Analyticity and subnormality of operator-valued functions

Dariusz Cichoń

December 19, 2014, OTOA, Bangalore

Dariusz Cichoń Analyticity and subnormality of operator-valued functions

$S \in \mathbf{B}(\mathcal{H})$ is subnormal if

- there exists a Hilbert space K ⊇ H (isometric embedding) and
 a normal operator N ∈ B(K) such that Sh = Nh for all h ∈ H.
 Let φ: Ω → B(H) (Ω any set), then φ is jointly subnormal if
 there exists a Hilbert space K ⊇ H and
 a function Φ: Ω → B(K) such that Φ(ω), ω ∈ Ω, are commuting normal operators and
 φ(ω) = Φ(ω)|_H for all ω ∈ Ω.
- Φ is called a *normal extension of* φ .

 Φ is called a *minimal* normal extension if additionally: \mathcal{K} is a unique closed linear subspace of \mathcal{K} such that

- it contains $\mathcal H$ and
- reduces each $\Phi(\omega)$, $\omega \in \Omega$.

< 🗇 > < 🖃 >

- $S \in \mathbf{B}(\mathcal{H})$ is subnormal if
- there exists a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ (isometric embedding) and
- a normal operator $N \in \mathbf{B}(\mathcal{K})$ such that Sh = Nh for all $h \in \mathcal{H}$.

Let $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H}) \ (\Omega \text{ - any set})$, then φ is *jointly subnormal* if • there exists a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ and • a function $\Phi \colon \Omega \to \mathbf{B}(\mathcal{K})$ such that $\Phi(\omega), \ \omega \in \Omega$, are commuting normal operators and • $\varphi(\omega) = \Phi(\omega)|_{\mathcal{H}}$ for all $\omega \in \Omega$. Φ is called a *normal extension of* φ .

 Φ is called a *minimal* normal extension if additionally: \mathcal{K} is a unique closed linear subspace of \mathcal{K} such that

- \bullet it contains ${\cal H}$ and
- reduces each $\Phi(\omega)$, $\omega \in \Omega$.

▲ 同 ▶ → 三 ▶

- $S \in \mathbf{B}(\mathcal{H})$ is subnormal if
- there exists a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ (isometric embedding) and
- a normal operator $N \in \mathbf{B}(\mathcal{K})$ such that Sh = Nh for all $h \in \mathcal{H}$.

Let $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ (Ω - any set), then φ is *jointly subnormal* if

- \bullet there exists a Hilbert space $\mathcal{K}\supseteq \mathcal{H}$ and
- a function $\Phi \colon \Omega \to \mathbf{B}(\mathcal{K})$ such that $\Phi(\omega), \omega \in \Omega$, are commuting normal operators and

•
$$\varphi(\omega) = \Phi(\omega)|_{\mathcal{H}}$$
 for all $\omega \in \Omega$.

 Φ is called a *normal extension of* φ .

arPhi is called a *minimal* normal extension if additionally:

 ${\mathcal K}$ is a unique closed linear subspace of ${\mathcal K}$ such that

 \bullet it contains ${\cal H}$ and

• reduces each $\Phi(\omega)$, $\omega \in \Omega$.

伺 と く ヨ と く ヨ と

 $S \in \mathbf{B}(\mathcal{H})$ is subnormal if

- there exists a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ (isometric embedding) and
- a normal operator $N \in \mathbf{B}(\mathcal{K})$ such that Sh = Nh for all $h \in \mathcal{H}$.

Let $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ (Ω - any set), then φ is *jointly subnormal* if

- \bullet there exists a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ and
- a function $\Phi \colon \Omega \to \mathbf{B}(\mathcal{K})$ such that $\Phi(\omega), \omega \in \Omega$, are commuting normal operators and

•
$$\varphi(\omega) = \Phi(\omega)|_{\mathcal{H}}$$
 for all $\omega \in \Omega$.

 Φ is called a *normal extension of* φ .

arPhi is called a *minimal* normal extension if additionally:

 ${\mathcal K}$ is a unique closed linear subspace of ${\mathcal K}$ such that

 \bullet it contains ${\cal H}$ and

• reduces each $\Phi(\omega)$, $\omega \in \Omega$.

 $S \in \mathbf{B}(\mathcal{H})$ is subnormal if

- there exists a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ (isometric embedding) and
- a normal operator $N \in \mathbf{B}(\mathcal{K})$ such that Sh = Nh for all $h \in \mathcal{H}$.

Let $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ (Ω - any set), then φ is *jointly subnormal* if

- \bullet there exists a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ and
- a function $\Phi \colon \Omega \to \mathbf{B}(\mathcal{K})$ such that $\Phi(\omega), \omega \in \Omega$, are commuting normal operators and
- $\varphi(\omega) = \Phi(\omega)|_{\mathcal{H}}$ for all $\omega \in \Omega$.

 Φ is called a *normal extension of* φ .

Φ is called a *minimal* normal extension if additionally:

- ${\mathcal K}$ is a unique closed linear subspace of ${\mathcal K}$ such that
- \bullet it contains ${\cal H}$ and
- reduces each $\Phi(\omega)$, $\omega \in \Omega$.

くほし くほし くほし

- $S \in \mathbf{B}(\mathcal{H})$ is subnormal if
- \bullet there exists a Hilbert space $\mathcal{K}\supseteq \mathcal{H}$ (isometric embedding) and
- a normal operator $N \in \mathbf{B}(\mathcal{K})$ such that Sh = Nh for all $h \in \mathcal{H}$.

Let $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ (Ω - any set), then φ is *jointly subnormal* if

- \bullet there exists a Hilbert space $\mathcal{K}\supseteq \mathcal{H}$ and
- a function $\Phi \colon \Omega \to \mathbf{B}(\mathcal{K})$ such that $\Phi(\omega), \omega \in \Omega$, are commuting normal operators and

•
$$\varphi(\omega) = \Phi(\omega)|_{\mathcal{H}}$$
 for all $\omega \in \Omega$.

 Φ is called a *normal extension of* φ .

 Φ is called a *minimal* normal extension if additionally: \mathcal{K} is a unique closed linear subspace of \mathcal{K} such that

- \bullet it contains ${\cal H}$ and
- reduces each $\Phi(\omega)$, $\omega \in \Omega$.

Example. Let $S \in \mathbf{B}(\mathcal{H})$ be a subnormal operator with a minimal normal extension $N \in \mathbf{B}(\mathcal{K})$. If Ω = the resolvent set of S, then the function

$$\Omega \ni z \mapsto (z-S)^{-1} \in \mathbf{B}(\mathcal{H})$$

is jointly subnormal and

$$\Omega \ni z \mapsto (z - N)^{-1} \in \mathbf{B}(\mathcal{K})$$

is its minimal normal extension.

Example. Let $S \in \mathbf{B}(\mathcal{H})$ be a subnormal operator with a minimal normal extension $N \in \mathbf{B}(\mathcal{K})$. If Ω = the resolvent set of S, then the function

$$\Omega \ni z \mapsto (z-S)^{-1} \in \mathbf{B}(\mathcal{H})$$

is jointly subnormal and

$$\Omega \ni z \mapsto (z - N)^{-1} \in \mathbf{B}(\mathcal{K})$$

is its minimal normal extension.

Example. Let $S \in \mathbf{B}(\mathcal{H})$ be a subnormal operator with a minimal normal extension $N \in \mathbf{B}(\mathcal{K})$. If Ω = the resolvent set of S, then the function

$$\Omega \ni z \mapsto (z-S)^{-1} \in \mathbf{B}(\mathcal{H})$$

is jointly subnormal and

$$\Omega \ni z \mapsto (z - N)^{-1} \in \mathbf{B}(\mathcal{K})$$

is its minimal normal extension.

Some history

Itô (1958): commutative families of subnormals Lubin (1970's):

discrete semigroup of subnormals with no normal extension
neither sum nor product of commuting subnormals need to be subnormal

S, T – commuting subnormals, such that aS + bT is subnormal $(a, b \in \mathbb{C})$. Is the function $(z, w) \mapsto zS + wT$ jointly subnormal?

Striking example by Catepillán and Szymanski (2004): V_1, V_2 isometries with orthogonal ranges. Then

$$\|(aV_1 + bV_2)f\|^2 = |a|^2 \|V_1f\|^2 + |b|^2 \|V_2f\|^2$$
$$= (|a|^2 + |b|^2) \|f\|^2$$

So $aV_1 + bV_2$ is a multiple of an isometry, hence subnormal. However, V_1 and V_2 can never commute.

伺 ト イヨト イヨト

Itô (1958): commutative families of subnormals Lubin (1970's):

• discrete semigroup of subnormals with no normal extension

 neither sum nor product of commuting subnormals need to be subnormal

S, T – commuting subnormals, such that aS + bT is subnormal $(a, b \in \mathbb{C})$. Is the function $(z, w) \mapsto zS + wT$ jointly subnormal?

Striking example by Catepillán and Szymanski (2004): V_1, V_2 isometries with orthogonal ranges. Then

$$\|(aV_1 + bV_2)f\|^2 = |a|^2 \|V_1f\|^2 + |b|^2 \|V_2f\|^2$$
$$= (|a|^2 + |b|^2) \|f\|^2$$

So $aV_1 + bV_2$ is a multiple of an isometry, hence subnormal. However, V_1 and V_2 can never commute.

Itô (1958): commutative families of subnormals Lubin (1970's):

- discrete semigroup of subnormals with no normal extension
- neither sum nor product of commuting subnormals need to be subnormal

S, T – commuting subnormals, such that aS + bT is subnormal $(a, b \in \mathbb{C})$. Is the function $(z, w) \mapsto zS + wT$ jointly subnormal?

Striking example by Catepillán and Szymanski (2004): V_1, V_2 isometries with orthogonal ranges. Then

$$\|(aV_1 + bV_2)f\|^2 = |a|^2 \|V_1f\|^2 + |b|^2 \|V_2f\|^2$$
$$= (|a|^2 + |b|^2) \|f\|^2$$

So $aV_1 + bV_2$ is a multiple of an isometry, hence subnormal. However, V_1 and V_2 can never commute.

Itô (1958): commutative families of subnormals Lubin (1970's):

- discrete semigroup of subnormals with no normal extension
- neither sum nor product of commuting subnormals need to be subnormal

S, T – commuting subnormals, such that aS + bT is subnormal $(a, b \in \mathbb{C})$. Is the function $(z, w) \mapsto zS + wT$ jointly subnormal?

Striking example by Catepillán and Szymanski (2004): V_1, V_2 isometries with orthogonal ranges. Then

$$\|(aV_1 + bV_2)f\|^2 = |a|^2 \|V_1f\|^2 + |b|^2 \|V_2f\|^2$$
$$= (|a|^2 + |b|^2) \|f\|^2$$

So $aV_1 + bV_2$ is a multiple of an isometry, hence subnormal. However, V_1 and V_2 can never commute.

Itô (1958): commutative families of subnormals Lubin (1970's):

- discrete semigroup of subnormals with no normal extension
- neither sum nor product of commuting subnormals need to be subnormal

S, T – commuting subnormals, such that aS + bT is subnormal $(a, b \in \mathbb{C})$. Is the function $(z, w) \mapsto zS + wT$ jointly subnormal?

Striking example by Catepillán and Szymanski (2004): V_1, V_2 isometries with orthogonal ranges. Then

$$\|(aV_1 + bV_2)f\|^2 = |a|^2 \|V_1f\|^2 + |b|^2 \|V_2f\|^2$$
$$= (|a|^2 + |b|^2) \|f\|^2$$

So $aV_1 + bV_2$ is a multiple of an isometry, hence subnormal. However, V_1 and V_2 can never commute.

Itô (1958): commutative families of subnormals Lubin (1970's):

- discrete semigroup of subnormals with no normal extension
- neither sum nor product of commuting subnormals need to be subnormal

S, T – commuting subnormals, such that aS + bT is subnormal $(a, b \in \mathbb{C})$. Is the function $(z, w) \mapsto zS + wT$ jointly subnormal?

Striking example by Catepillán and Szymanski (2004): V_1, V_2 isometries with orthogonal ranges. Then

$$\begin{aligned} \|(aV_1 + bV_2)f\|^2 &= |a|^2 \|V_1f\|^2 + |b|^2 \|V_2f\|^2 \\ &= (|a|^2 + |b|^2) \|f\|^2 \end{aligned}$$

So $aV_1 + bV_2$ is a multiple of an isometry, hence subnormal. However, V_1 and V_2 can never commute.

