Meyer, 2001). Let ϕ : A →
B be a completely contractive homomorphism
between operator algebras. Then its unitiza-
tion ϕ1 : A1 → B1 is also completely contrac-
tive.

This allows us to consider the category of op-
erator algebras with morphisms the completely
contractive homomorphisms.

In that category

COROLLARY 9. Every cc homomorphism ϕ :
A → B(H) of an operator algebra A can be
dilated to a maximal cc homomorphism. ϕ′ :
S → B(H′)



The C∗-envelope of a (non degenerately act-

ing) operator algebra A is the C∗-algebra gen-

erated by A inside C∗env(A1).



THEOREM 10. (Katsoulis and Kribs, 2006).

If (X,A,ϕ)is a C∗-correspondence, then

C∗env(T +
X ) ' OX



THEOREM 11. (Davidson and Katsoulis) Let

A,B ∈ B(H) contractions satisfying

AB = Bϕ(A)

for some finte Blashke product ( e.g., AB =

BA2). Then there exist unitary operators V,W ∈
B(K), with K ⊃ H, so that

(i) VW = Wϕ(V ), and

(ii) PHW
mV n |H= AmBn, m, n ∈ Z.
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Gunther Cornelissen, Matilde Marcolli, Quan-

tum Statistical. Mechanics, L-series and An-

abelian Geometry, arXiv:1009.0736.

A complex number a is called algebraic if there

exists a nonzero polynomial p(X) ∈ Q[X] such

that p(a) = 0. The polynomial is unique if we

require that it be irreducible and monic. We

say that a is an algebraic integer if the unique

irreducible, monic polynomial which it satisfies

has integer coefficients. We know that the set

Q of all algebraic numbers is a field, and the

algebraic integers form a ring. For an algebraic

number a, the set K of all f(a), with f(X) ∈
Q[X] is a field, called an algebraic number field.

If all the roots of the polynomial p(X) are in

K, then K is called Galois over Q.

QUESTION. Which invariants of a number field

characterize it up to isomorphism?



The absolute Galois group of a number field

K is the group GK = Gal(Q/K) consisting of

all automorphisms σ of Q such that σ(a) = a

for all a ∈ K. Let f(X) ∈ K[X] be irreducible,

and let Zf be the set of its roots. The group

of permutations of Zf is a finite group, which

is given the discrete topology. Then GK acts

on Zf . We put a topology on GK, so that the

homomorphism of GK to the group of permu-

tations of Zf is continuous for every such f(X).

Then GK is a topological group; it is compact

and totally disconnected.

THEOREM. [Uchida, 1976] Number fields E

and F are isomorphic as fields if and only if GE
and GF are isomorphic as topological groups.

The absolute Galois group is not well under-

stood at all (it is considered an anabelian ob-

ject). What we do understand well are abelian



Galois groups. For a number field K we de-

note by Kab the maximal abelian extension of

K. This is the maximal extension which is Ga-

lois (i.e., any irreducible polynomial which has

a root in Kab has all its roots in it), and such

that the Galois group of Kab over K is abelian.

For example, the theorem of Kronecker and

Weber says that Qab is the field generated by

all the numbers exp(2πi
n ), i.e., by all roots of

unity. Unfortunately,

EXAMPLE. The abelianized Galois groups of

Q(
√
−2) and Q(

√
−3) are isomorphic.



THEOREM. [Cornelissen and Marcolli, to ap-

pear] Let E and F be number fields. Then, E

and F are isomorphic if and only if there exists

an isomorphism of topological groups

ψ : Gab
E → Gab

F

such that for every character χ of Gab
F we have

LF,χ = LE,ψ◦χ, where LF,χ denotes the L-function

associated with ψ .

Cornelissen and Marcolli make essential use of

the work of Davidson and Katsoulis on mul-

tivariable dynamics. At the epicenter of this

interaction between number theory and non-

selfadjoint operator algebras lies the concept

of piecewise conjugacy and the fact that piece-

wise conjugacy is an invariant for isomorphisms

between certain operator algebras associated

with multivariable dynamical systems.



(X,σ) a topological dynamical system, i.e.,

• X locally compact Hausdorff space

• σ : X → X proper continuous map.