Itô (1958): commutative families of subnormals Lubin (1970's):

- discrete semigroup of subnormals with no normal extension
- neither sum nor product of commuting subnormals need to be subnormal

S, T – commuting subnormals, such that aS + bT is subnormal $(a, b \in \mathbb{C})$. Is the function $(z, w) \mapsto zS + wT$ jointly subnormal?

Striking example by Catepillán and Szymanski (2004): V_1, V_2 isometries with orthogonal ranges. Then

$$\begin{split} \|(aV_1 + bV_2)f\|^2 &= |a|^2 \|V_1f\|^2 + |b|^2 \|V_2f\|^2 \\ &= (|a|^2 + |b|^2) \|f\|^2 \end{split}$$

So $aV_1 + bV_2$ is a multiple of an isometry, hence subnormal. However, V_1 and V_2 can never commute.

• • = • • = •

Let $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ be a function defined on a nonempty set Ω . Then the following conditions are equivalent:

(A) φ is jointly subnormal,

(B) for every integer $n \ge 1$, for all n-sequences $\{h_{\alpha}\}_{\alpha \in \mathbb{N}^n} \subseteq \mathcal{H}$ with finite number of nonzero entries and for all n-tuples $(\omega_1, \ldots, \omega_n) \in \Omega^n$

 $\sum_{\substack{\alpha=(\alpha_1,\ldots,\alpha_n)\in\mathbb{N}^n\\\beta=(\beta_1,\ldots,\beta_n)\in\mathbb{N}^n}} \langle \varphi(\omega_1)^{\alpha_1}\ldots\varphi(\omega_n)^{\alpha_n}h_\beta,\varphi(\omega_1)^{\beta_1}\ldots\varphi(\omega_n)^{\beta_n}h_\alpha\rangle \ge 0,$

(C) the algebra $\overline{\operatorname{alg} \varphi(\Omega)}^{\mathsf{SOT}}$ is jointly subnormal.

Let $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ be a function defined on a nonempty set Ω . Then the following conditions are equivalent: (A) φ is jointly subnormal,

(B) for every integer $n \ge 1$, for all n-sequences $\{h_{\alpha}\}_{\alpha \in \mathbb{N}^n} \subseteq \mathcal{H}$ with finite number of nonzero entries and for all n-tuples $(\omega_1, \ldots, \omega_n) \in \Omega^n$

 $\sum_{\substack{\alpha=(\alpha_1,\ldots,\alpha_n)\in\mathbb{N}^n\\\beta=(\beta_1,\ldots,\beta_n)\in\mathbb{N}^n}} \langle \varphi(\omega_1)^{\alpha_1}\ldots\varphi(\omega_n)^{\alpha_n}h_\beta,\varphi(\omega_1)^{\beta_1}\ldots\varphi(\omega_n)^{\beta_n}h_\alpha\rangle \ge 0,$

(C) the algebra $\overline{\operatorname{alg}\varphi(\Omega)}^{\mathsf{SOT}}$ is jointly subnormal.

Let $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ be a function defined on a nonempty set Ω . Then the following conditions are equivalent: (A) φ is jointly subnormal, (B) for every integer $n \ge 1$, for all n-sequences $\{h_{\alpha}\}_{\alpha \in \mathbb{N}^{n}} \subseteq \mathcal{H}$ with finite number of nonzero entries and for all n-tuples $(\omega_{1}, \ldots, \omega_{n}) \in \Omega^{n}$

 $\sum_{\substack{\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n \\ \beta = (\beta_1, \dots, \beta_n) \in \mathbb{N}^n}} \langle \varphi(\omega_1)^{\alpha_1} \dots \varphi(\omega_n)^{\alpha_n} h_{\beta}, \varphi(\omega_1)^{\beta_1} \dots \varphi(\omega_n)^{\beta_n} h_{\alpha} \rangle \ge 0,$

(C) the algebra $\overline{\operatorname{alg}\varphi(\Omega)}^{\mathsf{SOT}}$ is jointly subnormal.

伺 ト く ヨ ト く ヨ ト

Let $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ be a function defined on a nonempty set Ω . Then the following conditions are equivalent: (A) φ is jointly subnormal, (B) for every integer $n \ge 1$, for all n-sequences $\{h_{\alpha}\}_{\alpha \in \mathbb{N}^n} \subseteq \mathcal{H}$ with finite number of nonzero entries and for all n-tuples $(\omega_1,\ldots,\omega_n)\in\Omega^n$ $\sum \langle \varphi(\omega_1)^{\alpha_1} \dots \varphi(\omega_n)^{\alpha_n} h_{\beta}, \varphi(\omega_1)^{\beta_1} \dots \varphi(\omega_n)^{\beta_n} h_{\alpha} \rangle \geq 0,$ $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$ $\beta = (\beta_1, \dots, \beta_n) \in \mathbb{N}^n$ (C) the algebra $\overline{\operatorname{alg}\varphi(\Omega)}^{\mathsf{SOT}}$ is jointly subnormal.

If $\mathfrak{A} \stackrel{\text{def}}{=} \overline{\operatorname{alg} \varphi(\Omega)}^{\text{SOT}}$ is jointly subnormal and $\Theta \colon \mathfrak{A} \to \mathbf{B}(\mathcal{K})$ is a minimal normal extension of \mathfrak{A} , then

- $\Phi \stackrel{\text{\tiny der}}{=} \Theta \circ \varphi$ is a minimal normal extension of φ ,
- Θ is an isometric algebra homomorphism such that $\Theta(I_{\mathcal{H}}) = I_{\mathcal{K}}$, • $\Theta^{-1}(A) = A|_{\mathcal{H}}$ for all $A \in \Theta(\mathfrak{A})$,
- $\Theta|_{\mathfrak{F}} \colon \mathfrak{F} \to \Theta(\mathfrak{F})$ is a somehomeomorphism and a

wor-homeomorphism for all bounded subsets \mathfrak{F} of \mathfrak{A} ,

- $\Theta^{-1}: \Theta(\mathfrak{A}) \to \mathfrak{A}$ is sor-continuous and wor-continuous,
- $W^*(\Phi(\Omega)) = W^*(\Theta(\mathfrak{A})).$

If $\mathfrak{A} \stackrel{\text{def}}{=} \overline{\operatorname{alg} \varphi(\Omega)}^{\text{SOT}}$ is jointly subnormal and $\Theta \colon \mathfrak{A} \to \mathbf{B}(\mathcal{K})$ is a minimal normal extension of \mathfrak{A} , then

- $\Phi \stackrel{\text{\tiny def}}{=} \Theta \circ \varphi$ is a minimal normal extension of φ ,
- Θ is an isometric algebra homomorphism such that $\Theta(I_{\mathcal{H}}) = I_{\mathcal{K}}$, • $\Theta^{-1}(A) = A|_{\mathcal{H}}$ for all $A \in \Theta(\mathfrak{A})$,
- $\Theta|_{\mathfrak{F}}\colon \mathfrak{F} o \Theta(\mathfrak{F})$ is a some normalism and a

wor-homeomorphism for all bounded subsets \mathfrak{F} of \mathfrak{A} ,

- Θ^{-1} : $\Theta(\mathfrak{A}) \to \mathfrak{A}$ is sor-continuous and wor-continuous,
- $W^*(\Phi(\Omega)) = W^*(\Theta(\mathfrak{A})).$

If $\mathfrak{A} \stackrel{\text{def}}{=} \overline{\operatorname{alg} \varphi(\Omega)}^{\mathsf{SOT}}$ is jointly subnormal and $\Theta \colon \mathfrak{A} \to \mathbf{B}(\mathcal{K})$ is a minimal normal extension of \mathfrak{A} , then

- $\Phi \stackrel{\text{\tiny def}}{=} \Theta \circ \varphi$ is a minimal normal extension of φ ,
- Θ is an isometric algebra homomorphism such that Θ(I_H) = I_K,
 Θ⁻¹(A) = A|_H for all A ∈ Θ(𝔅),
- $\Theta|_{\mathfrak{F}} \colon \mathfrak{F} o \Theta(\mathfrak{F})$ is a somethomeomorphism and a

wor-homeomorphism for all bounded subsets \mathfrak{F} of \mathfrak{A} ,

- $\Theta^{-1}: \Theta(\mathfrak{A}) \to \mathfrak{A}$ is sor-continuous and wor-continuous,
- $W^*(\Phi(\Omega)) = W^*(\Theta(\mathfrak{A})).$

If $\mathfrak{A} \stackrel{\text{def}}{=} \overline{\operatorname{alg} \varphi(\Omega)}^{\text{SOT}}$ is jointly subnormal and $\Theta \colon \mathfrak{A} \to \mathbf{B}(\mathcal{K})$ is a minimal normal extension of \mathfrak{A} , then

- $\Phi \stackrel{\text{\tiny def}}{=} \Theta \circ \varphi$ is a minimal normal extension of φ ,
- Θ is an isometric algebra homomorphism such that $\Theta(I_{\mathcal{H}}) = I_{\mathcal{K}}$, • $\Theta^{-1}(A) = A|_{\mathcal{K}}$ for all $A \in \Theta(\mathfrak{A})$
- $\Theta^{-1}(A) = A|_{\mathcal{H}}$ for all $A \in \Theta(\mathfrak{A})$,
- $\Theta|_{\mathfrak{F}} \colon \mathfrak{F} o \Theta(\mathfrak{F})$ is a sot-homeomorphism and a

wor-homeomorphism for all bounded subsets \mathfrak{F} of \mathfrak{A} ,

- Θ^{-1} : $\Theta(\mathfrak{A}) \to \mathfrak{A}$ is sor-continuous and wor-continuous,
- $W^*(\Phi(\Omega)) = W^*(\Theta(\mathfrak{A})).$

If $\mathfrak{A} \stackrel{\text{def}}{=} \overline{\operatorname{alg} \varphi(\Omega)}^{\text{SOT}}$ is jointly subnormal and $\Theta \colon \mathfrak{A} \to \mathbf{B}(\mathcal{K})$ is a minimal normal extension of \mathfrak{A} , then

- $\Phi \stackrel{\text{\tiny def}}{=} \Theta \circ \varphi$ is a minimal normal extension of φ ,
- Θ is an isometric algebra homomorphism such that $\Theta(I_{\mathcal{H}}) = I_{\mathcal{K}}$,
- $\Theta^{-1}(A) = A|_{\mathcal{H}}$ for all $A \in \Theta(\mathfrak{A})$,
- $\Theta|_{\mathfrak{F}} : \mathfrak{F} \to \Theta(\mathfrak{F})$ is a son-homeomorphism and a won-homeomorphism for all bounded subsets \mathfrak{F} of \mathfrak{A} ,
- $\Theta(\mathfrak{A})$ is a sot-closed subalgebra of $\mathbf{B}(\mathcal{K})$,
- Θ^{-1} : $\Theta(\mathfrak{A}) \to \mathfrak{A}$ is sor-continuous and wor-continuous,
- $W^*(\Phi(\Omega)) = W^*(\Theta(\mathfrak{A})).$

If $\mathfrak{A} \stackrel{\text{def}}{=} \overline{\mathsf{alg } \varphi(\Omega)}^{\mathsf{SOT}}$ is jointly subnormal and $\Theta \colon \mathfrak{A} \to \mathbf{B}(\mathcal{K})$ is a minimal normal extension of \mathfrak{A} , then

- $\Phi \stackrel{\text{\tiny def}}{=} \Theta \circ \varphi$ is a minimal normal extension of φ ,
- Θ is an isometric algebra homomorphism such that $\Theta(I_{\mathcal{H}}) = I_{\mathcal{K}}$,
- $\Theta^{-1}(A) = A|_{\mathcal{H}}$ for all $A \in \Theta(\mathfrak{A})$,
- $\Theta|_{\mathfrak{F}} : \mathfrak{F} \to \Theta(\mathfrak{F})$ is a son-homeomorphism and a won-homeomorphism for all bounded subsets \mathfrak{F} of \mathfrak{A} ,
- $\Theta(\mathfrak{A})$ is a sor-closed subalgebra of $\mathbf{B}(\mathcal{K})$,
- Θ^{-1} : $\Theta(\mathfrak{A}) \to \mathfrak{A}$ is sor-continuous and wor-continuous,
- $W^*(\Phi(\Omega)) = W^*(\Theta(\mathfrak{A})).$

If $\mathfrak{A} \stackrel{\text{def}}{=} \overline{\operatorname{alg} \varphi(\Omega)}^{\text{SOT}}$ is jointly subnormal and $\Theta \colon \mathfrak{A} \to \mathbf{B}(\mathcal{K})$ is a minimal normal extension of \mathfrak{A} , then

- $\Phi \stackrel{\text{\tiny def}}{=} \Theta \circ \varphi$ is a minimal normal extension of φ ,
- Θ is an isometric algebra homomorphism such that $\Theta(I_{\mathcal{H}}) = I_{\mathcal{K}}$,
- $\Theta^{-1}(A) = A|_{\mathcal{H}}$ for all $A \in \Theta(\mathfrak{A})$,
- $\Theta|_{\mathfrak{F}} : \mathfrak{F} \to \Theta(\mathfrak{F})$ is a son-homeomorphism and a won-homeomorphism for all bounded subsets \mathfrak{F} of \mathfrak{A} ,
- $\Theta(\mathfrak{A})$ is a sor-closed subalgebra of $\mathbf{B}(\mathcal{K})$,
- Θ^{-1} : $\Theta(\mathfrak{A}) \to \mathfrak{A}$ is sor-continuous and wor-continuous,
- $W^*(\Phi(\Omega)) = W^*(\Theta(\mathfrak{A})).$

伺 ト く ヨ ト く ヨ ト

If $\mathfrak{A} \stackrel{\text{def}}{=} \overline{\operatorname{alg} \varphi(\Omega)}^{\text{SOT}}$ is jointly subnormal and $\Theta \colon \mathfrak{A} \to \mathbf{B}(\mathcal{K})$ is a minimal normal extension of \mathfrak{A} , then

- $\Phi \stackrel{\text{\tiny def}}{=} \Theta \circ \varphi$ is a minimal normal extension of φ ,
- Θ is an isometric algebra homomorphism such that $\Theta(I_{\mathcal{H}}) = I_{\mathcal{K}}$,
- $\Theta^{-1}(A) = A|_{\mathcal{H}}$ for all $A \in \Theta(\mathfrak{A})$,
- $\Theta|_{\mathfrak{F}} : \mathfrak{F} \to \Theta(\mathfrak{F})$ is a son-homeomorphism and a won-homeomorphism for all bounded subsets \mathfrak{F} of \mathfrak{A} ,
- $\Theta(\mathfrak{A})$ is a sor-closed subalgebra of $\mathbf{B}(\mathcal{K})$,
- Θ^{-1} : $\Theta(\mathfrak{A}) \to \mathfrak{A}$ is sor-continuous and wor-continuous,
- $W^*(\Phi(\Omega)) = W^*(\Theta(\mathfrak{A})).$

Corollary

 $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H}) \text{ is such that } \varphi|_{\Omega_0} \text{ is jointly subnormal}$ $(\emptyset \neq \Omega_0 \subseteq \Omega) \text{ and } \varphi(\Omega) \subseteq \overline{\operatorname{alg} \varphi(\Omega_0)}^{\operatorname{SOT}}.$ Then • φ is jointly subnormal, • Φ is minimal $\Rightarrow \Phi|_{\Omega_0}$ is minimal.

Proof. $\Phi = \Theta \circ \varphi$, where $\Theta : \operatorname{alg} \varphi(\Omega_0)^{\mathsf{SOT}} \to \mathbf{B}(\mathcal{K})$.

 Θ is a tool for deriving many nice properties of Φ from those of φ , e.g. φ continuous $\Rightarrow \Phi$ continuous, φ differentiable $\Rightarrow \Phi$ differentiable, $\sum_{n=0}^{\infty} c_n \varphi(\omega_n)$ converges $\Leftrightarrow \sum_{n=0}^{\infty} c_n \Phi(\omega_n)$ converges $(\{c_n\}_{n=0}^{\infty} \subseteq \mathbb{C}, \{\omega_n\}_{n=0}^{\infty} \subseteq \Omega)$. Likewise for algebraic properties of φ , e.g. φ – a representation of a semigroup $\Rightarrow \Phi$ – a representation of a semigroup.

伺 ト く ヨ ト く ヨ ト

Corollary

 $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H}) \text{ is such that } \varphi|_{\Omega_0} \text{ is jointly subnormal}$ $(\emptyset \neq \Omega_0 \subseteq \Omega) \text{ and } \varphi(\Omega) \subseteq \overline{\operatorname{alg} \varphi(\Omega_0)}^{\operatorname{SOT}}.$ Then • φ is jointly subnormal,

• Φ is minimal $\Rightarrow \Phi|_{\Omega_0}$ is minimal.

Proof. $\Phi = \Theta \circ \varphi$, where $\Theta : \operatorname{alg} \varphi(\Omega_0)^{\mathsf{SOT}} \to \mathbf{B}(\mathcal{K})$.

 Θ is a tool for deriving many nice properties of Φ from those of φ , e.g. φ continuous $\Rightarrow \Phi$ continuous, φ differentiable $\Rightarrow \Phi$ differentiable, $\sum_{n=0}^{\infty} c_n \varphi(\omega_n)$ converges $\Leftrightarrow \sum_{n=0}^{\infty} c_n \Phi(\omega_n)$ converges $(\{c_n\}_{n=0}^{\infty} \subseteq \mathbb{C}, \{\omega_n\}_{n=0}^{\infty} \subseteq \Omega)$. Likewise for algebraic properties of φ , e.g. φ – a representation of a semigroup $\Rightarrow \Phi$ – a representation of a semigroup.

・ 同 ト ・ ヨ ト ・ ヨ ト

Corollary

$$\varphi: \Omega \to \mathbf{B}(\mathcal{H})$$
 is such that $\varphi|_{\Omega_0}$ is jointly subnormal $(\emptyset \neq \Omega_0 \subseteq \Omega)$ and $\varphi(\Omega) \subseteq \overline{\operatorname{alg} \varphi(\Omega_0)}^{\operatorname{SOT}}$. Then
• φ is jointly subnormal,

• Φ is minimal $\Rightarrow \Phi|_{\Omega_0}$ is minimal.

Proof. $\Phi = \Theta \circ \varphi$, where $\Theta : \operatorname{alg} \varphi(\Omega_0)^{\mathsf{SOT}} \to \mathbf{B}(\mathcal{K}).$

 Θ is a tool for deriving many nice properties of Φ from those of φ , e.g. φ continuous $\Rightarrow \Phi$ continuous, φ differentiable $\Rightarrow \Phi$ differentiable, $\sum_{n=0}^{\infty} c_n \varphi(\omega_n)$ converges $\Leftrightarrow \sum_{n=0}^{\infty} c_n \Phi(\omega_n)$ converges $(\{c_n\}_{n=0}^{\infty} \subseteq \mathbb{C}, \{\omega_n\}_{n=0}^{\infty} \subseteq \Omega)$. Likewise for algebraic properties of φ , e.g. φ – a representation of a semigroup $\Rightarrow \Phi$ – a representation of a semigroup.

伺 ト く ヨ ト く ヨ ト

Corollary

$$\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$$
 is such that $\varphi|_{\Omega_0}$ is jointly subnormal $(\varphi \neq \Omega_0 \subseteq \Omega)$ and $\varphi(\Omega) \subseteq \overline{\operatorname{alg } \varphi(\Omega_0)}^{\operatorname{SOT}}$. Then

- φ is jointly subnormal,
- Φ is minimal $\Rightarrow \Phi|_{\Omega_0}$ is minimal.

Proof. $\Phi = \Theta \circ \varphi$, where $\Theta : \operatorname{alg} \varphi(\Omega_0)^{\mathsf{SOT}} \to \mathbf{B}(\mathcal{K}).$

 Θ is a tool for deriving many nice properties of Φ from those of φ , e.g. φ continuous $\Rightarrow \Phi$ continuous, φ differentiable $\Rightarrow \Phi$ differentiable, $\sum_{n=0}^{\infty} c_n \varphi(\omega_n)$ converges $\Leftrightarrow \sum_{n=0}^{\infty} c_n \Phi(\omega_n)$ converges $(\{c_n\}_{n=0}^{\infty} \subseteq \mathbb{C}, \{\omega_n\}_{n=0}^{\infty} \subseteq \Omega)$. Likewise for algebraic properties of φ , e.g. φ – a representation of a semigroup $\Rightarrow \Phi$ – a representation of a semigroup.

伺 ト く ヨ ト く ヨ ト

Corollary

$$\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$$
 is such that $\varphi|_{\Omega_0}$ is jointly subnorma $(\emptyset \neq \Omega_0 \subseteq \Omega)$ and $\varphi(\Omega) \subseteq \overline{\operatorname{alg} \varphi(\Omega_0)}^{\operatorname{SOT}}$. Then

- φ is jointly subnormal,
- Φ is minimal $\Rightarrow \Phi|_{\Omega_0}$ is minimal.

Proof.
$$\Phi = \Theta \circ \varphi$$
, where $\Theta : \overline{\operatorname{alg} \varphi(\Omega_0)}^{\mathsf{SOT}} \to \mathbf{B}(\mathcal{K})$.

 Θ is a tool for deriving many nice properties of Φ from those of φ , e.g. φ continuous $\Rightarrow \Phi$ continuous, φ differentiable $\Rightarrow \Phi$ differentiable, $\sum_{n=0}^{\infty} c_n \varphi(\omega_n)$ converges $\Leftrightarrow \sum_{n=0}^{\infty} c_n \Phi(\omega_n)$ converges $(\{c_n\}_{n=0}^{\infty} \subseteq \mathbb{C}, \{\omega_n\}_{n=0}^{\infty} \subseteq \Omega)$. Likewise for algebraic properties of φ , e.g. φ – a representation of a semigroup $\Rightarrow \Phi$ – a representation of a semigroup.

Corollary

$$\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$$
 is such that $\varphi|_{\Omega_0}$ is jointly subnorma
($\emptyset \neq \Omega_0 \subseteq \Omega$) and $\varphi(\Omega) \subseteq \overline{\operatorname{alg} \varphi(\Omega_0)}^{\operatorname{SOT}}$. Then

- φ is jointly subnormal,
- Φ is minimal $\Rightarrow \Phi|_{\Omega_0}$ is minimal.

Proof.
$$\Phi = \Theta \circ \varphi$$
, where $\Theta : \overline{\mathsf{alg } \varphi(\Omega_0)}^{\mathsf{SOT}} \to \mathsf{B}(\mathcal{K})$.

 Θ is a tool for deriving many nice properties of Φ from those of φ , e.g. φ continuous $\Rightarrow \Phi$ continuous, φ differentiable $\Rightarrow \Phi$ differentiable, $\sum_{n=0}^{\infty} c_n \varphi(\omega_n)$ converges $\Leftrightarrow \sum_{n=0}^{\infty} c_n \Phi(\omega_n)$ converges $(\{c_n\}_{n=0}^{\infty} \subseteq \mathbb{C}, \{\omega_n\}_{n=0}^{\infty} \subseteq \Omega)$. Likewise for algebraic properties of φ , e.g. φ – a representation of a semigroup $\Rightarrow \Phi$ – a representation of a semigroup.

伺 ト く ヨ ト く ヨ ト

Corollary

$$\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$$
 is such that $\varphi|_{\Omega_0}$ is jointly subnorma
 $(\emptyset \neq \Omega_0 \subseteq \Omega)$ and $\varphi(\Omega) \subseteq \overline{\operatorname{alg} \varphi(\Omega_0)}^{\operatorname{SOT}}$. Then

- φ is jointly subnormal,
- Φ is minimal $\Rightarrow \Phi|_{\Omega_0}$ is minimal.

Proof.
$$\Phi = \Theta \circ \varphi$$
, where $\Theta : \overline{\operatorname{alg} \varphi(\Omega_0)}^{\mathsf{SOT}} \to \mathbf{B}(\mathcal{K})$.