Similarly

(A,α) a C*-dynamical system, i.e.,

• A is a C*-algebra

• σ : A→ A non-degenerate ∗-endomorphism.



Multivariably...

(X,σ) is a multivariable dynamical system:

X locally compact Hausdorff

σ = (σ1, σ2, . . . , σn), where σi : X → X, 1 ≤ i ≤
n, are continuous (proper) maps.

and a similar definition for a multivariable C∗-
dynamical system (A,α).



We want an operator algebra A that encodes

(X,σ):

A contains C0(X) and S1, . . . , Sn satisfying co-

variance relations:

fSi = Si(f ◦ σi)

for 1 ≤ i ≤ n and f ∈ C0(X)

F+
n is the free semigroup on n letters.

For w ∈ F+
n , say w = ik . . . i1, write Sw =

Sik . . . Si1.

The covariance algebra is

A0 =
{ ∑

finite

Swfw : fw ∈ C0(X)
}
.

This is an algebra since:

(Sv)(fSwg) = Svw(f ◦ σw)g

where σw = σik ◦ · · · ◦ σi1.



We need a norm condition in order to complete

A0.

Given the choices:

(1) Contractive: ‖Si‖ ≤ 1 for 1 ≤ i ≤ n

(2) Row Contractive:
∥∥∥ [S1 S2 . . . Sn

] ∥∥∥ ≤ 1.

we get:

Completing A0 using (1) yields the semicrossed

product C0(X)×σ F+
n .

Completing A0 using (2) yields the tensor al-

gebra T+(X,σ).



Piecewise conjugate multisystems

Two multivariable dynamical systems (X,σ) and

(Y, τ) are said to be conjugate if there exists

a homeomorphism γ of X onto Y and a per-

mutation α ∈ Sn so that τi = γσα(i)γ
−1 for

1 ≤ i ≤ n.

DEFINITION. We say that two multivariable

dynamical systems (X,σ) and (Y, τ) are piece-

wise conjugate if there is a homeomorphism γ

of X onto Y and an open cover {Uα : α ∈ Sn}
of X so that for each α ∈ Sn,

γ−1τiγ|Uα = σα(i)|Uα.

The difference in the two concepts of conju-

gacy lies on the fact that the permutations

depend on the particular open set. As we shall

see, a single permutation generally will not suf-

fice.



PROPOSITION. Let (X,σ) and (Y, τ) be piece-

wise conjugate multivariable dynamical systems.

Assume that X is connected and that

E := {x ∈ X : σi(x) = σj(x), for some i 6= j}

has empty interior. Then (X,σ) and (Y, τ) are

conjugate.

For n = 2, we can be more definitive.

PROPOSITION. Let X be connected and let

σ = (σ1, σ2); and let E as above. Then piece-

wise conjugacy coincides with conjugacy if and

only if X\E is connected.



The multivariable classification problem.

THEOREM. Let (X,σ) and (Y, τ) be two mul-

tivariable dynamical systems. If T+(X,σ) and

T+(Y, τ) or C0(X)×σ F+
n and C0(Y )×τ F+

n are

isomorphic as algebras, then the dynamical sys-

tems (X,σ) and (Y, τ) are piecewise conjugate.



For the tensor algebras, sufficiency holds in the

following cases:

(i) X has covering dimension 0 or 1

(ii) σ consists of no more than 3 maps. (n ≤
3.)



For instance:

THEOREM. Suppose that X is a compact sub-

set of R. Then for two multivariable dynami-

cal systems (X,σ) and (Y, τ), the following are

equivalent:

1. (X,σ) and (Y, τ) are piecewise topologically

conjugate.

2. T+(X,σ) and T+(Y, τ) are isomorphic.

3. T+(X,σ) and T+(Y, τ) are completely iso-

metrically isomorphic.



The analysis of the n = 3 case is the most

demanding and required non-trivial topologi-

cal information about the Lie group SU(3).

The conjectured converse reduces to a ques-

tion about the unitary group U(n).