 $\begin{array}{l} \varTheta \text{ is a tool for deriving many nice properties of } \varPhi \text{ from those of } \varphi \text{,} \\ \text{e.g. } \varphi \text{ continuous} \Rightarrow \varPhi \text{ continuous,} \end{array}$

 φ differentiable $\Rightarrow \Phi$ differentiable, $\sum_{n=0}^{\infty} c_n \varphi(\omega_n)$ converges $\Leftrightarrow \sum_{n=0}^{\infty} c_n \Phi(\omega_n)$ converges $(\{c_n\}_{n=0}^{\infty} \subseteq \mathbb{C}, \{\omega_n\}_{n=0}^{\infty} \subseteq \Omega).$ Likewise for algebraic properties of φ , e.g. φ – a representation of a semigroup $\Rightarrow \Phi$ – a representation of a semigroup.

Mapping \varTheta in action

Corollary

$$\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$$
 is such that $\varphi|_{\Omega_0}$ is jointly subnormal $(\emptyset \neq \Omega_0 \subseteq \Omega)$ and $\varphi(\Omega) \subseteq \overline{\operatorname{alg} \varphi(\Omega_0)}^{\operatorname{SOT}}$. Then

- φ is jointly subnormal,
- Φ is minimal $\Rightarrow \Phi|_{\Omega_0}$ is minimal.

Proof.
$$\Phi = \Theta \circ \varphi$$
, where $\Theta : \overline{\mathsf{alg } \varphi(\Omega_0)}^{\mathsf{SOT}} \to \mathbf{B}(\mathcal{K})$.

 Θ is a tool for deriving many nice properties of Φ from those of φ , e.g. φ continuous $\Rightarrow \Phi$ continuous, φ differentiable $\Rightarrow \Phi$ differentiable,

 $\sum_{n=0}^{\infty} c_n \varphi(\omega_n) \text{ converges } \Leftrightarrow \sum_{n=0}^{\infty} c_n \Phi(\omega_n) \text{ converges} \\ (\{c_n\}_{n=0}^{\infty} \subseteq \mathbb{C}, \{\omega_n\}_{n=0}^{\infty} \subseteq \Omega). \\ \text{Likewise for algebraic properties of } \varphi, \text{ e.g.} \\ \varphi - \text{ a representation of a semigroup } \Rightarrow \Phi - \text{ a representation of a semigroup.} \end{cases}$

Mapping Θ in action

Corollary

$$\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$$
 is such that $\varphi|_{\Omega_0}$ is jointly subnormal $(\emptyset \neq \Omega_0 \subseteq \Omega)$ and $\varphi(\Omega) \subseteq \overline{\operatorname{alg} \varphi(\Omega_0)}^{\operatorname{SOT}}$. Then

- φ is jointly subnormal,
- Φ is minimal $\Rightarrow \Phi|_{\Omega_0}$ is minimal.

Proof.
$$\Phi = \Theta \circ \varphi$$
, where $\Theta : \overline{\mathsf{alg } \varphi(\Omega_0)}^{\mathsf{SOT}} \to \mathbf{B}(\mathcal{K})$.

 Θ is a tool for deriving many nice properties of Φ from those of φ , e.g. φ continuous $\Rightarrow \Phi$ continuous, φ differentiable $\Rightarrow \Phi$ differentiable, $\sum_{n=0}^{\infty} c_n \varphi(\omega_n)$ converges $\Leftrightarrow \sum_{n=0}^{\infty} c_n \Phi(\omega_n)$ converges $(\{c_n\}_{n=0}^{\infty} \subseteq \mathbb{C}, \{\omega_n\}_{n=0}^{\infty} \subseteq \Omega)$. Likewise for algebraic properties of φ , e.g. φ - a representation of a semigroup $\Rightarrow \Phi$ - a representation of a semigroup.

伺 ト イ ヨ ト イ ヨ ト

Mapping \varTheta in action

Corollary

$$\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$$
 is such that $\varphi|_{\Omega_0}$ is jointly subnorma
($\emptyset \neq \Omega_0 \subseteq \Omega$) and $\varphi(\Omega) \subseteq \overline{\operatorname{alg} \varphi(\Omega_0)}^{\mathsf{SOT}}$. Then

- φ is jointly subnormal,
- Φ is minimal $\Rightarrow \Phi|_{\Omega_0}$ is minimal.

Proof.
$$\Phi = \Theta \circ \varphi$$
, where $\Theta : \overline{\mathsf{alg } \varphi(\Omega_0)}^{\mathsf{SOT}} \to \mathbf{B}(\mathcal{K})$.

 $\begin{array}{l} \varThetalticolumn{3}{ll} \Theta \text{ is a tool for deriving many nice properties of } \varPhi \text{ from those of } \varphi,\\ \text{e.g. } \varphi \text{ continuous } \Rightarrow \varPhi \text{ continuous,}\\ \varphi \text{ differentiable } \Rightarrow \varPhi \text{ differentiable,}\\ \sum_{n=0}^{\infty} c_n \varphi(\omega_n) \text{ converges } \Leftrightarrow \sum_{n=0}^{\infty} c_n \varPhi(\omega_n) \text{ converges}\\ (\{c_n\}_{n=0}^{\infty} \subseteq \mathbb{C}, \ \{\omega_n\}_{n=0}^{\infty} \subseteq \Omega\}.\\ \text{Likewise for algebraic properties of } \varphi, \text{ e.g.}\\ \varphi - \text{a representation of a semigroup } \Rightarrow \varPhi - \text{a representation of a semigroup.} \end{array}$

Theorem

 $\mathcal X$ is a normed space, $\varOmega \subseteq \mathcal X$ is open and connected,

 $\varphi \colon \Omega \to \mathsf{B}(\mathcal{H})$ is analytic, $\emptyset \neq \Omega_0 \subseteq \Omega$ is open,

 $\varphi(\Omega_0)$ consists of normal operators.

Then $\varphi(\Omega)$ consists of commuting normal operators.

This is a generalized theorem of Globevnik & Vidav, 1973; they considered only $\mathcal{X} = \mathbb{C}$.

Proposition

 \mathcal{X}, Ω as above, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ analytic, $E \subseteq \Omega$ is a set of uniqueness (e.g. nonempty & open) Then

- $\varphi|_E$ is jointly subnormal $\Leftrightarrow \varphi$ is jointly subnormal,
- if so, $\Phi \colon \Omega \to \mathsf{B}(\mathcal{K})$ is minimal $\Leftrightarrow \Phi|_E$ is minimal.

Proof. Use Θ .

・ロト ・同ト ・ヨト ・ヨト

Theorem

 \mathcal{X} is a normed space, $\Omega \subseteq \mathcal{X}$ is open and connected, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ is analytic, $\emptyset \neq \Omega_0 \subseteq \Omega$ is open,

 $\varphi(\Omega_0)$ consists of normal operators.

Then $\varphi(\Omega)$ consists of commuting normal operators.

This is a generalized theorem of Globevnik & Vidav, 1973; they considered only $\mathcal{X} = \mathbb{C}$.

Proposition

 $\mathcal{X}, \ \Omega$ as above, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ analytic, $E \subseteq \Omega$ is a set of uniqueness (e.g. nonempty & open) Then

• $\varphi|_E$ is jointly subnormal $\Leftrightarrow \varphi$ is jointly subnormal,

• if so, $\Phi \colon \Omega \to \mathbf{B}(\mathcal{K})$ is minimal $\Leftrightarrow \Phi|_E$ is minimal.

Proof. Use Θ .

・ロト ・同ト ・ヨト ・ヨト

Theorem

 \mathcal{X} is a normed space, $\Omega \subseteq \mathcal{X}$ is open and connected, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ is analytic, $\emptyset \neq \Omega_0 \subseteq \Omega$ is open, $\varphi(\Omega_0)$ consists of normal operators. Then $\varphi(\Omega)$ consists of commuting normal operators.

This is a generalized theorem of Globevnik & Vidav, 1973; they considered only $\mathcal{X}=\mathbb{C}.$

Proposition

 $\mathcal{X}, \ \Omega$ as above, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ analytic, $E \subseteq \Omega$ is a set of uniqueness (e.g. nonempty & open) Then

• $\varphi|_E$ is jointly subnormal $\Leftrightarrow \varphi$ is jointly subnormal,

• if so, $\Phi \colon \Omega \to \mathbf{B}(\mathcal{K})$ is minimal $\Leftrightarrow \Phi|_E$ is minimal.

Proof. Use Θ .

イロト イポト イヨト イヨト

Theorem

 \mathcal{X} is a normed space, $\Omega \subseteq \mathcal{X}$ is open and connected, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ is analytic, $\emptyset \neq \Omega_0 \subseteq \Omega$ is open, $\varphi(\Omega_0)$ consists of normal operators. Then $\varphi(\Omega)$ consists of commuting normal operators.

This is a generalized theorem of Globevnik & Vidav, 1973; they considered only $\mathcal{X} = \mathbb{C}$.

Proposition

 $\mathcal{X}, \ \Omega$ as above, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ analytic, $E \subseteq \Omega$ is a set of uniqueness (e.g. nonempty & open) Then

• $\varphi|_E$ is jointly subnormal $\Leftrightarrow \varphi$ is jointly subnormal,

• if so, $\Phi \colon \Omega \to \mathbf{B}(\mathcal{K})$ is minimal $\Leftrightarrow \Phi|_E$ is minimal.

Proof. Use Θ .

- 4 同 6 4 日 6 4 日 6

Theorem

 \mathcal{X} is a normed space, $\Omega \subseteq \mathcal{X}$ is open and connected, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ is analytic, $\emptyset \neq \Omega_0 \subseteq \Omega$ is open, $\varphi(\Omega_0)$ consists of normal operators. Then $\varphi(\Omega)$ consists of commuting normal operators.

This is a generalized theorem of Globevnik & Vidav, 1973; they considered only $\mathcal{X} = \mathbb{C}$.

Proposition

 $\mathcal{X},\ \varOmega$ as above, $arphi\colon \Omega o {f B}(\mathcal{H})$ analytic,

 $E \subseteq \Omega$ is a set of uniqueness (e.g. nonempty & open) Then

• $\varphi|_E$ is jointly subnormal $\Leftrightarrow \varphi$ is jointly subnormal,

• if so, $\Phi \colon \Omega \to \mathbf{B}(\mathcal{K})$ is minimal $\Leftrightarrow \Phi|_E$ is minimal.

Proof. Use Θ .

< ロ > < 同 > < 回 > < 回 >

Theorem

 \mathcal{X} is a normed space, $\Omega \subseteq \mathcal{X}$ is open and connected, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ is analytic, $\emptyset \neq \Omega_0 \subseteq \Omega$ is open, $\varphi(\Omega_0)$ consists of normal operators. Then $\varphi(\Omega)$ consists of commuting normal operators.

This is a generalized theorem of Globevnik & Vidav, 1973; they considered only $\mathcal{X} = \mathbb{C}$.

Proposition

 \mathcal{X}, Ω as above, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ analytic, $E \subseteq \Omega$ is a set of uniqueness (e.g. nonempty & open) Then

• $\varphi|_E$ is jointly subnormal $\Leftrightarrow \varphi$ is jointly subnormal,

• if so, $\Phi \colon \Omega \to \mathsf{B}(\mathcal{K})$ is minimal $\Leftrightarrow \Phi|_E$ is minimal.

Proof. Use Θ .

< ロ > < 同 > < 回 > < 回 >

Theorem

 \mathcal{X} is a normed space, $\Omega \subseteq \mathcal{X}$ is open and connected, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ is analytic, $\emptyset \neq \Omega_0 \subseteq \Omega$ is open, $\varphi(\Omega_0)$ consists of normal operators. Then $\varphi(\Omega)$ consists of commuting normal operators.

This is a generalized theorem of Globevnik & Vidav, 1973; they considered only $\mathcal{X} = \mathbb{C}$.

Proposition

 ${\mathcal X},\ \varOmega$ as above, $arphi\colon \varOmega o {f B}({\mathcal H})$ analytic,

 $E \subseteq \Omega$ is a set of uniqueness (e.g. nonempty & open) Then

• $\varphi|_E$ is jointly subnormal $\Leftrightarrow \varphi$ is jointly subnormal,

• if so, $\Phi \colon \Omega \to \mathsf{B}(\mathcal{K})$ is minimal $\Leftrightarrow \Phi|_E$ is minimal.

Proof. Use Θ .

Theorem

 \mathcal{X} is a normed space, $\Omega \subseteq \mathcal{X}$ is open and connected, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ is analytic, $\emptyset \neq \Omega_0 \subseteq \Omega$ is open, $\varphi(\Omega_0)$ consists of normal operators. Then $\varphi(\Omega)$ consists of commuting normal operators.

This is a generalized theorem of Globevnik & Vidav, 1973; they considered only $\mathcal{X} = \mathbb{C}$.

Proposition

 \mathcal{X} , \varOmega as above, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ analytic,

 $E \subseteq \Omega$ is a set of uniqueness (e.g. nonempty & open) Then

- $\varphi|_E$ is jointly subnormal $\Leftrightarrow \varphi$ is jointly subnormal,
- if so, $\Phi \colon \Omega \to \mathbf{B}(\mathcal{K})$ is minimal $\Leftrightarrow \Phi|_E$ is minimal.

Proof. Use Θ .

Theorem

 \mathcal{X} is a normed space, $\Omega \subseteq \mathcal{X}$ is open and connected, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ is analytic, $\emptyset \neq \Omega_0 \subseteq \Omega$ is open, $\varphi(\Omega_0)$ consists of normal operators. Then $\varphi(\Omega)$ consists of commuting normal operators.

This is a generalized theorem of Globevnik & Vidav, 1973; they considered only $\mathcal{X} = \mathbb{C}$.

Proposition

 \mathcal{X} , \varOmega as above, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ analytic,

 $E \subseteq \Omega$ is a set of uniqueness (e.g. nonempty & open) Then

- $\varphi|_E$ is jointly subnormal $\Leftrightarrow \varphi$ is jointly subnormal,
- if so, $\Phi \colon \Omega \to \mathbf{B}(\mathcal{K})$ is minimal $\Leftrightarrow \Phi|_E$ is minimal.

Proof. Use Θ .

・ 同 ト ・ ヨ ト ・ ヨ ト

 \mathcal{X} is a normed space, $\Omega \subseteq \mathcal{X}$ is open and connected, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ is analytic, $\emptyset \neq \Omega_0 \subseteq \Omega$ is open, $\varphi(\Omega_0)$ consists of normal operators. Then $\varphi(\Omega)$ consists of commuting normal operators.

 \mathcal{X} is a normed space, $\Omega \subseteq \mathcal{X}$ is open and connected, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ is analytic, $\emptyset \neq \Omega_0 \subseteq \Omega$ is open, $\varphi(\Omega_0)$ consists of normal operators. Then $\varphi(\Omega)$ consists of commuting normal operators.

 \mathcal{X} is a normed space, $\Omega \subseteq \mathcal{X}$ is open and connected, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ is analytic, $\emptyset \neq \Omega_0 \subseteq \Omega$ is open, $\varphi(\Omega_0)$ consists of normal operators. Then $\varphi(\Omega)$ consists of commuting normal operators.

 \mathcal{X} is a normed space, $\Omega \subseteq \mathcal{X}$ is open and connected, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ is analytic, $\emptyset \neq \Omega_0 \subseteq \Omega$ is open, $\varphi(\Omega_0)$ consists of normal operators. Then $\varphi(\Omega)$ consists of commuting normal operators.

 \mathcal{X} is a normed space, $\Omega \subseteq \mathcal{X}$ is open and connected, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ is analytic, $\emptyset \neq \Omega_0 \subseteq \Omega$ is open, $\varphi(\Omega_0)$ consists of normal operators. Then $\varphi(\Omega)$ consists of commuting normal operators.

Question.

 \mathcal{X} is a normed space, $\Omega \subseteq \mathcal{X}$ is open and connected, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ is analytic, $\emptyset \neq \Omega_0 \subseteq \Omega$ is open, $\varphi(\Omega_0)$ consists of normal operators. Then $\varphi(\Omega)$ consists of commuting normal operators.

Question.

$U \in \mathbf{B}(\mathcal{H})$ unitary, $T \in \mathbf{B}(\mathcal{H})$, satisfy

 $T^*U = T^*T$ and $TU \neq UT$. (1)

Remark. T satisfies (1) \iff T = UP with some orthogonal projection P such that PU \neq UP.

Let $\varphi \colon \mathbb{C} \to \mathbf{B}(\mathcal{H})$ be defined by $\varphi(z) = U + zT, \quad z \in \mathbb{C}.$ Then

• $E \stackrel{\text{\tiny def}}{=} \{z \in \mathbb{C} : |1 + z| = 1\}$ is a set of uniqueness in \mathbb{C} and

• $\varphi(E)$ consists of unitary operators, **but**

• $\varphi(\mathbb{C})$ is not commutative and $\varphi(\mathbb{C})$ is not a family of normal operators.

If moreover U and T are such that $T(\mathcal{H}) \nsubseteq T^*(\mathcal{H})$ and $T^*(\mathcal{H}) \nsubseteq T(\mathcal{H})$, then

arphi(z) is neither hyponormal nor cohyponormal for all $z\in\mathbb{C}\setminus\mathsf{E}$.

$$U \in \mathbf{B}(\mathcal{H})$$
 unitary, $T \in \mathbf{B}(\mathcal{H})$, satisfy

$$T^*U = T^*T$$
 and $TU \neq UT$. (1)

Remark. T satisfies (1) \iff T = UP with some orthogonal projection P such that $PU \neq UP$.

Let $\varphi \colon \mathbb{C} \to \mathbf{B}(\mathcal{H})$ be defined by $\varphi(z) = U + zT, \quad z \in \mathbb{C}.$ Then

• $E \stackrel{\text{\tiny def}}{=} \{z \in \mathbb{C} : |1 + z| = 1\}$ is a set of uniqueness in \mathbb{C} and

• $\varphi(E)$ consists of unitary operators, **but**

• $\varphi(\mathbb{C})$ is not commutative and $\varphi(\mathbb{C})$ is not a family of normal operators.

If moreover U and T are such that $T(\mathcal{H}) \nsubseteq T^*(\mathcal{H})$ and $T^*(\mathcal{H}) \nsubseteq T(\mathcal{H})$, then

arphi(z) is neither hyponormal nor cohyponormal for all $z\in\mathbb{C}\setminus\mathsf{E}$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

$$U \in \mathbf{B}(\mathcal{H})$$
 unitary, $T \in \mathbf{B}(\mathcal{H})$, satisfy

$$T^*U = T^*T$$
 and $TU \neq UT$. (1)

Remark. T satisfies (1) $\iff T = UP$ with some orthogonal projection P such that $PU \neq UP$. Let $\varphi \colon \mathbb{C} \to \mathbf{B}(\mathcal{H})$ be defined by $\varphi(z) = U + zT$, $z \in \mathbb{C}$. Then • $E \stackrel{\text{def}}{=} \{z \in \mathbb{C} \colon |1 + z| = 1\}$ is a set of uniqueness in \mathbb{C} and • $\varphi(\mathbb{C})$ consists of unitary operators, **but** • $\varphi(\mathbb{C})$ is not commutative and $\varphi(\mathbb{C})$ is not a family of normal operators. If moreover U and T are such that $T(\mathcal{H}) \nsubseteq T^*(\mathcal{H})$ and $T^*(\mathcal{H}) \not\subset T(\mathcal{H})$ then

arphi(z) is neither hyponormal nor cohyponormal for all $z\in\mathbb{C}\setminus\mathsf{E}$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

$$U \in \mathbf{B}(\mathcal{H})$$
 unitary, $T \in \mathbf{B}(\mathcal{H})$, satisfy

$$T^*U = T^*T$$
 and $TU \neq UT$. (1)

Remark. T satisfies (1) \iff T = UP with some orthogonal projection P such that $PU \neq UP$. Let $\varphi \colon \mathbb{C} \to \mathbf{B}(\mathcal{H})$ be defined by $\varphi(z) = U + zT$, $z \in \mathbb{C}$. Then

• $E \stackrel{\text{\tiny def}}{=} \{z \in \mathbb{C} \colon |1+z| = 1\}$ is a set of uniqueness in \mathbb{C} and

• $\varphi(E)$ consists of unitary operators, **but**

• $\varphi(\mathbb{C})$ is not commutative and $\varphi(\mathbb{C})$ is not a family of normal operators.

If moreover U and T are such that $T(\mathcal{H}) \nsubseteq T^*(\mathcal{H})$ and $T^*(\mathcal{H}) \nleftrightarrow T(\mathcal{H})$ then

arphi(z) is neither hyponormal nor cohyponormal for all $z\in\mathbb{C}\setminus\mathsf{E}$.

- 4 同 ト 4 ヨ ト 4 ヨ ト

$$U \in \mathbf{B}(\mathcal{H})$$
 unitary, $T \in \mathbf{B}(\mathcal{H})$, satisfy

$$T^*U = T^*T$$
 and $TU \neq UT$. (1)

Remark. T satisfies (1) \iff T = UP with some orthogonal projection P such that $PU \neq UP$. Let $\varphi \colon \mathbb{C} \to \mathbf{B}(\mathcal{H})$ be defined by $\varphi(z) = U + zT$, $z \in \mathbb{C}$. Then

• $E \stackrel{\text{\tiny def}}{=} \{z \in \mathbb{C} \colon |1+z| = 1\}$ is a set of uniqueness in \mathbb{C} and

• $\varphi(E)$ consists of unitary operators, **but**

• $\varphi(\mathbb{C})$ is not commutative and $\varphi(\mathbb{C})$ is not a family of normal operators.

If moreover U and T are such that $T(\mathcal{H}) \nsubseteq T^*(\mathcal{H})$ and $T^*(\mathcal{H}) \not\subset T(\mathcal{H})$ then

arphi(z) is neither hyponormal nor cohyponormal for all $z\in\mathbb{C}\setminus\mathsf{E}$.

- 4 同 6 4 日 6 4 日 6

$$U \in \mathbf{B}(\mathcal{H})$$
 unitary, $T \in \mathbf{B}(\mathcal{H})$, satisfy

$$T^*U = T^*T$$
 and $TU \neq UT$. (1)

Remark. T satisfies (1) \iff T = UP with some orthogonal projection P such that $PU \neq UP$. Let $\varphi : \mathbb{C} \rightarrow \mathbf{B}(\mathcal{H})$ be defined by $\varphi(z) = U + zT$, $z \in \mathbb{C}$. Then

• $E \stackrel{\text{\tiny def}}{=} \{z \in \mathbb{C} \colon |1+z| = 1\}$ is a set of uniqueness in \mathbb{C} and

• $\varphi(E)$ consists of unitary operators, **but**

• $\varphi(\mathbb{C})$ is not commutative and $\varphi(\mathbb{C})$ is not a family of normal operators.

If moreover U and T are such that $T(\mathcal{H}) \nsubseteq T^*(\mathcal{H})$ and $T^*(\mathcal{H}) \nsubseteq T(\mathcal{H})$, then

arphi(z) is neither hyponormal nor cohyponormal for all $z\in\mathbb{C}\setminus\mathsf{E}$.

$$U \in \mathbf{B}(\mathcal{H})$$
 unitary, $T \in \mathbf{B}(\mathcal{H})$, satisfy

$$T^*U = T^*T$$
 and $TU \neq UT$. (1)

Remark. T satisfies (1) \iff T = UP with some orthogonal projection P such that $PU \neq UP$. Let $\varphi : \mathbb{C} \rightarrow \mathbf{B}(\mathcal{H})$ be defined by $\varphi(z) = U + zT$, $z \in \mathbb{C}$. Then

- $E \stackrel{\text{\tiny def}}{=} \{z \in \mathbb{C} \colon |1+z| = 1\}$ is a set of uniqueness in \mathbb{C} and
- $\varphi(E)$ consists of unitary operators, **but**
- $\varphi(\mathbb{C})$ is not commutative and $\varphi(\mathbb{C})$ is not a family of normal operators.

If moreover U and T are such that $T(\mathcal{H}) \nsubseteq T^*(\mathcal{H})$ and $T^*(\mathcal{H}) \nsubseteq T(\mathcal{H})$, then

arphi(z) is neither hyponormal nor cohyponormal for all $z\in\mathbb{C}\setminus\mathsf{E}$.