CONJECTURE. Let Πn be the n!-simplex with
vertices indexed by Sn. Then there should be a
continuous function u of Πn into U(n) so that:

1. each vertex is taken to the corresponding
permutation matrix,

2. for every pair of partitions (A,B) of the
form

{1, . . . , n} = A1∪̇ . . . ∪̇Am = B1∪̇ . . . ∪̇Bm,

where |As| = |Bs|, 1 ≤ s ≤ m, let

P(A,B) = {α ∈ Sn : α(As) = Bs,1 ≤ s ≤ m}.

If x =
∑
α∈P(A,B) xαα, then the non-zero

matrix coefficients of uij(x) are supported
on

⋃m
s=1Bs × As. We call this the block

decomposition condition.

We have established this conjecture for n = 2
and 3 and Chris Ramsey the cases n = 4,5.



With Ken Davidson we considered only classi-

cal dynamical systems (dynamical systems over

commutative C∗-algebras) and our notion of

piecewise conjugacy applies exclusively to such

systems. Motivated by the interaction between

number theory and non-selfadjoint operator al-

gebras, one wonders whether a useful analogue

of piecewise conjugacy can be developed for

multivariable systems over arbitrary C∗-algebras.

The goal here is to obtain a natural notion of

piecewise conjugacy that generalizes that of

Davidson and Katsoulis from the commutative

case while remaining an invariant for isomor-

phisms between non-selfadjoint operator alge-

bras associated with such systems.



DEFINITION. Let A be a unital C∗-algebra

and let P (A) be its pure state space equipped

with the w∗-topology. The Fell spectrum Â of

A is the space of unitary equivalence classes

of non-zero irreducible representations of A.

(The usual unitary equivalence of representa-

tions will be denoted as ∼.) The GNS con-

struction provides a surjection P (A) → Â and

Â is given the quotient topology.

Let A be a unital C∗-algebra A and

α = (a1, α2, . . . , αn) be a multivariable system

consisting of unital ∗-epimorphisms. Any such

system (A,α) induces a multivariable dynami-

cal system (Â, α̂) over its Fell spectrum Â.

DEFINITION. Two multivariable systems (A,α)

and (B,~e) are said to be piecewise conjugate

on their Fell spectra if the induced systems

(Â, α̂) and (B̂, ~̂e) are piecewise conjugate, in

the sense of the definition above.



We have the following result with Kakariadis.

THEOREM. Let (A,α) and (B,~e) be multivari-

able dynamical systems consisting of

∗-epimorphisms. Assume that either T+(A,α)

and T+(B,~e) or A×α F+
nα and B ×β F

+
nβ are iso-

metrically isomorphic. Then the multivariable

systems (A,α) and (B,~e) are piecewise conju-

gate over their Fell spectra.



PROBLEM. Is there an analogous result for

the Jacobson spectrum?



In particular this implies that when the asso-

ciated operator algebras are isomorphic then

both (A,α) and (B,~e) have the same number

of ∗-epimorphisms. (We call this property in-

variance of the dimension). In the commu-

tative case, the invariance of the dimension

holds for systems consisting of arbitrary endo-

morphisms. Is it true here?

THEOREM. There exist multivariable systems

(A,α1, α2) and (B,~e1, ~e2, ~e3) consisting of ∗-
monomorphisms for which T+(A,α1, α2) and

T+(B,~e1, ~e2, ~e3) are isometrically isomorphic.



PROBLEM. [Invariance of dimension for semi-

crossed products] Let (A,α) and (B,~e) be mul-

tivariable dynamical systems consisting of ∗-
endomorphisms. Prove or disprove: if A×αF+

nα

and B×β F
+
nβ are isometrically isomorphic then

nα = n~e.



THEOREM. Let (A,α) and (B,~e) be two au-

tomorphic multivariable C∗-dynamical systems

and assume that A is primitive. Then the fol-

lowing are equivalent:

1. A×α F+
nα and B×~e F

+
n~e are isometrically iso-

morphic.

2. T +(A,α) and T +(B,~e) are isometrically iso-

morphic.

3. (A,α) and (B,~e) are outer conjugate.