- 4 同 6 4 日 6 4 日 6

$$U \in \mathbf{B}(\mathcal{H})$$
 unitary, $T \in \mathbf{B}(\mathcal{H})$, satisfy

$$T^*U = T^*T$$
 and $TU \neq UT$. (1)

Remark. T satisfies (1) \iff T = UP with some orthogonal projection P such that $PU \neq UP$. Let $\varphi : \mathbb{C} \rightarrow \mathbf{B}(\mathcal{H})$ be defined by $\varphi(z) = U + zT$, $z \in \mathbb{C}$. Then

- $E \stackrel{\text{\tiny def}}{=} \{z \in \mathbb{C} \colon |1+z| = 1\}$ is a set of uniqueness in \mathbb{C} and
- $\varphi(E)$ consists of unitary operators, **but**
- $\varphi(\mathbb{C})$ is not commutative and $\varphi(\mathbb{C})$ is not a family of normal operators.

If moreover U and T are such that $T(\mathcal{H}) \nsubseteq T^*(\mathcal{H})$ and $T^*(\mathcal{H}) \nsubseteq T(\mathcal{H})$, then

 $\varphi(z)$ is neither hyponormal nor cohyponormal for all $z \in \mathbb{C} \setminus E$.

A (B) < (B) < (B) </p>

 $(U+zT)(U+zT)^* = UU^* + zTU^* + \bar{z}UT^* + |z|^2TT^* = \dots$

now, $T^*U = T^*T$ implies $TU^* = TT^*$ (\leftarrow nice exercise):

... =
$$I + (2 \Re e z + |z|^2) TT^* = I + (|z+1|^2 - 1) TT^* = I$$

=0 on E

In the same manner $(U + zT)^*(U + zT) = I$

 $(U+zT)(U+zT)^* = UU^* + zTU^* + \bar{z}UT^* + |z|^2TT^* = \dots$

now, $T^*U = T^*T$ implies $TU^* = TT^*$ (\leftarrow nice exercise):

... =
$$I + (2 \Re e z + |z|^2) TT^* = I + (|z+1|^2 - 1) TT^* = I$$

=0 on E

In the same manner $(U + zT)^*(U + zT) = I$

同 ト イヨ ト イヨ ト ヨ うくや

$$(U+zT)(U+zT)^* = UU^* + zTU^* + \bar{z}UT^* + |z|^2TT^* = \dots$$

now, $T^*U = T^*T$ implies $TU^* = TT^*$ (\leftarrow nice exercise):

... =
$$I + (2 \Re e z + |z|^2) TT^* = I + (|z+1|^2 - 1) TT^* = I$$

=0 on E

In the same manner $(U + zT)^*(U + zT) = I$

• • = • • = •

3

$$(U+zT)(U+zT)^* = UU^* + zTU^* + \bar{z}UT^* + |z|^2TT^* = \dots$$

now, $T^*U = T^*T$ implies $TU^* = TT^*$ (\leftarrow nice exercise):

... =
$$I + (2 \Re e z + |z|^2) TT^* = I + (|z+1|^2 - 1) TT^* = I$$

=0 on E

In the same manner $(U + zT)^*(U + zT) = I$

• • = • • = •

3

$$(U+zT)(U+zT)^* = UU^* + zTU^* + \bar{z}UT^* + |z|^2TT^* = \dots$$

now, $T^*U = T^*T$ implies $TU^* = TT^*$ (\leftarrow nice exercise):

... =
$$I + (2 \Re e z + |z|^2) TT^* = I + (\underbrace{|z+1|^2 - 1}_{=0 \text{ on } E}) TT^* = I$$

In the same manner $(U + zT)^*(U + zT) = I$

 \mathcal{X} is a normed space, $\Omega \subseteq \mathcal{X}$ is open and connected, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ is analytic, $\emptyset \neq \Omega_0 \subseteq \Omega$ is open, $\varphi(\Omega_0)$ consists of normal operators. Then $\varphi(\Omega)$ consists of commuting normal operators.

Question. May we assume that $\varphi(\Omega_0)$ consists of **subnormal** operators?

Answer is yes/no/I don't know.

The Catepillán–Szymanski example shows that the function

$$\mathbb{C} \ni z \mapsto V_1 + zV_2 \in \mathbf{B}(\mathcal{H})$$

solves the problem in the negative. (Recall: V_1, V_2 – isometries with orthogonal ranges.)

A (10) < (10) </p>

 \mathcal{X} is a normed space, $\Omega \subseteq \mathcal{X}$ is open and connected, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ is analytic, $\emptyset \neq \Omega_0 \subseteq \Omega$ is open,

 $\varphi(\Omega_0)$ consists of normal operators.

Then $\varphi(\Omega)$ consists of commuting normal operators.

Question. May we assume that $\varphi(\Omega_0)$ consists of **subnormal** operators?

Answer is yes/no/l don't know.

The Catepillán–Szymanski example shows that the function

$$\mathbb{C} \ni z \mapsto V_1 + zV_2 \in \mathbf{B}(\mathcal{H})$$

solves the problem in the negative. (Recall: V_1 , V_2 – isometries with orthogonal ranges.)

A I > A I > A I

 \mathcal{X} is a normed space, $\Omega \subseteq \mathcal{X}$ is open and connected, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ is analytic, $\emptyset \neq \Omega_0 \subseteq \Omega$ is open, $\varphi(\Omega_0)$ consists of normal operators.

Then $\varphi(\Omega)$ consists of commuting normal operators.

Question. May we assume that $\varphi(\Omega_0)$ consists of **subnormal** operators?

Answer is yes/no/I don't know.

The Catepillán–Szymanski example shows that the function

$$\mathbb{C} \ni z \mapsto V_1 + zV_2 \in \mathbf{B}(\mathcal{H})$$

solves the problem in the negative. (Recall: V_1 , V_2 – isometries with orthogonal ranges.)

・ 同 ト ・ ヨ ト ・ ヨ ト

 \mathcal{X} is a normed space, $\Omega \subseteq \mathcal{X}$ is open and connected, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ is analytic, $\emptyset \neq \Omega_0 \subseteq \Omega$ is open, $\varphi(\Omega_0)$ consists of normal operators. Then $\varphi(\Omega)$ consists of commuting normal operators.

Question. May we assume that $\varphi(\Omega_0)$ consists of **subnormal** operators?

Answer is yes/no/I don't know.

The Catepillán–Szymanski example shows that the function

$$\mathbb{C} \ni z \mapsto V_1 + zV_2 \in \mathbf{B}(\mathcal{H})$$

solves the problem in the negative. (Recall: V_1, V_2 – isometries with orthogonal ranges.)

▲□ ▶ ▲ □ ▶ ▲ □ ▶

 \mathcal{X} is a normed space, $\Omega \subseteq \mathcal{X}$ is open and connected, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ is analytic, $\emptyset \neq \Omega_0 \subseteq \Omega$ is open, $\varphi(\Omega_0)$ consists of normal operators. Then $\varphi(\Omega)$ consists of commuting normal operators.

Question. May we assume that $\varphi(\Omega_0)$ consists of **subnormal** operators?

Answer is yes/no/I don't know.

The Catepillán–Szymanski example shows that the function

$$\mathbb{C} \ni z \mapsto V_1 + zV_2 \in \mathbf{B}(\mathcal{H})$$

solves the problem in the negative. (Recall: V_1, V_2 – isometries with orthogonal ranges.)

Theorem

 \mathcal{X} is a normed space, $\Omega \subseteq \mathcal{X}$ is open and connected, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ is analytic, $\emptyset \neq \Omega_0 \subseteq \Omega$ is open, $\varphi(\Omega_0)$ consists of normal operators. Then $\varphi(\Omega)$ consists of commuting normal operators.

Question. May we assume that $\varphi(\Omega_0)$ consists of **subnormal** operators?

Answer is yes/no/I don't know.

The Catepillán-Szymanski example shows that the function

 $\mathbb{C} \ni z \mapsto V_1 + zV_2 \in \mathbf{B}(\mathcal{H})$

solves the problem in the negative. (Recall: V_1, V_2 – isometries with orthogonal ranges.)

▲□ ▶ ▲ □ ▶ ▲ □ ▶

Theorem

 \mathcal{X} is a normed space, $\Omega \subseteq \mathcal{X}$ is open and connected, $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ is analytic, $\emptyset \neq \Omega_0 \subseteq \Omega$ is open, $\varphi(\Omega_0)$ consists of normal operators. Then $\varphi(\Omega)$ consists of commuting normal operators.

Question. May we assume that $\varphi(\Omega_0)$ consists of subnormal operators?

Answer is yes/no/I don't know.

The Catepillán-Szymanski example shows that the function

$$\mathbb{C} \ni z \mapsto V_1 + zV_2 \in \mathbf{B}(\mathcal{H})$$

solves the problem in the negative. (Recall: V_1, V_2 – isometries with orthogonal ranges.)

Question. Is it possible to find an analytic function $\varphi : \Omega \to \mathbf{B}(\mathcal{H})$ such that the sets • $\{z \in \Omega : \varphi \text{ is subnormal}\}$ and • $\{z \in \Omega : \varphi \text{ is not subnormal}\}$ have both non-empty interior? (Ω is connected open.)

Question. Is it possible to find an analytic function $\varphi : \Omega \to \mathbf{B}(\mathcal{H})$ such that the sets • $\{z \in \Omega : \varphi \text{ is subnormal}\}$ and • $\{z \in \Omega : \varphi \text{ is not subnormal}\}$ have both non-empty interior? (Ω is connected open.)

Question. Is it possible to find an analytic function $\varphi : \Omega \to \mathbf{B}(\mathcal{H})$ such that the sets • $\{z \in \Omega : \varphi \text{ is subnormal}\}$ and • $\{z \in \Omega : \varphi \text{ is not subnormal}\}$

have both non-empty interior? (arOmega is connected open.)

Question. Is it possible to find an analytic function $\varphi : \Omega \to \mathbf{B}(\mathcal{H})$ such that the sets • $\{z \in \Omega : \varphi \text{ is subnormal}\}$ and • $\{z \in \Omega : \varphi \text{ is not subnormal}\}$ have both non-empty interior? (Ω is connected open.)

There exists analytic $\varphi \colon \mathbb{C} \to \mathbf{B}(\mathcal{H})$ such that

- $1^\circ \; arphi(z)$ is subnormal if |z| < 1 ,
- $2^{\circ} \,\, arphi(z)$ is a non-unitary isometry if |z|=1,
- $3^{\circ} \ \varphi(z)$ is not hyponormal if |z| > 1,
- $4^{\circ} \varphi(z)^*$ is never hyponormal.

Construction.

Let $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, $\mathcal{H}_1 \neq \{0\}$ and $\mathcal{H}_2 \neq \{0\}$, $V \in \mathbf{B}(\mathcal{H}_1)$ is a non-unitary isometry $V \in \mathbf{B}(\mathcal{H}_1)$ $X : \mathcal{H}_2 \to \mathcal{H}_1$ is a linear isometry such that $V(\mathcal{H}_1) \perp X(\mathcal{H}_2)$. Then $\varphi : \mathbb{C} \to \mathbf{B}(\mathcal{H})$ defined by

$$arphi(z) = egin{bmatrix} V & zX \ 0 & 0 \end{bmatrix}, \quad z \in \mathbb{C},$$

There exists analytic $\varphi \colon \mathbb{C} \to \mathbf{B}(\mathcal{H})$ such that

- $1^{\circ} \ \varphi(z)$ is subnormal if |z| < 1,
- $2^\circ \,\, arphi(z)$ is a non-unitary isometry if |z|=1 ,
- $3^{\circ} \ \varphi(z)$ is not hyponormal if |z| > 1,
- $4^{\circ} \varphi(z)^{*}$ is never hyponormal.

Construction.

Let $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, $\mathcal{H}_1 \neq \{0\}$ and $\mathcal{H}_2 \neq \{0\}$, $V \in \mathbf{B}(\mathcal{H}_1)$ is a non-unitary isometry $V \in \mathbf{B}(\mathcal{H}_1)$ $X : \mathcal{H}_2 \to \mathcal{H}_1$ is a linear isometry such that $V(\mathcal{H}_1) \perp X(\mathcal{H}_2)$. Then $\varphi : \mathbb{C} \to \mathbf{B}(\mathcal{H})$ defined by

$$arphi(z) = egin{bmatrix} V & zX \ 0 & 0 \end{bmatrix}, \quad z \in \mathbb{C},$$

There exists analytic $\varphi \colon \mathbb{C} \to \mathbf{B}(\mathcal{H})$ such that

$$1^\circ ~arphi(z)$$
 is subnormal if $|z| < 1$,

 $2^{\circ} \ \varphi(z)$ is a non-unitary isometry if |z|=1,

 $3^\circ \,\, arphi(z)$ is not hyponormal if |z|>1,

 $4^{\circ} \varphi(z)^{*}$ is never hyponormal.

Construction.

Let $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, $\mathcal{H}_1 \neq \{0\}$ and $\mathcal{H}_2 \neq \{0\}$, $V \in \mathbf{B}(\mathcal{H}_1)$ is a non-unitary isometry $V \in \mathbf{B}(\mathcal{H}_1)$ $X : \mathcal{H}_2 \to \mathcal{H}_1$ is a linear isometry such that $V(\mathcal{H}_1) \perp X(\mathcal{H}_2)$. Then $\varphi : \mathbb{C} \to \mathbf{B}(\mathcal{H})$ defined by

$$arphi(z) = egin{bmatrix} V & zX \ 0 & 0 \end{bmatrix}, \quad z \in \mathbb{C},$$

There exists analytic $\varphi \colon \mathbb{C} \to \mathbf{B}(\mathcal{H})$ such that

- $1^\circ \ arphi(z)$ is subnormal if |z| < 1,
- $2^{\circ} \ \varphi(z)$ is a non-unitary isometry if |z| = 1,
- $3^{\circ} \ \varphi(z)$ is not hyponormal if |z| > 1,
- $4^{\circ} \varphi(z)^{*}$ is never hyponormal.

Construction.

Let $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, $\mathcal{H}_1 \neq \{0\}$ and $\mathcal{H}_2 \neq \{0\}$, $V \in \mathbf{B}(\mathcal{H}_1)$ is a non-unitary isometry $V \in \mathbf{B}(\mathcal{H}_1)$ $X : \mathcal{H}_2 \to \mathcal{H}_1$ is a linear isometry such that $V(\mathcal{H}_1) \perp X(\mathcal{H}_2)$. Then $\varphi : \mathbb{C} \to \mathbf{B}(\mathcal{H})$ defined by

$$\varphi(z) = \begin{bmatrix} V & zX \\ 0 & 0 \end{bmatrix}, \quad z \in \mathbb{C},$$

There exists analytic $\varphi \colon \mathbb{C} \to \mathbf{B}(\mathcal{H})$ such that

 $1^\circ \ arphi(z)$ is subnormal if |z| < 1,

 $2^{\circ} \ \varphi(z)$ is a non-unitary isometry if |z|=1,

- $3^{\circ} \ \varphi(z)$ is not hyponormal if |z| > 1,
- 4° $\varphi(z)^*$ is never hyponormal.

Construction.

Let $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, $\mathcal{H}_1 \neq \{0\}$ and $\mathcal{H}_2 \neq \{0\}$, $V \in \mathbf{B}(\mathcal{H}_1)$ is a non-unitary isometry $V \in \mathbf{B}(\mathcal{H}_1)$ $X : \mathcal{H}_2 \to \mathcal{H}_1$ is a linear isometry such that $V(\mathcal{H}_1) \perp X(\mathcal{H}_2)$. Then $\varphi : \mathbb{C} \to \mathbf{B}(\mathcal{H})$ defined by

$$\varphi(z) = \begin{bmatrix} V & zX \\ 0 & 0 \end{bmatrix}, \quad z \in \mathbb{C},$$

There exists analytic $\varphi \colon \mathbb{C} \to \mathbf{B}(\mathcal{H})$ such that

$$1^\circ ~arphi(z)$$
 is subnormal if $|z| < 1$,

 $2^{\circ} \ \varphi(z)$ is a non-unitary isometry if |z|=1,

$$3^\circ \,\, arphi(z)$$
 is not hyponormal if $|z|>1$,

4°
$$\varphi(z)^*$$
 is never hyponormal.

Construction.

Let $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, $\mathcal{H}_1 \neq \{0\}$ and $\mathcal{H}_2 \neq \{0\}$,

 $V \in \mathbf{B}(\mathcal{H}_1)$ is a non-unitary isometry $V \in \mathbf{B}(\mathcal{H}_1)$ $X : \mathcal{H}_2 \to \mathcal{H}_1$ is a linear isometry such that $V(\mathcal{H}_1) \perp X(\mathcal{H}_2)$. Then $\varphi : \mathbb{C} \to \mathbf{B}(\mathcal{H})$ defined by

$$\varphi(z) = \begin{bmatrix} V & zX \\ 0 & 0 \end{bmatrix}, \quad z \in \mathbb{C},$$

There exists analytic $\varphi \colon \mathbb{C} \to \mathbf{B}(\mathcal{H})$ such that

$$1^\circ ~arphi(z)$$
 is subnormal if $|z| < 1$,

 $2^{\circ} \ \varphi(z)$ is a non-unitary isometry if |z|=1,

$$3^\circ \,\, arphi(z)$$
 is not hyponormal if $|z|>1$,

4°
$$\varphi(z)^*$$
 is never hyponormal.

Construction.

Let $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, $\mathcal{H}_1 \neq \{0\}$ and $\mathcal{H}_2 \neq \{0\}$, $V \in \mathbf{B}(\mathcal{H}_1)$ is a non-unitary isometry $V \in \mathbf{B}(\mathcal{H}_1)$ $X : \mathcal{H}_2 \to \mathcal{H}_1$ is a linear isometry such that $V(\mathcal{H}_1) \perp X(\mathcal{H}_2)$ Then $\varphi : \mathbb{C} \to \mathbf{B}(\mathcal{H})$ defined by

$$\varphi(z) = \begin{bmatrix} V & zX \\ 0 & 0 \end{bmatrix}, \quad z \in \mathbb{C},$$

There exists analytic $\varphi \colon \mathbb{C} \to \mathbf{B}(\mathcal{H})$ such that

$$1^\circ ~arphi(z)$$
 is subnormal if $|z| < 1$,

 $2^{\circ} \ \varphi(z)$ is a non-unitary isometry if |z|=1,

$$\mathfrak{Z}^\circ \,\, arphi(z)$$
 is not hyponormal if $|z|>1$,

4°
$$\varphi(z)^*$$
 is never hyponormal.

Construction.

Let $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, $\mathcal{H}_1 \neq \{0\}$ and $\mathcal{H}_2 \neq \{0\}$, $V \in \mathbf{B}(\mathcal{H}_1)$ is a non-unitary isometry $V \in \mathbf{B}(\mathcal{H}_1)$ $X : \mathcal{H}_2 \to \mathcal{H}_1$ is a linear isometry such that $V(\mathcal{H}_1) \perp X(\mathcal{H}_2)$. Then $\varphi : \mathbb{C} \to \mathbf{B}(\mathcal{H})$ defined by

$$\varphi(z) = \begin{bmatrix} V & zX \\ 0 & 0 \end{bmatrix}, \quad z \in \mathbb{C},$$

There exists analytic $\varphi \colon \mathbb{C} \to \mathbf{B}(\mathcal{H})$ such that

$$1^\circ ~arphi(z)$$
 is subnormal if $|z| < 1$,

 $2^{\circ} \ \varphi(z)$ is a non-unitary isometry if |z|=1,

$$3^\circ \,\, arphi(z)$$
 is not hyponormal if $|z|>1$,

4°
$$\varphi(z)^*$$
 is never hyponormal.

Construction.

Let $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, $\mathcal{H}_1 \neq \{0\}$ and $\mathcal{H}_2 \neq \{0\}$, $V \in \mathbf{B}(\mathcal{H}_1)$ is a non-unitary isometry $V \in \mathbf{B}(\mathcal{H}_1)$ $X : \mathcal{H}_2 \to \mathcal{H}_1$ is a linear isometry such that $V(\mathcal{H}_1) \perp X(\mathcal{H}_2)$. Then $\varphi : \mathbb{C} \to \mathbf{B}(\mathcal{H})$ defined by

$$arphi(z) = egin{bmatrix} V & zX \ 0 & 0 \end{bmatrix}, \quad z \in \mathbb{C},$$

Proof of 1° follows from an auxiliary fact: If V is an isometry, then

$$S = egin{bmatrix} V & X \ 0 & 0 \end{bmatrix} \in \mathbf{B}(\mathcal{H}), \quad (\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2)$$

is subnormal $\iff \|S\| \leqslant 1 \iff \|X\| \leqslant 1$ and $V(\mathcal{H}_1) \perp X(\mathcal{H}_2)$

The proof of subnormality is based on

- $\{\|S^nh\|^2\}_{n=0}^{\infty}$ is constant for $n \ge 1$
- Lambert's theorem: S subnormal $\iff \{\|S^nh\|^2\}_{n=0}^{\infty}$ is a moment sequence for every $h \in \mathcal{H}$ (here $S \in \mathbf{B}(\mathcal{H})$ is arbitrary). Indeed,

$$\|S^nh\|^2 = \int_0^\infty t^n \mathrm{d}\mu_h(t), \quad n \ge 0,$$

Proof of 1° follows from an auxiliary fact: If V is an isometry, then

$$S = egin{bmatrix} V & X \ 0 & 0 \end{bmatrix} \in \mathbf{B}(\mathcal{H}), \quad (\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2)$$

 $\text{is subnormal} \iff \|S\| \leqslant 1 \iff \|X\| \leqslant 1 \text{ and } V(\mathcal{H}_1) \perp X(\mathcal{H}_2)$

The proof of subnormality is based on

• $\{\|S^nh\|^2\}_{n=0}^{\infty}$ is constant for $n \ge 1$

• Lambert's theorem: *S* subnormal $\iff \{ \|S^n h\|^2 \}_{n=0}^{\infty}$ is a moment sequence for every $h \in \mathcal{H}$ (here $S \in \mathbf{B}(\mathcal{H})$ is arbitrary). Indeed,

$$\|S^nh\|^2 = \int_0^\infty t^n \mathrm{d}\mu_h(t), \quad n \ge 0,$$

Proof of 1° follows from an auxiliary fact: If V is an isometry, then

$$S = egin{bmatrix} V & X \ 0 & 0 \end{bmatrix} \in \mathbf{B}(\mathcal{H}), \quad (\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2)$$

 $\text{is subnormal} \iff \|S\| \leqslant 1 \iff \|X\| \leqslant 1 \text{ and } V(\mathcal{H}_1) \perp X(\mathcal{H}_2)$

The proof of subnormality is based on

• $\{\|S^nh\|^2\}_{n=0}^{\infty}$ is constant for $n \ge 1$ • Lambert's theorem: *S* subnormal $\iff \{\|S^nh\|^2\}_{n=0}^{\infty}$ is a moment sequence for every $h \in \mathcal{H}$ (here $S \in \mathbf{B}(\mathcal{H})$ is arbitrary). Indeed,

$$\|S^nh\|^2 = \int_0^\infty t^n \mathrm{d}\mu_h(t), \quad n \ge 0,$$

Proof of 1° follows from an auxiliary fact: If V is an isometry, then

$$S = egin{bmatrix} V & X \ 0 & 0 \end{bmatrix} \in \mathbf{B}(\mathcal{H}), \quad (\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2)$$

 $\text{is subnormal} \iff \|S\| \leqslant 1 \iff \|X\| \leqslant 1 \text{ and } V(\mathcal{H}_1) \perp X(\mathcal{H}_2)$

The proof of subnormality is based on

• $\{\|S^nh\|^2\}_{n=0}^{\infty}$ is constant for $n \ge 1$

• Lambert's theorem: *S* subnormal $\iff \{\|S^nh\|^2\}_{n=0}^{\infty}$ is a moment sequence for every $h \in \mathcal{H}$ (here $S \in \mathbf{B}(\mathcal{H})$ is arbitrary). Indeed,

$$\|S^nh\|^2 = \int_0^\infty t^n \mathrm{d}\mu_h(t), \quad n \ge 0,$$

Proof of 1° follows from an auxiliary fact: If V is an isometry, then

$$S = egin{bmatrix} V & X \ 0 & 0 \end{bmatrix} \in \mathbf{B}(\mathcal{H}), \quad (\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2)$$

 $\text{is subnormal} \iff \|S\| \leqslant 1 \iff \|X\| \leqslant 1 \text{ and } V(\mathcal{H}_1) \perp X(\mathcal{H}_2)$