DEFINITION. We say that two multivariable

C∗-dynamical systems (A,α) and (B,~e) are outer

conjugate if they have the same dimension and

there are ∗-isomorphism γ : A→ B, unitary op-

erators Ui ∈ B and π ∈ Sn so that

γ−1αiγ(b) = U∗i ~eπ(i)(b)Ui.

for all b ∈ B and i.



Assume now that (A,α) and (B,~e) are two mul-

tivariable dynamical systems such that

T +(A,α) and T +(B,~e) ( or A×α F+
nα and B×~e

F+
n~e) are isometrically isomorphic via a mapping

α. Since α is isometric, it follows that α|A is a

∗-monomorphism that maps A onto B (This is

the only point where we use that α is isomet-

ric.) We will be denoting α|A by α as well.



Let Si, i = 1, . . . , nα, (resp. Ti, i = 1,2, . . . , n~e )

be the generators in T +(A,α) (resp. T +(B,~e))

and let bij be the Ti-Fourier coefficient of α(sj),

i.e.,

α(Sj) = b0j + T1b1j + T2b2j + · · ·+ Tnbnj + Y,

where Y involves Fourier terms of order 2 or

higher.

Since α is a homomorphism,

α(a)α(Sj) = α(aSj) = α(Sjαj(a)) = α(Sj)ααj(a),

for all a ∈ A. Hence, ~eiα(a)bij = bijααj(a),

a ∈ A, and so

~ei(b)bij = bijααjα
−1(b) = bijα̃j(b),

for all b ∈ B.



From the intertwining equation

~ei(b)bij = bijα̃j(b), b ∈ B (∗)

we obtain.

• Since A is primitive, bi,j is either zero or

invertible!

• If bij 6= 0 then ~ei ∼ α̃j.

Therefore each equivalence class {~e1, ~e2, . . . , ~en}
is equivalent to exactly one class {α̃1, α̃2, . . . , α̃m}.

Need to show that m = n. Bwoc let m < n.



Start with an ”arbitrary” n-tuple (y1, y2, . . . , yn).



From the equation

T1y1 + T2y2 + · · ·+ Tnyn = lim
e
α(xe),

where xe are non-commutative polynomials in

S1, S2, . . . , Sm and remembering that

α(Sj) = b0j + T1b1j + T2b2j + · · ·+ Tnbnj + Y,

we obtain



y1 = lim
e
b11x

1
e + b12x

2
e + · · ·+ b1mx

m
e ,

y2 = lim
e
b21x

1
e + b22x

2
e + · · ·+ b2mx

m
e ,

...

yn = lim
e
bn1x

1
e + bn2x

2
e + · · ·+ bnmx

m
e .

Perform Gaussian elimination to reduce this

system to

ȳ2 = lim
e
b̄22x

2
e + b̄23x

3
e + · · ·+ b̄2mx

m
e ,

ȳ3 = lim
e
b̄32x

2
e + b̄33x

3
e + · · ·+ b̄3mx

m
e ,

...

ȳn = lim
e
b̄n2x

2
e + b̄n3x

3
e + · · ·+ b̄nmx

m
e ,



We continue this short of “Gaussian elimina-

tion” and we arrive at a system that contains

one column and at least two non-trivial rows

of the form

w1 = lim
e
d1x

m
e

w2 = lim
e
d2x

m
e ,

where the data (w1, w2) is arbitrary. There-

fore d1, d2 are non-zero, hence invertible. By

letting w1 = 1 we obtain that lime xme = d−1
1 .

Therefore, if we let w2 = 0, then we get that

0 = d2d
−1
1 , which is a contradiction.



THEOREM. Let (A,α) and (B,~e) be multivari-

able dynamical systems consisting of ∗-epimorphisms.

The tensor algebras T+(A,α) and T+(B,~e) are

isometrically isomorphic if and only if the cor-

respondences ((A,α) and (B,~e) are unitarily

equivalent.

In light of the above result we ask

PROBLEM. Let (A,α) and (B,~e) be multivari-

able dynamical systems consisting of ∗-monomorphisms.

If the tensor algebras T+(A,α) and T+(B,~e) are

isometrically isomorphic does it follow that the

correspondences ((A,α) and (B,~e) are unitarily

equivalent.
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