The proof of subnormality is based on

- $\{\|S^nh\|^2\}_{n=0}^{\infty}$ is constant for $n \ge 1$
- Lambert's theorem: S subnormal $\iff \{ \|S^n h\|^2 \}_{n=0}^{\infty}$ is a moment sequence for every $h \in \mathcal{H}$ (here $S \in \mathbf{B}(\mathcal{H})$ is arbitrary). Indeed,

$$\|S^nh\|^2 = \int_0^\infty t^n \mathrm{d}\mu_h(t), \quad n \ge 0,$$

Proof of 1° follows from an auxiliary fact: If V is an isometry, then

$$S = egin{bmatrix} V & X \ 0 & 0 \end{bmatrix} \in \mathbf{B}(\mathcal{H}), \quad (\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2)$$

 $\text{is subnormal} \iff \|S\| \leqslant 1 \iff \|X\| \leqslant 1 \text{ and } V(\mathcal{H}_1) \perp X(\mathcal{H}_2)$

The proof of subnormality is based on

- ${||S^nh||^2}_{n=0}^{\infty}$ is constant for $n \ge 1$
- Lambert's theorem: S subnormal $\iff \{ \|S^n h\|^2 \}_{n=0}^{\infty}$ is a moment sequence for every $h \in \mathcal{H}$ (here $S \in \mathbf{B}(\mathcal{H})$ is arbitrary). Indeed,

$$\|S^nh\|^2 = \int_0^\infty t^n \mathrm{d}\mu_h(t), \quad n \ge 0,$$

If
$$S = \begin{bmatrix} V & X \\ 0 & 0 \end{bmatrix} \in \mathbf{B}(\mathcal{H})$$
 is subnormal, then

 \mathcal{H}_3 is the closure of the range of $|X|\sqrt{I-|X|^2}$,

 $D \stackrel{\text{\tiny def}}{=} \sqrt{I - |X|^2} J$, $J \colon \mathcal{H}_3 \to \mathcal{H}_2$ is the identity embedding,

 $Q \stackrel{\text{\tiny def}}{=} WD$, W is the partial isometry in the polar decomposition

X = W|X|, while P is the orthogonal projection of \mathcal{H}_1 onto

$\mathcal{H}_1 \ominus \overline{V(\mathcal{H}_1) + X(\mathcal{H}_2)}.$

If
$$S = \begin{bmatrix} V & X \\ 0 & 0 \end{bmatrix} \in \mathbf{B}(\mathcal{H})$$
 is subnormal, then

$$N \stackrel{\text{def}}{=} \begin{bmatrix} V & X & Q & P & 0 & 0 \\ 0 & 0 & 0 & 0 & |X|^2 & |X|D \\ 0 & 0 & 0 & 0 & D^*|X| & D^*D \\ 0 & 0 & 0 & V^* & 0 & 0 \\ 0 & 0 & 0 & X^* & 0 & 0 \\ 0 & 0 & 0 & Q^* & 0 & 0 \end{bmatrix}$$

 \mathcal{H}_3 is the closure of the range of $|X|\sqrt{I-|X|^2}$,

 $D\stackrel{\scriptscriptstyle
m def}{=} \sqrt{I-|X|^2}\,J,\ J\colon \mathcal{H}_3 o\mathcal{H}_2$ is the identity embedding,

 $Q \stackrel{\text{\tiny def}}{=} WD$, W is the partial isometry in the polar decomposition

X = W|X|, while P is the orthogonal projection of \mathcal{H}_1 onto

$\mathcal{H}_1 \ominus \overline{V(\mathcal{H}_1) + X(\mathcal{H}_2)}.$

If
$$S = \begin{bmatrix} V & X \\ 0 & 0 \end{bmatrix} \in \mathbf{B}(\mathcal{H})$$
 is subnormal, then

$$N \stackrel{\text{def}}{=} \begin{bmatrix} V & X & Q & P & 0 & 0 \\ 0 & 0 & 0 & 0 & |X|^2 & |X| \\ 0 & 0 & 0 & 0 & D^*|X| & D^* \\ 0 & 0 & 0 & V^* & 0 & 0 \\ 0 & 0 & 0 & X^* & 0 & 0 \\ 0 & 0 & 0 & Q^* & 0 & 0 \end{bmatrix}$$

 \mathcal{H}_3 is the closure of the range of $|X|\sqrt{I-|X|^2}$, $D \stackrel{\text{def}}{=} \sqrt{I-|X|^2} J$, $J: \mathcal{H}_3 \to \mathcal{H}_2$ is the identity embedding, $Q \stackrel{\text{def}}{=} WD$, W is the partial isometry in the polar decomposition X = W|X|, while P is the orthogonal projection of \mathcal{H}_1 onto

$$\mathcal{H}_1 \ominus \overline{V(\mathcal{H}_1) + X(\mathcal{H}_2)}.$$

If
$$S = \begin{bmatrix} V & X \\ 0 & 0 \end{bmatrix} \in \mathbf{B}(\mathcal{H})$$
 is subnormal, then
$$\begin{bmatrix} V & X & Q & P & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$N \stackrel{\text{def}}{=} \begin{bmatrix} 0 & 0 & 0 & 0 & |X|^2 & |X|D \\ 0 & 0 & 0 & 0 & D^*|X| & D^*D \\ 0 & 0 & 0 & V^* & 0 & 0 \\ 0 & 0 & 0 & X^* & 0 & 0 \\ 0 & 0 & 0 & Q^* & 0 & 0 \end{bmatrix}$$

 \mathcal{H}_3 is the closure of the range of $|X|\sqrt{I-|X|^2}$,

 $D \stackrel{\text{def}}{=} \sqrt{I - |X|^2} J$, $J : \mathcal{H}_3 \to \mathcal{H}_2$ is the identity embedding, $Q \stackrel{\text{def}}{=} WD$, W is the partial isometry in the polar decomposition X = W|X|, while P is the orthogonal projection of \mathcal{H}_1 onto

$$\mathcal{H}_1 \ominus \overline{V(\mathcal{H}_1) + X(\mathcal{H}_2)}.$$

Moreover, N is of the form $U \oplus 0$, where U is unitary.

Ω

If
$$S = egin{bmatrix} V & X \\ 0 & 0 \end{bmatrix} \in \mathbf{B}(\mathcal{H})$$
 is subnormal, then

$$N \stackrel{\text{def}}{=} \begin{bmatrix} V & X & Q & P & 0 & 0 \\ 0 & 0 & 0 & 0 & |X|^2 & |X|D \\ 0 & 0 & 0 & 0 & D^*|X| & D^*D \\ 0 & 0 & 0 & V^* & 0 & 0 \\ 0 & 0 & 0 & X^* & 0 & 0 \\ 0 & 0 & 0 & Q^* & 0 & 0 \end{bmatrix}$$

 \mathcal{H}_3 is the closure of the range of $|X|\sqrt{I-|X|^2}$,

 $D\stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \sqrt{I - |X|^2} \, J$, $J \colon \mathcal{H}_3 o \mathcal{H}_2$ is the identity embedding,

 $Q \stackrel{\text{\tiny def}}{=} WD$, W is the partial isometry in the polar decomposition X = W|X|, while P is the orthogonal projection of \mathcal{H}_1 onto

 $\mathcal{H}_1 \ominus \overline{V(\mathcal{H}_1) + X(\mathcal{H}_2)}$

If
$$S = \begin{bmatrix} V & X \\ 0 & 0 \end{bmatrix} \in \mathbf{B}(\mathcal{H})$$
 is subnormal, then

$$N \stackrel{\text{def}}{=} \begin{bmatrix} V & X & Q & P & 0 & 0 \\ 0 & 0 & 0 & 0 & |X|^2 & |X|D \\ 0 & 0 & 0 & 0 & D^*|X| & D^*D \\ 0 & 0 & 0 & V^* & 0 & 0 \\ 0 & 0 & 0 & X^* & 0 & 0 \\ 0 & 0 & 0 & Q^* & 0 & 0 \end{bmatrix}$$

 \mathcal{H}_3 is the closure of the range of $|X|\sqrt{I-|X|^2}$,

 $D\stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \sqrt{I - |X|^2} \, J$, $J \colon \mathcal{H}_3 o \mathcal{H}_2$ is the identity embedding,

 $Q \stackrel{\text{def}}{=} WD$, W is the partial isometry in the polar decomposition X = W|X|, while P is the orthogonal projection of \mathcal{H}_1 onto

$$\mathcal{H}_1 \ominus \overline{V(\mathcal{H}_1) + X(\mathcal{H}_2)}.$$

If
$$S = \begin{bmatrix} V & X \\ 0 & 0 \end{bmatrix} \in \mathbf{B}(\mathcal{H})$$
 is subnormal, then

$$N \stackrel{\text{def}}{=} \begin{bmatrix} V & X & Q & P & 0 & 0 \\ 0 & 0 & 0 & 0 & |X|^2 & |X|D \\ 0 & 0 & 0 & 0 & D^*|X| & D^*D \\ 0 & 0 & 0 & V^* & 0 & 0 \\ 0 & 0 & 0 & X^* & 0 & 0 \\ 0 & 0 & 0 & Q^* & 0 & 0 \end{bmatrix}$$

 \mathcal{H}_3 is the closure of the range of $|X|\sqrt{I-|X|^2}$,

 $D\stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \sqrt{I - |X|^2} \, J$, $J \colon \mathcal{H}_3 o \mathcal{H}_2$ is the identity embedding,

 $Q \stackrel{\text{def}}{=} WD$, W is the partial isometry in the polar decomposition X = W|X|, while P is the orthogonal projection of \mathcal{H}_1 onto

$$\mathcal{H}_1 \ominus \overline{V(\mathcal{H}_1) + X(\mathcal{H}_2)}.$$

$\varOmega\subseteq\mathbb{C}$ nonempty connected open,

 $\varphi \colon \Omega \to \mathbf{B}(\mathcal{H})$ analytic subnormal-operator-valued function, $\varphi(\Omega)$ – commuting family. Does φ have to be jointly subnormal?

Answer is yes/no/l don't know

$$\begin{split} \Omega &\subseteq \mathbb{C} \text{ nonempty connected open,} \\ \varphi \colon \Omega \to \mathbf{B}(\mathcal{H}) \text{ analytic subnormal-operator-valued function,} \\ \varphi(\Omega) &= \text{commuting family.} \\ \text{Does } \varphi \text{ have to be jointly subnormal?} \end{split}$$

Answer is yes/no/l don't know

$$\begin{split} \Omega &\subseteq \mathbb{C} \text{ nonempty connected open,} \\ \varphi \colon \Omega \to \mathbf{B}(\mathcal{H}) \text{ analytic subnormal-operator-valued function,} \\ \varphi(\Omega) &= \text{ commuting family.} \\ \text{Does } \varphi \text{ have to be jointly subnormal?} \end{split}$$

Answer is yes/no/l don't know

$$\begin{split} & \Omega \subseteq \mathbb{C} \text{ nonempty connected open,} \\ & \varphi \colon \Omega \to \mathbf{B}(\mathcal{H}) \text{ analytic subnormal-operator-valued function,} \\ & \varphi(\Omega) - \text{commuting family.} \\ & \text{Does } \varphi \text{ have to be jointly subnormal?} \end{split}$$

Answer is yes/no/l don't know

$$\begin{split} & \Omega \subseteq \mathbb{C} \text{ nonempty connected open,} \\ & \varphi \colon \Omega \to \mathbf{B}(\mathcal{H}) \text{ analytic subnormal-operator-valued function,} \\ & \varphi(\Omega) - \text{commuting family.} \\ & \text{Does } \varphi \text{ have to be jointly subnormal?} \end{split}$$

Answer is yes/no/I don't know

$$\begin{split} & \Omega \subseteq \mathbb{C} \text{ nonempty connected open,} \\ & \varphi \colon \Omega \to \mathbf{B}(\mathcal{H}) \text{ analytic subnormal-operator-valued function,} \\ & \varphi(\Omega) - \text{commuting family.} \\ & \text{Does } \varphi \text{ have to be jointly subnormal?} \end{split}$$

Answer is yes/no/I don't know

$$\begin{split} & \Omega \subseteq \mathbb{C} \text{ nonempty connected open,} \\ & \varphi \colon \Omega \to \mathbf{B}(\mathcal{H}) \text{ analytic subnormal-operator-valued function,} \\ & \varphi(\Omega) - \text{commuting family.} \\ & \text{Does } \varphi \text{ have to be jointly subnormal?} \end{split}$$

Answer is yes/no/I don't know